# **KONGU ENGINEERING COLLEGE**

(Autonomous Institution Affiliated to Anna University, Chennai)

# PERUNDURAI ERODE – 638 060

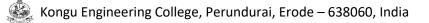
# TAMILNADU INDIA



**REGULATIONS, CURRICULUM & SYLLABI - 2020** 

(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted during 2020 - 2021 and onwards)


# MASTER OF ENGINEERING DEGREE IN COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING



# INDEX

| SI.No. | CONTENTS                                            | Page<br>No. |
|--------|-----------------------------------------------------|-------------|
| 1      | VISION AND MISSION OF THE INSTITUTE                 | 3           |
| 2      | QUALITY POLICY                                      | 3           |
| 3      | VISION AND MISSION OF THE DEPARTMENT                | 3           |
| 4      | PROGRAM EDUCATIONAL OBJECTIVES (PEOs)               | 3           |
| 5      | PROGRAM OUTCOMES (POs)                              | 4           |
| 6      | REGULATIONS 2018                                    | 5           |
| 7      | CURRICULUM BREAKDOWN STRUCTURE                      | 20          |
| 8      | CATEGORISATION OF COURSES                           | 20          |
| 9      | SCHEDULING OF COURSES                               | 24          |
| 10     | MAPPING OF COURSES WITH PROGRAM OUTCOMES            | 25          |
| 11     | CURRICULUM OF ME – COMPUTER SCIENCE AND ENGINEERING | 27          |
| 12     | DETAILED SYLLABUS                                   | 29          |



#### KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

#### **INSTITUTE VISION**

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

#### **INSTITUTE MISSION**

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

#### **QUALITY POLICY**

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

#### VISION

To be a centre of excellence for nurturing competent computer professionals of high calibre and quality for catering to the ever-changing needs of the industry and society.

|         | MISSION                                                                                                                                    |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Departi | ment of Computer Science and Engineering is committed to:                                                                                  |  |  |  |  |  |
| MS1:    | Develop innovative, competent and ethically strong computer engineers to meet global challenges.                                           |  |  |  |  |  |
| MS2:    | Foster consultancy and basic as well as applied research activities to solve real world problems.                                          |  |  |  |  |  |
| MS3:    | Endeavour for constant upgradation of technical expertise to cater to the needs of the industry and society.                               |  |  |  |  |  |
|         | PROGRAM EDUCATIONAL OBJECTIVES (PEOs)                                                                                                      |  |  |  |  |  |
| Post G  | raduates of Computer Science and Engineering will                                                                                          |  |  |  |  |  |
| PEO1:   | Adapt new computing technologies for attaining professional excellence and contribute to the advancement of computer science               |  |  |  |  |  |
| PEO2:   | Achieve peer recognition as an individual or in a team through demonstration of good analytical research, design and implementation skills |  |  |  |  |  |

PEO3: Thrive to pursue lifelong reflective learning to fulfill their goals

# 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

#### MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

| <b>MS\PEO</b> | PEO1 | PEO2 | PEO3 |
|---------------|------|------|------|
| MS1           | 3    | 2    | 2    |
| MS2           | 2    | 3    | 2    |
| MS3           | 2    | 3    | 3    |

1 -Slight, 2 -Moderate, 3 -Substantial

|        | PROGRAM OUTCOMES (POs)                                                                                                                                                                                                  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Gradua | tes of Computer Science and Engineering will:                                                                                                                                                                           |  |  |  |  |
| PO1    | Apply mathematical foundations, algorithmic principles, and computer science theory in the modelling and design of computer based systems of varying complexity.                                                        |  |  |  |  |
| PO2    | Critically analyze existing literature in an area of specialization and develop innovative and research oriented methodologies to tackle gaps identified.                                                               |  |  |  |  |
| PO3    | Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, and sustainability in the field of computer engineering. |  |  |  |  |
| PO4    | Apply latest techniques and tools necessary for computing practice and demonstrate advanced knowledge of a selected area within the computer science discipline.                                                        |  |  |  |  |
| PO5    | Function effectively to accomplish a common goal and communicate with a range of audiences and prepare technical documents and make oral presentations.                                                                 |  |  |  |  |
| PO6    | Demonstrate an ability to engage in lifelong learning for professional development.                                                                                                                                     |  |  |  |  |

| <b>PEO\PO</b>                     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----------------------------------|-----|-----|-----|-----|-----|-----|
| PEO1                              | 3   | 2   | 2   | 3   | 1   | 2   |
| PEO2                              |     |     | 1   |     | 3   | 3   |
| PEO3                              | 2   | 2   | 1   | 1   |     | 1   |
| 1 Slight 2 Moderate 2 Substantial |     |     |     |     |     |     |

# **MAPPING OF PEOs WITH POs**

1 – Slight, 2 – Moderate, 3 – Substantial

Kongu Engineering College, Perundurai, Erode – 638060, India

#### KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638060

#### (An Autonomous Institution Affiliated to Anna University)

#### **REGULATIONS 2020**

#### CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

#### MASTER OF ENGINEERING (ME) / MASTER OF TECHNOLOGY (MTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into ME/MTech Degree programmes from the academic year 2020 – 2021 onwards.

#### 1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Master of Engineering (ME) / Master of Technology (MTech) Degree programme
- iv. "Branch" means specialization or discipline of ME/MTech Degree programme, like Construction Engineering and Management, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Engineering Design Methodology, Machine Learning Techniques, etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.

# Kongu Engineering College, Perundurai, Erode – 638060, India

xi. "Head of the Department" means Head of the Department concerned of the College.

## 2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

| Programme | Branch                                  |
|-----------|-----------------------------------------|
|           | Construction Engineering and Management |
|           | Structural Engineering                  |
|           | Engineering Design                      |
|           | Mechatronics Engineering                |
| ME        | VLSI Design                             |
|           | Embedded Systems                        |
|           | Power Electronics and Drives            |
|           | Control and Instrumentation Engineering |
|           | Computer Science and Engineering        |
|           | Information Technology                  |
| MTech     | Chemical Engineering                    |
|           | Food Technology                         |

#### 3. ADMISSION REQUIREMENTS

Candidates seeking admission to the first semester of the ME/MTech Degree programme shall be required to have passed an appropriate qualifying Degree Examination of Anna University or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto, subject to amendments as may be made by the Anna University, Chennai from time to time. The candidates shall also be required to satisfy all other conditions of admission prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

#### 4. STRUCTURE OF PROGRAMMES

#### 4.1 Categorisation of Courses

# 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

The ME / MTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester and project work, internship,etc that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Foundation Courses (FC)
- ii. Professional Core (PC) Courses
- iii. Professional Elective (PE) Courses
- iv. Open Elective (OE) Courses
- v. Employability Enhancement Courses (EC) like Innovative Project, Internship cum Project work in Industry or elsewhere, Project Work

### 4.2 Credit Assignment

Each course is assigned certain number of credits as follows:

| Contact period per week         | Credits |
|---------------------------------|---------|
| 1 Lecture / Tutorial Period     | 1       |
| 2 Practical Periods             | 1       |
| 2 Project Work Periods          | 1       |
| 40 Training /Internship Periods | 1       |

The minimum number of credits to complete the ME/MTech programme is 72.

## 4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like innovative project, internship cum project work and project work during the programme to gain/exhibit the knowledge/skills.

## 4.3.1 Innovative Project

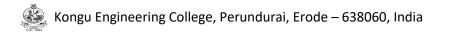
A candidate shall earn two credits by successfully completing the project by using his/her innovations in second semester during his/her programme.

## 4.3.2 Internship cum Project Work

The curriculum enables a candidate to go for full time internship during the third semester and can earn credits through it for his/her academics vide clause 7.6 and clause 7.12. Such candidate shall earn the minimum number of credits as mentioned in the third semester of the curriculum other than internship by either fast track mode or through approved courses in online mode or by self study mode. Such candidate can earn the number of credits for the internship same as that of Project Work in the third semester. Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

### 4.3.4 Project Work

A candidate shall earn nine credits by successfully completing the project work in fourth semester during the programme inside the campus or in industries.


#### 4.4 Value Added Courses / Online Courses / Self Study Courses

The candidates may optionally undergo Value Added Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 Value Added Courses:** Value Added courses each with One / Two credits shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of three credits through value added courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance (up to second semester).
- **4.4.5** A candidate can earn a maximum of 15 credits through all value added courses, online courses and self study courses.

#### 4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the second to fourth semesters the candidates have the option of registering for additional elective/Honors courses or dropping of already registered additional elective/Honors courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed six.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.



**4.8** The medium of instruction, examinations and project report shall be English.

#### 5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the ME / MTech Degree programme in 4 consecutive semesters (2 Years), but in any case not more than 8 semesters (4 Years).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

#### 6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.

#### 7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The ME/MTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Innovative Project, Internship cum Project work and Project Work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

# Kongu Engineering College, Perundurai, Erode – 638060, India

| Sl. No. | Category of Course                                                | Continuous<br>Assessment Marks                                                                                                       | End Semester<br>Examination |  |
|---------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| 1.      | Theory / Practical                                                | 50 50                                                                                                                                |                             |  |
| 2.      | Theory cum Practical                                              | The distribution of marks shall<br>decided based on the credit weighta<br>assigned to theory and practic<br>components respectively. |                             |  |
| 3.      | Innovative Project/ Project Work / Internship<br>cum Project Work | 50                                                                                                                                   | 50                          |  |
| 4.      | Value Added Course                                                | The distribution of                                                                                                                  |                             |  |
| 5.      | All other Courses                                                 | marks shall be<br>decided based on<br>the credit the credit<br>weightage assigned                                                    |                             |  |

**7.2** Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, innovative project and internships shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

#### 7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 50 marks and the end semester examination shall be for 50 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

**7.3.1** The assessment pattern for awarding continuous assessment marks shall be as follows:

| Sl.<br>No. | Туре       | Max.<br>Marks | Remarks                                                                                                                                                      |  |  |
|------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | Test – I   | 30            |                                                                                                                                                              |  |  |
| 1.         | Test – II  | 30            | Average of best two                                                                                                                                          |  |  |
|            | Test - III | 30            |                                                                                                                                                              |  |  |
| 2.         | Tutorial   | 15            | Should be of Open<br>Book/Objective Type.<br>Average of best 4 (or<br>more, depending on the<br>nature of the course, as<br>may be approved by<br>Principal) |  |  |

Kongu Engineering College, Perundurai, Erode – 638060, India

| 3. | Assignment / Paper Presentation<br>in Conference / Seminar /<br>Comprehension / Activity based<br>learning / Class notes | 05 | To be assessed by the<br>Course Teacher based<br>on any one type. |
|----|--------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------|
|    | Total                                                                                                                    | 50 | Rounded off to the one decimal place                              |

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for duration of three hours.

#### 7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

#### 7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

**7.5.1** The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.

#### 7.6 Project Work

- **7.6.1** Project work shall be carried out individually. Candidates can opt for full time internship (vide clause 7.8) in lieu of project work in third semester. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.

# 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

# **7.6.3** The continuous assessment and end semester examination marks for Project Work and the Viva-Voce Examination shall be distributed as below.

| Continuous Assessment<br>(Max. 50 Marks)                             |       |                                             |                                |                                             | End Semester Examination<br>(Max. 50 Marks) |           |           |           |           |
|----------------------------------------------------------------------|-------|---------------------------------------------|--------------------------------|---------------------------------------------|---------------------------------------------|-----------|-----------|-----------|-----------|
| Review IReview IIReview III(Max10 Marks)(Max 20 Marks)(Max 20 Marks) |       | Report<br>Evaluation<br>(Max. 20<br>Marks)  | Viva - Voce<br>(Max. 30 Marks) |                                             | •                                           |           |           |           |           |
| Rv.<br>Com                                                           | Guide | Review<br>Committee<br>(excluding<br>guide) | Guide                          | Review<br>Committee<br>(excluding<br>guide) | Guide                                       | Ext. Exr. | Guid<br>e | Exr.<br>1 | Exr.<br>2 |
| 5                                                                    | 5     | 10                                          | 10                             | 10                                          | 10                                          | 20        | 10        | 10        | 10        |

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Guide and Project Co-ordinator shall be submitted to Head of the Department. A candidate must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester. This applies to both Internship cum Project work and Project work.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** Every candidate shall, based on his/her project work, publish a paper in a reputed journal or reputed conference in which full papers are published after usual review. A copy of the full paper accepted and proof for that shall be produced at the time of evaluation.
- **7.6.7** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.8** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.7.
- **7.6.9** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

## 7.7 Innovative Project

The evaluation method shall be same as that of the Project Work as per clause 7.6 excluding clause 7.6.6.

#### 7.8 Internship cum Project Work

Each candidate shall submit a brief report about the internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work as per clause 7.6 excluding 7.6.6.

🕺 Kongu Engineering College, Perundurai, Erode – 638060, India

#### 7.9 Value Added Course

Two assessments shall be conducted during the value added course duration by the offering department concerned.

#### 7.10 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

#### 7.11 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

#### 7.12 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of Registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SF (Satisfactory). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

#### 8. **REQUIREMENTS FOR COMPLETION OF A SEMESTER**

**8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.

#### Kongu Engineering College, Perundurai, Erode – 638060, India

- **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
- **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.
- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.
- 8.1.5 Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

#### 9. REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.

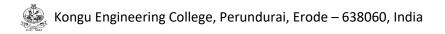
# 🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

**9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

### 10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.
- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

## 11. PROVISION FOR BREAK OF STUDY


**11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.



- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

#### **12. PASSING REQUIREMENTS**

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 50 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements, but the grade awarded shall be only the lowest passing grade irrespective of the marks secured.



#### **13. REVALUATION OF ANSWER SCRIPTS**

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

#### 14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

# **15. AWARD OF LETTER GRADES**

| Range of % of Total Marks          | Letter Grade    | Grade Point |
|------------------------------------|-----------------|-------------|
| 91 to 100                          | O (Outstanding) | 10          |
| 81 to 90                           | A+ (Excellent)  | 9           |
| 71 to 80                           | A (Very Good)   | 8           |
| 61 to 70                           | B+ (Good)       | 7           |
| 50 to 60                           | B (Average)     | 6           |
| Less than 50                       | RA (Reappear)   | 0           |
| Satisfactory                       | SF              | 0           |
| Withdrawal                         | W               | -           |
| Absent                             | AB              | -           |
| Shortage of Attendance in a course | SA              | -           |

The Grade Point Average (GPA) is calculated using the formula:

 $GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum (course credits) \text{ for all courses in the specific semester}}$ 

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

$$CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

## 16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the ME / MTech Degree provided the candidate has

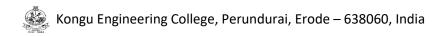
i. Successfully completed all the courses under the different categories, as specified in the regulations.

ii. Successfully gained the required number of total credits as specified in the curriculum M.E.– Computer Science and Engineering, Regulation, Curriculum and Syllabus – R2020

# 🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

corresponding to the candidate's programme within the stipulated time (vide clause 5).

- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.


## 17. CLASSIFICATION OF THE DEGREE AWARDED

#### **17.1** First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
  - Should have passed the examination in all the courses of all the four semester in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
  - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
  - Should have secured a CGPA of not less than 8.50

#### (OR)

- **17.1.2** A candidate who joins from other institutions on transfer or a candidate who gets readmitted and has to move from one regulation to another regulation and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
  - Should have passed the examination in all the courses of all the four semesters in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
  - Submission of equivalent course list approved by the respective Board of studies.
  - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
  - Should have secured a CGPA of not less than 9.00



#### 17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all four semesters within six consecutive semesters excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.00

#### 17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

**17.4** A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

#### **18. MALPRACTICES IN TESTS AND EXAMINATIONS**

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

#### **19. AMENDMENTS**

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its ME / MTech programme.

\*\*\*\*\*

#### CURRICULUM BREAKDOWN STRUCTURE

| Summary of Credi      | t Distribution                                                                                     |        |       |    |                               |                                                                        |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------|--------|-------|----|-------------------------------|------------------------------------------------------------------------|--|--|--|
| Category              |                                                                                                    | Semest | er    | _  | Total<br>number of<br>credits | Curriculum Content<br>(% of total number of<br>credits of the program) |  |  |  |
|                       | I                                                                                                  | н      | ш     | IV |                               |                                                                        |  |  |  |
| FC                    | 7                                                                                                  |        |       |    | 7                             | 9.7                                                                    |  |  |  |
| PC                    | 12                                                                                                 | 15     |       |    | 27                            | 37.5                                                                   |  |  |  |
| PE                    | 3                                                                                                  | 6      | 3     | 6  | 18                            | 25                                                                     |  |  |  |
| EC                    |                                                                                                    | 2      | 9     | 9  | 20                            | 27.8                                                                   |  |  |  |
| Semesterwise<br>Total | 22                                                                                                 | 23     | 12    | 15 | 72                            | 100.00                                                                 |  |  |  |
|                       |                                                                                                    | Cate   | egory |    |                               | Abbreviation                                                           |  |  |  |
| Lecture hours per v   | veek                                                                                               |        |       |    |                               | L                                                                      |  |  |  |
| Tutorial hours per w  | veek                                                                                               |        |       |    |                               | Т                                                                      |  |  |  |
| Practical, Project w  | actical, Project work, Internship, Professional Skill Training, Industrial Training hours per week |        |       |    |                               |                                                                        |  |  |  |
| Credits               | edits                                                                                              |        |       |    |                               |                                                                        |  |  |  |

|           | CATEGORISATION OF COURSES |                                    |   |   |   |   |     |  |  |  |  |
|-----------|---------------------------|------------------------------------|---|---|---|---|-----|--|--|--|--|
|           | FOUNDATION COURSES (FC)   |                                    |   |   |   |   |     |  |  |  |  |
| S.<br>No. | Course<br>Code            | Course Name                        | L | т | Ρ | С | Sem |  |  |  |  |
| 1.        | 20AMT15                   | Advanced Mathematics for Computing | 3 | 1 | 0 | 4 | 1   |  |  |  |  |
| 2.        | 20GET11                   | Introduction to Research           | 2 | 1 | 0 | 3 | 1   |  |  |  |  |
|           | Т                         | otal Credits to be earned          |   |   |   | 7 |     |  |  |  |  |

#### **PROFESSIONAL CORE (PC)**

| S.<br>No. | Course<br>Code | Course Name                                   | L | т | Ρ | С | Sem |
|-----------|----------------|-----------------------------------------------|---|---|---|---|-----|
| 1.        | 20MST11        | Network Design and Technologies               | 3 | 1 | 0 | 4 | 1   |
| 2.        | 20MST12        | Data Structures and Analysis of<br>Algorithms | 3 | 0 | 0 | 3 | 1   |
| 3.        | 20MST13        | Advanced Database Technology                  | 3 | 0 | 0 | 3 | 1   |
| 4.        | 20MSL11        | Data structures and algorithms<br>Laboratory  | 0 | 0 | 2 | 1 | 1   |

# Kongu Engineering College, Perundurai, Erode – 638060, India

| 10. | 20MSL21 | Machine Learning Laboratory    | 0 | 0 | 2 | 1 | 2 |
|-----|---------|--------------------------------|---|---|---|---|---|
| 9.  | 20MST24 | Data Science                   | 3 | 0 | 0 | 3 | 2 |
| 8.  | 20MST23 | Security in Computing          | 3 | 1 | 0 | 4 | 2 |
| 7.  | 20MST22 | Multicore Architectures        | 3 | 1 | 0 | 4 | 2 |
| 6.  | 20MST21 | Machine Learning Techniques    | 3 | 0 | 0 | 3 | 2 |
| 5.  | 20MSL12 | Database Technology laboratory | 0 | 0 | 2 | 1 | - |

### PROFESSIONAL ELECTIVE (PE)

| S.<br>No. | Course<br>Code | Course Name                             | L | т | Р | С | Sem |
|-----------|----------------|-----------------------------------------|---|---|---|---|-----|
|           |                | Elective – I                            |   |   |   |   |     |
| 1.        | 20MSE01        | Data mining Techniques                  | 3 | 0 | 0 | 3 | 1   |
| 2.        | 20MSE02        | Business Intelligence                   | 3 | 0 | 0 | 3 | 1   |
| 3.        | 20MSE03        | Cloud Computing                         | 3 | 0 | 0 | 3 | 1   |
| 4.        | 20MSE04        | Compiler Design Techniques              | 2 | 0 | 2 | 3 | 1   |
|           |                | Elective – II                           |   |   |   |   |     |
| 5.        | 20MSE05        | Blockchain Technologies                 | 3 | 0 | 0 | 3 | 2   |
| 6.        | 20MSE06        | Internet of Things                      | 2 | 0 | 2 | 3 | 2   |
| 7.        | 20MSE07        | Big Data Analytics                      | 3 | 0 | 0 | 3 | 2   |
| 8.        | 20MSE08        | Modern Information Retrieval Techniques | 3 | 0 | 0 | 3 | 2   |
|           |                | Elective - III                          |   |   |   |   |     |
| 9.        | 20MSE09        | Information Storage Management          | 3 | 0 | 0 | 3 | 2   |
| 10.       | 20MSE10        | Randomized Algorithms                   | 3 | 0 | 0 | 3 | 2   |
| 11.       | 20MSE11        | Social Network Analysis                 | 3 | 0 | 0 | 3 | 2   |
| 12.       | 20MSE12        | Deep Learning Techniques                | 2 | 0 | 2 | 3 | 2   |
|           |                | Elective – IV                           |   |   |   |   |     |
| 13.       | 20MSE13        | Speech and natural language processing  | 3 | 0 | 0 | 3 | 3   |
| 14.       | 20MSE14        | Intelligent system Design               | 3 | 0 | 0 | 3 | 3   |
| 15.       | 20MSE15        | Mobile and Pervasive computing          | 3 | 0 | 0 | 3 | 3   |
| 16.       | 20MSE16        | Nature Inspired Optimization Techniques | 3 | 0 | 0 | 3 | 3   |
|           |                | Elective – V                            |   |   |   |   |     |

# 🛞 Kongu Engineering College, Perundurai, Erode – 638060, India

| 26. | 20MSE17 | Digital Image Processing and Computer Vision        | 3 | 0 | 0 | 3  | 4 |
|-----|---------|-----------------------------------------------------|---|---|---|----|---|
| 27. | 20MSE18 | Software Defined Networking                         | 3 | 0 | 0 | 3  | 4 |
| 28. | 20MSE19 | Reinforcement Learning                              | 3 | 0 | 0 | 3  | 4 |
| 29. | 20MSE20 | Virtualization Techniques                           | 3 | 0 | 0 | 3  | 4 |
|     |         | Elective – VI                                       |   |   |   |    |   |
| 30. | 20MSE21 | User Interface Design                               | 2 | 0 | 2 | 3  | 4 |
| 31. | 20MSE22 | Advanced Parallel Architecture and<br>Programming   | 2 | 0 | 2 | 3  | 4 |
| 32. | 20GET13 | Innovation Entrepreneurship and venture Development | 3 | 0 | 0 | 3  | 4 |
|     | Т       | otal Credits to be earned                           |   |   |   | 18 |   |

|           | E                                 | MPLOYABILITY ENHANCEMENT COUR | SES | (EC) | )  |   |     |  |
|-----------|-----------------------------------|-------------------------------|-----|------|----|---|-----|--|
| S.<br>No. | Course<br>Code                    | Course Name                   | L   | т    | Ρ  | С | Sem |  |
| 1.        | 20MSP21                           | Innovative Project            | 0   | 0    | 4  | 2 | 2   |  |
| 2.        | 20MSP31                           | Internship cum Project Work   | 0   | 0    | 18 | 9 | 3   |  |
| 3.        | 20MSP41                           | Project Work                  | 0   | 0    | 18 | 9 | 4   |  |
|           | Total Credits to be earned     20 |                               |     |      |    |   |     |  |

# KEC R2020: SCHEDULING OF COURSES – ME (Computer Science and Engineering) Total Credits: 72

| Semes<br>ter |                                                                     | Theo                                                    | ry/ Theory cum P                                                 | ractical / Practi                                                                 | cal                                                           |                                              | Internship &<br>Projects                                                                  | Special<br>Courses                                              | Credits |
|--------------|---------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------|
|              | 1                                                                   | 2                                                       | 3                                                                | 4                                                                                 | 5                                                             | 6                                            | 7                                                                                         | 8                                                               | 9       |
| I            | 20AMT15<br>Advanced<br>Mathematics<br>for computing<br>(PC-3-1-0-4) | 20GET11<br>Introduction to<br>Reasearch<br>(PC-2-1-0-3) | 20MST11<br>Network<br>design and<br>technologies<br>(PC-3-1-0-4) | 20MST12<br>Data<br>Structures<br>and Analysis<br>of<br>Algorithms<br>(PC-3-0-0-3) | 20MST13<br>Advanced<br>Database<br>Technology<br>(PC-3-0-0-3) | Professional<br>Elective I<br>(PE-3-0-0-3)   | 20MSL11<br>Data Structures<br>and Analysis of<br>Algorithms<br>Laboratory<br>(PC-0-0-3-1) | 20MSL12<br>Database<br>Technology<br>Laboratory<br>(PC-0-0-3-1) | 22      |
| II           | 20MST21<br>Machine<br>Learning<br>Techniques<br>(PC-3-0-0-3)        | 20MST22<br>Multicore<br>Architecture<br>(PC-3-1-0-4)    | 20MST23<br>Security in<br>computing<br>(PC-3-1-0-4)              | 20MST24<br>Data<br>Science<br>(PC-3-0-0-3)                                        | Professional<br>Elective II<br>(PE-3-0-0-3)                   | Professional<br>Elective III<br>(PE-3-0-0-3) | 20MSL21<br>Machine Learning<br>Techniques<br>Laboratory<br>(PC-0-0-3-1)                   | 20MSP21<br>Innovative<br>Project<br>(PR-0-0-4-2)                | 23      |
| 111          | Professional<br>Elective IV<br>(PE-3-0-0-3)                         |                                                         |                                                                  |                                                                                   |                                                               |                                              | 20MSP31<br>Intern cum Project<br>Work<br>(PR-0-0-27-9)                                    |                                                                 | 12      |
| IV           | Professional<br>Elective V<br>(PE-3-0-0-3)                          | Professional<br>Elective VI<br>(PE-3-0-0-3)             |                                                                  |                                                                                   |                                                               |                                              | 20MSP41<br>Project Work<br>(PR-0-0-27-9)                                                  |                                                                 | 15      |

**Total Credits: 72** 

| Sem. | Course<br>Code | Course Title                                  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|------|----------------|-----------------------------------------------|-----|-----|-----|-----|-----|-----|
| 1    | 20AMT15        | Advanced Mathematics for Computing            | 1   | ✓   | ✓   |     |     |     |
| 1    | 20GET11        | Introduction to Research                      | 1   | ✓   | ✓   |     |     |     |
| 1    | 20MST11        | Network Design and Technologies               | ✓   | ✓   | ✓   | ✓   |     |     |
| 1    | 20MST12        | Data Structures and Analysis of<br>Algorithms | ~   | ~   |     | ~   |     |     |
| 1    | 20MST13        | Advanced Database Technology                  | ✓   | ✓   |     | ✓   |     |     |
| 1    | 20MSL11        | Data structures and algorithms<br>Laboratory  | ✓   | ✓   |     | ~   |     |     |
| 1    | 20MSL12        | Database Technology laboratory                | ✓   | ✓   |     | ✓   |     |     |
| 2    | 20MST21        | Machine Learning Techniques                   | ~   |     | 1   | 1   |     | 1   |
| 2    | 20MST22        | Multicore Architectures                       | ✓   | ✓   | ✓   |     |     |     |
| 2    | 20MST23        | Security in Computing                         | ✓   | ✓   | ✓   | ✓   |     |     |
| 2    | 20MST24        | Data Science                                  | 1   | ✓   | ~   | ~   |     |     |
| 2    | 20MSL21        | Machine Learning Laboratory                   | 1   |     | ✓   |     |     |     |
| 1    | 20MSE01        | Data mining Techniques                        | ✓   |     | ✓   | ✓   |     | ✓   |
| 1    | 20MSE02        | Business Intelligence                         | 1   | ✓   | ✓   | ~   |     |     |
| 1    | 20MSE03        | Cloud Computing                               | 1   | ✓   | ✓   | ✓   |     |     |
| 1    | 20MSE04        | Compiler Design Techniques                    | 1   | ✓   | ✓   | ✓   |     |     |
| 2    | 20MSE05        | Blockchain Technologies                       | 1   | ✓   | ✓   | ✓   |     |     |
| 2    | 20MSE06        | Internet of Things                            | ✓   | ✓   | ✓   | ✓   |     |     |
| 2    | 20MSE07        | Big Data Analytics                            | 1   | ✓   | ✓   | ✓   |     |     |
| 2    | 20MSE08        | Modern Information Retrieval Techniques       | ✓   | ✓   | ~   | ~   |     |     |
| 2    | 20MSE09        | Information Storage Management                | ✓   | ✓   | ✓   | ~   |     |     |
| 2    | 20MSE10        | Randomized Algorithms                         | ✓   | ✓   | ~   |     |     |     |
| 2    | 20MSE11        | Social Network Analysis                       | ✓   | ✓   | ✓   |     |     |     |
| 2    | 20MSE12        | Deep Learning Techniques                      | ✓   | ✓   | ✓   | ✓   |     |     |

| Kongu Engineer | ing Colle<br>Sem. | eg <b>&amp;Øerse</b> du<br>Code | rai, Erode – 638060, India<br><b>Course Title</b>      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------------|-------------------|---------------------------------|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
|                | 3                 | 20MSE13                         | Speech and natural language processing                 | ✓   | ✓   | 1   | 1   |     |     |
|                | 3                 | 20MSE14                         | Intelligent system Design                              | ✓   | ✓   | ~   | ~   |     |     |
|                | 3                 | 20MSE15                         | Mobile and Pervasive computing                         | ✓   | ✓   | ✓   | ✓   |     |     |
|                | 3                 | 20MSE16                         | Nature Inspired Optimization Techniques                | ✓   | ✓   | ✓   |     |     |     |
|                | 4                 | 20MSE17                         | Digital Image Processing and Computer Vision           | ~   | ~   | 1   |     |     |     |
|                | 4                 | 20MSE18                         | Software Defined Networking                            | ✓   | 1   | 1   |     |     |     |
|                | 4                 | 20MSE19                         | Reinforcement Learning                                 | ✓   | 1   | 1   |     |     |     |
|                | 4                 | 20MSE20                         | Virtualization Techniques                              | ✓   | ~   | ✓   | ✓   |     |     |
|                | 4                 | 20MSE21                         | User Interface Design                                  | ✓   | ✓   | ✓   | ~   |     |     |
|                | 4                 | 20MSE22                         | Advanced Parallel Architecture and<br>Programming      | ~   | ~   | ~   | 1   |     |     |
|                | 4                 | 20GET13                         | Innovation Entrepreneurship and venture<br>Development |     |     |     |     |     |     |

## M.E. COMPUTER SCIENCE AND ENGINEERING CURRICULUM – R2020

| SEMESTER       | -1                                         |    |              |   |    |               |     |       |      |
|----------------|--------------------------------------------|----|--------------|---|----|---------------|-----|-------|------|
| Course<br>Code | Course Title                               | Но | Hours / Week |   |    | Maximum Marks |     |       | Cate |
| Code           |                                            | L  | Т            | Р |    | CA            | ESE | Total | gory |
| Theory/Theo    | ory with Practical                         |    |              |   |    |               |     |       |      |
| 20AMT15        | Advanced Mathematics for Computing         | 3  | 1            | 0 | 4  | 50            | 50  | 100   | FC   |
| 20GET11        | Introduction to Research                   | 2  | 1            | 0 | 3  | 50            | 50  | 100   | FC   |
| 20MST11        | Network Design and Technologies            | 3  | 1            | 0 | 4  | 50            | 50  | 100   | PC   |
| 20MST12        | Data Structures and Analysis of Algorithms | 3  | 0            | 0 | 3  | 50            | 50  | 100   | PC   |
| 20MST13        | Advanced Database Technology               | 3  | 0            | 0 | 3  | 50            | 50  | 100   | PC   |
|                | Professional Elective I                    | 3  | 0            | 0 | 3  | 50            | 50  | 100   | PE   |
| Practical / E  | mployability Enhancement                   |    |              |   |    |               |     |       |      |
| 20MSL11        | Data structures and algorithms Laboratory  | 0  | 0            | 2 | 1  | 50            | 50  | 100   | PC   |
| 20MSL12        | Database Technology laboratory             | 0  | 0            | 2 | 1  | 50            | 50  | 100   | PC   |
|                | Total Credits to be earned                 |    |              |   | 22 |               |     |       |      |

| SEMESTER      | - 11                        |    |         |      |        |               |     |       |      |
|---------------|-----------------------------|----|---------|------|--------|---------------|-----|-------|------|
| Course        | Course Title                | Но | urs / V | Veek | Credit | Maximum Marks |     |       | Cate |
| Code          |                             | L  | Т       | Ρ    |        | CA            | ESE | Total | gory |
| Theory/Theo   | ory with Practical          |    |         |      |        |               |     |       |      |
| 20MST21       | Machine Learning Techniques | 3  | 0       | 0    | 3      | 50            | 50  | 100   | PC   |
| 20MST22       | Multicore Architectures     | 3  | 1       | 0    | 4      | 50            | 50  | 100   | PC   |
| 20MST23       | Security in Computing       | 3  | 1       | 0    | 4      | 50            | 50  | 100   | PC   |
| 20MST24       | Data Science                | 3  | 0       | 0    | 3      | 50            | 50  | 100   | PC   |
|               | Professional Elective II    | 3  | 0       | 0    | 3      | 50            | 50  | 100   | PE   |
|               | Professional Elective III   | 3  | 0       | 0    | 3      | 50            | 50  | 100   | PE   |
| Practical / E | mployability Enhancement    |    |         |      |        |               |     |       |      |
| 20MSL21       | Machine Learning Laboratory | 0  | 0       | 2    | 1      | 50            | 50  | 100   | PC   |
| 20MSP21       | Innovative Project          | 0  | 0       | 4    | 2      | 50            | 50  | 100   | EC   |
|               | Total Credits to be earned  |    |         |      | 23     |               |     |       |      |

| SEMESTER                   | SEMESTER – III                        |              |   |    |        |               |     |       |      |  |  |
|----------------------------|---------------------------------------|--------------|---|----|--------|---------------|-----|-------|------|--|--|
| Course                     | Course Title                          | Hours / Week |   |    | Credit | Maximum Marks |     |       | Cate |  |  |
| Code                       |                                       | L            | Т | Р  |        | СА            | ESE | Total | gory |  |  |
| Practical / E              | Practical / Employability Enhancement |              |   |    |        |               |     |       |      |  |  |
|                            | Professional Elective IV              | 3            | 0 | 0  | 3      | 50            | 50  | 100   | PE   |  |  |
| 20MSP31                    | Internship cum Project Work           | 0            | 0 | 18 | 9      | 50            | 50  | 100   | EC   |  |  |
| Total Credits to be earned |                                       |              |   |    |        |               |     |       |      |  |  |

| Course<br>Code | Course Title              | Hours / Week |   |    | Credit | Ma | ximum I | Marks | Cate<br>gory |
|----------------|---------------------------|--------------|---|----|--------|----|---------|-------|--------------|
|                |                           | L            | т | Р  | Credit | СА | ESE     | Total |              |
| Theory/The     | ory with Practical        |              |   |    |        |    |         |       |              |
|                | Professional Elective V   | 3            | 0 | 0  | 3      | 50 | 50      | 100   | PE           |
|                | Professional Elective VI  | 3            | 0 | 0  | 3      | 50 | 50      | 100   | PE           |
| Practical / E  | Employability Enhancement |              |   |    |        |    | 1       |       | -            |
| 20MSP41        | Project Work              | 0            | 0 | 18 | 9      | 50 | 50      | 100   | EC           |
| Total Credi    | ts to be earned           | 1            | 1 | 1  | 15     |    |         |       | 1            |

|         | LIST OF PROFESSIONAL ELECTIVES                      | ;  |        |     |         |     |
|---------|-----------------------------------------------------|----|--------|-----|---------|-----|
| Course  |                                                     | Но | ours/W | eek | One dit |     |
| Code    | Course Title                                        | L  | т      | Р   | Credit  | CBS |
|         | Semester I                                          |    |        |     |         |     |
|         | Elective I                                          |    |        |     |         |     |
| 20MSE01 | Data mining Techniques                              | 3  | 0      | 0   | 3       | PE  |
| 20MSE02 | Business Intelligence                               | 3  | 0      | 0   | 3       |     |
| 20MSE03 | Cloud Computing                                     | 3  | 0      | 0   | 3       | PE  |
| 20MSE04 | Compiler Design Techniques                          | 2  | 0      | 2   | 3       | PE  |
|         | Semester II                                         |    |        |     |         |     |
|         | Elective II                                         |    |        |     |         |     |
| 20MSE05 | Blockchain Technologies                             | 3  | 0      | 0   | 3       | PE  |
| 20MSE06 | Internet of Things                                  | 2  | 0      | 2   | 3       | PE  |
| 20MSE07 | Big Data Analytics                                  | 3  | 0      | 0   | 3       | PE  |
| 20MSE08 | Modern Information Retrieval Techniques             | 3  | 0      | 0   | 3       |     |
|         | Elective III                                        |    |        |     |         |     |
| 20MSE09 | Information Storage Management                      | 3  | 0      | 0   | 3       | PE  |
| 20MSE10 | Randomized Algorithms                               | 3  | 0      | 0   | 3       | PE  |
| 20MSE11 | Social Network Analysis                             | 3  | 0      | 0   | 3       | PE  |
| 20MSE12 | Deep Learning Techniques                            | 2  | 0      | 2   | 3       |     |
|         | Semester III                                        |    |        |     |         |     |
|         | Elective IV                                         |    |        |     |         |     |
| 20MSE13 | Speech and natural language processing              | 3  | 0      | 0   | 3       | PE  |
| 20MSE14 | Intelligent system Design                           | 3  | 0      | 0   | 3       | PE  |
| 20MSE15 | Mobile and Pervasive computing                      | 3  | 0      | 0   | 3       | PE  |
| 20MSE16 | Nature Inspired Optimization Techniques             | 3  | 0      | 0   | 3       |     |
|         | Semester IV                                         |    |        |     |         |     |
|         | Elective V                                          |    |        |     |         |     |
| 20MSE17 | Digital Image Processing and Computer Vision        | 3  | 0      | 0   | 3       | PE  |
| 20MSE18 | Software Defined Networking                         | 3  | 0      | 0   | 3       | PE  |
| 20MSE19 | Reinforcement Learning                              | 3  | 0      | 0   | 3       | PE  |
| 20MSE20 | Virtualization Techniques                           | 3  | 0      | 0   | 3       | PE  |
|         | Elective VI                                         |    |        |     |         |     |
| 20MSE21 | User Interface Design                               | 2  | 0      | 2   | 3       | PE  |
| 20MSE22 | Advanced Parallel Architecture and Programming      | 2  | 0      | 2   | 3       | PE  |
| 20GET13 | Innovation Entrepreneurship and venture Development | 3  | 0      | 0   | 3       | PE  |

20AMT15 - ADVANCED MATHEMATICS FOR COMPUTING



#### 20GET11 INTRODUCTION TO RESEARCH

(Common to Engineering and Technology Branches)

| Programme &<br>Branch | M.E. & Construction Engineering and Management | Sem. | Category | L | т | Р | Credit |
|-----------------------|------------------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Nil                                            | 1    | PC       | 2 | 1 | 0 | 3      |

| Unit - I | patenting. Also will disseminate the process involved in collection, consolidation of published literature and rewriting them in a presentable form using latest tools.  Concept of Research: 6+3 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preamble | This course will familiarize the fundamental concepts/techniques adopted in research, problem formulation and                                                                                     |

#### Unit - I Concept of Research:

Meaning and Significance of Research: Skills, Habits and Attitudes for Research - Time Management - Status of Research in India. Why, How and What a Research is? - Types and Process of Research - Outcome of Research - Sources of Research Problem -Characteristics of a Good Research Problem - Errors in Selecting a Research Problem - Importance of Keywords - Literature Collection - Analysis - Citation Study - Gap Analysis - Problem Formulation Techniques.

#### Unit - II **Research Methods and Journals:**

Interdisciplinary Research - Need for Experimental Investigations - Data Collection Methods - Appropriate Choice of Algorithms / Methodologies / Methods - Measurement and Result Analysis - Investigation of Solutions for Research Problem - Interpretation -Research Limitations. Journals in Science/Engineering - Indexing and Impact factor of Journals - Citations - h Index - i10 Index -Journal Policies - How to Read a Published Paper - Ethical issues Related to Publishing - Plagiarism and Self-Plagiarism.

#### Unit - III Paper Writing and Research Tools:

Types of Research Papers - Original Article/Review Paper/Short Communication/Case Study - When and Where to Publish? -Journal Selection Methods. Layout of a Research Paper - Guidelines for Submitting the Research Paper - Review Process -Addressing Reviewer Comments. Use of tools / Techniques for Research - Hands on Training related to Reference Management Software - EndNote, Software for Paper Formatting like LaTeX/MS Office. Introduction to Origin, SPSS, ANOVA etc., Software for detection of Plagiarism.

#### Effective Technical Thesis Writing/Presentation: Unit - IV

How to Write a Report - Language and Style - Format of Project Report - Use of Quotations - Method of Transcription Special Elements: Title Page - Abstract - Table of Contents - Headings and Sub-Headings - Footnotes - Tables and Figures - Appendix -Bibliography etc. - Different Reference Formats. Presentation using PPTs.

#### Nature of Intellectual Property: Unit - V

Patents - Designs - Trade and Copyright. Process of Patenting and Development: Technological research - innovation - patenting development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents.

#### **REFERENCES:**

#### Lecture: 30, Tutorial:15, Total:45

6+3

6+3

6+3

6+3

DePoy, Elizabeth, and Laura N. Gitlin, "Introduction to Research-E-Book: Understanding and Applying Multiple Strategies", 1. Elsevier Health Sciences, 2015.

- 2. Walliman, Nicholas, "Research Methods: The basics", Routledge, 2017.
- Bettig Ronald V., "Copyrighting culture: The political economy of intellectual property", Routledge, 2018.

|      | OURSE OUTCOMES:<br>n completion of the course, the students will be able to |                 |  |  |
|------|-----------------------------------------------------------------------------|-----------------|--|--|
| CO1: | list the various stages in research and categorize the quality of journals. | Analyzing (K4)  |  |  |
| CO2; | formulate a research problem from published literature/journal papers       | Evaluating (K5) |  |  |
| CO3: | write, present a journal paper/ project report in proper format             | Creating (K6)   |  |  |
| CO4: | select suitable journal and submit a research paper.                        | Applying (K3)   |  |  |
| CO5: | compile a research report and the presentation                              | Applying (K3)   |  |  |

|         | Мар | ping of COs with | POs |     |     |
|---------|-----|------------------|-----|-----|-----|
| COs/POs | PO1 | PO2              | PO3 | PO4 | PO5 |
| CO1     | 3   | 2                | 1   |     |     |
| CO2     | 3   | 2                | 3   |     |     |
| CO3     | 3   | 3                | 1   |     |     |
| CO4     | 3   | 2                | 1   |     |     |
| CO5     | 3   | 2                | 1   |     |     |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |
| CAT1                        |                             | 30                      | 40                 | 30                  |                      |                    | 100        |  |  |  |  |  |
| CAT2                        |                             | 30                      | 40                 | 30                  |                      |                    | 100        |  |  |  |  |  |
| CAT3                        |                             |                         | 30                 | 40                  | 30                   |                    | 100        |  |  |  |  |  |
| ESE                         |                             | 30                      | 40                 | 30                  |                      |                    | 100        |  |  |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MST11 - NETWORK DESIGN AND TECHNOLOGIES

| Programme &<br>Branch | M.E Computer Science and Engineering | Sem. | Category | L | т | Р | Credit |
|-----------------------|--------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Computer Networks                    | I    | PC       | 3 | 1 | 0 | 4      |

 Preamble
 This course provides an introduction to fundamentals of Network design, tools for monitoring the network and analyzing the performance. Further this course also focuses on variants of wireless networks, 4G and 5G networks and Software-Defined Networks.

 Unit - I
 Network Design Fundamentals:
 9+3

Introduction -Cooperative communications -The OSI model -The TCP/IP model -The Internet protocols-Networking hardware-Physical connectivity-Virtual connectivity.

#### Unit - II Network monitoring and Analysis:

An effective network monitoring LAN and WAN - Monitoring your network -The dedicated monitoring server – monitoring various network parameters - characteristics of monitoring tools - Types of monitoring tools-Spot check tools-Log analysers-Trending tools-Realtime tools-Benchmarking-Interpret the traffic graph - Monitoring RAM and CPU usage.

#### Unit - III Wireless Networks:

IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX - 802.16e – Network Infrastructure - WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS.

#### Unit - IV 4G and 5G Networks:

LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks –Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10)-4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Introduction to 5G.

#### Unit - V Software Defined Networks:

Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – Data centre concepts and constructs. Design of simple SDN network.

#### Lecture: 45, Tutorial:15, Total: 60

#### **REFERENCES**:

1. Martin Sauter, "From GSM to LTE, An Introduciton to Mobile Networks and Mobile Broadband", 1<sup>st</sup> Edition, Wiley, 2014

2. Thoman D. Nadeau, Ken Gray, "SDN - Software Defined Networks", 1<sup>st</sup> Edition, O'Reilly Publishers, 2013.

 Flickenger R., Belcher M., Canessa E., Zennaro M., "How To Accelerate Your Internet A Practical Guide to Bandwidth Management and Optimisation using Open Source Software", 1<sup>st</sup> Edition, BMO Book Sprint Team, 2006

9+3

9+3

9+3

|     | OURSE OUTCOMES:<br>In completion of the course, the students will be able to           |               |  |  |
|-----|----------------------------------------------------------------------------------------|---------------|--|--|
| CO1 | identify the components required for designing a network                               | Applying (K3) |  |  |
| CO2 | apply the usage of appropriate tools for network monitoring system                     | Applying (K3) |  |  |
| CO3 | determine a suitable wireless networking technology for a given communication scenario | Applying (K3) |  |  |
| CO4 | identify the features of LTE, 4G and 5G networks                                       | Applying (K3) |  |  |
| CO5 | design simple software defined networks with simulation tools                          | Applying (K3) |  |  |

|                               |                      | Mapping of C   | Os with POs s |     |     |     |
|-------------------------------|----------------------|----------------|---------------|-----|-----|-----|
| COs/POs                       | PO1                  | PO2            | PO3           | PO4 | PO5 | PO6 |
| CO1                           | 3                    | 2              | 1             | 3   |     |     |
| CO2                           | 3                    | 3              | 1             | 3   |     |     |
| CO3                           | 3                    | 2              | 1             | 3   |     |     |
| CO4                           | 3                    | 2              | 1             | 3   |     |     |
| CO5                           | 3                    | 2              | 1             | 3   |     |     |
| - Slight, 2 - Moderate, 3 - S | Substantial, BT- Blo | oom's Taxonomy | ,             |     |     |     |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |
| CAT1                        | 15                          | 60                      | 25                 |                     |                      |                    | 100        |  |  |  |  |  |
| CAT2                        | 15                          | 70                      | 15                 |                     |                      |                    | 100        |  |  |  |  |  |
| CAT3                        | 15                          | 70                      | 15                 |                     |                      |                    | 100        |  |  |  |  |  |
| ESE                         | 10                          | 70                      | 20                 |                     |                      |                    | 100        |  |  |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MST12 - DATA STRUCTURES AND ANALYSIS OF ALGORITHMS

| Programme<br>Branch       | &                                                                                                                                                                                                       | M.E & Computer Science and Engineering                                                                                                                                                                                      | Sem.     | Category        | L       | т        | Р       | Credit      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------|----------|---------|-------------|
| Prerequisites             |                                                                                                                                                                                                         | Nil                                                                                                                                                                                                                         | 1        | PC              | 3       | 0        | 0       | 3           |
| Preamble                  | Provides insight into the intrinsic nature of the problem as well as possible solution techniques, independent of programming language / programming paradigm/computer hardware/ implementation aspect. |                                                                                                                                                                                                                             |          |                 |         |          |         |             |
| Unit - I                  | Data Structures:                                                                                                                                                                                        |                                                                                                                                                                                                                             |          |                 |         |          | 9       |             |
|                           | •                                                                                                                                                                                                       | thms in Computing- Growth of Functions - Analysis<br>ort – Sorting in Linear Time.                                                                                                                                          | of Rec   | ursive and No   | n-recur | sive Fu  | unction | s – Lists - |
| Unit - II                 | Advanced Data Structures:                                                                                                                                                                               |                                                                                                                                                                                                                             |          |                 | 9       |          |         |             |
| Binary Searc              | ch Trees                                                                                                                                                                                                | -Red-Black Trees-Augmenting Data Structures - B- Tress                                                                                                                                                                      | – Binom  | ial Heaps - Fib | onacci  | i Heaps  | 6.      |             |
| Unit - III                | Algorit                                                                                                                                                                                                 | hm Design Techniques:                                                                                                                                                                                                       |          |                 |         |          |         | 9           |
| Programmin<br>String matc | hing wit                                                                                                                                                                                                | sic Design Techniques: Divide and Conquer (S<br>Cutting) - Greedy Algorithms(Huffman Codes) - String M<br>h finite automata - Knuth-Morris-Pratt Algorithm - Cor<br>ts intersection – Convex Hull – Closest pair of points. | atching: | Naïve Algorit   | hm - I  |          | Karp A  |             |
| Unit - IV                 | Graph                                                                                                                                                                                                   | Algorithms:                                                                                                                                                                                                                 |          |                 |         |          |         | 9           |
| Elementary<br>Flow.       | Graph A                                                                                                                                                                                                 | Igorithms - Minimum Spanning Trees - Single Source S                                                                                                                                                                        | hortest  | Paths - All Pa  | irs Sho | ortest F | aths -  | Maximum     |
| Unit - V                  | NP and                                                                                                                                                                                                  | Approximation Algorithm:                                                                                                                                                                                                    |          |                 |         |          |         | 9           |
|                           |                                                                                                                                                                                                         | Polynomial Time verification, NP Completeness and Rec<br>ation Algorithms: Traveling Salesman Problem - Sum of S                                                                                                            |          |                 |         |          |         | Complete    |

#### Lecture: 45, Total: 45

#### **REFERENCES:**

| 1. | Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", 3 <sup>rd</sup> Edition, MIT Press, USA, 2009. |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Levitin A., "Introduction to The Design and Analysis of Algorithms", 2 <sup>nd</sup> Edition, Addison Wesley, New York, 2007.                             |
| 2. | Weiss Mark Allen, "Data Structures and Algorithm Analysis in C++", 3 <sup>rd</sup> Edition, Pearson Education, New Delhi, 2007.                           |

|     | COURSE OUTCOMES:<br>On completion of the course, the students will be able to                      |                |  |  |
|-----|----------------------------------------------------------------------------------------------------|----------------|--|--|
| CO1 | analyze algorithms and prove their correctness for searching and sorting                           | Analyzing (K4) |  |  |
| CO2 | choose appropriate data structure as applicable to specified problem definition                    | Applying (K3)  |  |  |
| CO3 | design algorithms using different Algorithm Design Techniques and apply them to real world problem | Applying (K3)  |  |  |
| CO4 | summarize the major graph algorithms and apply on standard problems                                | Applying (K3)  |  |  |
| CO5 | outline the significance of NP-completeness and APPLY Approximation algorithm                      | Applying (K3)  |  |  |

| Mapping of COs with POs s     |                      |                |     |     |     |     |  |  |  |
|-------------------------------|----------------------|----------------|-----|-----|-----|-----|--|--|--|
| COs/POs                       | PO1                  | PO2            | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                           | 3                    | 3              |     | 3   |     |     |  |  |  |
| CO2                           | 3                    | 2              |     | 3   |     |     |  |  |  |
| CO3                           | 3                    | 2              |     | 3   |     |     |  |  |  |
| CO4                           | 3                    | 2              |     | 3   |     |     |  |  |  |
| CO5                           | 3                    | 1              |     | 2   |     |     |  |  |  |
| - Slight, 2 - Moderate, 3 - 3 | Substantial, BT- Blo | oom's Taxonomy |     |     |     |     |  |  |  |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |
| CAT1                        | 7                           | 10                      | 73                 | 10                  |                      |                    | 100        |  |
| CAT2                        | 10                          | 15                      | 75                 |                     |                      |                    | 100        |  |
| CAT3                        | 10                          | 15                      | 75                 |                     |                      |                    | 100        |  |
| ESE                         | 7                           | 13                      | 80                 |                     |                      |                    | 100        |  |

### 20MST13 - ADVANCED DATABASE TECHNOLOGY

| Branch                                                                                                                           | &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M.E & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                                                                         | Sem.                                                                                             | Category                                                             | L                                              | т                                      | Р                                    | Credit                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------------------------------|
| Prerequisite                                                                                                                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                | PC                                                                   | 3                                              | 0                                      | 0                                    | 3                                                               |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                      |                                                |                                        |                                      |                                                                 |
| Preamble                                                                                                                         | databa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uire knowledge on advanced databases like parallel a se, temporal database, spatial database, mobile da se to effectively store the data for real time application                                                                                                                                                                                                                                                                             | tabase, multi                                                                                    |                                                                      |                                                |                                        |                                      |                                                                 |
| Unit - I                                                                                                                         | Paralle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I and Distributed Databases:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |                                                                      |                                                |                                        |                                      |                                                                 |
| Distributed S<br>Design of                                                                                                       | ystems<br>f Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chitectures: Centralized and Client-Server Architectures: Parallel Databases: I/O Parallelism - Inter and Intra<br>allel Systems - Distributed Database<br>ons - Commit Protocols - Concurrency Control - Distri                                                                                                                                                                                                                               | Query Paral<br>Concepts                                                                          | lelism - Inter a<br>- Distrib                                        | nd Intra<br>uted                               | aopera<br>Data                         | tion Pa                              |                                                                 |
| Unit - II                                                                                                                        | Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oriented Databases:                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                                                                      |                                                |                                        |                                      |                                                                 |
| n OODBMS<br>Oriented Dat                                                                                                         | - Objec<br>abase D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eneration - Database Systems - Object Oriented Data<br>t Oriented Database Management System Manifesto<br>besign - OODBMS Standards and Systems - Object M<br>MS - Postgres - Comparison of ORDBMS and OODB                                                                                                                                                                                                                                    | - Advantage<br>/lanagement                                                                       | es and Disadv                                                        | antage                                         | s of O                                 | ODBM                                 | S - Objec                                                       |
| Unit - III                                                                                                                       | Intellig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ent Databases:                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                                                                      |                                                |                                        |                                      |                                                                 |
|                                                                                                                                  | tabases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntax and Semantics (Starburst, Oracle, DB2) – Taxo                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |                                                                      |                                                |                                        |                                      | ve Rules                                                        |
| SQL -                                                                                                                            | Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :: Overview of Temporal Databases - TSQL2 - Dedu<br>Intax and Semantics of Datalog Languages - Implen<br>Databases - Spatial Data<br>es - Spatial Access Methods - Spatial DB Implementa                                                                                                                                                                                                                                                       | nentation of I<br>Types                                                                          |                                                                      | cursion                                        | - Reci                                 |                                      | Datalog<br>Queries i                                            |
| SQL -<br>Spatial Data                                                                                                            | Sp<br>Structur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ntax and Semantics of Datalog Languages - Implen<br>patial Databases - Spatial Data                                                                                                                                                                                                                                                                                                                                                            | nentation of I<br>Types                                                                          | Rules and Red                                                        | cursion                                        | - Reci                                 | ursive                               | Datalog<br>Queries i                                            |
| SQL -<br>Spatial Data<br><b>Unit - IV</b><br>Mobile Datab<br>Distribution                                                        | Sp<br>Structur<br>Advand<br>bases: Lo<br>- Mobile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yntax and Semantics of Datalog Languages - Implen<br>patial Databases - Spatial Data<br>es - Spatial Access Methods - Spatial DB Implementa                                                                                                                                                                                                                                                                                                    | nentation of I<br>Types<br>ation.<br>Dility on Dat                                               | Rules and Rec<br>- Spa                                               | tial                                           | - Reci<br>Rela                         | ursive<br>ationsh<br>Depen           | Datalog<br>Queries i<br>ips<br>dent Data                        |
| SQL -<br>Spatial Data<br><b>Unit - IV</b><br>Mobile Datab<br>Distribution -<br>Information F                                     | Sp<br>Structur<br>Advand<br>bases: Lo<br>bases: | Antax and Semantics of Datalog Languages - Implemential Databases - Spatial Data<br>es - Spatial Access Methods - Spatial DB Implementa<br>ced Data Models:<br>Docation and Handoff Management - Effect of Mot<br>Transaction Models - Concurrency Control - Tra                                                                                                                                                                               | nentation of I<br>Types<br>ation.<br>Dility on Dat                                               | Rules and Rec<br>- Spa                                               | tial                                           | - Reci<br>Rela                         | ursive<br>ationsh<br>Depen           | Datalog<br>Queries i<br>ips<br>dent Data                        |
| SQL -<br>Spatial Data<br>Unit - IV<br>Mobile Datab<br>Distribution -<br>Information F<br>Unit - V<br>XML Databa<br>Biological Da | Sp<br>Structur<br>Advand<br>Dases: Lo<br>Dases: Lo<br>Dases: Lo<br>Control<br>Setrieval<br>Emergi<br>Ses: XM<br>Sta Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antax and Semantics of Datalog Languages - Implem<br>Datial Databases - Spatial Data<br>es - Spatial Access Methods - Spatial DB Implementa<br>Ced Data Models:<br>Docation and Handoff Management - Effect of Mod<br>Transaction Models - Concurrency Control - Tra<br>- Data Warehousing - Data Mining - Text Mining.                                                                                                                        | nentation of I<br>Types<br>ation.<br>bility on Dat<br>nsaction Co<br>g - Web Dat<br>stems on the | Rules and Red<br>- Spa<br>a Manageme<br>mmit Protoco<br>abases - Geo | cursion<br>tial<br>nt -Lo<br>ls - M<br>graphic | - Recu<br>Rela<br>cation I<br>lultimed | ursive<br>ationsh<br>Depen<br>dia Da | Datalog<br>Queries i<br>ips<br>dent Dat<br>atabases<br>Systems  |
| SQL -<br>Spatial Data<br>Unit - IV<br>Mobile Datab<br>Distribution<br>Information F<br>Unit - V<br>XML Databa<br>Biological Da   | Sp<br>Structur<br>Advand<br>bases: Lu<br>- Mobile<br>Cetrieval<br>Emerg<br>ses: XM<br>ta Mana<br>- Query                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Antax and Semantics of Datalog Languages - Implemental Databases - Spatial Data<br>es - Spatial Access Methods - Spatial DB Implemental<br>ced Data Models:<br>Docation and Handoff Management - Effect of Mot<br>Transaction Models - Concurrency Control - Tra<br>- Data Warehousing - Data Mining - Text Mining.<br>Ing Technologies:<br>L Data Model - DTD - XML Schema - XML Queryin<br>agement - Cloud Based Databases: Data Storage Sys | nentation of I<br>Types<br>ation.<br>bility on Dat<br>nsaction Co<br>g - Web Dat<br>stems on the | Rules and Red<br>- Spa<br>a Manageme<br>mmit Protoco<br>abases - Geo | cursion<br>tial<br>nt -Lo<br>ls - M<br>graphic | - Rec<br>Rela                          | Dependia Da<br>Dationsh              | Datalog<br>Queries i<br>ips<br>dent Data<br>atabases<br>Systems |

| L  |                         |        |             | · · · · · · · · · · · · · · · · · · · |                                 |            |                 |        |           |          |        |
|----|-------------------------|--------|-------------|---------------------------------------|---------------------------------|------------|-----------------|--------|-----------|----------|--------|
|    | Thomas                  | -      | ,           | -                                     | olyn Begg,                      | "Datab     | ,               | А      | Practical | Approach | to     |
|    | Design, Im              | pleme  | ntation and | d Manageme                            | nt", 3 <sup>rd</sup> Edition, F | Pearson Ec | ducation, 2007. |        |           |          |        |
| 3. | Henry                   | F.     | Korth,      | Abraham                               | Silberschatz                    | z S.,      | Sudharshan,     | "Datab | ase Syst  | tem Conc | epts", |
|    | 5 <sup>th</sup> Edition | , McGr | aw Hill, 20 | 11.                                   |                                 |            |                 |        |           |          | • •    |

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                    | BT Mapped<br>(Highest Level) |
|-----|-----------------------------------------------------------------------------------------|------------------------------|
| CO1 | select the appropriate high performance database like parallel and distributed database | Applying (K3)                |
| CO2 | model and represent the real world data using object oriented database                  | Applying (K3)                |
| CO3 | design a semantic based database to meaningful data access                              | Applying (K3)                |
| CO4 | embed the rule set in the database to implement intelligent databases                   | Applying (K3)                |
| CO5 | represent the data using XML database for better interoperability                       | Applying (K3)                |

| PO6 |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |
| CAT1                        | 10                          | 50                      | 40                 |                     |                      |                    | 100        |  |
| CAT2                        | 10                          | 50                      | 40                 |                     |                      |                    | 100        |  |
| CAT3                        | 10                          | 50                      | 40                 |                     |                      |                    | 100        |  |
| ESE                         | 10                          | 50                      | 40                 |                     |                      |                    | 100        |  |

## 20MSL11 - DATA STRUCTURES AND ALGORITHMS LABORATORY

| Programme &<br>Branch | M.E & Computer Science and Engineering                                                                                | Sem. | Category | L | Т | Р | Credit    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|------|----------|---|---|---|-----------|
| Prerequisites         | Nil                                                                                                                   | 1    | PC       | 0 | 0 | 2 | 1         |
| Preamble              | Provides insight into the intrinsic nature of the problem as of programming language / programming paradigm/computers |      | 1        |   |   | , | lependent |

#### List of Exercises / Experiments:

| 1.  | Implement any two sorting algorithm                                                    |
|-----|----------------------------------------------------------------------------------------|
| 2.  | Apply Binary Search Trees                                                              |
| 3.  | Apply Red-Black trees – insertion and Display                                          |
| 4.  | Apply Binomial Heap and Fibonacci heaps algorithms                                     |
| 5.  | Implement Strassen's matrix multiplication algorithm using Algorithm Design Techniques |
| 6.  | Implement Huffman code using Algorithm Design Techniques                               |
| 7.  | Implement String Matching algorithms (any two)                                         |
| 8.  | Implement Graph algorithms                                                             |
| 9.  | Solve NP Problems sum of Subset Problem                                                |
| 10. | Implement Travelling sales person problem                                              |

#### Practical: 30, Total: 30

### **REFERENCES/MANUAL/SOFTWARE:**

1. Lab manuals

| COUF<br>On co | BT Mapped<br>(Highest Level)                                                                        |                                  |
|---------------|-----------------------------------------------------------------------------------------------------|----------------------------------|
| CO1           | identify the appropriate data structure for solving the given problem                               | Applying (K3),<br>Precision (S3) |
| CO2           | choose and employ appropriate data structure to represent complex data structure                    | Applying (K3),<br>Precision (S3) |
| CO3           | synthesize operations like searching, insertion, deletion and traversing on various data structures | Applying (K3),<br>Precision (S3) |

| Mapping of COs with POs s |     |     |     |     |     |     |  |  |  |
|---------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                       | 3   | 2   |     | 3   |     |     |  |  |  |
| CO2                       | 3   | 2   |     | 3   |     |     |  |  |  |
| CO3                       | 3   | 2   |     | 3   |     |     |  |  |  |

### 20MSL12 - DATABASE TECHNOLOGY LABORATORY

| Programme &<br>Branch | M.E & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                             | Sem. | Category | L | т | Р | Credit |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---|---|---|--------|--|--|
| Prerequisites         | Nil                                                                                                                                                                                                                                                                                                                                                                                                | 1    | PC       | 0 | 0 | 2 | 1      |  |  |
| Preamble              | Nil       1       PC       0       0       2       1         To acquire knowledge on advanced databases like parallel and distributed database, object orient database, active database, temporal database, spatial database, mobile database, multimedia database       XML database and cloud database to effectively store the data for real time applications.       0       0       2       1 |      |          |   |   |   |        |  |  |

#### List of Exercises / Experiments:

| 1.  | Distributed Database for Bookstore                                                         |
|-----|--------------------------------------------------------------------------------------------|
| 2.  | Deadlock Detection Algorithm for distributed database using wait- for graph                |
| 3.  | Object Oriented Database – Extended Entity Relationship (EER)                              |
| 4.  | Parallel Database – University Counselling for Engineering colleges                        |
| 5.  | Parallel Database – Implementation of Parallel Join & Parallel Sort                        |
| 6.  | Active Database – Implementation of Triggers & Assertions for Bank Database                |
| 7.  | Deductive Database – Constructing Knowledge Database for Kinship Domain (Family Relations) |
| 8.  | Study and Working of WEKA Tool                                                             |
| 9.  | Query Processing – Implementation of an Efficient Query Optimizer                          |
| 10. | Designing XML Schema for Company Database                                                  |

### Practical: 30, Total: 30

#### **REFERENCES/MANUAL/SOFTWARE:**

1. Lab manuals

|     | RSE OUTCOMES:<br>Impletion of the course, the students will be able to     | BT Mapped<br>(Highest Level)     |
|-----|----------------------------------------------------------------------------|----------------------------------|
| CO1 | design an effective query processing for parallel and distributed database | Applying (K3),<br>Precision (S3) |
| CO2 | design an online system for various applications                           | Applying (K3),<br>Precision (S3) |
| CO3 | design an application using advanced data models                           | Applying (K3),<br>Precision (S3) |

| Mapping of COs with POs s |     |     |     |     |     |     |  |  |  |  |  |
|---------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                       | 3   | 2   |     | 3   |     |     |  |  |  |  |  |
| CO2                       | 3   | 2   |     | 3   |     |     |  |  |  |  |  |
| CO3                       | 3   | 2   |     | 3   |     |     |  |  |  |  |  |

#### 20MST21 - MACHINE LEARNING TECHNIQUES

| Programme &<br>Branch | M.E. & Computer Science and Engineering | Sem. | Category | L | Т | Р | Credit |
|-----------------------|-----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Nil                                     | 2    | PC       | 3 | 0 | 0 | 3      |

Preamble Provides a concise introduction to the fundamental concepts of machine learning and popular machine learning algorithms.

#### Unit - I Supervised Learning:

Definition of Machine Learning - Examples of Machine Learning Applications. Supervised Learning: Learning a Class from Examples - VC Dimension - PAC Learning - Noise - Learning Multiple Classes - Regression - Model Selection and Generalization - Dimensions of a Supervised Machine Learning Algorithm. Dimensionality Reduction: Introduction - Subset Selection – Principal Component Analysis- Feature Embedding - Factor Analysis.

#### Unit - II Tree And Probabilistic Models:

Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and Regression Trees – Different ways to Combine Classifiers – Boosting – Bagging — Gaussian Mixture Models – Nearest Neighbor Methods – Unsupervised Learning – K means Algorithm.

#### Unit - III Multilayer Perceptrons:

Introduction - The Perceptron - Training a Perceptron - Learning Boolean Functions - Multilayer Perceptrons - MLP as a Universal Approximator - Backpropagation Algorithm - Training Procedures - Tuning the Network Size - Dimensionality Reduction - Learning Time

#### Unit - IV Kernel Machines:

Introduction - Optimal Separating Hyperplane - Soft Margin Hyperplane - v-SVM - Kernal Trick - Vectorial Kernels - Defining Kernels - Multiple Kernel Learning - Multiclass Kernel Machines - One class Kernel Machines - Kernel Dimensionality Reduction.

#### Unit - V Reinforcement Learning:

Introduction - Single State Case-Elements of Reinforcement Learning - Model-Based Learning - Temporal Difference Learning - Generalization - Partially Observable States. Design of Machine Learning Experiments: Introduction - Factors, Response, and Strategy of Experimentation - Response Surface Design - Randomization, Replication, and Blocking - Guidelines for Machine Learning Experiments.

#### Lecture: 45, Total: 45

9

9

9

g

9

#### **REFERENCES:**

1. Ethem Alpaydin, "Introduction to Machine Learning", 3<sup>rd</sup> Edition, Prentice Hall of India, 2014.

2. Christopher Bishop, "Pattern Recognition and Machine Learning", 2<sup>nd</sup> Edition, Springer, 2011.

3. Willi Richert, Luis Pedro Coelho, "Building Machine Learning Systems with Python", 2<sup>nd</sup> Edition, Packt Publishing Ltd., 2015.



|     | COURSE OUTCOMES:<br>On completion of the course, the students will be able to                                            |                |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| CO1 | illustrate the foundations of machine learning and apply suitable dimensionality reduction techniques for an application | Applying (K3)  |  |  |
| CO2 | make use of supervised methods to solve the given problem                                                                | Applying (K3)  |  |  |
| CO3 | apply neural networks to solve real world problems                                                                       | Applying (K3)  |  |  |
| CO4 | solve real world problems using kernel machines                                                                          | Applying (K3)  |  |  |
| CO5 | summarize the concepts of reinforcement learning and design machine learning experiments                                 | Analyzing (K4) |  |  |

| Mapping of COs with POs s |                       |                                   |                                                   |                                                                               |                                                                               |  |  |  |  |
|---------------------------|-----------------------|-----------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
| PO1                       | PO2                   | PO3                               | PO4                                               | PO5                                                                           | PO6                                                                           |  |  |  |  |
| 3                         |                       | 2                                 |                                                   |                                                                               |                                                                               |  |  |  |  |
| 3                         |                       | 2                                 |                                                   |                                                                               | 1                                                                             |  |  |  |  |
| 3                         |                       |                                   | 2                                                 |                                                                               | 1                                                                             |  |  |  |  |
| 3                         |                       |                                   | 2                                                 |                                                                               | 1                                                                             |  |  |  |  |
| 2                         |                       | 3                                 |                                                   |                                                                               | 1                                                                             |  |  |  |  |
|                           | 3<br>3<br>3<br>3<br>3 | 3       3       3       3       3 | 3     2       3     2       3     2       3     3 | 3     2       3     2       3     2       3     2       3     2       3     2 | 3     2       3     2       3     2       3     2       3     2       3     2 |  |  |  |  |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        | 10                          | 22                      | 58                 | 10                  |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 10                          | 18                      | 62                 | 10                  |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 15                          | 10                      | 65                 | 10                  |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 10                          | 18                      | 62                 | 10                  |                      |                    | 100        |  |  |  |  |  |  |

#### 20MST22 - MULTICORE ARCHITECTURES

| Programme &<br>Branch | M.E & Computer Science and Engineering | Sem. | Category | L | т | Р | Credit |
|-----------------------|----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Computer Architecture and Organization | 2    | PC       | 3 | 1 | 0 | 4      |

This course will introduce the students to the world of multi-core computer architectures and focuses on delivering an Preamble in-depth exposure in memory-subsystems and interconnects and few introductory sessions on advanced superscalar processors. 9+3

#### Unit - I Fundamentals of Quantitative Design and Analysis:

Classes of Computers – Trends in Technology, Power, Energy and Cost – Dependability – Measuring, Reporting and Summarizing Performance – Quantitative Principles of Computer Design – Classes of Parallelism – ILP, DLP, TLP and RLP – Multi Threading -SMT and CMP Architectures – Limitations of Single Core Processors – The MultiCore era – Case Studies of Multi Core Architectures.

#### Unit - II Memory Hierarchy Design:

Introduction - Optimizations of Cache Performance - Memory Technology and Optimizations - Protection: Virtual Memory and Virtual Machines – Design of Memory Hierarchies – Case Studies.

#### Data-Level Parallelism in Vector, SIMD, and GPU Architectures : Unit - III

Introduction – Vector Architectures – SIMD Instruction Set Extensions for Multimedia – Graphics Processing Units – Detecting and Enhancing Loop Level Parallelism – Comparison of a GPU and a MIMD With Multimedia SIMD – Case Studies.

#### Unit - IV TLP and Multiprocessors:

Centralized Shared-Memory Architectures – Performance of Symmetric Shared-Memory Multiprocessors – Distributed Shared-Memory and Directory-Based Coherence – Synchronization basics – Models of Memory Consistency introduction – Inter Connection Networks – Buses, Crossbar and Multi-stage interconnection networks – Performance and Energy Efficiency of the Intel i7 920 Multicore.

#### Unit - V RLP and DLP in Warehouse Scale Computers:

Programming Models and Workloads for Warehouse scale Computers – Computer Architecture of Warehouse-Scale Computers – Domain Specific Architectures: Introduction – Guidelines for DSAs – Example Domain: Deep Neural Network – Google's Tensor Processing Unit, an interface Data Center Accelerator.

#### **REFERENCES:**

1

John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach", 6th Edition, Morgan Kaufmann, Elsevier, 2019.

2. Kai Hwang, "Advanced Computer Architecture", 1<sup>st</sup> Edition, Tata McGraw-Hill Education, 2003.

3 Richard Y. Kain, "Advanced Computer Architecture: A Systems Design Approach", 1<sup>st</sup> Edition, Prentice Hall, 2011. 9+3

9+3

9+3

Lecture: 45, Tutorial: 15, Total:60

9+3

|     | COURSE OUTCOMES:<br>On completion of the course, the students will be able to                                                   |                |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| CO1 | investigate the limitations of ILP and the need for multi core architectures                                                    | Analyzing (K4) |  |  |  |  |  |
| CO2 | analyse the importance of memory hierarchy and benefits of cache memory                                                         | Analyzing (K4) |  |  |  |  |  |
| CO3 | explain the architecture of Vector/GPU processor and make use of loop level parallelism to achieve Data Level Parallelism       | Applying (K3)  |  |  |  |  |  |
| CO4 | critically analyze cache coherence issues using different memory architectures and different types of inter connection networks | Analyzing (K4) |  |  |  |  |  |
| CO5 | inspect the architectures of GPUs, Warehouse scale computers and Domain specific architecture                                   | Analyzing (K4) |  |  |  |  |  |

|                               |                      | Mapping of C  | Os with POs s |     |     |     |
|-------------------------------|----------------------|---------------|---------------|-----|-----|-----|
| COs/POs                       | PO1                  | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                           | 3                    | 3             | 2             |     |     |     |
| CO2                           | 3                    | 3             | 2             |     |     |     |
| CO3                           | 3                    | 2             | 1             |     |     |     |
| CO4                           | 3                    | 3             | 2             |     |     |     |
| CO5                           | 3                    | 3             | 2             |     |     |     |
| - Slight, 2 - Moderate, 3 - 3 | Substantial, BT- Blo | om's Taxonomy |               |     |     |     |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        | 30                          | 30                      | 20                 | 20                  |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 20                          | 20                      | 40                 | 20                  |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 20                          | 40                      | 40                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 10                          | 30                      | 30                 | 30                  |                      |                    | 100        |  |  |  |  |  |  |

#### 20MST23 -SECURITY IN COMPUTING

| Programme &<br>Branch | M.E Computer Science and Engineering | Sem. | Category | L | т | Р | Credit |
|-----------------------|--------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Computer Networks                    | 2    | PC       | 3 | 1 | 0 | 4      |

| Preamble                                 | Able to learn the basic concepts in computer security including software vulnerability analysis and networking and wireless security, applied cryptography, as well as ethical, legal, social and economic   |                 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                          | security.                                                                                                                                                                                                    |                 |
| Unit - I                                 | Introduction to Mathematical Foundations of Cryptography:                                                                                                                                                    | 9+3             |
| Integer arith                            | metic, Modular arithmetic, Congruence and Matrices - Algebraic Structures - Primes Chinese Remainder The                                                                                                     | orem.           |
| Unit - II                                | Symmetric Encryption Techniques and Key Management:                                                                                                                                                          | 9+3             |
|                                          | Ciphers – Transposition Ciphers – Classical Ciphers – DES – AES – Modes of operation - Key Channel Esta<br>ic Cryptosystems                                                                                  | blishment       |
| Unit - III                               | Asymmetric Cryptosystems:                                                                                                                                                                                    | 9+3             |
|                                          | lellman Key Exchange Protocol - Discrete Logarithm Problem Public-key Cryptosystems: RSA Cryptosy<br>s – rabin cryptosystem - ElGamal Cryptosystem -Need for Stronger Security notions for Public-key Crypto | stem and        |
| •••                                      | of Asymmetric and Symmetric Cryptography. Key Channel Establishment for Public key Cryptosystems.                                                                                                            | osystems.       |
| •••                                      |                                                                                                                                                                                                              | 9+3             |
| Combination<br>Unit - IV<br>Authenticati | of Asymmetric and Symmetric Cryptography. Key Channel Establishment for Public key Cryptosystems.                                                                                                            | 9+3<br>Kerberos |

Security planning - Incident response and business continuity planning - Risk analysis -Handling natural and human-caused disasters **Legal and Ethical issues in Security:** Protecting Programs and Data – Information and the Law – Rights of Employees and Employers – Software Failures – Computer Crime – Privacy – Ethical Issues in Computer Security.

#### Lecture:45, Tutorial:15, Total:60

#### **REFERENCES:**

| 1 | Mao W., "Modern Cryptography – Theory and Practice", 1 <sup>st</sup> Edition, Pearson Education, 2004.                         |
|---|--------------------------------------------------------------------------------------------------------------------------------|
| 2 | Behrouz A.Forozan, - Cryptography and Network Security, 2 <sup>nd</sup> Edition, Tata McGraw-Hill, Special Indian Edition,2007 |
| 3 | Charles P. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", 5th Edition, Prentice Hall, 2018. (V unit)              |

| COURS | BT Mapped<br>(Highest Level)                                             |                |
|-------|--------------------------------------------------------------------------|----------------|
| CO1   | apply the mathematical foundations in security principles                | Applying (K3)  |
| CO2   | Make use of symmetric encryption techniques for security problems        | Applying (K3)  |
| CO3   | Employ different asymmetric encryption techniques for enhancing security | Applying (K3)  |
| CO4   | apply authentication protocols in the design of the secured applications | Applying (K3)  |
| CO5   | Analyse the legal and ethical issues of security and management          | Analysing (K4) |

|     | mapping of 0 | Os with POs s                                                   |                                                                         |                                                                                               |                                                                                               |
|-----|--------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| PO1 | PO2          | PO3                                                             | PO4                                                                     | PO5                                                                                           | PO6                                                                                           |
| 3   | 2            |                                                                 | 3                                                                       |                                                                                               |                                                                                               |
| 3   | 2            | 1                                                               | 1                                                                       |                                                                                               |                                                                                               |
| 3   | 2            | 1                                                               | 1                                                                       |                                                                                               |                                                                                               |
| 3   | 2            | 1                                                               | 1                                                                       |                                                                                               |                                                                                               |
| 3   | 3            | 1                                                               |                                                                         |                                                                                               |                                                                                               |
|     | 3            | 3     2       3     2       3     2       3     2       3     2 | 3     2       3     2       3     2       3     2       3     2       1 | 3     2     3       3     2     1       3     2     1       3     2     1       3     2     1 | 3     2     3       3     2     1       3     2     1       3     2     1       3     2     1 |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |
| CAT1                        | 10                          | 20                      | 70                 |                     |                      |                    | 100        |  |  |  |  |
| CAT2                        | 10                          | 25                      | 65                 |                     |                      |                    | 100        |  |  |  |  |
| CAT3                        | 10                          | 25                      | 30                 | 35                  |                      |                    | 100        |  |  |  |  |
| ESE                         | 10                          | 20                      | 50                 | 20                  |                      |                    | 100        |  |  |  |  |

#### 20MST24 – DATA SCIENCE

| Programme &<br>Branch                                                                                                                  |                                                                                        | M.E. & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                        | Sem.                                | Category                                          | L                          | Т        | Р                 | Credit                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|----------------------------|----------|-------------------|------------------------------------------------------------------|
| Prerequisite                                                                                                                           | S                                                                                      | Nil                                                                                                                                                                                                                                                                                                                                                                                            | 2                                   | PC                                                | 3                          | 0        | 0                 | 3                                                                |
|                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                   |                            |          |                   |                                                                  |
| Preamble                                                                                                                               |                                                                                        | ourse provides a broad introduction to different ways<br>cal reasoning, mathematical model computation and com                                                                                                                                                                                                                                                                                 |                                     |                                                   | ts lear                    | n from   | data,             | including                                                        |
| Unit - I                                                                                                                               | Introdu                                                                                | uction:                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                   |                            |          |                   | 9                                                                |
|                                                                                                                                        |                                                                                        | puter Science, Data Science, and Real Science – Properstore Science - Properstore Science - Collecting Data - Cleaning Data – Cr                                                                                                                                                                                                                                                               |                                     |                                                   | ication                    | and R    | egress            | ion - Data                                                       |
| munging - La                                                                                                                           |                                                                                        | 5 5                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                                   |                            |          |                   |                                                                  |
| Unit - II                                                                                                                              | Scores                                                                                 | s and Rankings:                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                   |                            |          |                   | 9                                                                |
| <b>Unit - II</b><br>The Body Ma<br>Impossibility                                                                                       | iss Inde<br>Theore                                                                     | <b>. .</b>                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                                   |                            | •        | •                 | s - Arrow's                                                      |
| <b>Unit - II</b><br>The Body Ma<br>Impossibility                                                                                       | ss Inde<br>Theore<br>Tests ar                                                          | s and Rankings:<br>x (BMI) - Developing Scoring Systems - Z-scores and No<br>m - Statistical Analysis - Statistical Distributions - Sar                                                                                                                                                                                                                                                        |                                     |                                                   |                            | •        | •                 | s - Arrow's                                                      |
| Unit - II<br>The Body Ma<br>Impossibility<br>Permutation                                                                               | ass Inde<br>Theore<br>Tests ar<br><b>Visual</b> i<br>Data Ana                          | s and Rankings:<br>x (BMI) - Developing Scoring Systems - Z-scores and No<br>m - Statistical Analysis - Statistical Distributions - Sar<br>nd P-values - Bayesian Reasoning                                                                                                                                                                                                                    | npling fr                           | om Distributio                                    | ns - S                     | tatistic | al Sigr           | s - Arrow's<br>hificance -<br>9                                  |
| Unit - II<br>The Body Ma<br>Impossibility<br>Permutation<br>Unit - III<br>Exploratory D                                                | nss Inde<br>Theore<br>Tests ar<br><b>Visual</b><br>Data Ana                            | s and Rankings:<br>x (BMI) - Developing Scoring Systems - Z-scores and No<br>m - Statistical Analysis - Statistical Distributions - Sar<br>nd P-values - Bayesian Reasoning<br>izing Data:                                                                                                                                                                                                     | npling fr                           | om Distributio                                    | ns - S                     | tatistic | al Sigr           | s - Arrow's<br>hificance -<br>9                                  |
| Unit - II<br>The Body Ma<br>Impossibility<br>Permutation<br>Unit - III<br>Exploratory D<br>Visualization.<br>Unit - IV<br>Philosophies | iss Inde<br>Theore<br>Tests ar<br><b>Visual</b><br>Data Ana<br><b>Mathen</b><br>of Moc | s and Rankings:<br>x (BMI) - Developing Scoring Systems - Z-scores and No<br>m - Statistical Analysis - Statistical Distributions - Sar<br>nd P-values - Bayesian Reasoning<br>izing Data:<br>alysis - Developing a Visualization Aesthetic - Chart Type<br>matical Models:<br>deling - A Taxonomy of Models - Baseline Models - Ever<br>of Linear Algebra - Visualizing Matrix Operations - F | npling fr<br>s - Great<br>valuating | om Distribution<br>Visualizations<br>Models -Eval | ns - S<br>- Read<br>uation | ing Gra  | al Sigr<br>aphs - | s - Arrow's<br>ificance -<br>9<br>Interactive<br>9<br>s - Linear |

Linear Regression - Better Regression Models - Regression as Parameter Fitting - Simplifying Models through Regularization - Classification and Logistic Regression - Issues in Logistic Classification - Distance and Network Methods - Measuring Distances - Nearest Neighbor Classification - Graphs, Networks, and Distances – PageRank – Clustering.

#### Lecture: 45, Total: 45

#### **REFERENCES:**

2. Igual, Laura, and Santi Seguí. "Introduction to Data Science." 1<sup>st</sup> Edition, Springer, Cham, 2017.



|     | COURSE OUTCOMES:<br>On completion of the course, the students will be able to                                             |               |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| CO1 | make use of the concepts of data science and data munging for building applications                                       | Applying (K3) |  |  |
| CO2 | utilize statistical methods for solving problems                                                                          | Applying (K3) |  |  |
| CO3 | apply appropriate data visualization technique for communicating the result                                               | Applying (K3) |  |  |
| CO4 | experiment with mathematical model for data science applications                                                          | Applying (K3) |  |  |
| CO5 | apply different the machine learning techniques available for solving the given problem and propose an optimized solution | Applying (K3) |  |  |

| Mapping of COs with POs s |     |     |     |     |     |     |  |  |  |  |
|---------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|
| COs/POs                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                       | 3   | 1   |     |     |     |     |  |  |  |  |
| CO2                       | 3   | 2   |     |     |     |     |  |  |  |  |
| CO3                       | 3   | 2   | 1   | 1   |     |     |  |  |  |  |
| CO4                       | 3   | 1   |     |     |     |     |  |  |  |  |
| CO5                       | 3   | 3   | 1   | 1   |     |     |  |  |  |  |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                        | 20                          | 50                      | 30                 |                     |                      |                    | 100        |  |  |  |
| CAT2                        | 20                          | 20                      | 60                 |                     |                      |                    | 100        |  |  |  |
| CAT3                        | 20                          | 20                      | 60                 |                     |                      |                    | 100        |  |  |  |
| ESE                         | 20                          | 20                      | 60                 |                     |                      |                    | 100        |  |  |  |

#### 20MSL21-MACHINE LEARNING LABORATORY

| Programme &<br>Branch | M.E. & Computer Science and Engineering                  | Sem.     | Category        | L        | Т        | Р      | Credit    |
|-----------------------|----------------------------------------------------------|----------|-----------------|----------|----------|--------|-----------|
| Prerequisites         | Nil                                                      | 2        | PC              | 0        | 0        | 2      | 1         |
|                       | To acquire knowledge on advanced databases like p        | oarallel | and distribute  | ed dat   | abase,   | object | oriented  |
| Preamble              | database, active database, temporal database, spatial    | databas  | se, mobile da   | tabase   | , multir | nedia  | database, |
|                       | XML database and cloud database to effectively store the | data fo  | r real time app | lication | IS.      |        |           |

#### List of Exercises / Experiments:

| 1. | Implementation of linear regression                                               |
|----|-----------------------------------------------------------------------------------|
| 2. | Implementation of Decision tree                                                   |
| 3. | Implementation of k-means clustering                                              |
| 4. | Implementation of k-NN                                                            |
| 5. | Implementation of Backpropagation algorithm                                       |
| 6. | Comparison of linear regression and decision tree algorithm for the given dataset |
| 7. | Comparison of kernel functions of Support Vector Machine for the given dataset    |

### Practical: 30, Total: 30

#### **REFERENCES/MANUAL/SOFTWARE:**

1. Lab manuals

|     | RSE OUTCOMES:<br>ompletion of the course, the students will be able to | BT Mapped<br>(Highest Level)      |
|-----|------------------------------------------------------------------------|-----------------------------------|
| CO1 | implement various supervised algorithms and evaluate the performance   | Analyzing (K4), Precision<br>(S3) |
| CO2 | implement the unsupervised algorithms and evaluate the performance     | Analyzing (K4), Precision<br>(S3) |
| CO3 | implement and compare the performance of different algorithms          | Analyzing (K4), Precision<br>(S3) |

|                             |                      | Mapping of C   | Os with POs s |     |     |     |
|-----------------------------|----------------------|----------------|---------------|-----|-----|-----|
| COs/POs                     | PO1                  | PO2            | PO3           | PO4 | PO5 | PO6 |
| CO1                         | 3                    |                | 2             |     |     |     |
| CO2                         | 3                    |                | 2             |     |     |     |
| CO3                         | 3                    |                | 2             |     |     |     |
| - Slight, 2 - Moderate, 3 - | Substantial, BT- Blo | oom's Taxonomy |               |     |     | 1   |

#### **20MSE01 – DATAMINING TECHNIQUES**

| Programme<br>Branch      | &         | M.E. & Computer Science and Engineering                                                                                                                         | Sem.      | Category      | L      | т      | ТРС    | Credit     |
|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|--------|--------|--------|------------|
| Prerequisite             | s         | Database Management Systems                                                                                                                                     | 1         | PE            | 3      | 0      | 0      | 3          |
| Preamble                 | make t    | purse provides students with an overview of the data min<br>the students to gain knowledge of various data mining tec<br>a of data mining and its applications. |           |               |        |        |        |            |
| Unit - I                 | Introd    | uction:                                                                                                                                                         |           |               |        |        |        | 9          |
| 0                        | in Data   | in Knowledge Discovery Process- Kinds of Data and P<br>Mining - Data objects and attribute types - Statistical des<br>larity.                                   |           | 0             |        | 0      |        |            |
| Unit - II                | Data P    | Preprocessing:                                                                                                                                                  |           |               |        |        |        | 9          |
| Data Cleanir<br>Methods. | ng, Integ | gration, Reduction, Transformation and Discretization, N                                                                                                        | Mining Fr | equent Patter | ns - F | requen | t Item | set Mining |
| Unit - III               | Classi    | fication:                                                                                                                                                       |           |               |        |        |        | 9          |

#### Unit - III Classification:

Induction-Bayesian Classification - Rule based Classification - classification by Back Propagation - Support Decision Tree Vector Machines – Lazy Learners – Model Evaluation and Selection - Techniques to improve Classification Accuracy - k-Nearest Neighbor Classifier.

#### Unit - IV **Clusters Analysis:**

Partitioning Methods - Hierarchical Methods - Density based Methods - Grid based Methods - Evaluation of Clustering - Outliers and Outlier analysis - Outlier detection Methods - Statistical Approaches.

#### Unit - V Applications:

Mining Complex data types - Statistical Data Mining - Data Mining foundations - Visual and Audio Data Mining - Applications -Ubiquitous and invisible Data Mining - Social impacts of Data Mining.

#### Lecture: 45, Total: 45

9

9

#### **REFERENCES:**

1. Han Jiawei and Kamber Micheline, "Data Mining: Concepts and Techniques", 3<sup>rd</sup> Edition, Morgan Kaufmann Publishers, 2012. Berson Alex, and Smith Stephen J., "Data Warehousing, Data Mining and OLAP", 13th Reprint, Tata McGraw Hill, New 2. Delhi, 2013.

3. Gupta G.K., "Introduction to Data Mining with Case Studies", 2<sup>nd</sup> Edition, Prentice Hall India, New Delhi, 2011.

## 🗞 Kongu Engineering College, Perundurai, Erode – 638060, India

|     | SE OUTCOMES:<br>npletion of the course, the students will be able to                       | BT Mapped<br>(Highest Level) |
|-----|--------------------------------------------------------------------------------------------|------------------------------|
| CO1 | describe the different data mining techniques and identify different types of data         | Applying (K3)                |
| CO2 | apply data preprocessing and frequent itemset mining methods for the given problem         | Applying (K3)                |
| CO3 | summarize the characteristics of classification methods and use them for solving a problem | Applying (K3)                |
| CO4 | summarize and demonstrate the working of different clustering and outlier methods          | Applying (K3)                |
| CO5 | apply data mining concepts in various applications                                         | Applying (K3)                |

|         |     | Mapping of C | Os with POs s |     |     |     |
|---------|-----|--------------|---------------|-----|-----|-----|
| COs/POs | PO1 | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1     | 3   |              |               | 2   |     | 1   |
| CO2     | 3   |              | 2             |     |     | 1   |
| CO3     | 3   |              |               | 2   |     | 1   |
| CO4     |     |              | 3             |     |     | 2   |
| CO5     |     |              | 3             |     |     | 2   |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 25                    | 35                      | 40                 |                     |                      |                    | 100        |
| CAT2                        | 15                    | 25                      | 60                 |                     |                      |                    | 100        |
| CAT3                        | 20                    | 30                      | 50                 |                     |                      |                    | 100        |
| ESE                         | 10                    | 30                      | 60                 |                     |                      |                    | 100        |

#### 20MSE02 - BUSINESS INTELLIGENCE

| Programme &<br>Branch | M.E. & Computer Science and Engineering | Sem. | Category | L | Т | Р | Credit |
|-----------------------|-----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Database, SQL Queries                   | 1    | PE       | 3 | 0 | 0 | 3      |

Preamble Improved application development and high scale deployment.

#### Unit - I Introduction to Business Intelligence:

Introduction to Digital Data and its Types – Structured, Semi-structured and Unstructured Data - Introduction to OLTP and OLAP – Architectures – Data Models – Role of OLAP in BI – OLAP Operations – Business Intelligence - BI Definition and Evolution – BI Concepts - BI Component Framework – BI Process, Users, Applications – BI Roles – BI Best Practices– Popular BI Tools.

#### Unit - II Data Integration:

Need for Data Warehouse – Definition of Data Warehouse – Data Mart – Ralph Kimball's Approach vs. W.H.Inmon's Approach – Goals of Data Warehouse – ETL Process – Data Integration Technologies – Data Quality – Data Profiling – Case Study from Healthcare domain – Kettle Software: Introduction to ETL using Pentaho Data Integration.

#### Unit - III Multidimensional Data Modeling:

Basics of Data Modeling – Types of Data Model – Data Modeling Techniques – Fact Table – Dimension Table – Dimensional Models- Dimensional Models- Dimensional Modeling Life Cycle – Designing the Dimensional Model - Measures, Metrics, KPIs and Performance Management – Understanding Measures and Performance – Measurement System - Role of metrics – KPIS - Analyze Data using MS Excel 2010.

#### Unit - IV Basics of Enterprise Reporting:

Reporting Perspectives - Report Standardization and Presentation Practices- Enterprise Reporting Characteristics - Balanced Scorecard - Dashboards - Creating Dashboards- Scorecards Vs Dashboards - Analysis - Enterprise Reporting using MS Access / MS Excel.

#### Unit - V BI Applications and Case Studies:

Understanding Business Intelligence and Mobility – Business Intelligence and Cloud Computing – Business Intelligence for ERP Systems – Social CRM and Business Intelligence - Case Studies : Good Life HealthCare Group, Good Food Restaurants Inc., Ten To Ten Retail Stores.

#### Lecture: 45, Total: 45

9

9

9

9

9

#### **REFERENCES**:

1. Prasad N., Seema Acharya, "Fundamentals of Business Analytics", 2<sup>nd</sup> Edition, Wiley-India Publication, 2016.

- 2. Efraim Turban, Ramesh Sharda, Dursun Delen, David King, "Business Intelligence: A Managerial Approach", 2<sup>nd</sup> Edition, Pearson Education, 2014.
- 3. David Loshin, "Business Intelligence", 5<sup>th</sup> Edition, Morgan Kaufmann Publishers, San Francisco, 2007.

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                       | BT Mapped<br>(Highest Level) |
|-----|--------------------------------------------------------------------------------------------|------------------------------|
| CO1 | apply the key elements of data warehouse and business intelligence in BI tools             | Applying (K3)                |
| CO2 | apply the concepts and technology of BI space in any domain                                | Applying (K3)                |
| CO3 | explain about analysis, integration and reporting services and apply for an application    | Applying (K3)                |
| CO4 | summarize the functionalities of key performance indicators and make use in an application | Applying (K3)                |
| CO5 | apply BI to mobile, cloud, ERP and social CRM systems                                      | Applying (K3)                |

|                               |                    | Mapping of C | Os with POs s |     |     |     |
|-------------------------------|--------------------|--------------|---------------|-----|-----|-----|
| COs/POs                       | PO1                | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1                           | 3                  | 3            | 1             |     |     |     |
| CO2                           | 2                  | 3            | 1             | 2   |     |     |
| CO3                           | 3                  | 2            | 2             | 2   |     |     |
| CO4                           | 3                  | 2            | 2             | 2   |     |     |
| CO5                           |                    |              | 1             | 3   |     |     |
| I – Slight 2 – Moderate 3 – S | Substantial BT- Bk |              | •             | 5   |     |     |

1 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 20                    | 40                      | 40                 |                     |                      |                    | 100        |
| CAT2                        | 20                    | 40                      | 40                 |                     |                      |                    | 100        |
| CAT3                        | 10                    | 40                      | 50                 |                     |                      |                    | 100        |
| ESE                         | 15                    | 40                      | 45                 |                     |                      |                    | 100        |

### 20MSE03 - CLOUD COMPUTING

| Programm<br>Branch                                                                     | e &                                                              | M.E. & Computer Science and Engineering                                                                               | Sem.         | Category                          | L       | т      | Р      | Credit     |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|---------|--------|--------|------------|
| Prerequisit                                                                            | tes                                                              | Nil                                                                                                                   | 1            | PE                                | 3       | 0      | 0      | 3          |
| Preamble                                                                               |                                                                  | course gives the idea of evolution of cloud computing<br>a and development of simple cloud service. It also<br>uting. |              |                                   |         |        | •      |            |
| Unit - I                                                                               | Cloud                                                            | Computing Basics:                                                                                                     |              |                                   |         |        |        | 9          |
| •                                                                                      |                                                                  | puting – Cloud Types - Characteristics of Cloud con<br>ervice- Platform as a Service - Software as a Service          |              |                                   |         |        | •      | •          |
| Unit - II                                                                              | Platfo                                                           | rms and Virtualization:                                                                                               |              |                                   |         |        |        | 9          |
| Abstraction                                                                            | and Vir                                                          | tualization – Load Balancing and Virtualization – H                                                                   | pervisors -  | Machine Ima                       | ging –  | Portin | a App  | ications - |
|                                                                                        |                                                                  |                                                                                                                       |              |                                   | 0 0     |        | 5 11   | loations   |
| Capacity Pl<br>Unit - III                                                              | anning                                                           | ging and Securing the Cloud:                                                                                          |              |                                   |         |        | 5 11   |            |
| Capacity Pl<br><b>Unit - III</b><br>Administrati                                       | anning<br>Manag<br>ing the c                                     |                                                                                                                       |              |                                   |         |        |        | 9          |
| Capacity Pl<br><b>Unit - III</b><br>Administrati                                       | anning<br>Managing the c<br>g Identity                           | ging and Securing the Cloud:<br>loud – Cloud Management Products – Cloud Manage                                       |              |                                   |         |        |        | 9          |
| Capacity PI<br>Unit - III<br>Administrati<br>Establishing<br>Unit - IV<br>Digital Univ | anning<br>Manag<br>ing the c<br>g Identity<br>Cloud<br>verse- Pr | ging and Securing the Cloud:<br>loud – Cloud Management Products – Cloud Manage<br>and Presence.                      | ement Standa | ards - Securing<br>prage Interope | g the c | loud – | Securi | ng Data -  |

## Lecture: 45, Total: 45

#### **REFERENCES**:

Cloud Services.

| 1. | Barrie Sosinsky, "Cloud Computing Bible", 1 <sup>st</sup> Edition, Wiley Publishing, 2015.                                                                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", 1 <sup>st</sup> Edition, Morgan Kaufmann Publishers, 2012. |
| 3. | www.openstack.org                                                                                                                                                                               |

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                                                                        | BT Mapped<br>(Highest Level) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | describe the main concepts, key technologies, strengths and limitations of cloud computing and apply the same for internet computing        | Applying (K3)                |
| CO2 | outline the underlying principle of abstraction, virtualization, load balancing, capacity planning and apply in virtual resource management | Applying (K3)                |
| CO3 | identify the core issues in cloud security and apply remedial measures                                                                      | Applying (K3)                |
| CO4 | Analyze the various interoperability and storage issues in modern cloud platforms                                                           | Analyzing(K4)                |
| CO5 | Examine and use appropriate open stack components to set up a private cloud environment and explore cloud based services                    | Analyzing(K4)                |

| Mapping of COs with POs s     |                      |                |     |     |     |     |  |  |
|-------------------------------|----------------------|----------------|-----|-----|-----|-----|--|--|
| COs/POs                       | PO1                  | PO2            | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                           | 3                    |                |     |     |     |     |  |  |
| CO2                           | 3                    | 1              |     | 1   |     |     |  |  |
| CO3                           | 3                    | 2              |     |     |     |     |  |  |
| CO4                           | 3                    | 2              |     |     |     |     |  |  |
| CO5                           | 3                    | 2              | 2   | 2   |     |     |  |  |
| - Slight, 2 - Moderate, 3 - S | Substantial, BT- Blo | oom's Taxonomy | •   |     | •   |     |  |  |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                        | 10                          | 70                      | 20                 |                     |                      |                    | 100        |  |  |  |
| CAT2                        | 10                          | 70                      | 20                 |                     |                      |                    | 100        |  |  |  |
| CAT3                        | 10                          | 60                      | 15                 | 15                  |                      |                    | 100        |  |  |  |
| ESE                         | 10                          | 45                      | 30                 | 15                  |                      |                    | 100        |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

## 20MSE04 - COMPILER DESIGN TECHNIQUES

| Programı<br>Branch                                 | ne &                                                                                          | M.E Computer Science and Engineering                                                                                                                                                                                          | Sem.                   | Category                      | L                 | Т                 | Р                  | Credi               |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-------------------|-------------------|--------------------|---------------------|--|
| Prerequis                                          | sites                                                                                         | Programming Languages                                                                                                                                                                                                         | 1                      | PE                            | 2                 | 0                 | 2                  | 3                   |  |
|                                                    |                                                                                               |                                                                                                                                                                                                                               |                        |                               |                   |                   |                    |                     |  |
| Preamble                                           |                                                                                               | The course is intended to make the students lear<br>Compiler Construction and to introduce the theory a<br>translation of a high-level programming language into                                                              | nd tools th            | at can be use                 | ed to pe          | erform s          | syntax-            | directed            |  |
| Unit - I                                           |                                                                                               | Introduction:                                                                                                                                                                                                                 |                        |                               |                   |                   |                    |                     |  |
| Programn                                           | ning Langua                                                                                   | s - Structure of a compiler – Evolution of Programmir<br>age Basics - The Lexical Analyzer Generator -Parser G<br>hniques: Variants of Syntax trees-Three Address Code.                                                       |                        |                               |                   |                   |                    |                     |  |
| Unit - II                                          | hit - II Optimization:                                                                        |                                                                                                                                                                                                                               |                        |                               |                   |                   |                    |                     |  |
| and Reas<br>Common                                 | sociation -<br>Subexpres                                                                      | Dptimizations: Constant-Expression Evaluation - Scalar<br>Value Numbering - Copy Propagation-Sparse Conditi<br>sion Elimination - Invariant Code Motion- Partial-Re<br>Hoisting. Loop Optimizations: Induction Variable Optim | onal Const<br>dundancy | ant Propagati<br>Elimination- | on. Rei<br>Redund | dundano<br>ancy E | cy Elin<br>liminat | nination<br>ion and |  |
| Unit - III                                         |                                                                                               | Instruction Level Parallelism:                                                                                                                                                                                                |                        |                               |                   |                   |                    | (                   |  |
| Processo                                           | - Architectu                                                                                  | res - Code-Scheduling Constraints - Basic-Block Sched                                                                                                                                                                         | uling -Glob            | al Code Sched                 | luling -S         | Software          | Pipeli             | ning.               |  |
| Unit - IV Optimizing for Parallelism and Locality: |                                                                                               |                                                                                                                                                                                                                               |                        |                               |                   |                   |                    |                     |  |
|                                                    |                                                                                               | trix-Multiply-An Example - Iteration Spaces - Affine Anchronization - Free Parallelism- Pipelining.                                                                                                                           | rray Index             | es - Data Re                  | use -Ar           | ray dat           | a depe             | endence             |  |
| Unit - V                                           |                                                                                               | Interprocedural Analysis and Register Allocation:                                                                                                                                                                             |                        |                               |                   |                   |                    | (                   |  |
|                                                    |                                                                                               | leed for Inter procedural Analysis – A Logical Repre<br>Ilocation: Register allocation and Assignment-Local Me                                                                                                                |                        |                               | – A Si            | mple P            | ointer-            | Analysis            |  |
| List of Ex                                         | ercises / E                                                                                   | xperiments :                                                                                                                                                                                                                  |                        |                               |                   |                   |                    |                     |  |
| 1 Dev                                              | elop a lexic                                                                                  | al analyser to recognize a few patterns in c (ex. Identife                                                                                                                                                                    | rs, constan            | ts, comments,                 | operato           | ors etc.)         |                    |                     |  |
| 2 Impl                                             | ementation                                                                                    | of Scanner using LEX                                                                                                                                                                                                          |                        |                               |                   |                   |                    |                     |  |
| 3 Impl                                             | ementation                                                                                    | of Predictive Parser                                                                                                                                                                                                          |                        |                               |                   |                   |                    |                     |  |
| 4 Impl                                             | ementation                                                                                    | of bottom up parser                                                                                                                                                                                                           |                        |                               |                   |                   |                    |                     |  |
| 5 Gen                                              | eration of Ir                                                                                 | ntermediate code for the given source code                                                                                                                                                                                    |                        |                               |                   |                   |                    |                     |  |
| 6 Impl                                             | ement type                                                                                    | checking                                                                                                                                                                                                                      |                        |                               |                   |                   |                    |                     |  |
| 7 Impl                                             | ement cont                                                                                    | rol flow analysis and data flow analysis.                                                                                                                                                                                     |                        |                               |                   |                   |                    |                     |  |
| 8 Con                                              | vert the BN                                                                                   | F rules into YACC form and write code to generate abst                                                                                                                                                                        | ract syntax            | tree.                         |                   |                   |                    |                     |  |
| 9 Use                                              | optimizatio                                                                                   | Use optimization techniques and analyse the best optimization technique for given code.                                                                                                                                       |                        |                               |                   |                   |                    |                     |  |
|                                                    | Write program to generate assembly code from the abstract syntax tree generated by the parser |                                                                                                                                                                                                                               |                        |                               |                   |                   |                    |                     |  |

#### **REFERENCES:**

|   | Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, "Compilers: Principles, Techniques and Tools", 2 <sup>nd</sup> Edition, Pearson Education, 2013. |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Steven S. Muchnick, "Advanced Compiler Design Implementation", 1 <sup>st</sup> Edition, Morgan Kaufman Publishers, Elsevier Science, India, 2008.             |
| 3 | Richard Y. Kain, "Advanced Computer Architecture: A Systems Design Approach", 1 <sup>st</sup> Edition, Prentice Hall, 2011.                                   |

|     | RSE OUTCOMES:<br>mpletion of the course, the students will be able to                                           | BT Mapped<br>(Highest Level)      |
|-----|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|
| CO1 | describe different phases of compiler and design a simple scanner and parser by using its pattern               | Applying (K3)                     |
| CO2 | survey various code optimization techniques to improve the performance of a program in terms of speed and space | Analyzing (K4)                    |
| CO3 | demonstrate the architectural design of the system for compilation                                              | Applying (K3)                     |
| CO4 | apply optimization techniques to optimize programs in real time                                                 | Applying (K3)                     |
| CO5 | optimize functions and demonstrate how to store data and access from registers                                  | Analyzing (K4)                    |
| CO6 | apply the knowledge of LEX tool and YACC tool to design a simple lexical analyser and parser                    | Applying (K3), Precision<br>(S3)  |
| C07 | examine the optimization technique available for the given code and provide the optimized code.                 | Analyzing (K4),<br>Precision (S3) |
| CO8 | analyze modern programming languages and write programs for generating target language                          | Analyzing (K4),<br>Precision (S3) |

| Mapping of COs with POs s         |                    |               |     |     |     |     |  |  |
|-----------------------------------|--------------------|---------------|-----|-----|-----|-----|--|--|
| COs/POs                           | PO1                | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                               | 3                  | 2             | 1   |     |     |     |  |  |
| CO2                               | 3                  | 3             | 1   |     |     |     |  |  |
| CO3                               | 3                  | 1             |     |     |     |     |  |  |
| CO4                               | 3                  | 2             | 1   |     |     |     |  |  |
| CO5                               | 3                  | 1             |     |     |     |     |  |  |
| CO6                               | 3                  |               | 2   | 2   |     |     |  |  |
| CO7                               | 3                  | 2             | 1   | 1   |     |     |  |  |
| CO8                               | 3                  | 2             | 1   | 1   |     |     |  |  |
| 1 - Slight, 2 - Moderate, 3 - Sub | ostantial, BT- Blo | om's Taxonomy |     |     |     |     |  |  |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |
| CAT2                        |                             | 35                      | 40                 | 25                  |                      |                    | 100        |  |  |  |
| CAT3                        |                             | 30                      | 40                 | 30                  |                      |                    | 100        |  |  |  |
| ESE                         | 10                          | 25                      | 40                 | 25                  |                      |                    | 100        |  |  |  |

#### 20MSE05 - BLOCKCHAIN TECHNOLOGIES

| Programme &<br>Branch | M.E. & Computer Science and Engineering        | Sem. | Category | L | Т | Р | Credit |
|-----------------------|------------------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Basics of Cryptography and Distributed systems | 2    | PE       | 3 | 0 | 0 | 3      |

| Preamble                                                                                                                     | The widespread popularity of digital cryptocurrencies has led the foundation of Blockchain. This course covers both the conceptual as well as application aspects of Blockchain. This includes the fundamental design and architectural primitives of Blockchain, the system and the security aspects, along with various use cases from different application domains. |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Unit - I                                                                                                                     | Introduction to Blockchain: 9                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Financial transaction – Ledger – trustless system – Elements of blockchain – types – Byzantine General Problems – benefits – |                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

Financial transaction – Ledger – trustless system – Elements of blockchain – types – Byzantine General Problems – benefits – challenges – Components and structure of blockchain: blocks – chain – hashing – digital signatures – example – miners – validators – smart contracts - speed – decentralization Vs distributed systems.

#### Unit - II Cryptography behind Blockchain:

Principles – historical perspectives – classical cryptography- types – symmetric – asymmetric – signatures – hashing. **Bitcoin:** History – Why bitcoin – keys and addresses – transactions – blocks – bitcoin network – wallets.

#### Unit - III Consensus:

Practical Byzantine fault tolerance algorithm – Proof of Work - Proof of Stake - Proof of Authority - Proof of Elapsed time Cryptocurrency Wallets: Introduction to cryptocurrency wallets - Transactions - Types of cryptocurrency wallets – Tenancy - Alternate Blockchains.

#### Unit - IV Hyperledger and Enterprise Blockchains:

History - Hyperledger projects - Hyperledger Burrow - Hyperledger Sawtooth - Hyperledger Fabric - Hyperledger Iroha -Hyperledger Indy - Tools in Hyperledger – Deploy a simple application on IBM cloud.

#### Unit - V Ethereum:

Introducing Ethereum - Components of Ethereum - Ethereum accounts - Ethereum network - Ethereum clients - Ethereum gas - Ethereum virtual machine - Ethereum block – Ether - Basics of Solidity - Ethereum Development.

#### Lecture: 45, Total: 45

9

9

9

9

#### **REFERENCES:**

1. Brenn Hill, Samanyu Chopra, Paul Valencourt, "Blockchain Quick Reference: A guide to exploring decentralized blockchain application development", 1<sup>st</sup> Edition, Packt Publishing, 2018.

2. Andreas Antonopoulos, "Mastering Bitcoin: Programming the open blockchain", 2<sup>nd</sup> Edition, O'Reilly Media, 2017.

3. Melanie Swan, "Blockchain: Blueprint for a New Economy", 1<sup>st</sup> Edition, O'Reilly Media, 2015.

## 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

|     | SE OUTCOMES:<br>npletion of the course, the students will be able to      | BT Mapped<br>(Highest Level) |
|-----|---------------------------------------------------------------------------|------------------------------|
| CO1 | Illustrate the workings of blockchain                                     | Applying (K3)                |
| CO2 | Apply various cryptographic algorithms in blockchain                      | Applying (K3)                |
| CO3 | Demonstrate different cryptocurrency used in blockchain                   | Applying (K3)                |
| CO4 | deploy a simple application using Hyperledger on IBM cloud                | Applying (K3)                |
| CO5 | develop and analyze a distributed application using Ethereum and Solidity | Applying (K3)                |

|         |     | Mapping of C | Os with POs s |     |     |     |
|---------|-----|--------------|---------------|-----|-----|-----|
| COs/POs | PO1 | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1     | 3   | 1            |               | 1   |     |     |
| CO2     | 3   | 2            |               | 2   |     |     |
| CO3     | 3   | 2            |               | 2   |     |     |
| CO4     | 3   | 2            | 1             | 3   |     |     |
| CO5     | 3   | 3            | 2             | 3   |     |     |

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |

## 20MSE06 - INTERNET OF THINGS

| Programme &<br>Branch                                                                                                                                                                                                                                                                                                                                                                                                                                   | M.E Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sem.                                    | Category                                                    | L                                      | т                                          | Р                                      | Credit                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------------------|
| Prerequisites                                                                                                                                                                                                                                                                                                                                                                                                                                           | Microprocessors/Microcontrollers/Computer<br>Organization/Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                       | PE                                                          | 2                                      | 0                                          | 2                                      | 3                                                 |
| Preamble                                                                                                                                                                                                                                                                                                                                                                                                                                                | This course provides a thorough understanding of IoT a<br>and analyze the various tools for building IoT applications<br>real time applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                             |                                        |                                            |                                        |                                                   |
| Unit - I                                                                                                                                                                                                                                                                                                                                                                                                                                                | Introduction to Internet of Things and Design Methodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ology:                                  |                                                             |                                        |                                            |                                        | 6                                                 |
| APIs - IoT enab                                                                                                                                                                                                                                                                                                                                                                                                                                         | haracteristics of IoT - Physical Design of IoT - IoT Protocols -<br>led Technologies - IoT Levels and Templates - M2M - Differ<br>ork function virtualization - IoT Platform design Methodologies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                             |                                        |                                            |                                        |                                                   |
| Unit - II                                                                                                                                                                                                                                                                                                                                                                                                                                               | IoT Architecture and Protocols:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                                             |                                        |                                            |                                        | 6                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T - DNA of IoT - Middleware for IoT: Overview - Communi-<br>ptocol Standardization for IoT - Efforts - M2M and WSN Protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                             |                                        |                                            |                                        |                                                   |
| Unit - III                                                                                                                                                                                                                                                                                                                                                                                                                                              | Introduction to Python and IoT Physical Devices:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                             |                                        |                                            |                                        | e                                                 |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro                                                                                                                                                                                                                                                                                                                                                                                               | es of Python - Data types - Data structures - Control of flow – I<br>ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KML, H                                  | TTPLib, URLL                                                | ib, SM                                 | ΓΡĽib -                                    | Introd                                 | uction to                                         |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV                                                                                                                                                                                                                                                                                                                                                                                  | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (ML, H<br>h Rasp                        | TTPLib, URLL<br>berry PI with                               | ib, SM⊺<br>focus                       | ΓΡĽib -<br>of inter                        | Introdu<br>facing                      | externa                                           |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br><b>Unit - IV</b><br>Various Real tim<br>Management Too                                                                                                                                                                                                                                                                                                                                     | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>le applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ML, H<br>h Rasp                        | TTPLib, URLL<br>berry PI with                               | ib, SM⊺<br>focus                       | ΓΡĽib -<br>of inter                        | Introdu<br>facing                      | uction to<br>externa<br>(<br>vare and             |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br><b>Unit - IV</b><br>Various Real tim<br>Management Too<br><b>Unit - V</b>                                                                                                                                                                                                                                                                                                                  | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KML, H<br>h Rasp<br>ge for l            | TTPLib, URLL<br>berry PI with<br>oT - Data Ana              | ib, SM<br>focus<br>alytics f           | ΓΡĽib -<br>of inter                        | Introdu<br>facing<br>- Softw           | externa<br>externa<br>vare and                    |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br><b>Unit - IV</b><br>Various Real tim<br>Management Too<br><b>Unit - V</b><br>Introduction-Vuln<br>Tomography -Lay<br>Security Models                                                                                                                                                                                                                                                       | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>e applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>erabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.                                                                                                                                                                                                                                                                                                                                                                         | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercise                                                                                                                                                                                                                                                 | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.                                                                                                                                                                                                                                                                                                                                                                     | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>6<br>Security |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercises<br>1 Creating a                                                                                                                                                                                                                                | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator                                                                                                                                                                                                                                                                                                          | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>6<br>Security |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercises<br>1 Creating a<br>2 Sending d                                                                                                                                                                                                                 | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator                                                                                                                                                                                                                                              | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercises<br>1 Creating a<br>2 Sending d<br>3 Launching                                                                                                                                                                                                  | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator                                                                                                                                                                                            | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercises<br>1 Creating a<br>2 Sending d<br>3 Launching<br>4 Controlling                                                                                                                                                                                 | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator<br>g things using Raspberry Pi via webpage                                                                                                                                                 | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati<br>Raspberry PI - I<br>gadgets - Contro<br>Unit - IV<br>Various Real tim<br>Management Too<br>Unit - V<br>Introduction-Vuln<br>Tomography -Lay<br>Security Models<br>List of Exercises<br>1 Creating a<br>2 Sending d<br>3 Launching<br>5 Controlling                                                                                                                                                                                 | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator                                                                                                                                                                                            | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati         Raspberry PI - I         gadgets - Contro         Unit - IV         Various Real tim         Management Too         Unit - V         Introduction-Vuln         Tomography - Lay         Security Models         1       Creating a         2       Sending d         3       Launching         4       Controlling         5       Controlling         6       Data compare                                                   | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator<br>g things using Raspberry Pi via webpage<br>g things using Raspberry Pi via mobile app                                                                                                   | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati         Raspberry PI - I         gadgets - Contro         Unit - IV         Various Real tim         Management Too         Unit - V         Introduction-Vuln         Tomography -Lay         Security Models         List of Exercises         1       Creating a         2       Sending d         3       Launching         4       Controlling         6       Data com         7       Configure                                | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator<br>g things using Raspberry Pi via webpage<br>g things using Raspberry Pi via mobile app<br>munication using MQTT Protocol via Mosquitto simulator                                         | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |
| Date/time operati         Raspberry PI - I         gadgets - Contro         Unit - IV         Various Real tim         Management Too         Unit - V         Introduction-Vuln         Tomography -Lay         Security Models         1       Creating a         2       Sending d         3       Launching         4       Controlling         5       Controlling         6       Data coming         7       Configure         8       Sensing a | ions – Classes - Exception handling Python packages - JSON, X<br>nterfaces (serial, SPI, I2C)Programming - Python program with<br>lling output - Reading input from pins.<br>Cloud Storage and Analysis:<br>the applications of IoT - Connecting IoT to cloud - Cloud Storage<br>ols for IoT.<br>IoT Privacy, Security and Vulnerabilities Solutions :<br>therabilities Of IoT - Security Requirements -Threat Analys<br>yered Attacker Model-Identity Management And Establishment-A<br>-Protocols For IoT.<br>s / Experiments :<br>an IoT scenario in Cooja Simulator<br>lata between an IoT client and server in Cooja Simulator<br>g an attack in RPL protocol in Cooja Simulator<br>g things using Raspberry Pi via webpage<br>g things using Raspberry Pi via mobile app<br>munication using MQTT Protocol via Mosquitto simulator<br>MQTT Mosquitto Server to secure MQTT | KML, H<br>h Rasp<br>ge for l<br>sis-Use | TTPLib, URLL<br>berry PI with<br>oT - Data Ana<br>Cases And | ib, SM<br>focus<br>alytics f<br>Misuse | rPLib -<br>of inter<br>for loT -<br>e Case | Introdu<br>facing<br>- Softw<br>es-IoT | uction to<br>externa<br>vare and<br>Security      |

#### Lecture:30, Practical:30, Total:60

#### **REFERENCES:**

| 1 | ArshdeepBahga and Vijay Madisetti, "Internet of Things - A Hands-on Approach", 1 <sup>st</sup> Edition, Universities Press, 2015. |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
| 2 | Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", 1 <sup>st</sup> Edition, CRC Press, 2012.            |
| 3 | Raj Kamal, "Internet of Things: Architecture and Design Principles", 1 <sup>st</sup> Edition, McGraw Hill , 2017                  |

|     | RSE OUTCOMES:<br>mpletion of the course, the students will be able to                                                                           | BT Mapped<br>(Highest Level)     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CO1 | describe the physical and logical design of IoT and point out an appropriate IoT level and develop design methodologies for a given application | Analyzing (K4)                   |
| CO2 | analyze the suitable protocol and middleware for the given application                                                                          | Analyzing (K4)                   |
| CO3 | carry out the given IoT experiment by recalling the basic concepts and packages of Python for interfacing with devices                          | Applying (K3)                    |
| CO4 | develop simple real time applications, upload the data onto the cloud and perform data analytics                                                | Applying (K3)                    |
| CO5 | identify the security threats against a given IoT system and develop countermeasures for the identified threats                                 | Applying (K3)                    |
| CO6 | develop IoT applications using Cooja Simulator and Raspberry Pi                                                                                 | Applying (K3),<br>Precision (S3) |
| C07 | design an IoT application that communicate to server via application layer protocols                                                            | Applying (K3),<br>Precision (S3) |
| CO8 | analyse IoT data stored in cloud                                                                                                                | Applying (K3),<br>Precision (S3) |

|                                |                    | Mapping of C  | Os with POs s |     |     |     |
|--------------------------------|--------------------|---------------|---------------|-----|-----|-----|
| COs/POs                        | PO1                | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                            | 3                  | 2             | 1             | 1   |     |     |
| CO2                            | 3                  | 3             | 1             |     |     |     |
| CO3                            | 3                  | 2             | 2             | 2   |     |     |
| CO4                            | 3                  | 2             | 2             | 2   |     |     |
| CO5                            | 3                  | 1             | 1             |     |     |     |
| CO6                            | 3                  | 1             | 2             | 2   |     |     |
| CO7                            | 3                  | 1             | 2             | 2   |     |     |
| CO8                            | 3                  | 2             | 2             | 2   |     |     |
| - Slight, 2 - Moderate, 3 - Su | bstantial, BT- Blo | om's Taxonomy |               |     |     |     |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |
| CAT1                        | 10                          | 10                      | 60                 | 20                  |                      |                    | 100        |  |  |  |  |  |
| CAT2                        | 10                          | 10                      | 70                 | 10                  |                      |                    | 100        |  |  |  |  |  |
| CAT3                        | 10                          | 20                      | 70                 |                     |                      |                    | 100        |  |  |  |  |  |
| ESE                         | 10                          | 20                      | 50                 | 20                  |                      |                    | 100        |  |  |  |  |  |

## 20MSE07 - BIG DATA ANALYTICS

| Branch                                                       | &                                                         | M.E. & Computer Science and Engineering                                                                                                                                                 | Sem.         | Category                     | L       | т       | Р       | Credit          |
|--------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|---------|---------|---------|-----------------|
| Prerequisite                                                 | €S                                                        | Database Management Systems                                                                                                                                                             | 2            | PE                           | 3       | 0       | 0       | 3               |
|                                                              |                                                           |                                                                                                                                                                                         |              |                              |         |         |         |                 |
| Preamble                                                     | This co                                                   | ourse provides basic knowledge about Big data, its fra                                                                                                                                  | nework, stor | rage in databa               | ses and | strear  | n proc  | essing.         |
| Unit - I                                                     | Big da                                                    | ta :                                                                                                                                                                                    |              |                              |         |         |         | 9               |
|                                                              | ••                                                        | of Digital Data – characteristics – evolution – defi<br>ience – terminologies used in Big Data environments                                                                             |              | • •                          | Data -  | - Big I | Data A  | Analytics -     |
| Unit - II                                                    | MapRe                                                     | educe Framework:                                                                                                                                                                        |              |                              |         |         |         | 9               |
| Ecosystem.                                                   | Advan                                                     |                                                                                                                                                                                         |              |                              |         |         |         |                 |
| Unit - III                                                   | Auvan                                                     | ced MapReduce:                                                                                                                                                                          |              |                              |         |         |         |                 |
| Chaining Ma                                                  | apReduc                                                   | <b>ced MapReduce:</b><br>le Jobs - Joining data from different sources -Creat<br>ls- Monitoring and debugging on a production cluster-                                                  |              |                              | mming   | Practi  | ices: [ | g<br>Developing |
| Chaining Ma                                                  | apReduc<br>program                                        | e Jobs - Joining data from different sources -Creat                                                                                                                                     |              |                              | mming   | Practi  | ices: [ | Developing      |
| Chaining Ma<br>MapReduce<br><b>Unit - IV</b><br>Introduction | apReduc<br>program<br><b>NoSQI</b><br>to NoS <sup>Q</sup> | e Jobs - Joining data from different sources -Creat<br>ns- Monitoring and debugging on a production cluster-                                                                            | Tuning for p | erformance.<br>uery Language | e – Ca  | issand  |         |                 |
| Chaining Ma<br>MapReduce<br><b>Unit - IV</b><br>Introduction | apReduc<br>program<br><b>NoSQI</b><br>to NoSQ<br>Data typ | e Jobs - Joining data from different sources -Creat<br>ns-Monitoring and debugging on a production cluster-<br><b>Database Systems:</b><br>QL – CAP theorem - MongoDB : Data types – Mo | Tuning for p | erformance.<br>uery Language | e – Ca  | issand  |         | Developing      |

#### Lecture: 45, Total: 45

#### **REFERENCES:**

| 1. | Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 2 <sup>nd</sup> Edition, Wiley, 2019.                           |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Chuck Lam, "Hadoop in Action", 2 <sup>nd</sup> Edition, Manning Publications, 2011.                                                |
|    | Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", 3 <sup>rd</sup> Edition, Cambridge University Press, 2020. |

## 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

|     | SE OUTCOMES:<br>npletion of the course, the students will be able to                  | BT Mapped<br>(Highest Level) |
|-----|---------------------------------------------------------------------------------------|------------------------------|
| CO1 | identify the various types of data and challenges in the Big data.                    | Applying (K3)                |
| CO2 | develop simple programs using Hadoop framework                                        | Applying (K3)                |
| CO3 | explore advanced MapReduce data processing                                            | Applying (K4)                |
| CO4 | implement NoSQL database system for real world problems                               | Analyzing (K4)               |
| CO5 | adapt the stream processing techniques such as Spark and Kafka for the given problem. | Applying (K3)                |

|         |     | Mapping of C | Os with POs s |     |     |     |
|---------|-----|--------------|---------------|-----|-----|-----|
| COs/POs | PO1 | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1     | 3   | 2            |               |     |     |     |
| CO2     | 3   | 2            | 2             | 2   |     |     |
| CO3     | 3   | 2            | 2             | 2   |     |     |
| CO4     | 3   | 1            |               |     |     |     |
| CO5     | 3   | 2            | 2             | 2   |     |     |

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

| ASSESSMENT PATTERN - THEORY |                       |                         |                    |                     |                      |                    |            |  |  |  |  |  |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |
| CAT1                        | 25                    | 25                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |
| CAT2                        | 20                    | 20                      | 60                 |                     |                      |                    | 100        |  |  |  |  |  |
| CAT3                        | 20                    | 20                      | 40                 | 20                  |                      |                    | 100        |  |  |  |  |  |
| ESE                         | 20                    | 20                      | 40                 | 20                  |                      |                    | 100        |  |  |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MSE08- MODERN INFORMATION RETRIEVAL TECHNIQUES

| Programme &<br>Branch | M.E. & Computer Science and Engineering | Sem. | Category | L | Т | Р | Credit |
|-----------------------|-----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Nil                                     | 2    | PE       | 3 | 0 | 0 | 3      |

Preamble This course discusses about the basic concepts of IR, and various modeling techniques with different ways of indexing and searching mechanisms to build a text or multimedia based IR system.

#### Unit - I Introduction and Classic IR Models:

Information Retrieval - The IR Problem - The IR System - Search Interfaces Today - Visualization in Search Interfaces - Modeling – Boolean Model – Term Weighting – TF-IDF Weighting – Vector Model – Set Theoretic Models – Algebric Models – Latent Semantic Indexing Model – Neural Network Model - Probabilistic Models - Retrieval Evaluation – Retrieval Metrics.

#### Unit - II Relevance Feedback, Languages and Query Properties:

A Framework for feedback methods - Explicit Relevance feedback - Implicit feedback through local analysis - Global analysis - Documents: Metadata - Documents formats - Queries - Query Language – Query Properties.

#### Unit - III Text Operations, Indexing and Searching:

Text Properties - Document Preprocessing - Text Compression – Text Classification – Characterization of Text Classification – Unsupervised Algorithms – Supervised Algorithms – Decision Tree – K-NN Classifier – SVM Classifier – Feature Selection or Dimensionality Reduction – Evaluation Metrics – Accuracy and Error – Indexing and Searching – Inverted Indexes – Sequential Searching – Multidimensional Indexing.

#### Unit - IV Web Retrieval and Web Crawling:

The Web – Search Engine Architectures – Cluster Based Architecture – Distributed Architectures – Search Engine Ranking – User Interaction –Browsing – Web Crawling – Applications of a Web Crawler – Taxonomy – Architecture and Implementation – Scheduling Algorithms – Evaluation.

#### Unit - V Applications:

Enterprise Search - Tasks - Architecture – Library Systems – Online Public Access Catalogues – IR System and Document Databases – Digital Libraries – Architecture and Fundamentals.

#### Lecture: 45, Total: 45

9

9

9

9

9

#### **REFERENCES:**

1. Ricardo Baeza-Yate, Berthier Ribeiro-Neto, "Modern Information Retrieval the concepts and technology behind search", 2<sup>nd</sup> Edition, Pearson Education, Asia, 2011.

2. Chowdhury G.G., "Introduction to Modern Information Retrieval", 2<sup>nd</sup> Edition, Neal-Schuman Publishers, 2003.

3. Daniel Jurafsky and James H. Martin, "Speech and Language Processing", 1<sup>st</sup> Edition, Pearson Education, 2000.

# ٢

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                                     | BT Mapped<br>(Highest Level) |
|-----|----------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | describe the basic concepts of information retrieval and apply term weighting strategy in various models | Applying (K3)                |
| CO2 | Carry out relevance feedback and describe query properties                                               | Applying (K3)                |
| CO3 | Apply statistical methods to perform text operations, indexing and searching                             | Applying (K3)                |
| CO4 | Describe web retrieval process and make use of web crawler for information retrieval                     | Applying (K3)                |
| CO5 | apply IR techniques in digital library                                                                   | Applying (K3)                |

|                           |                     | Mapping of C  | Os with POs s |     |     |     |
|---------------------------|---------------------|---------------|---------------|-----|-----|-----|
| COs/POs                   | PO1                 | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                       | 3                   | 2             |               |     |     |     |
| CO2                       | 3                   | 2             |               | 2   |     |     |
| CO3                       | 3                   | 2             | 1             | 2   |     |     |
| CO4                       | 3                   | 2             | 1             |     |     |     |
| CO5                       | 3                   | 2             |               | 2   |     |     |
| - Slight 2 - Moderate 3 - | Substantial BT- Blo | om's Taxonomy |               |     |     |     |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |
| CAT1                        | 20                          | 40                      | 40                 |                     |                      |                    | 100        |  |  |
| CAT2                        | 20                          | 40                      | 40                 |                     |                      |                    | 100        |  |  |
| CAT3                        | 20                          | 40                      | 40                 |                     |                      |                    | 100        |  |  |
| ESE                         | 20                          | 40                      | 40                 |                     |                      |                    | 100        |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MSE09 - INFORMATION STORAGE MANAGEMENT

| Programme &<br>Branch | M.E. & Computer Science and Engineering              | Sem. | Category | L | Т | Ρ | Credit |
|-----------------------|------------------------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Computer Networks and Database Management<br>Systems | 2    | PE       | 3 | 0 | 0 | 3      |

Preamble This course offers essential details about various storage systems, storage networking technologies and business continuity solutions along with management techniques in order to store, manage, and protect digital information in classic, virtualized, and cloud environments

#### Unit - I Storage Systems:

Introduction - evolution of storage architecture, key characteristics of data center - virtualization, and cloud computing. Data center environment: Host (or computer), connectivity, storage, and access to data, direct attached storage, storage design based on application requirements and disk performance - VMware ESXi. Data Protection: RAID implementations, techniques, levels, impact of RAID on disk performance. Intelligent Storage System: Components, storage provisioning, types and intelligent storage implementations.

#### Unit - II Storage Networking Technologies:

Fibre channel SAN components – FC SAN connectivity – FC protocol stack – FC addressing – zoning – FC SAN topologies – virtualization in SAN. iSCSI – FCIP – FCoE – Network Attached Storage (NAS): components, I/O operation, file sharing protocols, file level virtualization. Object based storage platform – unified storage platform.

#### Unit - III Backup, Archive and Replication:

Business continuity terminologies – BC planning life cycle – failure analysis – BC technology solutions – Backup and archive: purpose, methods, architecture, operations, topologies, targets, data deduplication, backup in virtualized environment and data archive. Local replication in classic and virtual environments – Remote replication in classic and virtual environment.

#### Unit - IV Cloud Computing:

Cloud enabling technologies – characteristics of cloud computing – benefits of cloud computing – cloud service models – cloud deployment models: public cloud, private cloud, community cloud, hybrid cloud. cloud computing infrastructure: physical infrastructure, virtual infrastructure, applications and platform software, cloud management and service creation tools. cloud challenges – cloud adoption considerations.

#### Unit - V Securing and Managing Storage Infrastructure:

Information security framework – risk triad – storage security domains – security implementations in storage networking: FC SAN, NAS, IP SAN – Securing storage infrastructure in virtualized and cloud environments – monitoring the storage infrastructure – storage infrastructure management activities – storage infrastructure management challenges – developing an ideal solution – Information lifecycle management (ILM) – storage tiering.

Lecture: 45, Total: 45

9

9

9

9

9

#### **REFERENCES:**

| 1. | EMC Corporation, "Information Storage and Management", 2 <sup>nd</sup> Edition, Wiley, 2012.                           |
|----|------------------------------------------------------------------------------------------------------------------------|
| 2. | Robert Spalding, "Storage Networks: The Complete Reference", 1 <sup>st</sup> Edition, Tata McGraw Hill, Osborne, 2003. |
| 3. | Marc Farley, "Building Storage Networks", 2 <sup>nd</sup> Edition, Tata McGraw Hill, Osborne, 2001.                    |

# ÷.

|     | SE OUTCOMES:<br>npletion of the course, the students will be able to                                 | BT Mapped<br>(Highest Level) |
|-----|------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | demonstrate the various storage systems and RAID implementations                                     | Applying (K3)                |
| CO2 | identify various storage networking technologies and its components                                  | Applying (K3)                |
| CO3 | apply business continuity solutions - backup and replication, and archive for managing fixed content | Applying (K3)                |
| CO4 | make use of cloud computing concepts for information storage                                         | Applying (K3)                |
| CO5 | use the storage security framework and practice storage monitoring and management activities         | Applying (K3)                |

|                             |                      | Mapping of C  | Os with POs s |     |     |     |
|-----------------------------|----------------------|---------------|---------------|-----|-----|-----|
| COs/POs                     | PO1                  | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                         | 3                    | 1             |               |     |     |     |
| CO2                         | 3                    | 3             | 1             |     |     |     |
| CO3                         | 2                    | 3             |               |     |     |     |
| CO4                         | 3                    | 2             |               | 1   |     |     |
| CO5                         | 3                    | 1             |               |     |     |     |
| - Slight, 2 - Moderate, 3 - | Substantial, BT- Blo | om's Taxonomy |               |     |     |     |

| ASSESSMENT PATTERN - THEORY |                       |                         |                    |                     |                      |                    |           |  |  |  |  |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|-----------|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Tota<br>% |  |  |  |  |
| CAT1                        | 20                    | 60                      | 20                 |                     |                      |                    | 100       |  |  |  |  |
| CAT2                        | 20                    | 60                      | 20                 |                     |                      |                    | 100       |  |  |  |  |
| CAT3                        | 20                    | 60                      | 20                 |                     |                      |                    | 100       |  |  |  |  |
| ESE                         | 20                    | 60                      | 20                 |                     |                      |                    | 100       |  |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MSE10- RANDOMIZED ALGORITHMS

| Prerequisites Design and Analysis of Algorithms, Data Structures and 2 PE 3 0 0 | Programme &<br>Branch | M.E. & Computer Science and Engineering                              | Sem. | Category | L | Т | Р | Credit |
|---------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|------|----------|---|---|---|--------|
| Algorithms                                                                      | Prerequisites         | Design and Analysis of Algorithms, Data Structures and<br>Algorithms | 2    | PE       | 3 | 0 | 0 | 3      |

 Preamble
 In this course, the probability tools required to design and analyze a randomized algorithm are studied. The emphasis will be on strengthening the analytical skills of the student so that he can independently design or analyze a randomized algorithm.

 Unit - I
 9

Min-Cut Algorithm, Binary Planar Partitions, **Game-theoretic techniques:** Game Tree Evaluation, The Minimax principle, Randomness and Non-uniformity. **Moments and deviations:** Occupancy Problems, Markov and Chebyshev Inequalities, Randomized Selection, Two-point Sampling, Stable Marriage Problem and Coupon Collector's Problem.

#### Unit - II

**Tail Inequalities:** Chernoff Bound, Routing in a parallel Computer, A wiring Problem, Martingales. **The probabilistic method:** Overview, Maximum Satisfiability, Expanding Graphs, Lovasz Local Lemma and Method of Conditional Probabilities.

#### Unit - III

**Markov Chains and Random Walks:** A 2-SAT Example, Markov Chains, Random Walks on Graphs, Electrical Networks, Cover Times, Graph Connectivity, Expanders and Rapidly Mixing Random Walks. **Algebraic techniques:** Fingerprinting and Freivalds Technique, verifying polynomial identities, perfect matchings in graphs, verifying equality of strings, pattern matching, Interactive proof systems.

#### Unit - IV

**Data Structures:** Fundamental Data-structuring problem, Random Treaps, Skip Lists, Hash Tables and Hashing. **Graph algorithms:** All-pairs Shortest Paths, Min-cut Problem, Minimum Spanning Trees.

#### Unit - V

**Approximate Counting:** Randomized Approximation Schemes, DNF Counting Problem, Volume Estimation. **Parallel and distributed algorithms:** PRAM model and its sorting, Maximal Independent Sets, Perfect Matching, Choice Coordination Problem, Byzantine Agreement.

#### Lecture: 45, Total: 45

9

9

9

9

#### **REFERENCES:**

Rajeev Motwani and Prabhakar Raghavan, "Randomized Algorithms", 1<sup>st</sup> Edition, Cambridge University Press, Reprint 2010.
 Michael Mitzenmacher and Eli Upfal, "Probability and Computing: Randomized Algorithms and Probabilistic Analysis", 1<sup>st</sup> Edition, Cambridge University Press, 2005.

3. Grimmett and Stirzaker, "Probability and Random Processes", 3<sup>rd</sup> Edition, Oxford, 2001.

## Kongu Engineering College, Perundurai, Erode – 638060, India

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                                                | BT Mapped<br>(Highest Level) |
|-----|---------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | apply the basic concepts in the design and analysis of randomized algorithms                                        | Applying (K3)                |
| CO2 | develop tail inequalities and different probability that are frequently used in algorithmic application             | Applying (K3)                |
| CO3 | determine the use of Markov chains and Random walks in the different practical applications                         | Applying (K3)                |
| CO4 | discover the applications of data structures and graph algorithms                                                   | Analyzing (K4)               |
| CO5 | examine the different appropriate counting schemes and parallel and distributed algorithms for various applications | Analyzing (K4)               |

|     |                            | Os with POs s                                                   |                                                                                                                         |                                                                                                           |         |
|-----|----------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|
| PO1 | PO2                        | PO3                                                             | PO4                                                                                                                     | PO5                                                                                                       | PO6     |
| 3   | 1                          |                                                                 |                                                                                                                         |                                                                                                           |         |
| 3   | 2                          | 1                                                               |                                                                                                                         |                                                                                                           |         |
| 3   | 2                          | 1                                                               |                                                                                                                         |                                                                                                           |         |
| 3   | 3                          | 2                                                               |                                                                                                                         |                                                                                                           |         |
| 3   | 3                          | 2                                                               |                                                                                                                         |                                                                                                           |         |
|     | 3<br>3<br>3<br>3<br>3<br>3 | 3     1       3     2       3     2       3     2       3     3 | 3     1       3     2       3     2       3     2       3     3       2     1       3     3       3     3       2     1 | 3     1       3     2       3     2       3     2       3     3       2     1       3     3       3     3 | 3     1 |

 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy |1

| ASSESSMENT PATTERN - THEORY |                       |                         |                    |                     |                      |                    |            |  |  |  |  |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |
| CAT1                        | 10                    | 20                      | 70                 |                     |                      |                    | 100        |  |  |  |  |
| CAT2                        |                       | 20                      | 60                 | 20                  |                      |                    | 100        |  |  |  |  |
| CAT3                        |                       | 10                      | 40                 | 50                  |                      |                    | 100        |  |  |  |  |
| ESE                         |                       | 20                      | 50                 | 30                  |                      |                    | 100        |  |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

#### 20MSE11 - SOCIAL NETWORK ANALYSIS

| Programme & M.E. & Computer Science and Engineering |     | Sem. | Category | L | Т | Р | Credit |
|-----------------------------------------------------|-----|------|----------|---|---|---|--------|
| Prerequisites                                       | Nil | 2    | PE       | 3 | 0 | 0 | 3      |

Preamble This course studies the properties of graph with its application in social network analysis. It also explores some of the surprising and beautiful discoveries achieved with Social Network Analysis and its applications.

#### Unit - I Graph Theory and Social Networks:

Graphs: Basic Definitions- Paths and Connectivity- Distance and Breadth First Search-Network Dataset: An overview. Strong and Weak Ties: Triadic Closure- The Strength of Weak Ties- Tie Strength and Network Structure in Large Scale Data- Tie Strength, Social Media, and Passive Engagement- Closure, Structural Holes, and Social Capital. Networks in their Surrounding Contexts: Homophily – Mechanism Underlying Homophily - Selection and Social Influence- Affiliation. Positive and Negative Relationships: Structural Balance- Characterizing the Structure of Balanced Networks – Application of Structural Balance – A Weaker Form of Structural Balance

#### Unit - II Game Theory and Interaction in Networks:

Games: What is Game?- Reasoning about Behavior in Game- Best Responses and Dominant Strategies- Nash Equilibrium-Multiple Equilibria- Coordination Games, The Hawk-Dove Game-Mixed Strategies-Examples and Empirical Analysis- Pareto Optimality and Social Optimality. Evolutionary Game Theory: Fitness as a Result of interaction- Evolutionarily Stable Strategies- A General Description of Evolutionarily Stable Strategies- Relationship between Evolutionarily and Nash Equilibria- Evolutionarily Stable Mixed Strategies. Modeling Network Traffic using Game Theory: Traffic at Equilibrium- Braess's Paradox. Matching Markets: Bipartite Graphs and Perfect Matchings -Valuations and Optimal Assignments.

#### Unit - III Information Networks and the World Wide Web:

The Structure of the Web: The World Wide Web- Information Networks, Hypertext, and Associative Memory- The Web as a Directed Graph- The Bow-Tie Structure of the Web. Link Analysis and Web Search: Searching the Web: The problem of Ranking-Link Analysis using Hubs and Authorities- Page Rank- Applying Link Analysis in Modern Web Search.

#### Unit - IV Network Dynamics - Population Models:

Information Cascades: Following the Crowd- A Simple Herding Experiment- Bayes Rule: A model of Decision Making-Making under Uncertainty- Baye's Rule in the Herding Experiment- A Simple, General Cascade Model- Sequential Decision Making and Cascades. Network Effects: The Economy Without Network Effects- The Economy with Network Effects- Stability, Instability and Tipping Points- A Dynamic View of the Market- Industries with Network Goods- Mixing Individual Effects with Population-Level Effects. Power Laws and Rich-Get-Richer Phenomena: Popularity as Network Phenomenon-Power Laws- Rich-Get-Richer Model-The Long Tail-The Effect of Search Tools and Recommendation Systems.

#### Unit - V Network Dynamics – Structural Models:

Cascading Behavior in Networks: Diffusion in Network-Modeling diffusion through a Network- Cascades and Clusters- Diffusion, Thresholds, and the Role of Weak Ties- Extensions of the Basic Cascade Model- Knowledge, Thresholds and Collective Action. The Small-World Phenomenon: Six Degrees of Separation- Structure and Randomness- Decentralized Search- Modeling the process of Decentralized Search- Empirical Analysis and Generalized Models- Core Periphery Structures and Difficulties in Decentralized Search. Epidemics: Diseases and the Networks that transmit them-Branching Processes- The SIR Epidemic Model-The SIS Epidemic Model- Synchronization- Transient Contacts and the Danger of Concurrency.

#### Lecture: 45, Total: 45

9

9

9

9

9

#### **REFERENCES:**

|    | David Easley, Jon Klienberg, "Networks, Crowds, and Markets: Reasoning about a Highly Connected World", 1 <sup>st</sup> Edition, Cambridge University Press, 2010. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Stanley Wasserman, Katherine Faust, "Social Networks Analysis: Methods and Applications", 1 <sup>st</sup> Edition, Cambridge University Press, 2010.               |
| 3. | Charles Kadushin, "Understanding Social Networks: Theories, Concepts, and Findings", 1 <sup>st</sup> Edition, Oxford University Press, 2012.                       |

## 🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

| COUF<br>On co | BT Mapped<br>(Highest Level)                                                           |                |
|---------------|----------------------------------------------------------------------------------------|----------------|
| CO1           | apply the concepts of graph theory for analysis of social networks distribution        | Applying (K3)  |
| CO2           | utilize game theory for decision making in the context of social networking            | Applying (K3)  |
| CO3           | employ different link analysis and web search techniques for solving the given problem | Applying (K3)  |
| CO4           | analyze network behavior based on population model                                     | Analyzing (K4) |
| CO5           | demonstrate the aggregate behavior of the social networks based on structural model    | Applying (K3)  |

| Mapping of COs with POs s   |                      |               |     |     |     |     |  |  |  |
|-----------------------------|----------------------|---------------|-----|-----|-----|-----|--|--|--|
| COs/POs                     | PO1                  | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                         | 3                    | 1             | 1   |     |     |     |  |  |  |
| CO2                         | 3                    | 2             | 1   |     |     |     |  |  |  |
| CO3                         | 3                    | 1             | 2   |     |     |     |  |  |  |
| CO4                         | 3                    | 3             | 2   |     |     |     |  |  |  |
| CO5                         | 3                    | 2             | 1   |     |     |     |  |  |  |
| - Slight, 2 - Moderate, 3 - | Substantial, BT- Blo | om's Taxonomy |     |     |     |     |  |  |  |

| ASSESSMENT PATTERN - THEORY |                       |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                        | 10                    | 30                      | 60                 |                     |                      |                    | 100        |  |  |  |
| CAT2                        | 10                    | 15                      | 50                 | 25                  |                      |                    | 100        |  |  |  |
| CAT3                        | 10                    | 20                      | 50                 | 20                  |                      |                    | 100        |  |  |  |
| ESE                         | 10                    | 15                      | 65                 | 10                  |                      |                    | 100        |  |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

# 20MSE12 - DEEP LEARNING TECHNIQUES

| Programme &<br>Branch                                                                                  |                                                                                                                                                                      | &                                                                                                                                                                                                        | M.E. & Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | puter Scier                                                                                                                                                                            | nce and Engine                                                                                                                                                                       | ering                                     |                                                        | Sem.                                    | Category                                                            | L                                      | т                               | Р                            | Credit                             |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------------|------------------------------------|
| Prer                                                                                                   | equisite                                                                                                                                                             | es                                                                                                                                                                                                       | Fundamental concepts of Algorithms and cor programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | computer                                                                                                                                                                               | 2                                                                                                                                                                                    | PE                                        | 2                                                      | 0                                       | 2                                                                   | 3                                      |                                 |                              |                                    |
| Prea                                                                                                   | amble                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | nentals concept<br>ions of deep lea                                                                                                                                                  |                                           |                                                        | deep ne                                 | eural networks                                                      | and its                                | various                         | s archit                     | ectures.                           |
| Unit                                                                                                   | - 1                                                                                                                                                                  | Founda                                                                                                                                                                                                   | ations of Dee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p Learning                                                                                                                                                                             | j:                                                                                                                                                                                   |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              | 6                                  |
|                                                                                                        |                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | g – Linear Alge<br>ng Neural Netwo                                                                                                                                                   |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              |                                    |
| Unit                                                                                                   | - 11                                                                                                                                                                 | Archite                                                                                                                                                                                                  | ectural Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n:                                                                                                                                                                                     |                                                                                                                                                                                      |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              | 6                                  |
| func                                                                                                   |                                                                                                                                                                      | Optimizat                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        | ural Principles c<br>parameters. Buil                                                                                                                                                |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              |                                    |
| Unit                                                                                                   | - 111                                                                                                                                                                | Types                                                                                                                                                                                                    | of Deep Netv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vorks:                                                                                                                                                                                 |                                                                                                                                                                                      |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              | 6                                  |
| Unsi                                                                                                   | upervise                                                                                                                                                             | d pretrai                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                      |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              |                                    |
|                                                                                                        |                                                                                                                                                                      | Applicatio                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s – Convoli                                                                                                                                                                            | utional Neural N                                                                                                                                                                     | Network                                   | s (CNNs)                                               | – Recu                                  | rrent Neural N                                                      | Vetwork                                | ks – Re                         | cursive                      | e Neura                            |
| Netv<br>Unit                                                                                           | vorks – A<br>- IV                                                                                                                                                    | Applicatio                                                                                                                                                                                               | ons.<br>nd RNN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                        |                                                                                                                                                                                      |                                           |                                                        |                                         |                                                                     |                                        |                                 |                              | 6                                  |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch                                                         | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-l                                                                                                   | Application<br>CNN art<br>al Neura<br>perimenti<br>ent Neur<br>level text                                                                                                                                | ons.<br>nd RNN:<br>al Networks:<br>ing with Differ<br>al Networks:<br>generation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applying P<br>ent types c                                                                                                                                                              | utional Neural Nooling layers –<br>ooling layers –<br>of initialization –<br>ing a simple RN                                                                                         | Optimiz<br>Implem                         | zing with E<br>nenting a c                             | Batch N<br>onvolut                      | ormalization -<br>ional autoenco                                    | - Under                                | standin                         | g pado<br>g a 1D             | fing and<br>CNN to<br>al RNNs      |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch<br>Unit                                                 | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V                                                                                            | Application<br>CNN and<br>Derimenti<br>ent Neur<br>level text<br>Case S                                                                                                                                  | ons.<br>al Networks:<br>ag with Differ<br>al Networks:<br>generation.<br>Studies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Applying P<br>ent types c<br>Implement                                                                                                                                                 | ooling layers –<br>f initialization –<br>ing a simple RN                                                                                                                             | Optimi:<br>Implen<br>IN – Ad              | zing with E<br>nenting a c<br>ding LSTM                | Batch N<br>onvolut<br>– Usin            | ormalization –<br>ional autoenco<br>g GRUs – Imp                    | - Under<br>oder – <i>I</i><br>Ilementi | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch<br>Unit<br>Larg                                         | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-l<br>- V<br>e scale c                                                                               | Application<br>CNN art<br>al Neura<br>Derimenti<br>ent Neur<br>level text<br>Case S<br>deep lear                                                                                                         | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>generation.<br>Studies:<br>rning – Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applying P<br>rent types o<br>Implement<br>uter vision -                                                                                                                               | ooling layers –<br>f initialization –                                                                                                                                                | Optimi:<br>Implen<br>IN – Ad              | zing with E<br>nenting a c<br>ding LSTM                | Batch N<br>onvolut<br>– Usin            | ormalization –<br>ional autoenco<br>g GRUs – Imp                    | - Under<br>oder – <i>I</i><br>Ilementi | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch<br>Unit<br>Larg<br>List                                 | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V<br>le scale c<br>of Exerce                                                                 | Application<br>CNN art<br>al Neura<br>berimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E                                                                                            | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>generation.<br>atudies:<br>rning – Comp<br>xperiments :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applying P<br>rent types o<br>Implement<br>uter vision -                                                                                                                               | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr                                                                                                         | Optimi:<br>Implen<br>IN – Ad              | zing with E<br>nenting a c<br>ding LSTM                | Batch N<br>onvolut<br>– Usin            | ormalization –<br>ional autoenco<br>g GRUs – Imp                    | - Under<br>oder – <i>I</i><br>Ilementi | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling and<br>CNN to            |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch<br>Unit<br>Larg<br>List                                 | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V<br>le scale c<br>of Exerce<br>Implem                                                       | Application<br>CNN ar<br>al Neur<br>Derimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E                                                                                              | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>generation.<br>btudies:<br>rning – Comp<br>xperiments :<br>of linear regre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Applying P<br>rent types c<br>Implement<br>uter vision -<br>ession techn                                                                                                               | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.                                                                                               | Optimi:<br>Implen<br>IN – Ad              | zing with E<br>nenting a c<br>ding LSTM                | Batch N<br>onvolut<br>– Usin            | ormalization –<br>ional autoenco<br>g GRUs – Imp                    | - Under<br>oder – <i>I</i><br>Ilementi | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stride<br>text.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2                       | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V<br>le scale c<br>of Exerc<br>Implem<br>Program                                             | Application<br>CNN ar<br>nal Neura<br>perimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>nentation<br>m to crea                                                                  | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>a generation.<br>atudies:<br>atudies:<br>of linear regro<br>ate a multi-lay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Applying P<br>rent types o<br>Implement<br>uter vision -<br>ession techner<br>er neural ne                                                                                             | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.                                                                                    | Optimiz<br>Implen<br>IN – Ad              | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stridutext.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3                      | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V<br>le scale c<br>of Exerce<br>Implem<br>Program                                            | Application<br>CNN ar<br>al Neur<br>berimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>hentation<br>m to creat<br>m to test                                                      | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al networks:<br>al networks:<br>al networks:<br>al networks:<br>a performants:<br>ate a multi-lay<br>the performants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Applying P<br>rent types c<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi                                                                               | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne                                                                | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | fing and<br>CNN to<br>al RNNs      |
| Netw<br>Unit<br>Con<br>stridd<br>text.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3<br>4             | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>haracter-I<br>- V<br>e scale c<br>of Exerc<br>Implem<br>Program<br>Program<br>Tuning                         | Application<br>CNN ar<br>nal Neura<br>perimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>mentation<br>m to creat<br>m to test<br>the neur                                        | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al network pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Applying P<br>rent types of<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi<br>rformance v                                                               | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne<br>with hyper parar                                            | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stridutext.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3<br>4<br>5            | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurrent<br>aracter-I<br>- V<br>e scale c<br>of Exerce<br>Implem<br>Program<br>Program<br>Tuning<br>Implem             | Application<br>CNN ar<br>nal Neur<br>Derimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>mentation<br>m to creat<br>m to test<br>the neur<br>mentation                            | ans.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al network periments:<br>al network peri        | Applying P<br>rent types of<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi<br>rformance v<br>nal neural n                                               | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne<br>with hyper parar<br>etworks                                 | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stridu<br>text.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3<br>4<br>5<br>6   | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>naracter-I<br>- V<br>e scale c<br>of Exerc<br>Implem<br>Prograr<br>Prograr<br>Tuning<br>Implem<br>Implem     | Application<br>CNN ar<br>nal Neura<br>perimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>mentation<br>m to creat<br>m to test<br>the neur<br>mentation                           | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al network performance<br>of convolution<br>of Recurrent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Applying P<br>rent types of<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi<br>rformance v<br>nal neural n<br>neural netw                                | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne<br>with hyper parar<br>etworks<br>rorks                        | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | 6<br>ling anc<br>CNN to<br>al RNNs |
| Netw<br>Unit<br>Con<br>stridu<br>text. – Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurrent<br>aracter-I<br>- V<br>e scale of<br>of Exercon<br>Implem<br>Program<br>Program<br>Tuning<br>Implem<br>Implem | Application<br>CNN ar<br>nal Neur<br>perimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>mentation<br>m to creat<br>the neur<br>mentation<br>mentation                            | ans.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al network periments:<br>al network periments<br>al network | Applying P<br>rent types of<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi<br>rformance v<br>nal neural n<br>neural netw<br>neural netw                 | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne<br>with hyper parar<br>etworks<br>rorks<br>works               | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | fing and<br>CNN to<br>al RNNs      |
| Netw<br>Unit<br>Con<br>stridu<br>text.<br>– Ch<br>Unit<br>Larg<br>List<br>1<br>2<br>3<br>4<br>5<br>6   | vorks – A<br>- IV<br>volution<br>es – Exp<br>Recurre<br>aracter-I<br>- V<br>e scale of<br>of Exerce<br>Implem<br>Program<br>Program<br>Implem<br>Implem<br>Implem    | Application<br>CNN ar<br>nal Neur<br>perimenti<br>ent Neur<br>level text<br>Case S<br>deep lear<br>cises / E<br>nentation<br>m to creat<br>the neur<br>nentation<br>nentation<br>nentation<br>ping a sir | ons.<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al Networks:<br>al network performance<br>of convolution<br>of Recurrent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Applying P<br>rent types of<br>Implement<br>uter vision -<br>ession techn<br>er neural ne<br>nce of multi<br>rformance v<br>nal neural n<br>neural netw<br>neural netw<br>ecognition a | ooling layers –<br>of initialization –<br>ing a simple RN<br>- Speech recogr<br>nique.<br>etwork.<br>-layer neural ne<br>with hyper parar<br>etworks<br>rorks<br>vorks<br>pplication | Optimiz<br>Implerr<br>IN – Ad<br>nition – | zing with E<br>henting a c<br>ding LSTM<br>Natural lan | Batch N<br>onvolut<br>– Usin<br>guage ( | ormalization –<br>ional autoenco<br>g GRUs – Imp<br>processing – ir | · Under<br>oder – <i>i</i><br>lementi  | standin<br>Applyinı<br>ing Bidi | g pado<br>g a 1D<br>rectiona | ling and<br>CNN to<br>al RNNs      |

### Lecture: 30, Practical: 30, Total:60

# **REFERENCES:**

| 1 | Josh Patterson and Adam Gibson, "Deep Learning – A Practitioner's Approach", 1 <sup>st</sup> Edition, O'Reilly Series, August 2017 |
|---|------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Indra den Bakker, "Python Deep Learning Cookbook", 1 <sup>st</sup> Edition, Packt Publishing, October 2017.                        |
| 3 | Ian Goodfellow, Yoshua Bengio and Aaron Courville, "Deep Learning", 1 <sup>st</sup> Edition, MIT Press, 2016. (UNIT 5)             |

|     | RSE OUTCOMES:<br>mpletion of the course, the students will be able to                         | BT Mapped<br>(Highest Level)      |
|-----|-----------------------------------------------------------------------------------------------|-----------------------------------|
| CO1 | experiment with the various parameters of deep learning model                                 | Applying (K3)                     |
| CO2 | model deep neural network with its functional components                                      | Applying (K3)                     |
| CO3 | adapt the appropriate deep network architecture for solving the real time problem             | Applying (K3)                     |
| CO4 | make use of Tensorflow/keras frameworks for building deep neural model for the given problem. | Applying (K3)                     |
| CO5 | examine the deep networks in different practical applications                                 | Analyzing (K4)                    |
| CO6 | design the regression technique and variants of deep neural networks                          | Applying (K3),<br>Precision (S3)  |
| C07 | analyze the performance of artificial neural network                                          | Analyzing (K4),<br>Precision (S3) |
| CO8 | develop the simple deep learning applications                                                 | Applying (K3),<br>Precision (S3)  |

|                               |                      | Mapping of C   | Os with POs s |     |     |     |
|-------------------------------|----------------------|----------------|---------------|-----|-----|-----|
| COs/POs                       | PO1                  | PO2            | PO3           | PO4 | PO5 | PO6 |
| CO1                           | 3                    | 1              |               |     |     |     |
| CO2                           | 3                    | 1              |               |     |     |     |
| CO3                           | 3                    | 2              | 1             |     |     |     |
| CO4                           | 3                    | 2              | 1             |     |     |     |
| CO5                           | 3                    | 2              | 2             | 1   |     |     |
| CO6                           | 3                    | 3              | 1             | 1   |     |     |
| CO7                           | 3                    | 3              | 2             | 1   |     |     |
| CO8                           | 3                    | 3              | 1             | 1   |     |     |
| - Slight, 2 - Moderate, 3 - S | Substantial, BT- Blo | oom's Taxonomy |               |     |     |     |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |
| CAT1                        | 10                          | 22                      | 58                 | 10                  |                      |                    | 100        |  |
| CAT2                        | 10                          | 18                      | 62                 | 10                  |                      |                    | 100        |  |
| CAT3                        | 15                          | 10                      | 65                 | 10                  |                      |                    | 100        |  |
| ESE                         | 10                          | 22                      | 58                 | 10                  |                      |                    | 100        |  |

# 20MSE13 - SPEECH AND NATURAL LANGUAGE PROCESSING

| Programme &<br>Branch      |                     | M.E. & Computer Science and Engineering                                                                                                                                               | Sem.    | Category         | L       | т       | Р        | Credit       |
|----------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------|---------|----------|--------------|
| Prerequisite               | s                   | Nil                                                                                                                                                                                   | 3       | PE               | 3       | 0       | 0        | 3            |
| Preamble                   | signal              | urse provides the foundation knowledge on speech produc<br>and also deals with the basics of text processing and<br>tions of text mining.                                             |         |                  |         |         |          |              |
| Unit - I                   | Words               | and Morphology:                                                                                                                                                                       |         |                  |         |         |          | 9            |
| and Rules - I              | Porter S            | and Algorithms – Words – Morphology - Morphological Pa<br>temmer - Spelling Errors - Error Pattern - Non-Word Error<br>ed Automata and Segmentation - N-grams - Smoothing – B         | - Proba |                  |         |         |          |              |
| Unit - II                  | Taggir              | ng and Grammar:                                                                                                                                                                       |         |                  |         |         |          | 9            |
| Tagging - Cl               | FG for E            | ing - Tagsets for English - Rule Based Tagging - Stochas<br>English - Context Free Rule - Sentence-Level Construction<br>Igorization -Auxiliaries – Parsing - Top Down Parsing - Bott | ns - No | un Phrase - C    | oordin  | ation-A |          |              |
| Unit - III                 | Featur              | es and Unificataion:                                                                                                                                                                  |         |                  |         |         |          | 9            |
|                            |                     | tion – Structures - Unification of Structure - Features and<br>ion Constraints - Probabilistic CFG - Probabilistic Lexicalize                                                         |         |                  |         |         | iting Ui | nification - |
| Unit - IV                  | nit - IV Semantics: |                                                                                                                                                                                       |         |                  |         | 9       |          |              |
|                            |                     | Syntax Driven Semantic Analysis - Attachments for a Frag<br>I Sense Disambiguation and Information Retrieval.                                                                         | ment of | f English - Inte | grating | ) Sema  | ntic an  | alysis into  |
| Unit - V                   | Advan               | ced Topics:                                                                                                                                                                           |         |                  |         |         |          | 9            |
| Computation<br>Language Pr |                     | ology - HMM and Speech Recognition – Discourse - Dialo<br>g.                                                                                                                          | gue and | d Conversatio    | n - Dee | ep Lear | ning ar  | nd Natural   |

#### Lecture: 45, Total: 45

#### **REFERENCES:**

| 1. | Daniel Jurafsky and James H. Martin, "Speech and Language Processing", 1 <sup>st</sup> Edition, Pearson Education, 2009.                      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Christopher Manning and Hinrich Schuetze," Foundations of Statistical Natural Language Processing", 1 <sup>st</sup> Edition, MIT Press, 2000. |
|    |                                                                                                                                               |

3. Li Deng and Yang Liu, " Deep Learning in Natural Language Processing", 1<sup>st</sup> Edition, Springer, 2018

|     | COURSE OUTCOMES:<br>On completion of the course, the students will be able to                  |                |  |  |
|-----|------------------------------------------------------------------------------------------------|----------------|--|--|
| CO1 | analyze word structure using morphological analysis and Finite State Transducers               | Analyzing (K4) |  |  |
| CO2 | apply Probabilistic approaches for Spelling and use N-grams for Language Modelling             | Applying (K3)  |  |  |
| CO3 | analyze Sentences using Parsing with CFG and Probabilistic Parsing                             | Analyzing (K4) |  |  |
| CO4 | apply Semantic in word sense disambiguation and Information Retrieval                          | Applying (K3)  |  |  |
| CO5 | make use of Computation Phonology and HMM for Speech recognition and Text to Speech conversion | Applying (K3)  |  |  |

| <b>PO3</b> | PO4         | PO5               | PO6                                 |
|------------|-------------|-------------------|-------------------------------------|
| 2          | <u>^</u>    |                   |                                     |
| _          | 3           |                   |                                     |
| 2          | 3           |                   |                                     |
| 2          | 3           |                   |                                     |
| 3          | 3           |                   |                                     |
| 3          | 3           |                   |                                     |
|            | 2<br>2<br>3 | 2 3<br>2 3<br>3 3 | 2     3       2     3       3     3 |

light, 2 – Mode 9, 3 oms raxono ıy 

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |
| CAT1                        |                             | 60                      | 40                 |                     |                      |                    | 100        |  |  |
| CAT2                        |                             | 20                      | 40                 | 40                  |                      |                    | 100        |  |  |
| CAT3                        |                             | 10                      | 55                 | 35                  |                      |                    | 100        |  |  |
| ESE                         |                             | 20                      | 50                 | 30                  |                      |                    | 100        |  |  |

\* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)(CAT 1,2,3 – 50 marks & ESE – 100 marks)

# 20MSE14 - INTELLIGENT SYSTEM DESIGN

| Programme<br>Branch | &          | M.E. & Computer Science and Engineering                                                                                                                                  | Sem.        | Category                       | L       | т       | Р      | Credit    |
|---------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|---------|---------|--------|-----------|
| Prerequisite        | es         | Artificial Intelligence                                                                                                                                                  | 3           | PE                             | 3       | 0       | 0      | 3         |
| Preamble            | of logic   | burse deals with designing intelligent systems using v<br>c in knowledge representation and reasoning, and em<br>fuzzy and neural systems in building intelligent system | ploying mac | hine learning t                |         |         |        | •         |
| Unit - I            | Fuzzy      | Set Theory:                                                                                                                                                              |             |                                |         |         |        | 9         |
|                     |            | p-Fuzzy and Soft Computing – Fuzzy Sets – Fuzzy R<br>ods for System Identification                                                                                       | ules and Fu | zzy Reasoning                  | J – Fuz | zy Infe | rence  | Systems - |
| Unit - II           | Optim      | ization and Neural Networks:                                                                                                                                             |             |                                |         |         |        | 9         |
|                     |            | otimization – Derivative-free Optimization – Adaptiving and Other Neural Networks                                                                                        | e Networks  | <ul> <li>Supervised</li> </ul> | Learn   | ing Ne  | ural N | etworks - |
| Unit - III          | Learni     | ing from Reinforcement:                                                                                                                                                  |             |                                |         |         |        | <u> </u>  |
|                     | itic – Q-L | e is the Surest Path to Success – Temporal Difference<br>_earning – A Cost Path Problem – World Modeling –<br>uputation.                                                 |             |                                |         |         |        |           |
| Unit - IV           | Neuro      | -Fuzzy Modeling:                                                                                                                                                         |             |                                |         |         |        | 9         |
|                     |            | zzy Inference System (ANFIS) – Coactive Neuro<br>egression Tress – Data Clustering Algorithms – Ruleb                                                                    |             |                                |         | Neuro-I | Fuzzy  | Modeling  |

#### Unit - V Neuro-Fuzzy Control:

Feedback Control Systems and Neuro-Fuzzy Control – Expert Control: Mimicking an Expert – Inverse Learning – Specialized Learning – Backpropagation Through Time and Real-Time Recurrent Learning – Reinforcement Learning Control – Gradient-Free Optimization – Gain Scheduling – Feedback Linearization and Sliding Control

#### Lecture: 45, Total: 45

9

# **REFERENCES:**

| 1. | J.S.R.Jang, C.T. Sun, Eiji Mizutani "Neuro-Fuzzy and Soft Computing", 1st Edition, Pearson Education, 2004                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Crina Grosan and Ajith Abraham, "Intelligent Systems – A Modern Approach", 1 <sup>st</sup> Edition, Springer – Verlag Berlin Heidelberg, 2011. |
|    | Robert J. Schalkoff, "Intelligent Systems Principles, Paradigms and Pragmatics", 1 <sup>st</sup> Edition, Jones and Bartlett Publishers, 2011. |

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                                            | BT Mapped<br>(Highest Level) |
|-----|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | Make use of fuzzy sets and fuzzy inference system to carry out regression.                                      | Applying (K3)                |
| CO2 | Apply derivative based optimization and derivative free optimization and summarize different types of learning. | Applying (K3)                |
| CO3 | Utilize reinforcement learning for real world problems.                                                         | Applying (K3)                |
| CO4 | Model neuro-fuzzy systems for classification and clustering                                                     | Applying (K3)                |
| CO5 | Develop neuro-fuzzy based control systems                                                                       | Applying (K3)                |

|                             |                      | Mapping of C  | Os with POs s |     |     |     |
|-----------------------------|----------------------|---------------|---------------|-----|-----|-----|
| COs/POs                     | PO1                  | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                         | 3                    | 2             | 1             |     |     |     |
| CO2                         | 3                    | 2             | 1             |     |     |     |
| CO3                         | 3                    | 2             | 1             |     |     |     |
| CO4                         | 3                    | 2             | 1             |     |     |     |
| CO5                         | 3                    | 2             | 1             |     |     |     |
| - Slight, 2 - Moderate, 3 - | Substantial, BT- Blo | om's Taxonomy |               |     |     |     |

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 30                    | 46                      | 24                 |                     |                      |                    | 100        |
| CAT2                        | 10                    | 47                      | 43                 |                     |                      |                    | 100        |
| CAT3                        | 27                    | 43                      | 30                 |                     |                      |                    | 100        |
| ESE                         | 20                    | 40                      | 40                 |                     |                      |                    | 100        |

# 20MSE15 - MOBILE AND PERVASIVE COMPUTING

| Programme &<br>Branch | M.E. & Computer Science and Engineering | Sem. | Category | L | т | Р | Credit |
|-----------------------|-----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Network design and Technologies         | 3    | PE       | 3 | 0 | 0 | 3      |

Preamble This course provides an understanding of wireless and mobile communication concepts through various layers of mobile networking. It also helps to realize the pervasive and context aware computing architectures, systems and applications. Unit - I Introduction to Wireless Environment: 9 Introduction to wireless communication-Wireless Transmission- Medium Access Control- Wireless MAC protocols - Comparison of 2G, 3G,4G looking ahead 5G systems. Unit - II Mobile Communication: 9 GSM - Bluetooth - Mobile network layer-Mobile transport layer - File system support for mobility support - Mobile execution environments and applications. Unit - III Pervasive Communication: 9 Past, Present, Future – Application Examples – Device Technology – WAP and Beyond – Pervasive Web Application Architecture : Example Application. Unit - IV Context Aware Computing: 9 Structure and Elements of Context-aware Pervasive Systems: Abstract architecture - Infrastructures - Middleware and toolkits, Context-aware mobile services: Context for mobile device users - Location-based services- Ambient service- Enhancing Contextaware mobile services and Context aware artifacts. Unit - V **Context-Aware Pervasive System:** 9 Context-aware sensor networks - A framework for Context aware sensors - Context-aware security systems - Constructing Context-aware pervasive system- Future of Content aware systems.

#### Lecture: 45, Total: 45

#### **REFERENCES:**

 Schiller Jochen, "Mobile Communication", 2nd Edition, PHI/Pearson Education, 2009.
 Burkhardt Jochen, Henn Horst and Hepper Stefan, Schaec Thomas and Rindtorff Klaus, "Pervasive Computing Technology and Architecture of Mobile Internet Applications", 1<sup>st</sup> Edition, Addison Wesley Reading, 2007.

3. Seng Loke, "Context-Aware Pervasive Systems: Architectures for a New Breed of Applications", 1st Edition, Auerbach Publications, 2006.

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                   | BT Mapped<br>(Highest Level) |
|-----|----------------------------------------------------------------------------------------|------------------------------|
| CO1 | Analyze the operation and performance of wireless protocols                            | Analyzing(K4)                |
| CO2 | Apply the concepts and principles of various mobile communication technologies         | Applying (K3)                |
| CO3 | Analyze the working of protocols that support mobility                                 | Analyzing(K4)                |
| CO4 | Identify the architecture of pervasive computing and apply them in pervasive computing | Applying (K3)                |
| CO5 | Apply context aware computing and design pervasive systems for real time examples      | Applying (K3)                |

|     | mapping or C                                                                                        | Os with POs s                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO1 | PO2                                                                                                 | PO3                                                                                                                                                 | PO4                                                                                                                                                                                                                                                         | PO5                                                                                                                                                                                                                                                                                                                                           | PO6                                                                                                                                                                                                                                                                                                                                                                         |
| 3   | 3                                                                                                   | 3                                                                                                                                                   | 3                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | 3                                                                                                   | 3                                                                                                                                                   | 3                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | 3                                                                                                   | 3                                                                                                                                                   | 3                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | 3                                                                                                   | 3                                                                                                                                                   | 3                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | 3                                                                                                   | 3                                                                                                                                                   | 3                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |
|     | PO1           3           3           3           3           3           3           3           3 | PO1         PO2           3         3           3         3           3         3           3         3           3         3           3         3 | PO1         PO2         PO3           3         3         3           3         3         3           3         3         3           3         3         3           3         3         3           3         3         3           3         3         3 | PO1         PO2         PO3         PO4           3         3         3         3           3         3         3         3           3         3         3         3           3         3         3         3           3         3         3         3           3         3         3         3           3         3         3         3 | PO1         PO2         PO3         PO4         PO5           3         3         3         3         3           3         3         3         3         3           3         3         3         3         3           3         3         3         3         3           3         3         3         3         3           3         3         3         3         3 |

g

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 10                    | 20                      | 40                 | 30                  |                      |                    | 100        |
| CAT2                        | 10                    | 30                      | 40                 | 30                  |                      |                    | 100        |
| CAT3                        | 10                    | 20                      | 60                 |                     |                      |                    | 100        |
| ESE                         | 20                    | 30                      | 30                 | 20                  |                      |                    | 100        |

# 20MSE16 - NATURE INSPIRED OPTIMIZATION TECHNIQUES

| Programme<br>Branch                                                                                                                                         | 8                                                                                            | M.E. & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                      | Sem.                                                                                                   | Category                                                                                              | L                                                              | т                                                       | Р                                                          | Credit                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Prerequisit                                                                                                                                                 | es                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                      | PE                                                                                                    | 3                                                              | 0                                                       | 0                                                          | 3                                                                                       |
| Preamble                                                                                                                                                    |                                                                                              | ourse helps the learners to understand the algorithms<br>is on abstracting nature inspired techniques which infl                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                       | ally occ                                                       | urring p                                                | ohenon                                                     | nena. The                                                                               |
| Unit - I                                                                                                                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                       |                                                                |                                                         |                                                            | 9                                                                                       |
| Metaheurist                                                                                                                                                 | ics - Bri                                                                                    | orithms: Newton's Method – Optimization - Search for<br>ef History of Metaheuristics. Analysis of Algorithr<br>prithms - Parameter Tuning and Parameter Control.                                                                                                                                                                                                                             |                                                                                                        |                                                                                                       |                                                                |                                                         |                                                            |                                                                                         |
|                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                       |                                                                |                                                         |                                                            |                                                                                         |
| Unit - II<br>Simulated                                                                                                                                      | Annealir                                                                                     | ng: Annealing and Boltzmann Distribution - Parameter                                                                                                                                                                                                                                                                                                                                         | ers - SA Alg                                                                                           | orithm - Unco                                                                                         | nstrain                                                        | ed Opt                                                  | imizatio                                                   | on - Basic                                                                              |
| Simulated A                                                                                                                                                 | e Prope                                                                                      | <b>ng:</b> Annealing and Boltzmann Distribution - Parameter<br>erties - SA Behavior in Practice - Stochastic Tur<br>f Genetic Operators - Choice of Parameters - GA Va                                                                                                                                                                                                                       | nneling. Gei                                                                                           | netic Algorith                                                                                        | nms :                                                          | Introdu                                                 | ction -                                                    | on - Basic<br>Genetic                                                                   |
| Simulated<br>Convergence<br>Algorithms -<br>Unit - III<br>Particle Sw                                                                                       | e Prope<br>Role of<br>arm Opt                                                                | erties - SA Behavior in Practice - Stochastic Tur                                                                                                                                                                                                                                                                                                                                            | nneling. <b>Ger</b><br>riants - Scher<br>elerated PSC                                                  | netic Algorith<br>na Theorem -<br>) – Implementa                                                      | ims :<br>Convei<br>ation - (                                   | Introdu<br>rgence<br>Conver                             | ction -<br>Analys<br>gence                                 | on - Basic<br>Genetic<br>iis.<br>9<br>Analysis -                                        |
| Simulated<br>Convergence<br>Algorithms -<br>Unit - III<br>Particle Sw<br>Binary PSO                                                                         | e Prope<br>Role of<br>arm Opt                                                                | erties - SA Behavior in Practice - Stochastic Tur<br>f Genetic Operators - Choice of Parameters - GA Var<br>timization: Swarm Intelligence - PSO Algorithm - Acc                                                                                                                                                                                                                             | nneling. <b>Ger</b><br>riants - Scher<br>elerated PSC                                                  | netic Algorith<br>na Theorem -<br>) – Implementa                                                      | ims :<br>Convei<br>ation - (                                   | Introdu<br>rgence<br>Conver                             | ction -<br>Analys<br>gence                                 | on - Basic<br>Genetic<br>is.<br>9<br>Analysis -<br>rmance of                            |
| Simulated A<br>Convergence<br>Algorithms -<br>Unit - III<br>Particle Sw<br>Binary PSO<br>the CSO Algo<br>Unit - IV<br>TLBO Algo<br>Search: Cu<br>Cuckoos Im | e Prope<br>Role of<br>arm Opt<br>. Cat Sy<br>gorithm.<br>prithm: I<br>ckoo Life<br>migration | erties - SA Behavior in Practice - Stochastic Tur<br>f Genetic Operators - Choice of Parameters - GA Var<br>timization: Swarm Intelligence - PSO Algorithm - Acc                                                                                                                                                                                                                             | nneling. <b>Ge</b><br>riants - Scher<br>relerated PSC<br>rm - Optimiza<br>hing-Learning<br>Residence L | netic Algorith<br>na Theorem -<br>D – Implementa<br>ation Algorithm<br>g-Based optim<br>ocations - Cu | nms :<br>Conver<br>ation - (<br>a - Flow<br>nization<br>ckoos' | Introdu<br>gence<br>Conver<br>vchart<br>– Flo<br>Egg La | ction -<br>Analys<br>gence<br>- Perfo<br>wchart<br>aying A | on - Basic<br>Genetic<br>iis.<br>Analysis -<br>rmance of<br>g<br>. Cuckoc<br>.pproach - |
| Simulated A<br>Convergence<br>Algorithms -<br>Unit - III<br>Particle Sw<br>Binary PSO<br>the CSO Algo<br>Unit - IV<br>TLBO Algo<br>Search: Cu<br>Cuckoos Im | e Prope<br>Role of<br>arm Opt<br>. Cat Sy<br>gorithm.<br>prithm: I<br>ckoo Life<br>migration | erties - SA Behavior in Practice - Stochastic Tur<br>f Genetic Operators - Choice of Parameters - GA Var<br>timization: Swarm Intelligence - PSO Algorithm - Acc<br>warm Optimization: Natural Process of the Cat Swa<br>Introduction - Mapping a Classroom into the Teac<br>e Style - Details of COA – flowchart - Cuckoos' Initial<br>n - Capabilities of COA. Bat Algorithms: Echolocatio | nneling. <b>Ge</b><br>riants - Scher<br>relerated PSC<br>rm - Optimiza<br>hing-Learning<br>Residence L | netic Algorith<br>na Theorem -<br>D – Implementa<br>ation Algorithm<br>g-Based optim<br>ocations - Cu | nms :<br>Conver<br>ation - (<br>a - Flow<br>nization<br>ckoos' | Introdu<br>gence<br>Conver<br>vchart<br>– Flo<br>Egg La | ction -<br>Analys<br>gence<br>- Perfo<br>wchart<br>aying A | on - Basic<br>Genetic<br>iis.<br>Analysis -<br>rmance of<br>g<br>. Cuckoc<br>.pproach - |

### Lecture: 45, Total: 45

#### **REFERENCES:**

1. Xin-She Yang, "Nature-Inspired Optimization Algorithms", 1<sup>st</sup> Edition, Elsevier, 2014.

2. Omid Bozorg-Haddad, "Advanced Optimization by Nature-Inspired Algorithms", 1<sup>st</sup> Edition, Springer Volume 720, 2018.

3. Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, "Nature-Inspired Computing and Optimization Theory and Applications", 1st Edition, Springer Series, 2017.

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to              | BT Mapped<br>(Highest Level) |
|-----|-----------------------------------------------------------------------------------|------------------------------|
| CO1 | apply the basic concepts of optimization techniques                               | Applying (K3)                |
| CO2 | identify the parameter which is to be optimized for an application                | Analyzing (K4)               |
| CO3 | analyze and develop mathematical model of different swarm optimization algorithms | Analyzing (K4)               |
| CO4 | select suitable optimization algorithm for a real time application                | Analyzing (K4)               |
| CO5 | examine and recommend solutions for optimization based applications               | Analyzing (K4)               |

|                             |                      | Mapping of C  | Os with POs s |     |     |     |
|-----------------------------|----------------------|---------------|---------------|-----|-----|-----|
| COs/POs                     | PO1                  | PO2           | PO3           | PO4 | PO5 | PO6 |
| CO1                         | 3                    | 1             |               |     |     |     |
| CO2                         | 3                    | 2             | 1             |     |     |     |
| CO3                         | 3                    | 3             | 2             |     |     |     |
| CO4                         | 3                    | 3             | 2             |     |     |     |
| CO5                         | 3                    | 3             | 2             |     |     |     |
| - Slight, 2 - Moderate, 3 - | Substantial, BT- Blo | om's Taxonomv |               |     |     |     |

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 16                    | 50                      | 17                 | 17                  |                      |                    | 100        |
| CAT2                        | 10                    | 33                      | 24                 | 33                  |                      |                    | 100        |
| CAT3                        | 10                    | 33                      | 32                 | 25                  |                      |                    | 100        |
| ESE                         | 5                     | 21                      | 38                 | 36                  |                      |                    | 100        |

# 20MSE17 - DIGITAL IMAGE PROCESSING AND COMPUTER VISION

| Branch                                                             | e &      | M.E. & Computer Science and Engineering                                                                                                                          | Sem.                                           | Category                                           | L                   | т       | Р        | Credit                |
|--------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------|---------|----------|-----------------------|
| Prerequisite                                                       | es       | NIL                                                                                                                                                              | 4                                              | PE                                                 | 3                   | 0       | 0        | 3                     |
| Preamble                                                           |          | es basic knowledge about image, its representation ar is of processed data.                                                                                      | nd preproces                                   | sing and prepa                                     | ares the            | e stude | nts to j | perform               |
| Unit - I                                                           |          |                                                                                                                                                                  |                                                |                                                    |                     |         |          | 9                     |
|                                                                    |          | representation and properties: Image representation-<br>round: Overview - Linear integral transforms - Image                                                     |                                                |                                                    |                     |         |          |                       |
| Unit - II                                                          |          |                                                                                                                                                                  |                                                |                                                    |                     |         |          | 9                     |
|                                                                    |          | image analysis: Loyale of image data representation                                                                                                              | Traditional                                    | income data at                                     |                     |         |          |                       |
| restoration                                                        | mage p   | image analysis: Levels of image data representation<br>re-processing: Pixel brightness transformations - Geo                                                     |                                                | •                                                  |                     |         |          |                       |
|                                                                    | mage pi  |                                                                                                                                                                  |                                                | •                                                  |                     |         |          |                       |
| restoration<br>Unit - III                                          |          |                                                                                                                                                                  | ometric trans                                  | formations- Lo                                     | ocal pre            | -proce: | ssing -  | Image                 |
| restoration<br>Unit - III                                          |          | re-processing: Pixel brightness transformations - Geo                                                                                                            | ometric trans                                  | formations- Lo                                     | ocal pre            | -proce: | ssing -  | Image                 |
| restoration<br>Unit - III<br>Segmentati<br>Unit - IV<br>3D geometr | on: Thre | re-processing: Pixel brightness transformations - Geo                                                                                                            | pmetric trans<br>segmentatio<br>asics of proje | formations- Lo<br>n-Matching - E<br>ective geometr | valuati<br>y- A sir | on issu | es<br>es | Image<br>S<br>S<br>Ve |
| restoration<br>Unit - III<br>Segmentati<br>Unit - IV<br>3D geometr | on: Thre | re-processing: Pixel brightness transformations - Geo<br>sholding – Edge-based segmentation- Region-based<br>spondence, 3D from intensities: 3D vision tasks - B | pmetric trans<br>segmentatio<br>asics of proje | formations- Lo<br>n-Matching - E<br>ective geometr | valuati<br>y- A sir | on issu | es<br>es | Image<br>S<br>S<br>Ve |

## Lecture: 45, Total: 45

#### **REFERENCES**:

Milan Sonka , Vaclav Hlavac , Roger Boyle, "Image Processing, Analysis, and Machine Vision", 4<sup>th</sup> edition, Cengage Learning, 2015
 Distante Arcangele Distante Cosime "Handback of Image Processing and Computer Vision", 1<sup>st</sup> Edition, Springer

2. Distante , Arcangelo, Distante, Cosimo, "Handbook of Image Processing and Computer Vision", 1<sup>st</sup> Edition, Springer International Publishing, 2020



|     | SE OUTCOMES:<br>npletion of the course, the students will be able to                                      | BT Mapped<br>(Highest Level) |
|-----|-----------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | apply image fundamentals and mathematical transforms necessary for image processing.                      | Applying (K3)                |
| CO2 | Identify the significances of <b>Data structures for image</b> and different image preprocessing methods. | Applying (K3)                |
| CO3 | explore different segmentation methods for different images                                               | Applying (K3)                |
| CO4 | recognize the need for 3D vision and develop an application using it                                      | Applying (K3)                |
| CO5 | apply Texture and motion analysis for real time images                                                    | Applying (K3)                |

| PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|
|     |     |     | FUU |
|     |     |     |     |
| 1   |     |     |     |
| 2   |     |     |     |
| 2   |     |     |     |
| 2   |     |     |     |
|     | 2   | 2   | 2   |

1 igin, e, 3 ıy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        | 15                          | 50                      | 35                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 15                          | 50                      | 35                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 15                          | 50                      | 35                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 20                          | 50                      | 30                 |                     |                      |                    | 100        |  |  |  |  |  |  |

# 20MSE18 - SOFTWARE DEFINED NETWORKING

| Programme<br>Branch | &        | M.E. & Computer Science and Engineering                                                                                                                                        | ce and Engineering Sem. Category L T P Cr |                 |          |         | Credit  |           |  |  |  |
|---------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|----------|---------|---------|-----------|--|--|--|
| Prerequisite        | s        | Network Design Technologies                                                                                                                                                    | 4                                         | PE              | 3        | 0       | 0       | 3         |  |  |  |
| Preamble            |          | ourse provides insight on basics of software defined nications networks are managed, maintained, and secured                                                                   |                                           | orking and h    | ow it    | is cha  | anging  | the way   |  |  |  |
| Unit - I            | Data p   | Data plane and Control Plane :                                                                                                                                                 |                                           |                 |          |         |         |           |  |  |  |
|                     |          | o they do?, Distributed Control planes, Centalized control ware, Nicira, OpenFlow-Related, Mininet, NOX /POX, Tren                                                             |                                           |                 |          |         |         | approach. |  |  |  |
| Unit - II           | Netwo    | rk Programmability :                                                                                                                                                           |                                           |                 |          |         |         | 9         |  |  |  |
|                     |          | anagement Interface, The Application – Network divide<br>OpenConfig and gNMI.                                                                                                  | , Mode                                    | rn programma    | atic int | erfaces | s, I2RS | , Modern  |  |  |  |
| Unit - III          | SDN in   | Data Center:                                                                                                                                                                   |                                           |                 |          |         |         | 9         |  |  |  |
|                     | •        | s and constructs: Introduction, The Multitenant Data Cer<br>Center Network, VLANs, EVPN, VxLAN, NVGRE.                                                                         | nter, Th                                  | e Virtualized I | Multiter | nant Da | ata Ce  | nter, SDN |  |  |  |
| Unit - IV           | SDN ar   | nd NFV:                                                                                                                                                                        |                                           |                 |          |         |         | 9         |  |  |  |
| Network Top         | ology ar | rtualization :Virtualization and Data plane I/O, Service E<br>nd Topological Information Abstraction: Network Topology<br>ding an SDN Framework: The Juniper SDN Framework, Op | /, Tradit                                 | ional methods   | s, LLDF  | , BGP   |         | •         |  |  |  |
| Unit - V            | SDN U    | secases:                                                                                                                                                                       |                                           |                 |          |         |         | 9         |  |  |  |
|                     |          | vidth Scheduling, Manipulation and calendaring, Data Craffic Monitoring, Classification, and Triggered Actions.                                                                | Center                                    | Overlays, Big   | Data     | and N   | etwork  | Function  |  |  |  |

# Lecture: 45, Total: 45

#### **REFERENCES**:

| 1. | Thomas D. Nadeau, Ken Gray, "SDN: Software Defined Networks, An Authoritative Review of Network Programmability |
|----|-----------------------------------------------------------------------------------------------------------------|
|    | Technologies", 1 <sup>st</sup> Edition, O'Reilly Media, August 2013.                                            |
| 2. | https://www.opennetworking.org/wp-content/uploads/2019/10/NG-SDN-Tutorial-Session-2.pdf                         |

 Paul Goransson, Chuck Black, "Software Defined Networks: A Comprehensive Approach", 1<sup>st</sup> Edition, Morgan Kaufmann, June 2014.

# 🕺 Kongu Engineering College, Perundurai, Erode – 638060, India

|     | OURSE OUTCOMES:<br>In completion of the course, the students will be able to         |                |  |  |
|-----|--------------------------------------------------------------------------------------|----------------|--|--|
| CO1 | examine the data plane and control plane of software defined networks                | Analyzing (K4) |  |  |
| CO2 | demonstrate the role of software defined network in different networking environment | Applying (K3)  |  |  |
| CO3 | employ openflow protocol to determine the operations of software defined network     | Applying (K3)  |  |  |
| CO4 | model software defined controller for various networking applications                | Applying (K3)  |  |  |
| CO5 | use software defined network to solve the given network problems                     | Applying (K3)  |  |  |

| Mapping of COs with POs s |     |     |     |     |     |     |  |  |  |
|---------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                       | 3   | 3   | 2   |     |     |     |  |  |  |
| CO2                       | 3   | 2   | 1   |     |     |     |  |  |  |
| CO3                       | 3   | 2   | 1   |     |     |     |  |  |  |
| CO4                       | 3   | 2   | 1   |     |     |     |  |  |  |
| CO5                       | 3   | 2   | 1   |     |     |     |  |  |  |

Substantial, BI - Bloom's Taxonomy Slight, 2 Moderate, 3 

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        |                             | 20                      | 40                 | 40                  |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 10                          | 30                      | 40                 | 20                  |                      |                    | 100        |  |  |  |  |  |  |

# 20MSE19 - REINFORCEMENT LEARNING

| Programme &<br>Branch                                        |                            | M.E. & Computer Science and Engineering                                                                                                                                                                           | Sem.           | Category        | L       | т       | Р       | Credit     |
|--------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------|---------|---------|------------|
| Prerequisite                                                 | s                          | Deep Learning                                                                                                                                                                                                     |                | PE              | 3       | 0       | 0       | 3          |
|                                                              |                            |                                                                                                                                                                                                                   |                |                 |         |         |         |            |
| Preamble                                                     |                            | purse will provide a solid introduction to the field of reaches, including generalization and exploration with re                                                                                                 |                |                 |         | he core | e chall | enges and  |
| Unit - I                                                     | Title:                     |                                                                                                                                                                                                                   |                |                 |         |         |         |            |
| Bandits : A                                                  | k-arme                     | orcement Learning – Examples-Elements of Reinford<br>d Bandit Problem - Action-value Methods - The 10-a<br>dem - Optimistic Initial Values - Gradient Bandit Algor                                                | armed Testbe   |                 |         |         |         |            |
| Unit - II                                                    |                            |                                                                                                                                                                                                                   |                |                 |         |         |         |            |
| Iteration<br>Unit - III                                      |                            |                                                                                                                                                                                                                   |                |                 |         |         |         |            |
| Control with<br>Carlo Contro                                 | out Exp<br>ol - <b>Ten</b> | ds: Monte Carlo Prediction - Monte Carlo Estimati<br>oring Starts - Off-policy Prediction via Importance 3<br>poral Difference Learning: TD Prediction - Adva                                                     | Sampling -Inc  | remental Impl   | ementa  | ation - | Off-po  | licy Monte |
| oursa. on-p                                                  |                            | Control - Q-learning: Off-policy TD Control                                                                                                                                                                       |                |                 |         |         |         |            |
| •                                                            |                            |                                                                                                                                                                                                                   |                |                 |         |         |         |            |
| <b>Unit - IV</b><br>n-step Boot<br>Tabular Met<br>Sample Upd | hods :<br>ates - T         |                                                                                                                                                                                                                   | Acting, and Le | arning - Priori | tized S | weepir  | ng - Ex | ning with  |
| Unit - IV<br>n-step Boot<br>Tabular Met<br>Sample Upd        | hods :<br>ates - T         | Control - Q-learning: Off-policy TD Control<br>ng : n-step Sarsa - n-step Off-policy Learning - n-ste<br>Models and Planning – Dyna - Integrated Planning, /<br>rajectory Sampling - Real-time Dynamic Programmir | Acting, and Le | arning - Priori | tized S | weepir  | ng - Ex | ning wit   |

#### Lecture: 45, Total: 45

# **REFERENCES:**

1. Sutton and Barto ,"Reinforcement Learning: An Introduction", The MIT Press, 2<sup>nd</sup> Edition,2018

2. Marco Wiering and Martijn van Otterlo ,"Reinforcement Learning: State-of-the-Art(Adaptation, Learning, and Optimization )",Volume-12 ,Springer ,2012

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to                                                                                    | BT Mapped<br>(Highest Level) |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| CO1 | describe the key features of reinforcement learning that distinguishes it from AI and non-<br>interactive machine learning and apply for an application | Applying(K3)                 |
| CO2 | devise an appropriate solution for the given RL problem                                                                                                 | Applying(K3)                 |
| CO3 | Implement common RL algorithms                                                                                                                          | Applying(K3)                 |
| CO4 | Use performance metrics based on multiple criteria to evaluate RL algorithms                                                                            | Applying(K3)                 |
| CO5 | Make use of Stochastic –gradient and Semi –gradient methods for On – policy Prediction and Control                                                      | Applying(K3)                 |

| Mapping of COs with POs s |                     |               |     |     |     |     |  |  |  |  |  |
|---------------------------|---------------------|---------------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                   | PO1                 | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                       | 3                   | 2             |     |     |     |     |  |  |  |  |  |
| CO2                       | 3                   | 2             | 1   |     |     |     |  |  |  |  |  |
| CO3                       | 3                   | 2             | 1   |     |     |     |  |  |  |  |  |
| CO4                       | 3                   | 2             |     |     |     |     |  |  |  |  |  |
| CO5                       | 3                   | 2             |     |     |     |     |  |  |  |  |  |
| - Slight 2 - Moderate 3 - | Substantial BT- Blo | om's Taxonomy |     |     |     |     |  |  |  |  |  |

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |  |  |
| CAT1                        | 40                          | 30                      | 30                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT2                        | 30                          | 30                      | 40                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| CAT3                        | 30                          | 40                      | 30                 |                     |                      |                    | 100        |  |  |  |  |  |  |
| ESE                         | 40                          | 30                      | 30                 |                     |                      |                    | 100        |  |  |  |  |  |  |

# 20MSE20 - VIRTUALIZATION TECHNIQUES

| Programme &<br>Branch | M.E. & Computer Science and Engineering | Sem. | Category | L | Т | Р | Credit |
|-----------------------|-----------------------------------------|------|----------|---|---|---|--------|
| Prerequisites         | Operating system, Networking concepts   | 4    | PE       | 3 | 0 | 0 | 3      |

Preamble Virtual machine allows the creation of an environment that is not logically tied to the underlying hardware. The cloud is essentially a virtual environment that arises from the combination of multiple virtual machines into one powerful entity. Therefore, the process of virtualization is a key element in the creation of cloud platforms and infrastructure.

#### Unit - I Overview of Virtualization

Understanding Virtualization: Describing Virtualization - Understanding the Importance of Virtualization - Understanding Virtualization Software Operation. Understanding Hypervisors: Describing a Hypervisor- Understanding the Role of a Hypervisor - Comparing today's Hypervisor. Understanding Virtual Machines: Describing a Virtual Machine - Understanding How a Virtual Machine Works - Working with Virtual Machines.

#### Unit - II Virtual Machines

Creating a Virtual Machine: Performing P2V Conversions - Loading Your Environment - Building a New Virtual Machine. Installing Windows on a Virtual Machine: Loading Windows into a Virtual Machine - Understanding Configuration Options - Optimizing a New Linux Virtual Machine. Installing Linux on a Virtual Machine: Loading Linux into a Virtual Machine - Understanding Configuration Options - Optimizing a New Options - Optimizing a New Linux Virtual Machine.

#### Unit - III Managing virtual machines

Managing CPUs for a Virtual Machine: Understanding CPU Virtualization - Configuring VM CPU Options -Tuning Practices for VM CPUs. Managing Memory for a Virtual Machine: Understanding Memory Virtualization - Configuring VM Memory Options - Tuning Practices for VM Memory. Managing Storage for a Virtual Machine: Understanding Storage Virtualization - Configuring VM Storage Options - Tuning Practices for VM Storage.

## Unit - IV Networking virtual machines

Managing Networking for a Virtual Machine: Understanding Network Virtualization - Configuring VM Network Options - Tuning Practices for Virtual Networks. Copying a Virtual Machine: Cloning a Virtual Machine - Working with Templates - Saving a Virtual Machine State.

### Unit - V Managing Devices

Managing Additional Devices in Virtual Machines: Using Virtual Machine Tools – Understanding Virtual Devices - Configuring Sound Card, USB Devices, Graphic Displays and other Devices. Understanding Availability: Increasing Availability - Protecting a Virtual Machine – Protecting Multiple Virtual Machines -Protecting Datacenters. Understanding Applications in a Virtual Machine: Examining Virtual Infrastructure Performance Capabilities - Deploying Applications in a Virtual Environment - Understanding Virtual Appliances and vApps.

#### Lecture: 45, Total: 45

9

9

g

9

9

#### **REFERENCES**:

1. Matthew Portnoy, "Virtualization Essentials", 2<sup>nd</sup> Edition, SYBEX Publications, 2016.

2. Lee Chao, "Virtualization and Private Cloud with VMware Cloud Suite", 1<sup>st</sup> Edition, CRC Press,2017.

3. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", Illustrated Edition, APress 2005.

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to | BT Mapped<br>(Highest Level) |
|-----|----------------------------------------------------------------------|------------------------------|
| CO1 | demonstrate the Virtualization, Hypervisor and Virtual machines      | Applying (K3)                |
| CO2 | create a virtual machine and installing the operating systems        | Applying (K3)                |
| CO3 | configure virtual machine's CPU, memory and storage                  | Applying (K3)                |
| CO4 | clone the virtual machine and configure networks                     | Applying (K3)                |
| CO5 | protect virtual machine and deploying application                    | Applying (K3)                |

|         |     | Mapping of C | Os with POs s |     |     |     |
|---------|-----|--------------|---------------|-----|-----|-----|
| COs/POs | PO1 | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1     |     | 1            |               | 3   |     |     |
| CO2     | 2   | 2            | 3             |     | 1   |     |
| CO3     | 3   | 2            |               |     | 1   |     |
| CO4     | 3   |              |               |     |     |     |
| CO5     |     | 1            | 3             | 3   | 1   | 1   |

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 20                    | 40                      | 40                 |                     |                      |                    | 100        |
| CAT2                        | 20                    | 20                      | 60                 |                     |                      |                    | 100        |
| CAT3                        | 20                    | 20                      | 60                 |                     |                      |                    | 100        |
| ESE                         | 20                    | 30                      | 50                 |                     |                      |                    | 100        |

# 20MSE21 - USER INTERFACE DESIGN

| Programme &<br>Branch<br>Prerequisites          |                                                                                                            | M.E. & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                                                                         | Sem.       | Category      | L        | Т        | Р        | Credi    |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|----------|----------|----------|----------|
|                                                 |                                                                                                            | HTML,CSS and Javascript                                                                                                                                                                                                                                                                                                                                                                                                                         | 4          | PE            | 2        | 0        | 2        | 3        |
| Prea                                            | amble                                                                                                      | UID deals with design of responsive web application using I ExpressJS, AngularJS and NodeJS.                                                                                                                                                                                                                                                                                                                                                    | Full Stack | Web Develop   | oment    | -MEAN    | l ie Mo  | ongoDB   |
| Unit                                            | -1                                                                                                         | Introduction to NoSQL Database - MongoDB:                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |          |          |          |          |
|                                                 |                                                                                                            | Database - Why to Use MongoDB - Difference between Mong<br>oDB – Implementation of Basic CRUD Operations using Mongo                                                                                                                                                                                                                                                                                                                            |            | DBMS - Down   | load &   | Installa | tion - C | Commo    |
| Unit                                            | - 11                                                                                                       | Introduction to Server-side JS Framework – Node.js:                                                                                                                                                                                                                                                                                                                                                                                             |            |               |          |          |          |          |
| (Req                                            | quest and                                                                                                  | What is Node JS – Architecture – Feature of Node JS - Insta<br>Response) – Event Handling - GET and POST implementation<br>of CRUD operations.                                                                                                                                                                                                                                                                                                  |            |               |          |          |          |          |
| Unit                                            | - 111                                                                                                      | Introduction to TypeScript:                                                                                                                                                                                                                                                                                                                                                                                                                     |            |               |          |          |          |          |
| Tupl                                            |                                                                                                            | troduction to TypeScript – Features of TypeScript – Installation<br>ions – OOP concepts – Interfaces – Generics – Modules – Na                                                                                                                                                                                                                                                                                                                  |            |               |          |          |          |          |
| Unit                                            | - IV                                                                                                       | Introduction to Client-side JS Framework – Basics of Angu                                                                                                                                                                                                                                                                                                                                                                                       | lar:       |               |          |          |          |          |
|                                                 |                                                                                                            | Angular - Needs and Evolution – Features – Setup and Confi<br>ion – Directives – Data Binding - Pipes – Nested Components.                                                                                                                                                                                                                                                                                                                      | guration - | - Components  | and M    | odules   | – Tem    | plates · |
| Unit                                            | - V                                                                                                        | Client-side JS Framework – Forms and Routing in Angular                                                                                                                                                                                                                                                                                                                                                                                         |            |               |          |          |          |          |
|                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               |          |          |          |          |
|                                                 |                                                                                                            | en Forms - Model Driven Forms or Reactive Forms - Custom TTP - Routing.                                                                                                                                                                                                                                                                                                                                                                         | Validators | s - Dependenc | y injeci | ion - 5  | ervices  | s - RxJ  |
| Obse                                            | ervables ⊢                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Validators | s - Dependenc | y injeci | ion - 5  | ervices  | s - RxJ  |
| Obse                                            | ervables H                                                                                                 | TTP - Routing.                                                                                                                                                                                                                                                                                                                                                                                                                                  | Validators | s - Dependenc | y mjeci  | iion - 5 | ervices  | s - RxJ  |
| Obse<br>List                                    | ervables H<br>of Exercia                                                                                   | TTP - Routing.<br>ses / Experiments :                                                                                                                                                                                                                                                                                                                                                                                                           | Validators | s - Dependenc |          | lion - 5 |          | s - RxJ  |
| Obse<br>List<br>1                               | ervables H<br>of Exercia<br>Impleme<br>Design s                                                            | TTP - Routing.<br>ses / Experiments :<br>ntation of basic CRUD Operations using MongoDB                                                                                                                                                                                                                                                                                                                                                         |            | s - Dependenc |          | ion - 5  |          | s - RxJs |
| Obse<br>List<br>1<br>2                          | ervables H<br>of Exercia<br>Implement<br>Design s<br>Create w                                              | TTP - Routing.<br>ses / Experiments :<br>ntation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js                                                                                                                                                                                                                                                                                                      |            | s - Dependenc |          | ion - 5  |          | s - RxJ  |
| Obse<br>List<br>1<br>2<br>3                     | ervables H<br>of Exercia<br>Implemen<br>Design s<br>Create w<br>Implemen                                   | TTP - Routing.<br>ses / Experiments :<br>htation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js<br>eb server connection with HTTP Request and HTTP Response                                                                                                                                                                                                                                          |            |               |          | ion - S  |          | s - RxJs |
| Obse<br><b>List</b><br>1<br>2<br>3<br>4         | of Exercis<br>Implement<br>Design s<br>Create w<br>Implement<br>Establish                                  | TTP - Routing.<br>ses / Experiments :<br>htation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js<br>eb server connection with HTTP Request and HTTP Response<br>htation of Event Handling using GET and POST Method                                                                                                                                                                                   |            |               |          | ion - 5  |          | s - RxJS |
| Obse<br>List<br>1<br>2<br>3<br>4<br>5           | ervables F<br>of Exercis<br>Impleme<br>Design s<br>Create w<br>Impleme<br>Establish<br>Demonst             | TTP - Routing.<br><b>ses / Experiments :</b><br>Intation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js<br>eb server connection with HTTP Request and HTTP Response<br>Intation of Event Handling using GET and POST Method<br>Connection to NoSQL Database using NodeJS and implement                                                                                                               | CURD op    |               |          | ion - 5  |          | s - RxJ  |
| Obse<br>List<br>1<br>2<br>3<br>4<br>5<br>6      | ervables H<br>of Exercis<br>Implement<br>Design s<br>Create w<br>Implement<br>Establish<br>Demonst         | TTP - Routing.<br>ses / Experiments :<br>Intation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js<br>eb server connection with HTTP Request and HTTP Response<br>intation of Event Handling using GET and POST Method<br>Connection to NoSQL Database using NodeJS and implement<br>rate Inheritance and Interfaces using Typescript                                                                  | CURD op    |               |          | ion - 5  |          | s - RxJ  |
| Obse<br>List<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | ervables F<br>of Exercis<br>Impleme<br>Design s<br>Create w<br>Impleme<br>Establish<br>Demonst<br>Design a | TTP - Routing.<br>ses / Experiments :<br>Intation of basic CRUD Operations using MongoDB<br>cientific calculator using 'Modules' in Node.js<br>eb server connection with HTTP Request and HTTP Response<br>Intation of Event Handling using GET and POST Method<br>Connection to NoSQL Database using NodeJS and implement<br>rate Inheritance and Interfaces using Typescript<br>web application using components, modules and router in Angu- | CURD op    |               |          |          |          | s - RxJ( |

### **REFERENCES:**

1 Electronic Resources at https://infytg.infosys.com

2. Nathan Rozentals, "Mastering TypeScript", 2<sup>nd</sup> Edition, Packt Publishing, 2017.

 Nathan Murray, Ari Lerner, Felipe Coury, Carlos Taborda, "ng-book, The Complete Book on Angular 6", 1<sup>st</sup> Edition, Createspace Publisher, 2018.

|     | SE OUTCOMES:<br>mpletion of the course, the students will be able to | BT Mapped<br>(Highest Level)     |
|-----|----------------------------------------------------------------------|----------------------------------|
| CO1 | demonstrate NoSQL Database CURD operations using MongoDB             | Applying (K3)                    |
| CO2 | develop server side applications using Node JS                       | Applying (K3)                    |
| CO3 | make use of Type Script to build web application                     | Applying (K3)                    |
| CO4 | employ Angular features and create component based web pages         | Applying (K3)                    |
| CO5 | design a Full Stack web application                                  | Applying (K3)                    |
| CO6 | design RWD to perform CURD operations with MongoDB                   | Applying (K3),<br>Precision (S3) |
| C07 | create web server connection with HTTP request and HTTP response     | Applying (K3),<br>Precision (S3) |
| CO8 | develop full stack application using angular for the given use case  | Applying (K3),<br>Precision (S3) |

|         |     | Mapping of C | Os with POs s |     |     |     |
|---------|-----|--------------|---------------|-----|-----|-----|
| COs/POs | PO1 | PO2          | PO3           | PO4 | PO5 | PO6 |
| CO1     | 3   | 3            | 3             | 3   |     |     |
| CO2     | 3   | 3            | 3             | 3   |     |     |
| CO3     | 3   | 2            |               | 3   |     |     |
| CO4     | 2   | 1            |               | 2   |     |     |
| CO5     | 3   | 3            | 3             | 3   |     |     |
| CO6     | 3   | 3            | 3             | 3   |     |     |
| CO7     | 3   | 2            |               | 3   |     |     |
| CO8     | 3   | 3            | 3             | 3   |     |     |

|                             |                       | ASSESSMENT              | PATTERN - T        | HEORY               |                      |                    |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                        | 10                    | 30                      | 60                 |                     |                      |                    | 100        |
| CAT2                        | 20                    | 40                      | 40                 |                     |                      |                    | 100        |
| CAT3                        | 10                    | 30                      | 60                 |                     |                      |                    | 100        |
| ESE                         | 20                    | 20                      | 60                 |                     |                      |                    | 100        |

# 20MSE22 - ADVANCED PARALLEL ARCHITECTURE AND PROGRAMMING

| Programme &<br>Branch                                                                                                                                   |                                                                                                                                 | M.E. & Computer Science and Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | Category                                                                                      | L                                        | т                                                   | Р                                       | Credit                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|
| Prerequisites                                                                                                                                           | S                                                                                                                               | Computer Architecture and Multicore Architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                               | PE                                                                                            | 2                                        | 0                                                   | 2                                       | 3                                                                       |
| Preamble                                                                                                                                                | desig<br>effect                                                                                                                 | course provides an understanding of the fundamenta<br>ning modern parallel computing systems as well as to<br>ively utilize these machines. It also explores key<br>amming.                                                                                                                                                                                                                                                                                                                                  | each par                                                                        | allel programm                                                                                | ning tec                                 | hnique                                              | s nece                                  | ssary to                                                                |
| Unit - I                                                                                                                                                | Paral                                                                                                                           | lel Architecture and Foundations of Parallel Program                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ming:                                                                           |                                                                                               |                                          |                                                     |                                         | 6                                                                       |
| Processes, m                                                                                                                                            |                                                                                                                                 | Need, Convergence, Design issues – Parallel Applicating, and threads – Modifications to the von Neumann M                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                                                               |                                          |                                                     |                                         |                                                                         |
| Output – Perfo                                                                                                                                          |                                                                                                                                 | e – Parallel Program Design – Writing and Running Paral                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                                                                               |                                          |                                                     |                                         | •                                                                       |
| •                                                                                                                                                       | formance                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                                                               |                                          |                                                     |                                         | •                                                                       |
| Unit - II<br>Basic MPI pro<br>and MPI_Rec                                                                                                               | formance<br>Mess<br>ogramm<br>cv – mes                                                                                          | e – Parallel Program Design – Writing and Running Paral                                                                                                                                                                                                                                                                                                                                                                                                                                                      | el Progra<br>– SPMD                                                             | ms.<br>programs – m                                                                           | essage                                   | passin                                              | ig – Ml                                 | 6<br>PI_Send                                                            |
| Unit - II<br>Basic MPI pro<br>and MPI_Rec<br>of MPI program                                                                                             | formance<br>Mess<br>ogramm<br>cv – mes<br>ams – A                                                                               | e – Parallel Program Design – Writing and Running Paral<br>age Passing Paradigm:<br>ing – MPI_Init and MPI_Finalize – MPI communicators<br>asage matching – MPI I/O – parallel I/O – collective com                                                                                                                                                                                                                                                                                                          | el Progra<br>– SPMD                                                             | ms.<br>programs – m                                                                           | essage                                   | passin                                              | ig – Ml                                 | 6<br>PI_Send                                                            |
| Unit - II<br>Basic MPI pro<br>and MPI_Rec<br>of MPI prograu<br>Unit - III<br>Basics of Pth<br>Mutexes – Pro                                             | formance<br>Mess<br>ogramm<br>cv – mes<br>ams – A<br>Share<br>hreads -<br>oducer-0                                              | e – Parallel Program Design – Writing and Running Paral<br>age Passing Paradigm:<br>ing – MPI_Init and MPI_Finalize – MPI communicators<br>sage matching – MPI I/O – parallel I/O – collective com<br>Parallel Sorting Algorithm.                                                                                                                                                                                                                                                                            | <ul> <li>Progra</li> <li>SPMD</li> <li>nunication</li> <li>Multiplic</li> </ul> | ms.<br>programs – m<br>n – derived typ<br>ation – Critica                                     | essage<br>es – Po                        | passin<br>erforma<br>ons – I                        | ng – Mi<br>Ince ev<br>Busy w            | PI_Send<br>raluation<br>6<br>raiting –                                  |
| Unit - II<br>Basic MPI pro<br>and MPI_Rec<br>of MPI program<br>Unit - III<br>Basics of Pth<br>Mutexes – Pro<br>Cache Cohere                             | formance<br>ogramm<br>cv – mes<br>ams – A<br>Share<br>hreads –<br>roducer-(<br>rence an                                         | <ul> <li>Parallel Program Design – Writing and Running Paral</li> <li>age Passing Paradigm:</li> <li>ing – MPI_Init and MPI_Finalize – MPI communicators</li> <li>asage matching – MPI I/O – parallel I/O – collective com</li> <li>Parallel Sorting Algorithm.</li> <li>ed Memory Paradigm Pthreads:</li> <li>Execution, Error checking of threads – Matrix-Vector</li> <li>Consumer Synchronization and Semaphores – Barriers a</li> </ul>                                                                 | <ul> <li>Progra</li> <li>SPMD</li> <li>nunication</li> <li>Multiplic</li> </ul> | ms.<br>programs – m<br>n – derived typ<br>ation – Critica                                     | essage<br>es – Po                        | passin<br>erforma<br>ons – I                        | ng – Mi<br>Ince ev<br>Busy w            | 6<br>PI_Send<br>aluation<br>6<br>vaiting –<br>Caches,                   |
| Unit - II<br>Basic MPI pro<br>and MPI_Rec<br>of MPI program<br>Unit - III<br>Basics of Pth<br>Mutexes – Pro<br>Cache Cohere<br>Unit - IV<br>Basic OpenM | formance<br>Mess<br>rogramm<br>cv – mes<br>ams – A<br>Share<br>roducer-0<br>rence an<br>Share<br>(Share<br>AP const<br>chedulin | <ul> <li>Parallel Program Design – Writing and Running Paral</li> <li>age Passing Paradigm:</li> <li>ing – MPI_Init and MPI_Finalize – MPI communicators</li> <li>isage matching – MPI I/O – parallel I/O – collective commendation</li> <li>Parallel Sorting Algorithm.</li> <li>ed Memory Paradigm Pthreads:</li> <li>Execution, Error checking of threads – Matrix-Vector</li> <li>Consumer Synchronization and Semaphores – Barriers and False sharing – Thread-Safety – Pthreads case study.</li> </ul> | el Progra<br>– SPMD<br>nunication<br>Multiplic<br>nd Condi                      | ms.<br>programs – m<br>n – derived typ<br>ation – Critica<br>tion variables -<br>Clause – Par | essage<br>les – Po<br>l sectio<br>- Read | passin<br>erforma<br>ons – t<br>Write k<br>r Direct | ng – Mi<br>Ince ev<br>Busy w<br>Docks – | 6<br>PI_Send<br>valuation<br>6<br>vaiting –<br>Caches,<br>6<br>_oops in |

Introduction to OpenCL – OpenCL example – Platforms, Contexts and Devices – OpenCL programming in C – Simple Programs.

| List | of Exercises / Experiments :                                     |
|------|------------------------------------------------------------------|
| 1    | Implementation of numerical methods using MPI and OpenMP         |
| 2    | Use MPI to implement the histogram program                       |
| 3    | Parallelizing loops in OpenMP                                    |
| 4    | Write a Pthreads program that implements the histogram           |
| 5    | Matrix vector multiplication using Pthreads                      |
| 6    | Producer-consumer synchronization and semaphores using Pthreads  |
| 7    | Implementation of read/write locks using Pthreads                |
| 8    | Use OpenMP to implement a program that does Gaussian elimination |
| 9    | Vector operations with OpenCL                                    |
| 10   | Implement iterative tree search                                  |
|      | Lastura, 20. Drestiant-20. Total-00                              |

## Lecture: 30, Practical:30, Total:60

# **REFERENCES:**

| 1 | David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture: A Hardware/ Software Approach", 1 <sup>st</sup> Edition, Morgan Kaufmann, Elsevier, 2013. | n |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | Peter S. Pacheco, "An introduction to parallel programming", 1 <sup>st</sup> Edition, Morgan Kaufmann, 2011.                                                      |   |
| 3 | Munshi Aaftab, Gaster R. Benedict,"OpenCL Programming Guide", A, 1 <sup>st</sup> Edition, Adision-Wesley, 2011.                                                   |   |

# 🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

|     | RSE OUTCOMES:<br>mpletion of the course, the students will be able to      | BT Mapped<br>(Highest Level)     |
|-----|----------------------------------------------------------------------------|----------------------------------|
| CO1 | examine the issues in Parallel Architecture and Programming                | Analyzing (K4)                   |
| CO2 | develop message passing parallel programs using MPI framework              | Applying (K3)                    |
| CO3 | build shared memory parallel programs using Pthreads                       | Applying (K3)                    |
| CO4 | experiment with OpenMP for shared memory applications                      | Applying (K3)                    |
| CO5 | solve the given problem with parallel programs using OpenCL                | Applying (K3)                    |
| CO6 | make use of MPI and OpenMP for solving problems in numerical methods       | Applying (K3),<br>Precision (S3) |
| C07 | utilize Pthreads to model and parallel programs for different system tasks | Applying (K3),<br>Precision (S3) |
| CO8 | experiment different vector operations with OpenCL                         | Applying (K3),<br>Precision (S3) |

|                               |                      | Mapping of C   | Os with POs s |     |     |  |
|-------------------------------|----------------------|----------------|---------------|-----|-----|--|
| COs/POs                       | PO1                  | PO2            | PO3           | PO4 | PO6 |  |
| CO1                           | 3                    | 2              |               |     |     |  |
| CO2                           | 3                    | 1              | 1             | 2   |     |  |
| CO3                           | 3                    | 1              | 1             | 2   |     |  |
| CO4                           | 3                    | 1              | 1             | 2   |     |  |
| CO5                           | 3                    | 1              | 1             | 2   |     |  |
| CO6                           | 3                    | 1              | 1             | 2   |     |  |
| CO7                           | 3                    | 1              | 1             | 2   |     |  |
| CO8                           | 3                    | 2              | 1             | 2   |     |  |
| – Slight, 2 – Moderate, 3 – S | Substantial, BT- Blo | oom's Taxonomy |               |     |     |  |

|                             | ASSESSMENT PATTERN - THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |
| CAT1                        | 10                          | 30                      | 40                 | 20                  |                      |                    | 100        |  |  |  |  |
| CAT2                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |
| CAT3                        | 10                          | 40                      | 50                 |                     |                      |                    | 100        |  |  |  |  |
| ESE                         | 10                          | 30                      | 45                 | 15                  |                      |                    | 100        |  |  |  |  |

# 20GET13 - INNOVATION, ENTREPRENEURSHIP AND VENTURE DEVELOPMENT

| dev       UNIT – I       Inn       Creativity and In                  | Nil<br>his course will direct the students on how to employ their innovativelopment.                                                                                        | 4<br>itions to | PE             | 3<br>essful e | 0        | 0         | 3         |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|----------|-----------|-----------|
| dev       UNIT – I       Inn       Creativity and In of entrepreneurs | velopment.<br>novation and Entrepreneurship:                                                                                                                                | itions to      | owards a succe | əssful e      |          | 0         |           |
| Creativity and In of entrepreneurs                                    |                                                                                                                                                                             |                |                |               | entrepre | eneurial  | venture   |
| of entrepreneurs                                                      |                                                                                                                                                                             |                |                |               |          |           | 9         |
|                                                                       | nnovation – Types of innovation – challenges in innovation- steps<br>ship - Role of Entrepreneurship in Economic Development - Fact<br>ship                                 |                |                |               |          |           |           |
| UNIT – II Des                                                         | esign Thinking and Product Design:                                                                                                                                          |                |                |               |          |           | 9         |
| evaluation tools a                                                    | inimum Viable Product (MVP)- Product prototyping – tools and te<br>and techniques for user-product interaction<br>usiness Model Canvas (BMC) and Business Plan Preparation: |                |                |               |          |           |           |
| Lean Canvas an                                                        | nd BMC - difference and building blocks- BMC: Patterns – Desi                                                                                                               | ign – S        |                | ess–Bi        | usiness  | model     |           |
|                                                                       | medies. Objectives of a Business Plan - Business Planning Proce                                                                                                             | ess and        | Preparation    |               |          |           |           |
|                                                                       | R and Commercialization:                                                                                                                                                    |                |                |               |          |           | 9         |
|                                                                       | ctual Property- Basic concepts - Different Types of IPs: Copy Righ<br>nd Industrial Design- Patent Licensing - Technology Commerciali                                       |                |                |               |          | iical Inc | lications |
| UNIT – V Ver                                                          | enture Planning and Means of Finance:                                                                                                                                       |                |                |               |          |           | Ś         |
|                                                                       | - Forms of Business Ownership - Sources of Finance – Idea port to Entrepreneurs – Bank and Institutional Finance to Entrepre                                                |                | - Seed Fund    | J – Ang       | gel & V  | /enture   | Fund -    |

# **REFERENCES:**

#### Total: 45

1. Gordon E. & Natarajan K., "Entrepreneurship Development", 6th Edition, Himalaya Publishing House, Mumbai, 2017.

2. Sangeeta Sharma, "Entrepreneurship Development", 1st Edition, PHI Learning Pvt. Ltd., New Delhi, 2017.

3. Charantimath Poornima M., "Entrepreneurship Development and Small Business Enterprises", 3rd Edition, Pearson Education, Noida, 2018.

4. Robert D. Hisrich, Michael P. Peters & Dean A. Shepherd, "Entrepreneurship", 10th Edition, McGraw Hill, Noida, 2018.

|      | COURSE OUTCOMES:<br>On completion of the course, the students will be able to       |                    |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| CO1: | understand the relationship between innovation and entrepreneurship                 | Understanding (K2) |  |  |  |  |  |
| CO2: | understand and employ design thinking process during product design and development | Analysing (K4)     |  |  |  |  |  |
| CO3: | develop suitable business models as per the requirement of the customers            | Analysing (K4)     |  |  |  |  |  |
| CO4: | Practice the procedures for protection of their ideas' IPR                          | Applying (K3)      |  |  |  |  |  |
| CO5: | understand and plan for suitable type of venture and modes of finances              | Applying (K3)      |  |  |  |  |  |

|                 | Mapping of COs with POs and PSOs |        |         |          |        |     |     |     |     |      |      |      |      |      |
|-----------------|----------------------------------|--------|---------|----------|--------|-----|-----|-----|-----|------|------|------|------|------|
| COs/POs         | PO1                              | PO2    | PO3     | PO4      | PO5    | PO6 | P07 | PO8 | PO9 | PO10 | P011 | PO12 | PSO1 | PSO2 |
| CO1             | 2                                | 1      |         |          |        | 3   | 2   | 1   | 3   | 2    |      | 1    | 1    |      |
| CO2             | 1                                | 2      |         |          | 3      | 2   | 1   |     |     |      |      |      | 1    |      |
| CO3             | 3                                | 1      | 3       |          |        | 1   |     |     |     |      |      |      | 1    |      |
| CO4             | 1                                | 2      |         |          |        | 3   |     |     |     |      |      |      | 1    |      |
| CO5             | 1                                | 2      |         |          |        | 3   |     |     |     |      |      |      | 1    |      |
| 1 – Slight, 2 – | Modera                           | te 3_9 | Substan | tial BT- | Bloom' |     | omv | 1   |     |      |      |      | •    | 1    |

- Moderate, 3 – Substantial, BT- Bloom's Taxonomy Slight, 2 Ľ

| ASSESSMENT PATTERN - THEORY |                       |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                        | 40                    | 40                      | 20                 |                     |                      |                    | 100        |  |  |  |
| CAT2                        | 30                    | 40                      | 30                 |                     |                      |                    | 100        |  |  |  |
| CAT3                        | 30                    | 45                      | 25                 |                     |                      |                    | 100        |  |  |  |
| ESE                         | 30                    | 40                      | 30                 |                     |                      |                    | 100        |  |  |  |