KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE – 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI - 2020

(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted from 2020 - 2021)

BACHELOR OF TECHNOLOGY DEGREE IN CHEMICAL ENGINEERING

DEPARTMENT OF CHEMICAL ENGINEERING

INDEX

SI.No.	CONTENTS	Page No.
1	VISION AND MISSION OF THE INSTITUTE	3
2	QUALITY POLICY	3
3	VISION AND MISSION OF THE DEPARTMENT	3
4	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	3
5	PROGRAM OUTCOMES (POs)	4
6	PROGRAM SPECIFIC OUTCOMES (PSOs)	5
7	REGULATIONS 2020	6
8	CURRICULUM BREAKDOWN STRUCTURE	22
9	CATEGORISATION OF COURSES	22
10	SCHEDULING OF COURSES	31
11	MAPPING OF COURSES WITH PROGRAM OUTCOMES	32
12	CURRICULUM OF B.Tech. – CHEMICAL ENGINEERING	41
13	DETAILED SYLLABUS	45

KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

INSTITUTE VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Science, Technology, Engineering and Management for the Nation and beyond.

INSTITUTE MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

We are committed to

QUALITY POLICY

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF CHEMICAL ENGINEERING VISION

To be a centre of excellence for development and dissemination of knowledge in Chemical Engineering for the Nation and beyond

MISSION

Department of Chemical Engineering is committed to:

- MS1: Impart knowledge to students at all levels through a vibrant, dynamic and state of the art intellectual delivery to ensure the creation of a complete Chemical Engineer with a high sense of social responsibility and professional ethics.
- MS2: Synergize the efforts of the students and faculty to evolve innovative engineering practices and teaching methodologies.
- MS3: Generate an environment of continuous learning and research.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Chemical Engineering will

- PEO1: Exhibit professional competency in design and development of chemical products, processes and equipment in chemical and allied industries.
- PEO2: Perform research and development by utilizing and continuously upgrading the experimental skills, Mathematical tools, applied software and simulation practices and engage in futuristic progression
- PEO3: Demonstrate interpersonal skills and leadership qualities and contribute to solve multidisciplinary problems in national and global level.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOs

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	2
MS2	2	3	3
MS3	3	3	3

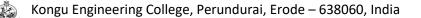
1 -Slight, 2 -Moderate, 3 -Substantial

PROGRAM OUTCOMES (POs)

Graduates of Chemical Engineering will:

- **PO1** Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)


Graduates of Chemical Engineering will:

- **PSO1** Essentials of Chemical Engineering: Correlate theoretical concepts with real time experimental and field data through application of process simulation and analytical techniques
- **PSO2** Chemical Process Design and Development: Develop cutting edge chemical processes, equipment and products for the benefit of the human kind using innovative research and development skills and continuous learning efforts

	MAILING OF LEOS WITH I OS AND I SOS													
PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PEO1		3	3	3	3	2	2				2	1	3	3
PEO2	3		2		2	1	1	1	2	2	1	2	2	3
PEO3		1	2	1	2	3	3	2	3	3	2	1	3	3

MAPPING OF PEOs WITH POs AND PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638060

(Autonomous)

REGULATIONS 2020

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

BACHELOR OF ENGINEERING (BE) / BACHELOR OF TECHNOLOGY (BTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into BE/BTech Degree programmes from the academic year 2020 – 2021 onwards.

1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Bachelor of Engineering (BE) / Bachelor of Technology (BTech) Degree programme
- iv. "Branch" means specialization or discipline of BE/BTech Degree programme, like Civil Engineering, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Mathematics, Physics etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch					
	Civil Engineering					
	Mechanical Engineering					
	Electronics and Communication Engineering					
	Computer Science and Engineering					
BE	Electrical and Electronics Engineering					
	Electronics and Instrumentation Engineering					
	Mechatronics Engineering					
	Automobile Engineering					
	Computer Science and Design					
	Chemical Engineering					
	Information Technology					
BTech	Food Technology					
	Artificial Intelligence and Data Science					
	Artificial Intelligence and Machine Learning					

3. ADMISSION REQUIREMENTS

3.1 First Semester Admission

The candidates seeking admission to the first semester of the eight semester BE / BTech Degree Programme:

Should have passed the Higher Secondary Examination (10 + 2) in the academic stream with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III subjects of the study conducted by the Government of Tamil Nadu or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

They should also satisfy other eligibility conditions as prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

3.2 Lateral Entry Admission

The candidates who hold a Diploma in Engineering / Technology awarded by the State

Kongu Engineering College, Perundurai, Erode – 638060, India

Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of BE / BTech in relevant branches of study.

(OR)

The candidates who hold a BSc degree (10+2+3 stream) with mathematics as one of the subjects at the BSc level from a recognised University are eligible to apply for Lateral entry admission to the third semester of BE / BTech. Such candidates shall undergo two additional Engineering course(s) in the third and fourth semesters as prescribed by the College.

They should satisfy other eligibility conditions prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The BE / BTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester, professional skills training/industrial training, project work, internship, etc. that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO), Programme Specific Outcomes (PSO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Humanities and Social Sciences (HS) including Management Courses
- ii. Basic Science (BS) Courses
- iii. Engineering Science (ES) Courses
- iv. Professional Core (PC) Courses
- v. Professional Elective (PE) Courses
- vi. Open Elective (OE) Courses
- vii. Employability Enhancement Courses (EC) like Project work, Professional Skills Training, Industrial Training, Comprehensive Test & Viva, Entrepreneurships/Start ups and Internship in Industry or elsewhere
- viii. Audit Courses (AC)
- ix. Mandatory Courses (MC) like Student Induction Program and Environmental Science.
- x. Honours Degree Courses (HC)

4.2 Credit Assignment and Honours Degree

4.2.1. Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1

2 Practical Periods	1
2 Project Work Periods	1
40 Training / Internship Periods	1

The minimum number of credits to complete the BE/BTech programme is 169.

4.2.2. Honours Degree

If a candidate earns 18 to 20 additional credits in an emerging area, then he/she can be awarded with Honours degree mentioning that emerging area as his/her specialization. The respective board of studies shall recommend the specializations for honours degree and appropriate additional courses to be studied by the candidate which shall get approval from Academic Council of the institution. A candidate shall have not less than 8.0 CGPA and no history of arrears during the entire programme to opt for the honours degree.

Various specializations for various branches recommended by the respective boards of studies are given below:

SNo	Specializations for Honours degree in emerging areas	To be offered as Honours, Only for the following branches mentioned against the specialization				
1.	Construction Technology	BE – Civil Engineering				
2.	Smart Cities	BE – Civil Engineering				
3.	Smart Manufacturing *	BE – Mechanical Engineering				
4.	Computational Product Design *	BE – Mechanical Engineering				
5.	Intelligent Autonomous Systems *	BE – Mechatronics Engineering				
6.	E-Mobility *	BE – Automobile Engineering				
7.	Artificial Intelligence and Machine Learning	BE – Electronics and Communication Engineering				
8.	System on Chip Design *	BE – Electronics and Communication Engineering				
9.	Electric Vehicles	BE – Electrical and Electronics Engineering				
10.	Microgrid Technologies	BE – Electrical and Electronics Engineering				
11.	Intelligent Sensors Technology *	BE – Electronics and Instrumentation Engineering				
12.	Smart Industrial Automation *	BE – Electronics and Instrumentation Engineering				
13.	Data Science	BE – Computer Science and Engineering				
14.	Cyber Security	BE – Computer Science and Engineering				
15.	Data Science	BTech – Information Technology				
16.	Cyber Security	BTech – Information Technology				
17.	Petroleum and Petrochemical Engineering *	BTech – Chemical Engineering				
18.	Waste Technology *	BTech – Chemical Engineering				
19.	Food Processing and Management *	BTech – Food Technology				
20.	Virtual and Augumented Reality	BE- Computer Science and Design				
21.	Data Science	BE- Computer Science and Design				
22.	Internet of Things (IoT)	BTech – Artificial Intelligence and Data Science				
23.	Blockchain	BTech – Artificial Intelligence and Data Science				
24.	Internet of Things (IoT)	BTech – Artificial Intelligence and Machine Learning				
25.	Blockchain	BTech – Artificial Intelligence and Machine Learning				

*Title by KEC

The courses specified under Honours degree in the emerging area may include theory, theory cum practical, practical, project work, etc. under the particular specialization. A

candidate can choose and study these specified courses from fourth semester onwards and he/she shall successfully complete the courses within the stipulated time vide clause 5. Total number of credits earned in each semester may vary from candidate to candidate based on the courses chosen. The registration, assessment & evaluation pattern and classification of grades of these courses shall be the same as that of the courses in the regular curriculum of the programme of the candidate vide clause 6, clause 7 and clause 15 respectively. A candidate can earn Honours degree in only one specialization during the entire duration of the programme.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like project work, internship, professional skills training/industrial training, comprehensive test & viva, internship and entrepreneurships/start ups during the programme to gain/exhibit the knowledge/skills.

4.3.1 Professional Skills Training/ Industrial Training/Entrepreneurships/Start Ups A candidate may be offered with appropriate training courses imparting programming skills, communication skills, problem solving skills, aptitude skills etc. It is offered in two phases as phase-I in fifth semester and phase-II in sixth semester including vacation periods and each phase can carry two credits.

(or)

A candidate may be allowed to go for training at research organizations or industries for a required number of hours in sixth semester vacation period. Such candidate can earn two credits for this training course in place of Professional Skills Training Phase-II in sixth semester. He/She shall attend Professional Skills Training Phase-I in fifth semester and can earn two credits.

(or)

A candidate may be allowed to set up a start up and working part-time for the start ups by applying his/her innovations and can become a student entrepreneur during BE/BTech programme. Candidates can set up their start up from fifth semester onwards either inside or outside of the college. Such student entrepreneurs may earn a maximum of 2 credits per semester for two semesters each in place of either Professional Skills Training-I / II or Industrial Training-I/ II respectively. The area in which the candidate wants to initiate a start up may be interdisciplinary or multidisciplinary. The progress of the startup shall be evaluated by a panel of members constituted by the Principal through periodic reviews.

4.3.2 Comprehensive Test & Viva

The overall knowledge of the candidate in various courses he/she studied shall be evaluated by (i) conducting comprehensive tests with multiple choice questions generally with pattern similar to GATE and/or (ii) viva-voce examination conducted by a panel of experts assigned by the Head of the department. The members can examine the knowledge of the candidate by asking questions from various domains and the marks will be assigned based on their answers. This course shall carry two credits.

4.3.3 Internships

The curriculum enables a candidate to go for full time project through internship during a part of seventh semester and/or entire final semester and can earn credits vide clause 7.6 and clause 7.11.

A candidate is permitted to go for full time projects through internship in seventh semester with the following condition: The candidate shall complete a part of the seventh semester courses with a total credit of about 50% of the total credits of seventh semester including Project Work-I Phase-II in the first two months from the commencement of the seventh semester under fast track mode. The balance credits required to complete the seventh semester shall be earned by the candidate through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

A candidate is permitted to go for full time projects through internship during eighth semester. Such candidate shall earn the minimum number of credits required to complete eighth semester other than project through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.4 Value Added Courses / Online Courses / Self Study Courses

The candidates may optionally undergo Value Added Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 Value Added Courses:** Value Added courses each with One / Two credits shall be offered by the college with the prior approval from the respective Board of Studies. A candidate can earn a maximum of six credits through value added courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty following due approval procedure. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance.
- **4.4.5** A candidate can earn a maximum of 30 credits through all value added courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

4.5.1 A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.

- **4.5.2** From the first to eighth semesters the candidates have the option of registering for additional elective/Honours courses or dropping of already registered additional elective/Honours courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the BE / BTech Degree programme in 8 consecutive semesters/4 Years (6 semesters/3 Years for lateral entry candidate), but in any case not more than 14 semesters/7 Years (12 semesters/6 Years for lateral entry candidate).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.

- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.
- **6.4** A candidate shall register for the chosen courses as well as arrear courses (if any vide clause 6.2 and 6.3) from the list of courses specified under Honours degree.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The BE/BTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Project Work, Professional Skills Training / Industrial Training, Internship and Entrepreneurships/ Start ups. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks		
1.	Theory / Practical	50	50		
2.	Theory cum Practical		f marks shall be decided it weightage assigned to l components.		
3.	Professional Skills Training / / Comprehensive Test & Viva / Entrepreneurships / Start ups / Project Work - I / Industrial Training / Mandatory Course	100			
4.	Project Work-II Phase-I / Project Work-II Phase-II / Internships	50	50		
5.	Value Added Course	The distribution of marks shall be			
6.	All other Courses	decided based on the credit weightage assigned			

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, internships and entrepreneurships/start ups shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 50 marks and the end semester examination shall be for 50 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

Sl. No.	Туре	Max. Marks	Remarks
	Test - I	30	
1.	Test - II	30	Average of best two
	Test - III	30	
2.	Tutorial	15	Should be of Open Book/Objective Type. Average of best 4 (or more, depending on the nature of the course, as may be approved by Principal)
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	50	Rounded off to the one decimal place

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

7.3.2 A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).

Kongu Engineering College, Perundurai, Erode – 638060, India

7.3.3 The end semester examination for theory courses shall be for a duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

7.5.1 The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.

7.6 Project Work-II Phase-I / Project Work-II Phase-II

- **7.6.1** Project work shall be assigned to a single candidate or to a group of candidates not exceeding 4 candidates in a group. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work-II (both Phase-I and Phase-II) and the Viva-Voce Examination shall be distributed as below:

	Continuous Assessment (Max. 50 Marks)						End Semester Examination (Max. 50 Marks)				
Zeroth	eroth Review I (Max 20 Marks)		Review II (Max. 30 Marks)		Report Evaluation (Max. 20 Marks)	Viva - V (Max. 30)					
Rv. Com	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2		
0	0	10	10	15	15	20	10	10	10		

Kongu Engineering College, Perundurai, Erode – 638060, India

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. The candidate(s) must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.7** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.6.
- **7.6.8** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Project Work-I Phase-I / Industrial Training

The evaluation method shall be same as that of the Project Work-II as per clause 7.6 excluding 7.6.3, 7.6.5, 7.6.6 and 7.6.7. The marks distribution is given below:

Continuous Assessment (Max. 100 Marks)									
							Review III (Max. 50 Marks)		
Zeroth	Review	Review (Max 20 M	-	Review II (Max 30 Marks)		Report Evaluation (Max. 20 Marks)	Viva–Voce (Max. 30 Marks)		
Review Commi ttee	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Review Committee	Guide	Review Committee	
0	0	10	10	15	15	20	10	20	

If a candidate fails to secure 50 % of the continuous assessment marks in this course, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted.

7.8 Professional Skills Training

Phase-I training shall be conducted for minimum of 80 hours in 4^{th} semester vacation and during 5^{th} semester. Phase-II training shall be conducted for minimum of 80 hours in 5^{th} semester vacation and during 6^{th} semester. The evaluation procedure shall be approved by Principal.

7.9 Comprehensive Test and Viva

A candidate can earn 2 credits by successfully completing this course. The evaluation procedures shall be approved by the Principal.

7.10 Entrepreneurships/ Start ups

A start up/business model may be started by a candidate individually or by a group of maximum of three candidates during the programme vide clause 4.3.1. The head of the department concerned shall assign a faculty member as a mentor for each start up.

A review committee shall be formed by the Principal for reviewing the progress of the Start ups / Business models, innovativeness, etc. The review committee can recommend the appropriate grades for academic performance for the candidate(s) involved in the start ups. This course shall carry a maximum of two credits in fifth semester and two credits in sixth semester respectively and shall be evaluated through continuous assessments for a maximum of 100 marks vide clause 7.1. A report about the start ups is to be submitted to the review committee for evaluation for each start up and the marks will be given to Controller of Examinations after getting approval from Principal.

7.11 Projects through Internships

Each candidate shall submit a brief report about the project through internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work-II as per clause 7.6.

7.12 Value Added Course

Minimum of two assessments shall be conducted during the value added course duration by the offering department concerned.

7.13 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.14 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.15 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SF (Satisfactory). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

7.16 Mandatory Course

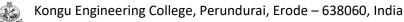
A candidate shall attend and complete the induction training program of duration three weeks at the beginning of the first semester. It is mandatory for all candidates who have joined in various branches of all BE/BTech programmes. No credits shall be given for such courses and shall be evaluated through continuous assessment tests only vide clause 7.1 for a maximum of 100 marks each. Since these courses have no grade points assigned, these courses will not be counted for the purpose of GPA and CGPA calculations.

7.17 Yoga and Values for Holistic Development (YVHD) and Universal Human Values (UHV)

Courses such as YVHD and UHV shall be offered to all candidates of all BE/BTech programmes. These courses shall carry a maximum of 100 marks each and shall be evaluated through continuous assessment tests only vide clause 7.1. The candidate(s) can earn 2 credits for UHV and 1 credit for YVHD by successfully completing these courses. Two continuous assessment tests will be conducted and the average marks will be taken for the calculation of grades.

8. REQUIREMENTS FOR COMPLETION OF A SEMESTER

8.1 A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.


- **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
- **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.

A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to his/her entrepreneurships/ start ups activities, but has secured not less than 60 % in the current semester can be permitted to appear for the current semester examinations with the recommendation of review committee and approval from the Principal.

- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.
- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time.

Such appearance shall be considered as first appearance.

9.3 A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.
- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.

- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate

Kongu Engineering College, Perundurai, Erode – 638060, India

concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

15. AWARD OF LETTER GRADES

Range of % of Total Marks	Letter Grade	Grade Point
91 to 100	O (Outstanding)	10
81 to 90	A+ (Excellent)	9
71 to 80	A (Very Good)	8
61 to 70	B+ (Good)	7
50 to 60	B (Average)	6
Less than 50	RA (Reappear)	0
Satisfactory	SF	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

 $GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum \sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}$

 Σ (course credits) for all courses in the specific semester

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

 $CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

Kongu Engineering College, Perundurai, Erode – 638060, India

A candidate shall be declared to be eligible for the award of the BE / BTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- **17.1.2** A candidate who joins from other institutions on transfer and who gets readmitted and has to move from one regulations to another regulations and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the

examination in First class:

- Should have passed the examination in all the courses of all eight semesters (six semesters for lateral entry candidates) within ten consecutive semesters (eight consecutive semesters for lateral entry candidates) excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.00

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

17.5 Honours Degree:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have earned the BE/BTech degree with Honours (vide clause 16 and clause 4.2.2):

- Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 8.00

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its BE / BTech programme.

CURRICULUM BREAKDOWN STRUCTURE

Category				Seme	ster				Total number of credits	Curriculum Content (% of total number of credits of the program)
	I	Ш	III	IV	V	VI	VII	VIII		
HS	4	3		3			3		13	7.69 %
BS	11	11	4	4					30	17.75 %
ES	4	4*/4#	8	4					20	11.83 %
PC	3	4	12	8*/4#	13	12	4		56	33.13 %
PE					3		12	3	18	10.65 %
OE				4	4	3		3	14	8.28 %
EC					2	6	6	4	18	10.65 %
Semesterwise Total	22	22	24	23*/19#	22	21	25	10	169	100.00
* 2020-21, # 202	21-22			1						
				Ca	tegory	,				Abbreviation
Lecture hours pe	er week									L
Tutorial hours pe	er week									Т
Practical, Projec	t work,	Internship	o, Prof	essional S	kill Trai	ning, Ind	dustrial	Training	hours per wee	k P
Credits										С

		CATEGORISATION OF COURSE	ES								
HU	HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT (HS)										
S. No.	Course Name IIIIPIC Sem										
1.	20EGT11	English Language Skills	3	0	0	3	I				
2.	20VEC11	Yoga and Values for Holistic Education	2	0	1	1	I				
3.	20EGT21	Advanced Communication Skills	3	0	0	3	П				
4.	20EGL31	English for Workplace Communication Laboratory	0	0	2	1	IV				
5.	20GET31	Universal Human Values	0	0	0	2	IV				
6.	20CHT71	Process Engineering and Economics	3	0	0	3	VII				
	Т	otal Credits to be earned				13					

	BASIC SCIENCE (BS)										
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem				
1.	20MAC11	Matrices and Differential Equations	3	1*	2*	4	I				
2.	20PHT11	Applied Physics	3	0	0	3	I				
3.	20CYT11	Applied Chemistry	3	0	0	3	Ι				
4.	20PHL11	Physical Sciences Laboratory I	0	0	2	1	Ι				
5.	20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	II				
6.	20PHT25	Physics for Chemical Engineering	3	0	0	3	П				
7.	20CYT24	Industrial Chemistry	3	0	0	3	П				
8.	20PHL29	Physical Sciences Laboratory II	0	0	2	1	П				
9.	20MAT31	Probability and Partial Differential Equations	3	1	0	4					
10.	20MAT41	Statistics and Numerical Methods	3	1	0	4	IV				
	Т	otal Credits to be earned				30					

		ENGINEERING SCIENCE (ES)				
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20MEC11	Engineering Drawing	2	0	2	3	Ι
2.	20MEL11	Engineering Practices Laboratory	0	0	2	1	Ι
3.	20CHT22	Electrical Drives and Industrial Electronics	3	0	0	3	П
4.	20CHL21	Electrical Drives and Industrial Electronics Laboratory	0	0	2	1	П
5.	20CSC31	Programming in C	3	0	2	4	III
6.	20CHT31	Chemical Engineering Thermodynamics	3	1	0	4	Ш
7.	20CSC41	Python Programming	3	0	2	4	IV
	Т	otal Credits to be earned				20	

Кс	ongu Engine	ering College, Perundurai, Erode – 638060,	India	a		
S.	Course					Do

S. No.	Course Code	Course Name	L	т	Р	С	Sem	Domain/ Stream
1.	20CHT11	Chemical Process Industries	3	0	0	3	I	AC&RE
2.	20CHT21	Chemical Process Utilities	3	1	0	4	II	PPO
3.	20CHT32	Applied Organic Chemistry	3	0	0	3		AC&RE
4.	20CHT33	Fluid Mechanics	3	0	0	3		TTO
5.	20CHT34	Chemical Process Calculations	3	1	0	4		TTO
6.	20CHL31	Applied Organic Chemistry Laboratory	0	0	2	1		AC&RE
7.	20CHL32	Fluid Mechanics Laboratory	0	0	2	1		TTO
9.	20CHT41	Mechanical Operations	3	0	0	3	IV	PPO
10.	20CHT42	Process Heat Transfer	3	0	0	3	IV	TTO
11.	20CHL41	Mechanical Operations Laboratory	0	0	2	1	IV	PPO
12.	20CHL42	Process Heat Transfer Laboratory	0	0	2	1	V	TTO
13.	20CHT51	Mass Transfer I	3	1	0	4	V	TTO
14.	20CHT52	Chemical Reaction Engineering I	3	0	0	3	V	AC&RE
15.	20CHT53	Chemical Equipment Design and Drawing	3	1	0	4	V	PPO
16.	20CHL52	Chemical Reaction Engineering Laboratory	0	0	2	1	V	AC&RE
17.	20CHL53	Process Computation Laboratory	0	0	2	1	V	CSMS&C
18.	20CHT61	Mass Transfer II	3	0	0	3	VI	TTO
19.	20CHT62	Process Modeling and Simulation	3	0	0	3	VI	CSMS&C
20.	20CHT63	Process Instrumentation Dynamics and Control	3	0	0	3	VI	CSMS&C
21.	20CHL61	Mass Transfer Laboratory	0	0	2	1	V	PPO
22.	20CHL62	Process Modeling and Simulation Laboratory	0	0	2	1	VI	CSMS&C
23.	20CHL63	Process Instrumentation Dynamics and Control Laboratory	0	0	2	1	VI	CSMS&C
24.	20CHT72	Transport Phenomena	3	1	0	4	VII	T&TO
	Т	otal Credits to be earned				56		

PROFESSIONAL ELECTIVE (PE)

S. No.	Course Code	Course Name	L	т	Ρ	С	Domain Stream
		Semester-V					
		Elective I					
1.	20CHE01	Chemical Process Plant Safety	3	0	0	3	PPO
2.	20CHE02	Organic Synthesis	3	0	0	3	AC&RE

Eatd: 1984				-			
3.	20CHE03	Instrumental Methods of Analysis	3	0	0	3	AC&RE
4.	20CHE04	Chemical Analysis	3	0	0	3	AC&RE
5.	20CHE05	Bio Chemical Engineering	3	0	0	3	СТ
		Semester-VII					
		Elective II					
6.	20CHE06	Pulp and Paper Technology	3	0	0	3	СТ
7.	20CHE07	Chemical Reaction Engineering -II	3	0	0	3	AC&RE
8.	20CHE08	Surface Coating Technology	3	0	0	3	СТ
9.	20CHE09	Energy Technology	3	0	0	3	E&E
10.	20CHE10	Modern Separation Processes	3	0	0	3	PPO
		Elective III					
11.	20CHE11	Air Pollution Control	3	0	0	3	E&E
13.	20CHE12	Process Instrumentation	3	0	0	3	CSMS&C
14.	20CHE13	Fertilizer Technology	3	0	0	3	СТ
15.	20CHE14	Corrosion Technology	3	0	0	3	СТ
16.	20GEE01	Fundamentals of Research	3	0	0	3	GE
		Elective IV					
17.	20CHE15	Natural Gas Engineering	3	0	0	3	СТ
18.	20CHE16	Nano materials and composite materials for Chemical Engineers	3	0	0	3	AC&RE
19.	20CHE17	Fundamentals of Computational Fluid Dynamics	3	0	0	3	CSMS&C
20.	20CHE18	Pharmaceutical Process Technology	3	0	0	3	СТ
21.	20CHE19	Process Optimization	3	0	0	3	CSMS&C
22.	20CHE20	Total Quality Management	3	0	0	3	GE
		Elective V					
23.	20CHE21	Nuclear Engineering for Chemical Engineers	3	0	0	3	СТ
24.	20CHE22	Numerical techniques in Chemical Engineering	3	0	0	3	CSMS&C
25.	20CHE23	Petroleum Refinery Engineering	3	0	0	3	СТ
26.	20CHE24	Industrial Waste Water Treatment	3	0	0	3	E&E
27.	20CHE25	Piping Engineering	3	0	0	3	T&TO
		Semester-VIII					
		Elective VI					
28.	20CHE26	Battery and Fuel Cell Technology	3	0	0	3	E&E
29.	20CHE27	Fluid Movers	3	0	0	3	T&TO
30.	20CHE28	Advanced Process Control	3	0	0	3	CSMS&C
31.	20CHE29	Ores and Mineral Processing	3	0	0	3	PPO

Kongu Engineering College, Perundurai, Erode – 638060, India

32.	20CHE30	Polymer Technology	3	0	0	3	СТ
	Total (Credits to be earned				18	

* Domain/Stream Abbreviations: T&TO-Thermodynamics & Transport Operations, CSM&S-Chemical Systems Modeling & Simulation & Control, AC&RE –Applied Chemistry & Reaction Engineering, PPO-Process Plant Operation, CT-Chemical Technology, E&E-Energy & Environment

	E	EMPLOYABILITY ENHANCEMENT COUR	SES	(EC)		
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I				2	V
2.	20GEL61/ 20GEl61	Professional Skills Training II / Industrial Training II				2	VI
3.	20CHP61	Project Work I	0	0	4	2	VI
4.	20GEP61	Comprehensive Test and Viva				2	VII
5.	20CHP71	Project Work II Phase I	0	0	12	6	VII
6.	20CHP81	Project work II Phase II			8	4	VIII
		Total Credits to be earned				18	

OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)

(Common to all departments except offering department)

S.No.	Course Code	Course Title		urs/We	ek	Credit	Sem
			L	Т	Ρ		
1.	20CHO01	Drugs and Pharmaceuticals Technology	3	1	0	4	IV
2.	20CHO02	Process Automation	3	1	0	4	IV
3.	20CHO03	Renewable Bioenergy Resources	3	1	0	4	V
4.	20CHO04	Intelligent Controllers	3	1	0	4	V
5.	20CHO05	Food as Medicine	3	0	0	3	VI
6.	20CHO06	Organic Farming	3	0	0	3	VI
7.	20CHO07	Cosmetics and Personal health Care Products	3	0	0	3	VIII
8.	20CHO08	Brewing and Alcohol Technology	3	0	0	3	VIII

OPEN ELECTIVE COURSES OFFERED BY OTHER DEPARTMENTS (OE)

S.No.	Course Code	Course Title	L	т	Ρ	С	Offering Dept.
		SEMESTER - IV					
1.	20CEO01	Remote Sensing and its Applications	3	0	2	4	CIVIL
2.	20MEO01	Renewable Energy Sources	3	0	2	4	MECH
3.	20MTO01	Design of Mechatronics Systems	3	1	0	4	MTS
4.	20AUO01	Automotive Engineering	3	0	2	4	AUTO
5.	20ECO01	Wearable Technology	3	1	0	4	ECE
6.	20ECO02	Basics of Electronics in Automation Appliances	3	1	0	4	ECE
7.	20ECO03	Principles of Quantum Computing	3	0	2	4	ECE
8.	20EEO01	Solar and Wind Energy Systems	3	1	0	4	EEE
9.	20EEO02	Electrical Wiring and Lighting	3	1	0	4	EEE
10.	20EEO03	Electrical Safety	3	1	0	4	EEE
11.	20EIO01	Digital Image Processing and Its Applications	3	1	0	4	EIE
12.	20CSO01	Fundamentals of Databases	3	0	2	4	CSE
13.	20CSO02	Python Programming and Frameworks	3	0	2	4	CSE
14.	20ITO01	Artificial Intelligence	3	1	0	4	IT
15.	20ITO02	Web Technologies	3	1	0	4	IT
16.	20ITO03	Introduction to Operating Systems	3	1	0	4	IT
17.	20ITO04	Programming in Python	3	1	0	4	IT
18.	20FTO01	Baking Technology	3	0	2	4	FT
19.	20FTO02	Food Processing Technology	3	1	0	4	FT
20.	20CDO01	Fundamentals of User Experience Design	3	1	0	4	CSD
21.	20ADO01	Data Warehousing and Data Mining	3	0	2	4	AIDS
22.	20ALO01	Business Intelligence	3	1	0	4	AIML
23.	20PHO01	Thin Film Technology	3	1	0	4	PHY
24.	20CYO01	Instrumental Methods of Analysis	3	1	0	4	CHEMIS
		SEMESTER - V					
25.	20CEO02	Disaster Management	3	1	0	4	CIVIL
26.	20MEO02	Design of Experiments	3	0	2	4	MECH
27.	20MTO02	Factory Automation	3	0	2	4	MTS
28.	20MTO03	Data Acquisition and Virtual Instrumentation	3	0	2	4	MTS
29.	20AUO02	Automotive Electronics	3	0	2	4	AUTO
30.	20ECO04	PCB Design and Fabrication	3	0	2	4	ECE
31.	20EEO04	Energy Conservation and Management	3	1	0	4	EEE

	East: 1964						
32.	20EIO02	Industrial Automation	3	1	0	4	EIE
33.	20EIO03	Measurements and Instrumentation	3	1	0	4	EIE
34.	20CSO03	Computational Science for Engineers	3	1	0	4	CSE
35.	20CSO04	Formal Languages and Automata	3	1	0	4	CSE
36.	20ITO05	Data Science	3	1	0	4	IT
37.	20ITO06	Advanced Java Programming	3	1	0	4	IT
38.	20FTO03	Processing of Milk and Milk Products	3	0	2	4	FT
39.	20FTO04	Processing of Fruits and Vegetables	3	0	2	4	FT
40.	20CDO02	Fundamentals of User Interactive Design	3	0	2	4	CSD
41.	20ADO02	Computer Vision	3	0	2	4	AIDS
42.	20ALO02	Data Exploration and Visualization Techniques	3	0	2	4	AIML
43.	20PHO02	High Energy Storage Devices	3	0	0	3	PHY
44.	20CYO02	Corrosion Science and Engineering	3	1	0	4	CHEMIS
45.	20CYO03	Chemistry of Cosmetics in Daily Life	3	1	0	4	CHEMIS
46.	20CYO04	Chemistry of Nutrition for Women Health	3	1	0	4	CHEMIS
47.	20MAO01	Mathematical Foundations for Machine Learning	3	1	0	4	MATHS
48.	20MAO02	Graph Theory and its Applications	3	1	0	4	MATHS
		SEMESTER - VI					
49.	20CEO03	Introduction to Smart Cities	3	0	0	3	CIVIL
50.	20CEO04	Environmental Health and Safety	3	0	0	3	CIVIL
51.	20MEO03	Fundamentals of Ergonomics	3	0	0	3	MECH
52.	20MEO04	Principles of Management and Industrial Psychology	3	0	0	3	MECH
53.	20MTO04	3D Printing and Design	3	0	0	3	MTS
54.	20MTO05	Drone System Technology	3	0	0	3	MTS
55.	20MTO06	Virtual and Augument Reality in Industry 4.0	3	0	0	3	MTS
56.	20AUO03	Vehicle Maintenance	3	0	0	3	AUTO
57.	20ECO05	Electronic Hardware and Troubleshooting	2	0	2	3	ECE
58.	20ECO06	Bioinspired Computing Technologies	2	0	2	3	ECE
59.	20EEO05	Micro Grid and Smart Grid	3	0	0	3	EEE
60.	20EEO06	E-Waste Management	3	0	0	3	EEE
61.	20EIO04	Biomedical Instrumentation and Applications	3	0	0	3	EIE
62.	20EIO05	PLC Programming and Its Applications	3	0	0	3	EIE
63.	20EIO06	Instrumentation for Industry 4.0	3	0	0	3	EIE
64.	20CSO05	Java Programming	2	0	2	3	CSE
65.	20CSO06	Web Engineering	2	0	2	3	CSE
66.	20CSO07	Nature Inspired Optimization Techniques	3	0	0	3	CSE

	Eatd: 1984						-						
67.	20ITO07	Bio Natural Language Processing	3	0	0	3	IT						
68.	20ITO08	Disaster Management for Information Technology	3	0	0	3	IT						
69.	20FTO05	Principles of Food Safety	3	0	0	3	FT						
70.	20FTO06	Fundamentals of Food Packaging and Storage	3	0	0	3	FT						
71.	20CDO03	Introduction to Mobile Game Design	3	0	0	3	CSD						
72.	20ADO03	Neural Networks and Deep Learning	3	0	0	3	AIDS						
73.	20ALO03	Industrial Machine Learning	3	0	0	3	AIML						
74.	20PHO03	Structural and Optical Characterization of Materials	3	0	0	3	PHY						
75.	20CYO05	Chemistry Concepts for Competitive Examinations	3	0	0	3	CHEMIS						
76.	20CYO06	Waste and Hazardous Waste Management	3	0	0	3	CHEMIS						
77.	20MAO03	Data Analytics using R Programming	3	0	2	4	MATHS						
78.	20MAO04	Number Theory and Cryptography	3	1	0	4	MATHS						
		SEMESTER - VIII											
79.	20CEO05	Infrastructure Planning and Management	3	0	0	3	CIVIL						
80.	20CEO06	Environmental Laws and Policy	3	0	0	3	CIVIL						
81.	20MEO05	Safety Measures for Engineers	3	0	0	3	MECH						
82.	20MEO06	Energy Conservation in Thermal Equipments	3	0	0	3	MECH						
83.	20MTO06	Robotics	3	0	0	3	MTS						
84.	20MTO07	Virtual and Augment Reality in Industry 4.0	3	0	0	3	MTS						
85.	20AUO04	Public Transport Management	3	0	0	3	AUTO						
86.	20AUO05	Autonomous Vehicles	3	0	0	3	AUTO						
87.	20ECO07	Optical Engineering	3	0	0	3	ECE						
88.	20EEO07	Electric Vehicle	3	0	0	3	EEE						
89.	20EIO07	Graphical Programming using Virtual Instrumentation	3	0	0	3	EIE						
90.	20EIO08	Testing of Materials	3	0	0	3	EIE						
91.	20CSO08	Fundamentals of Internet of Things	3	0	0	3	CSE						
92.	20CSO09	Machine Translation	3	0	0	3	CSE						
93.	20CSO10	Fundamentals of Blockchain	3	0	0	3	CSE						
94.	20ITO09	Modern Application Development	3	0	0	3	IT						
95.	20ITO10	Object Oriented System Development using UML	3	0	0	3	IT						
96.	20ITO11	Reinforcement Learning	3	0	0	3	IT						
97.	20FTO07	Food Ingredients	3	0	0	3	FT						
98.	20FTO08	Food and Nutrition	3	0	0	3	FT						
99.	20CDO04	Introduction to Graphics Design	3	0	0	3	CSD						
100.	20ADO04	Business Analytics	3	0	0	3	AIDS						
101.	20ALO04	Machine Learning for Smart Cities	3	0	0	3	AIML						

102.	20MAO05	Advanced Linear Algebra	3	0	0	3	MATHS
103.	20MAO06	Optimization Techniques	3	0	0	3	MATHS

GENERAL OPEN ELECTIVE

(Common to All BE/BTech branches)

S.No.	Course Code	Course Title	L	Т	Р	С	Offering Dept.	Semester
1	20GEO01	German Language Level 1	4	0	0	4	IV/V/VII/VIII	ECE
2	20GEO02	Japanese Language Level 1	4	0	0	4	IV/V/VII/VIII	ECE
3	20GEO03	Design Thinking for Engineers	3	1	0	4	V	CSE
4	20GEO04	Innovation and Business Model Development	3	1	0	4	VI	MTS
5	20GEO05	German Language Level 2	4	0	0	4	IV/V/VII/VIII	ECE
6	20GEO06	German Language Level 3	3	0	0	3	IV/V/VII/VIII	ECE
7	20GEO07	German Language Level 4	3	0	0	3	IV/V/VII/VIII	ECE
8	20GEO08	Japanese Language Level 2	4	0	0	4	IV/V/VII/VIII	ECE
9	20GEO09	Japanese Language Level 3	3	0	0	3	IV/V/VII/VIII	ECE
10	20GEO10	Japanese Language Level 4	3	0	0	3	IV/V/VII/VIII	ECE
11	20GEO11	NCC Studies (Army Wing) - I	3	0	2	4	V/VI	EEE
12	20GEO12	NCC Studies (Air Wing) - I	3	0	2	4	V/VI	IT
13	20GEO13	French Language Level 1	4	0	0	4	IV/V/VII/VIII	ECE
14	20GEO14	French Language Level 2	4	0	0	4	IV/V/VII/VIII	ECE
15	20GEO15	French Language Level 3	3	0	0	3	IV/V/VII/VIII	ECE
16	20GEO16	Spanish Language Level 1	4	0	0	4	IV/V/VII/VIII	ECE
17	20GEO17	Spanish Language Level 2	4	0	0	4	IV/V/VII/VIII	ECE
18	20GEO18	Spanish Language Level 3	3	0	0	3	IV/V/VII/VIII	ECE
19	20GEO19	Entrepreneurship Development	3	0	0	3	VIII	MTS

KEC R2020: SCHEDULING OF COURSES – BTech (Chemical Engineering) Total Credits: 169

						I (Cilcillea	0	0/			
Sem.	Course1	Course2	Course3	Course4	Course5	Course6	Course7	Course8	Course9	Course10	Credi ts
Ι	20EGT11 English Language Skills (3-0-0-3)	lish Language Matrices and		20CYT11 Applied Chemistry (3-0-0-3)	20CHT11 Chemical Process Industries (3-0-0-3)	20MEC11 Engineering Drawing (2-0-2 -3)	20MEL11 Engineering Practices Laboratory (0-0-2-1)	20PHL11 Physical Sciences Laboratory - I (0-0-2-1)	Induction Training Program (0-0-0-0)	20VEC11 Yoga and Values for Holistic Development (1-0-1-1)	22
=	20EGT21 Advanced Communication Skills (3-0-0-3)	20MAC21 Multivariable Calculus and Complex Analysis (3-1*-2*-4)	20PHT25 Physics for Chemical Engineering (3-0-0-3)	20CYT24 Industrial Chemistry (3-0-0-3)	20CHT21 Chemical Process Utilities (3-1-0-4)/ 20CSC31 Programming in C (3-0-2-4)	20CHT22 Electrical Drives and Industrial Electronics (3-0-0-3)	20CHL21 Electrical Drives and Industrial Electronics Laboratory (0-0-2-1)	20PHL22 Physical Sciences Laboratory II(0- 0-2-1)			22
II	20MAT31 Probability and Partial Differential Equations (3-1-0-4)	20CSC31 Programming in C / 20CSC41 Python Programming (3-0-2-4)	20CHT31 Chemical Engineering Thermodynami cs (3-1-0-4)	20CHT32 Applied Organic Chemistry (3-0-0-3)	20CHT33 Fluid Mechanics (3-0-0-3)	20CHT34 Chemical Process Calculations (3-1-0-4)	20CHL31 Applied Organic Chemistry Laboratory (0-0-2-1)	20CHL32 Fluid Mechanics Laboratory (0-0-2-1)	20MNT31 Environmental Science (2-0-0-0)		24
IV	20MAT41 Statistics and Numerical Methods (3-1-0-4)	20CSC41 Python Programming (3-0-2-4)/ 20CHT21 Chemical Process Utilities (3-1-0-4)	20CHT41 Mechanical Operations (3-0-0-3)	20CHT42 Process Heat Transfer (3-0-0-3)	Open Elective I (3-1-0-4)	20CHL41 Mechanical Operations Laboratory (0-0-2-1)	20CHL42 Process Heat Transfer Laboratory (0-0-2-1)	20EGL31 English for Workplace Communication Laboratory (0-0-2-1)	20GET31 Universal Human Values (2-0-0-2)		23
V	20CHT51 Mass Transfer I (3-1-0-4)	20CHT52 Chemical Reaction Engineering I (3-0-0-3)	20CHT53 Chemical Equipment Design and Drawing (3-1-0-4)	Professional Elective I (3-0-0-3)	Open Elective II (3-1-0-4)	20CHL51 Chemical Reaction Engineering Laboratory (0-0-2-1)	20CHL52 Process Computation Laboratory (0-0-2-1 (0-0-2-1)	20GEL51/ 20GEI51 Professional Skills Training- I / Industrial Training- I (0-0-0-2)			22
VI	20CHT61 Mass Transfer II (3-0-0-3)	20CHT62 Process Modeling and Simulation (3-0-0-3)	20CHT63 Process Instrumentatio n Dynamics and Control (3-0-0-3)	Open Elective III (3-0-0-3)	20CHL61 Mass Transfer Laboratory (0-0-2-1)	20CHL62 Process Modeling and Simulation Laboratory (0-0-2-1)	20CHL63 Process Instrumentati on and Control Lab (0-0-2-1)	20CHP61 Project Work I (0-0-4-2)	20GEL61/ 20GEI61 Professional Skills Training II / Industrial Training II (0-0-0-2)	20GEP61 Comprehensiv e Test / Viva (0-0-0-2)	21
VII	20CHT71 Process Engineering and Economics (3-0-0-3)	20CHT72 Transport Phenomena (3-1-0-4)	Professional Elective II (3-0-0-3)	Professional Elective III (3-0-0-3)	Professional Elective IV (3-0-0-3)	Professional Elective V (3-0-0-3)	20CHP71 Project Work II Phase I (0-0-12-6)				22
VIII	Open Elective IV (3-0-0-3)	Professional Elective VI (3-0-0-3)	20CHP81 Project Work II Phase II (0-0-8-4)								13

PO1 PO3 **PO4** PO5 **PO6** PO7 **PO8** PO9 PO10 PO11 PO12 PSO1 PSO2 Sem. **Course Code Course Title** PO2 ✓ ✓ ✓ ✓ ✓ 1 English Language Skills 20EGT11 ✓ ✓ \checkmark Matrices and Differential Equations \checkmark \checkmark 1 20MAC11 ✓ ✓ \checkmark 20PHT11 1 **Applied Physics** ✓ ✓ \checkmark ~ 1 20CYT11 **Applied Chemistry** \checkmark ✓ \checkmark ✓ √ \checkmark ✓ ✓ ✓ ✓ 20CHT11 **Chemical Process Industries** 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ \checkmark 1 1 20MEC11 **Engineering Drawing** ✓ ✓ ✓ ✓ ✓ ✓ 1 ✓ 1 20MFI 11 **Engineering Practices Laboratory** ✓ 20PHL11 Physical Sciences Laboratory I 1 \checkmark ✓ \checkmark \checkmark 1 20MNT11 Induction Training Program # 20VEC11 ✓ ✓ ✓ \checkmark 1 Yoga and Values for Holistic Education ✓ ✓ \checkmark 2 20EGT21 Advanced Communication Skills ✓ \checkmark ✓ ✓ ✓ ✓ \checkmark 2 20MAC21 Multivariable Calculus and Complex Analysis \checkmark \checkmark 2 20PHT25 Physics for Chemical Engineering \checkmark ✓ 2 20CYT24 ✓ ✓ \checkmark Industrial Chemistry ✓ ✓ \checkmark \checkmark \checkmark \checkmark 2 20CHT21 Chemical Process Utilities \checkmark ✓ ✓ ✓ ✓ \checkmark \checkmark ✓ \checkmark 2 20CSC31 Programming in C ✓ 1 ✓ \checkmark 2 20CHT22 **Electrical Drives and Industrial Electronics Electrical Drives and Industrial Electronics** \checkmark ✓ ✓ ✓ ✓ 20CHL21 \checkmark 2 Laboratory 2 20PHL29 Physical Sciences Laboratory II \checkmark \checkmark \checkmark \checkmark 3 20MAT31 **Probability and Partial Differential Equations** ✓ ✓ \checkmark 3 ~ \checkmark ✓ ✓ \checkmark 20CSC31 Programming in C ✓ ✓ ✓ ✓ ✓ \checkmark ✓ 3 20CHT31 **Chemical Engineering Thermodynamics** \checkmark ✓ ✓ ✓ ✓ ✓ \checkmark ✓ ✓ ✓ ✓ 3 20CHT32 Applied Organic Chemistry ✓ ✓ √ \checkmark ✓ ✓ \checkmark 3 20CHT33 Fluid Mechanics \checkmark ✓ ~ ✓ ✓ ✓ \checkmark 3 20CHT34 **Chemical Process Calculations** \checkmark ✓ ✓ ✓ \checkmark Applied Organic Chemistry Laboratory \checkmark ✓ \checkmark ✓ \checkmark 3 20CHL31 ✓ √ \checkmark \checkmark ✓ \checkmark \checkmark 3 20CHL32 Fluid Mechanics Laboratory \checkmark \checkmark \checkmark \checkmark

MAPPING OF COURSES WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

BTech - Chemical Engineering, Regulations 2020, Curriculum and Syllabi

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	20MNT31	Environmental Science	✓	✓	✓				✓					✓	✓	✓
4	20MAT41	Statistics and Numerical Methods	✓	✓	✓	~										
4	20CSC41	Python Programming	✓	✓	✓	✓										
4	20CHT41	Mechanical Operations	✓	✓	✓	✓	✓		✓	✓				✓	✓	✓
4	20CHT42	Process Heat Transfer	✓	✓	✓		✓							✓	✓	✓
4	20CHL41	Mechanical Operations Laboratory	✓	✓				✓	~	✓	~	✓		~	✓	~
4	20CHL42	Process Heat Transfer Laboratory	✓	✓				✓	✓	✓	✓	✓		~	✓	✓
4	20EGL31	English for Workplace Communication Laboratory									~	~		~		
4	20GET31	Universal Human Values						✓	✓	✓	✓	✓				
5	20CHT51	Mass Transfer I	✓	✓	✓	✓								✓	✓	✓
5	20CHT52	Chemical Reaction Engineering I	✓	✓	✓	~	✓	✓	✓	✓				✓	✓	✓
5	20CHT53	Chemical Equipment Design and Drawing	1	~	~	1	~				✓		✓	✓	~	<
5	20CHL51	Chemical Reaction Engineering Laboratory	✓	✓		✓	✓			✓	✓	✓		✓	✓	✓
5	20CHL52	Process Computation Laboratory	✓	\checkmark	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓
5	20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I \$	~	~				✓	~		~	1	1	1		
6	20CHT61	Mass Transfer- II	✓	✓	✓	✓								✓	✓	✓
6	20CHT62	Process Modeling and Simulation	✓	✓	✓		✓						✓	✓	✓	✓
6	20CHT63	Process Instrumentation Dynamics and Control	~	1	~									✓	~	✓
6	20CHL61	Mass Transfer Laboratory	✓	✓		1	✓			✓	✓	✓		✓	✓	✓
6	20CHL62	Process Modeling and Simulation Laboratory	✓	✓		1	✓				✓		✓	✓	✓	✓
6	20CHL63	Process Instrumentation Dynamics and Control Laboratory	~	~		~	~			~	~	~		~	~	~
6	20CHP61	Project Work -I	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	✓
6	20GEL61/20GEI61	Professional Skills Training -II / Industrial Training- II @	~	✓				~	~		~	~	~	~		
6	20GEP71	Comprehensive Test / Viva	✓	✓	✓	1					✓	✓	✓	~	✓	✓
7	20CHT71	Process Engineering and Economics	✓	✓	✓				✓				✓		✓	
7	20CHT72	Transport Phenomena	✓	✓	✓	✓								✓	✓	✓
7	20CHP71	Project Work -II Phase -I	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
8	20CHP81	Project work -II Phase- II	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	✓

BTech - Chemical Engineering, Regulations 2020, Curriculum and Syllabi

Kongu Engineering College, Perundurai, Erode – 638060, India

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
5	20CHE01	Chemical Process Plant Safety	✓	✓	✓	✓		✓	✓	~	✓	✓		✓	✓	✓
5	20CHE02	Organic Synthesis	✓	✓	✓			1	✓	✓				✓	✓	✓
5	20CHE03	Chemical Analysis	✓	✓	✓										✓	✓
5	20CHE04	Bio Chemical Engineering	✓	✓					✓					✓	✓	✓
6	20CHE05	Pulp and Paper Technology	✓	✓					✓						✓	✓
6	20CHE06	Chemical Reaction Engineering- II	✓	✓	✓	✓	✓	1	✓	✓					✓	✓
6	20CHE07	Surface Coating Technology	✓	✓	✓				✓						✓	✓
6	20CHE08	Energy Technology	✓	✓	✓	~		✓	✓	✓	~		✓	✓	✓	✓
6	20CHE09	Modern Separation Processes	✓	✓	✓	✓		✓	✓					✓	✓	✓
7	20CHE10	Air Pollution Control	✓	✓	✓	✓	✓	✓	✓				✓		✓	✓
7	20CHE12	Process Instrumentation	✓	✓										✓	✓	
7	20CHE13	Fertilizer Technology	✓					✓	✓					~	✓	✓
7	20CHE14	Corrosion Technology	✓	✓			✓	✓	✓						✓	✓
7	20CHE15	Natural Gas Engineering	✓	✓			✓	✓	✓						✓	✓
7	20CHE16	Nano Materials and Composite Materials for Chemical Engineers	~	~	~	~	~	~	~	~				~	~	~
7	20CHE17	Fundamentals of Computational Fluid Dynamics	✓	✓	~	1	✓							✓	✓	✓
7	20CHE18	Pharmaceutical Process Technology	✓	✓				✓						✓	✓	✓
7	20CHE19	Process Optimization	✓	✓	✓	1	✓							✓		
7	20CHE20	Nuclear Engineering for Chemical Engineers	1	✓					✓						✓	✓
8	20CHE21	Numerical Techniques in Chemical Engineering	✓	✓	✓	*	✓							✓		
8	20CHE22	Petroleum Refinery Engineering	✓	✓					✓						✓	✓
8	20CHE23	Industrial Waste Water Treatment	✓	✓	✓		✓		✓				✓	✓	✓	✓
8	20CHE24	Piping Engineering	✓	✓	✓		✓							✓	✓	✓
8	20CHE25	Battery and Fuel Cell Technology	✓	✓										✓	✓	✓
8	20CHE26	Fluid Movers	1	✓										✓	✓	✓
8	20CHE27	Advanced Process Control	✓	✓	✓		✓							1	✓	✓
8	20CHE28	Ores and Mineral Processing	✓	✓		~			✓	~					~	✓
8	20CHE29	Polymer Technology	✓	✓					✓						✓	✓

Kongu Engineering	; College, Perundura	i, Erode – 638060, India
-------------------	----------------------	--------------------------

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		OPEN ELECTIVE														
4	20CEO01	Remote Sensing and its Applications	✓	✓	✓	✓		✓			✓			✓		
4	20MEO01	Renewable Energy Sources	✓	✓		✓			✓		✓	✓				
4	20MT001	Design of Mechatronics Systems	✓	✓	✓	✓	✓							✓		
4	20AUO01	Automotive Engineering	✓	✓	✓		✓				✓	✓				
4	20ECO01	Wearable Technology	✓	✓	✓	✓		✓		✓				✓		
4	20ECO02	Basics of Electronics in Automation Appliances	~	~	~	~		~	~	~			~	~		
4	20ECO03	Principles of Quantum Computing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark		✓		
4	20EEO01	Solar and Wind Energy Systems	\checkmark	~	✓				\checkmark							
4	20EEO02	Electrical Wiring and Lighting	~	✓	~	✓	✓									
4	20EEO03	Electrical Safety	✓	✓	✓											
4	20EIO01	Digital Image Processing and Its Applications	~	~	~	~	~									
4	20CSO01	Fundamentals of Databases	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
4	20CSO02	Python Programming and Frameworks														
4	20ITO01	Artificial Intelligence	\checkmark	\checkmark	\checkmark	\checkmark										
4	20ITO02	Web Technologies	✓	~	✓											
4	20ITO03	Introduction to Operating Systems	✓	✓	✓	✓										
4	20ITO04	Programming in Python			✓		✓							✓		
4	20CHO01	Drugs and Pharmaceuticals Technology	~	~	~	~	~									
4	20CHO02	Process Automation	\checkmark	\checkmark	~		\checkmark									
4	20FTO01	Baking Technology	✓	~	✓	~	~	✓			~	~	~	✓		
4	20FTO02	Food Processing Technology	✓	✓	✓	~								✓		
4	20CDO01	Fundamentals of User Experience Design	~	~	~	~					~	~	~			
4	20ADO01	Data Warehousing and Data Mining	✓	✓	~											
4	20ALO01	Business Intelligence	✓	✓	✓											
4	20PHO01	Thin Film Technology	\checkmark	✓	\checkmark											

4	Entra 1964														
4	20CYO01	Instrumental Methods of Analysis	✓	\checkmark	✓	\checkmark									
5	20CEO02	Disaster Management	✓	✓	✓			✓	✓					✓	
5	20MEO02	Design of Experiments	~	~	✓	~	~						~		
5	20MTO02	Factory Automation	✓	✓	✓	✓	✓	✓			✓	✓		✓	
5	20MTO03	Data Acquisition and Virtual Instrumentation	~	~	~	~	~				~	~		~	
5	20AUO02	Automotive Electronics	✓	✓	✓	✓	✓				✓	✓		✓	
5	20ECO04	PCB Design and Fabrication	✓	✓	✓		✓			\checkmark	\checkmark	✓		\checkmark	
5	20EEO04	Energy Conservation and Management	~	~	~		~								
5	20EIO02	Industrial Automation	✓	✓	✓	✓	✓								
5	20EIO03	Measurements and Instrumentation	✓	✓	✓	✓	~								
5	20CSO03	Computational Science for Engineers	~	\checkmark	\checkmark										
5	20CSO04	Formal Languages and Automata	~	~	~										
5	20ITO05	Data Science	~	✓	✓	✓									
5	20ITO06	Advanced Java Programming	✓	✓	✓										
5	20CHO03	Renewable Bioenergy Resources	~	✓	✓	✓			~						
5	20CHO04	Intelligent Controllers	✓		✓	✓		✓							
5	20FTO03	Processing of Milk and Milk Products	~	✓	✓		✓	~		✓	✓	✓		✓	
5	20FTO04	Processing of Fruits and Vegetables	✓	~	✓		~	~		~	~	✓		✓	
5	20CDO02	Fundamentals of User Interactive Design	~	~	~										
5	20ADO02	Computer Vision	~	\checkmark	\checkmark	\checkmark	\checkmark								
5	20ALO02	Data Exploration and Visualization Techniques	~	~	~	~	~								
5	20PHO02	High Energy Storage Devices	~	~	~										
5	20CYO02	Corrosion Science and Engineering	~	~	~	~									
5	20CYO03	Chemistry of Cosmetics in Daily Life	~	✓	✓										
5	20CYO04	Chemistry of Nutrition for Women Health	~	~	~										
5	20MAO01	Mathematical Foundations for Machine Learning	~	~		~	~								
5	20MAO02	Graph Theory and its Applications	✓	~	✓										

592	
10 al 10	
Station - S	
Consent of the	

Kongu Engineering College, Perundurai, Erode – 638060, India

Eab	Selan														•	
6	20CEO03	Introduction to Smart Cities	\checkmark	✓	✓											
6	20CEO04	Environmental Health and Safety	\checkmark	\checkmark	\checkmark	\checkmark										
6	20MEO03	Fundamentals of Ergonomics	✓	✓	✓	~	✓	✓	✓					✓		
6	20MEO04	Principles of Management and Industrial Psychology						~		~	~	~	~			
6	20MTO04	3D Printing and Design	\checkmark	\checkmark	\checkmark	✓	\checkmark						\checkmark	✓		
6	20MTO05	Drone System Technology	✓	✓	✓	~	~						~	✓		
6	20MTO06	Virtual and Augument Reality in Industry 4.0														
6	20AUO03	Vehicle Maintenance	\checkmark	\checkmark	\checkmark	✓								✓		
6	20ECO05	Electronic Hardware and Troubleshooting	✓	~	~	~	~	✓								
6	20ECO06	Bioinspired Computing Technologies	✓	✓	✓		✓				✓					
6	20EEO05	Micro Grid and Smart Grid	\checkmark	\checkmark	\checkmark	✓										
6	20EEO06	E-Waste Management	~	✓	~	~										
6	20EIO04	Biomedical Instrumentation and Applications	✓	~	~	~	~	~								
6	20EIO05	PLC Programming and Its Applications	✓	~	~	~	~									
6	20EIO06	Instrumentation for Industry 4.0	✓	✓	✓	✓	✓									
6	20CSO05	Java Programming	\checkmark	✓	✓	✓	✓									
6	20CSO06	Web Engineering	\checkmark	\checkmark	~	✓	~									
6	20CSO07	Nature Inspired Optimization Techniques	~	~	~											
6	20ITO07	Bio Natural Language Processing	\checkmark	\checkmark	\checkmark	✓										
6	20ITO08	Disaster Management for Information Technology	~	~	~	~										
6	20CHO05	Food as Medicine	\checkmark	✓	✓	✓		✓						✓		
6	20CHO06	Organic Farming	✓		✓			✓	~	~	✓		✓	✓		
6	20FTO05	Principles of Food Safety	✓	~	~		✓	✓	✓	✓				~		
6	20FTO06	Fundamentals of Food Packaging and Storage	~	~	~		~	~		~				~		
6	20CDO03	Introduction to Mobile Game Design	~	✓	✓											
6	20ADO03	Neural Networks and Deep Learning	\checkmark	✓	✓											

7	Eatd : 1964														
6	20ALO03	Industrial Machine Learning	\checkmark	\checkmark	~										
6	20PHO03	Structural and Optical Characterization of Materials	~	~	~										
6	20CYO05	Chemistry Concepts for Competitive Examinations	~	~	~										
6	20CYO06	Waste and Hazardous Waste Management	~	~	~	~			~						
6	20MAO03	Data Analytics using R Programming	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
6	20MAO04	Number Theory and Cryptography	~	✓	✓		✓								
8	20CEO05	Infrastructure Planning and Management	~	~	~										
8	20CEO06	Environmental Laws and Policy	~	✓	✓	✓									
8	20MEO05	Safety Measures for Engineers	\checkmark			\checkmark		\checkmark	\checkmark	~					
8	20MEO06	Energy Conservation in Thermal Equipments	~	~											
8	20MTO06	Robotics	~	\checkmark	\checkmark	\checkmark	\checkmark							\checkmark	
8	20MTO07	Virtual and Augment Reality in Industry 4.0	~	~	~	~	~	~						~	
8	20AUO04	Public Transport Management	\checkmark	✓				\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	
8	20AUO05	Autonomous Vehicles	\checkmark	\checkmark	\checkmark										
8	20ECO07	Optical Engineering	✓	✓	✓	✓		✓		✓	✓			✓	
8	20EEO07	Electric Vehicle	✓	✓	✓	~									
8	20EIO07	Graphical Programming using Virtual Instrumentation	~	~	~	~	~								
8	20EIO08	Testing of Materials	~	\checkmark	\checkmark	\checkmark	\checkmark								
8	20CSO08	Fundamentals of Internet of Things	~	\checkmark	✓		\checkmark								
8	20CSO09	Machine Translation	✓	✓	✓										
8	20CSO10	Fundamentals of Blockchain	✓	~	~										
8	20ITO09	Modern Application Development	✓	✓	✓	✓									
8	20ITO10	Object Oriented System Development using UML	~	~	~	~									
8	20ITO11	Reinforcement Learning	~	✓	✓	~									
8	20CHO07	Cosmetics and Personal Health Care Products	~		~			~		~				~	
8	20CHO08	Brewing and Alcohol Technology	~	\checkmark											

195	1984					-	-								
8	20FTO07	Food Ingredients	✓	✓	✓			\checkmark						\checkmark	
8	20FTO08	Food and Nutrition	~	✓	✓			~						✓	
8	20CDO04	Introduction to Graphics Design	✓	✓	✓										
8	20ADO04	Business Analytics	✓	✓	✓										
8	20ALO04	Machine Learning for Smart Cities	~	✓	✓										
8	20MAO05	Advanced Linear Algebra	~	✓	✓										
8	20MAO06	Optimization Techniques	✓	✓	✓										
		GENERAL OPEN ELECTIVE													
4,5,6,8	20GEO01	German Language Level 1								✓	✓	✓		✓	
4,5,6,8	20GEO02	Japanese Language Level 1								✓	✓	✓		✓	
5	20GEO03	Design Thinking for Engineers	~	✓	✓										
6	20GEO04	Innovation and Business Model Development	~	~	~	~	~	~	~	~	~	~	~	~	
4,5,6,8	20GEO05	German Language Level 2								✓	✓	\checkmark		\checkmark	
4,5,6,8	20GEO06	German Language Level 3								✓	✓	✓		✓	
4,5,6,8	20GEO07	German Language Level 4								\checkmark	\checkmark	\checkmark		\checkmark	
4,5,6,8	20GEO08	Japanese Language Level 2								~	✓	~		✓	
4,5,6,8	20GEO09	Japanese Language Level 3								~	✓	~		✓	
4,5,6,8	20GEO10	Japanese Language Level 4								✓	✓	✓		✓	
4,5,6,8	20GEO11	NCC Studies (Army Wing) - I	✓	✓	✓	✓	~	✓	✓	✓	✓	✓			
4,5,6,8	20GEO12	NCC Studies (Air Wing) - I	~	✓	✓	✓	✓	✓	✓	✓	✓	✓			
4,5,6,8	20GEO13	French Language Level 1								✓	✓	✓		✓	
4,5,6,8	20GEO14	French Language Level 2								✓	✓	✓		✓	
4,5,6,8	20GEO15	French Language Level 3								~	~	~		✓	
4,5,6,8	20GEO16	Spanish Language Level 1								✓	✓	✓		✓	
4,5,6,8	20GEO17	Spanish Language Level 2								✓	✓	✓		✓	
4,5,6,8	20GEO18	Spanish Language Level 3								~	~	~		✓	
8	20GEO19	Entrepreneurship Development	~	~	~	~	~	~	~	✓	~	✓	✓	✓	

	SEME	STER	-1						
Course	Course Title		Hours Week	-	Credit	Max	cimum M	arks	CBS
Code		L	Т	Р		CA	ESE	arks Total 100 100 100 100 100 100 100 100 100 10	
Theory/Theo	bry with Practical								
20EGT11	English Language Skills	3	0	0	3	50	50	100	HS
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS
20PHT11	Applied Physics	3	0	0	3	50	50	100	BS
20CYT11	Applied Chemistry	3	0	0	3	50	50	100	BS
20CHT11	Chemical Process Industries	3	0	0	3	50	50	100	PC
20MEC11	Engineering Drawing	2	0	2	3	50	50	100	ES
Practical / E	mployability Enhancement								
20MEL11	Engineering Practices Laboratory	0	0	2	1	50	50	100	ES
20PHL11	Physical Sciences Laboratory I	0	0	2	1	50	50	100	BS
20VEC11	Yoga and Values for Holistic Development	1	0	1	1	100	0	100	HS
20MNT11	Student Induction Program #	-	-	-	0	100	0	100	MC
	•		Tot	al cre	dits to be e	earned	22	50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 0 100 0 100	

*Alternate weeks

	SEMES	TER	- 11						
Course	Course Title	L T P CA ES tion Skills 3 0 0 3 50 50 and Complex Analysis 3 1* 2* 4 50 50 Engineering 3 0 0 3 50 50 3 0 0 3 50 50 ities 3 1 0 4 50 50 ities 3 0 0 3 50 50 ities 3 1 0 4 50 50 industrial Electronics 3 0 0 3 50 50 industrial Electronics 3 0 0 3 50 50	kimum Ma	arks	CBS				
Code		L	Т	Р		CA	ESE	Total	
Theory/Theo	ory with Practical								
20EGT21	Advanced Communication Skills	3	0	0	3	50	50	100	HS
20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	50	50	100	BS
20PHT25	Physics for Chemical Engineering	3	0	0	3	50	50	100	BS
20CYT24	Industrial Chemistry	3	0	0	3	50	50	100	BS
20CHT21	Chemical Process Utilities	3	1	0	4	50	50	100	PC
20CHT22	Electrical Drives and Industrial Electronics	3	0	0	3	50	50	100	ES
Practical / E	mployability Enhancement								
20CHL21	Electrical Drives and Industrial Electronics Laboratory	0	0	2	1	50	50	100	ES
20PHL29	Physical Sciences Laboratory II	0	0	2	1	50	50	100	BS
			Т	otal cr	edits to be	earned	22		

*Alternate weeks

	SEMEST	ER – III							
Course	Course Title	Но	urs/V	Veek	Credit	Max	imum l	Varks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
20MAT31	Probability and Partial Differential Equations	3	1	0	4	50	50	100	BS
20CSC31	Programming in C	3	0	2	4	50	50	100	ES
20CHT31	Chemical Engineering Thermodynamics	3	1	0	4	50	50	100	ES
20CHT32	Applied Organic Chemistry	3	0	0	3	50	50	100	PC
20CHT33	Fluid Mechanics	3	0	0	3	50	50	100	PC
20CHT34	Chemical Process Calculations	3	1	0	4	50	50	100	PC
Practical / E	mployability Enhancement								
20CHL31	Applied Organic Chemistry Laboratory	0	0	2	1	50	50	100	ES
20CHL32	Fluid Mechanics Laboratory	0	0	2	1	50	50	100	PC
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC
	Total Credits to be earned				24				

	LTPCreditCAESETotalTheory with PracticalIIIIIIIIIF41Statistics and Numerical Methods31045050100IC41Python Programming30245050100IC41Mechanical Operations30035050100IF42Process Heat Transfer30035050100IC41Mechanical Operations Laboratory31045050100IC42Process Heat Transfer310215050100IC41Mechanical Operations Laboratory00215050100IC42Process Heat Transfer Laboratory00215050100IC41Mechanical Operations Laboratory00215050100IC43Mechanical Operations Laboratory00215050100IC44Mechanical Operations Laboratory00215050100IC45Mechanical Operations Laboratory00215050100IC45Mechanical Operations Laboratory00215								
Course	Course Title	Но	urs / V	Veek	Credit	Max	imum l	Marks	Cate
Code		L	Т	Р	orean	CA	ESE	Total	gory
Theory/Theory	ory with Practical								
20MAT41	Statistics and Numerical Methods	3	1	0	4	50	50	100	BS
20CSC41	Python Programming	3	0	2	4	50	50	100	ES
20CHT41	Mechanical Operations	3	0	0	3	50	50	100	PC
20CHT42	Process Heat Transfer	3	0	0	3	50	50	100	PC
	Open Elective I	3	1	0	4	50	50	100	OE
Practical / E	mployability Enhancement								
20CHL41	Mechanical Operations Laboratory	0	0	2	1	50	50	100	PC
20CHL42	Process Heat Transfer Laboratory	0	0	2	1	50	50	100	PC
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	50	50	100	HS
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS
	Total Credits to be earned				23				

	SEMEST	ER – V							
Course	October Title	Но	urs / V	Veek	One all	Max	kimum	Catagony	
Code	Course Title	L	т	Р	Credit	CA	ESE	Total	Category
Theory/The	eory with Practical								
20CHT51	Mass Transfer I	3	1	0	4	50	50	100	PC
20CHT52	Chemical Reaction Engineering I	3	0	0	3	50	50	100	PC
20CHT53	Chemical Equipment Design and Drawing	3	1	0	4	50	50	100	PC
	Professional Elective I	3	0	0	3	50	50	100	PE
	Open Elective II	3	1	0	4	50	50	100	OE
Practical /	Employability Enhancement								
20CHL51	Chemical Reaction Engineering Laboratory	0	0	2	1	50	50	100	PC
20CHL52	Process Computation Laboratory	0	0	2	1	50	50	100	PC
20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I \$				2	100	0	100	EC
	Total Credits to be earned				22				

\$ 80 hours of training

	SEME	STER -	VI						
Course		Но	urs / V	Veek	Orealit	Max	kimum	Marks	Cotomorry
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	Category
Theory/The	ory with Practical								
20CHT61	Mass Transfer-II	3	0	0	3	50	50	100	PC
20CHT62	Process Modeling and Simulation	3	0	0	3	50	50	100	PC
20CHT63	Process Instrumentation Dynamics and Control	3	0	0	3	50	50	100	PC
	Open Elective III	3	1/0	0/2	3	50	50	100	OE
Practical / E	Employability Enhancement								
20CHL61	Mass Transfer Laboratory	0	0	2	1	50	50	100	PC
20CHL62	Process Modeling and Simulation Laboratory	0	0	2	1	50	50	100	PC
20CHL63	Process Instrumentation Dynamics and Control Laboratory	0	0	2	1	50	50	100	PC
20CHP61	Project Work I	0	0	4	2	100	0	100	EC
20GEL61/ 20GEl61	Professional Skills Training II / Industrial Training II @				2	100	0	100	EC
20GEP61	Comprehensive Test and Viva				2	100	0	100	EC
	Total Credits to be earned	·	•	·	21				

@ 80 hours of training

	SEMESTER	r – VI							
Course		Но	urs / V	/eek	Credit	Max	kimum	Marks	Category
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	Category
Theory/The	ory with Practical								
20CHT71	Process Engineering and Economics	3	0	0	3	50	50	100	HS
20CHT72	Transport Phenomena	3	1	0	4	50	50	100	PC
	Professional Elective II	3	0	0	3	50	50	100	PE
	Professional Elective III	3	0	0	3	50	50	100	PE
	Professional Elective IV	3	0	0	3	50	50	100	PE
	Professional Elective V	3	0	0	3	50	50	100	PE
Practical / E	Employability Enhancement								
20CHP71	Project Work II Phase I	0	0	12	6	50	50	100	EC
	Total Credits to be earned	•			25		•		

SEMESTER	R – VIII								
Course	Course Title	Но	urs / V	Veek	Credit	Max	kimum	Marks	Catagory
Code	Course Title	L	Т	Ρ	Credit	CA	ESE	Total	Category
Theory/The	eory with Practical								
	Open Elective IV	3	0	0	3	50	50	100	OE
	Professional Elective VI	3	0	0	3	50	50	100	PE
Practical / I	Employability Enhancement								
20CHP81	Project Work II Phase II			8	4	50	50	100	EC
	Total Credits to be earned				10				

Total Credits: 169

B.TECH. DEGREE IN CHEMICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (with the inclusion of Amendment No.2022.18.07) (For the candidates admitted in the academic year 2021-22)

	SEME	STER	- 1						
Course	Course Title		Hours Week	-	Credit	Maximum Marks			CBS
Code		L	Т	Р		CA	ESE	Total	
Theory/Theo	ory with Practical								
20EGT11	English Language Skills	3	0	0	3	40	60	100	HS
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS
20PHT11	Applied Physics	3	0	0	3	40	60	100	BS
20CYT11	Applied Chemistry	3	0	0	3	40	60	100	BS
20CHT11	Chemical Process Industries	3	0	0	3	40	60	100	PC
20MEC11	Engineering Drawing	2	0	2	3	50	50	100	ES
Practical / E	mployability Enhancement								
20MEL11	Engineering Practices Laboratory	0	0	2	1	60	40	100	ES
20PHL11	Physical Sciences Laboratory I	0	0	2	1	60	40	100	BS
20VEC11	Yoga and Values for Holistic Development	1	0	1	1	100	0	100	HS
20MNT11	Student Induction Program #	-	-	-	0	100	0	100	MC
			Tot	al cre	dits to be	earned	22		

*Alternate weeks

	SEMES	TER	- 11						
Course	Course Title		Hours Week	-	Credit	Мах	kimum Ma	arks	CBS
Code		L	Т	Р		CA	ESE	Total	
Theory/Theo	ory with Practical								
20EGT21	Advanced Communication Skills	3	0	0	3	40	60	100	HS
20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	50	50	100	BS
20PHT25	Physics for Chemical Engineering	3	0	0	3	40	60	100	BS
20CYT24	Industrial Chemistry	3	0	0	3	40	60	100	BS
20CSC31	Programming in C	3	0	2	4	50	50	100	ES
20CHT22	Electrical Drives and Industrial Electronics	3	0	0	3	40	60	100	ES
Practical / E	mployability Enhancement								
20CHL21	Electrical Drives and Industrial Electronics Laboratory	0	0	2	1	60	40	100	ES
20PHL29	Physical Sciences Laboratory II	0	0	2	1	60	40	100	BS
			Т	otal cr	edits to be	earned	22		

*Alternate weeks

	SEMEST	ER – III							
Course Code	Course Title	Но	urs/V	urs / Week Maximum M Credit		Marks	Cate		
Code		L	т	Ρ	-	CA ESE		Total	gory
Theory/Theo	bry with Practical								
20MAT31	Probability and Partial Differential Equations	3	1	0	4	40	60	100	BS
20CSC33	Fundamentals of Data Structures	3	0	2	4	50	50	100	ES
20CHT31	Chemical Engineering Thermodynamics	3	1	0	4	40	60	100	ES
20CHT32	Applied Organic Chemistry	3	0	0	3	40	60	100	PC
20CHT33	Fluid Mechanics	3	0	0	3	40	60	100	PC
20CHT34	Chemical Process Calculations	3	1	0	4	40	60	100	PC
Practical / E	mployability Enhancement								
20CHL31	Applied Organic Chemistry Laboratory	0	0	2	1	60	40	100	ES
20CHL32	Fluid Mechanics Laboratory	0	0	2	1	60	40	100	PC
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC
	Total Credits to be earned				24				

	SEMESTER	R – IV							
Course	Course Title	Но	urs / V	Veek	Credit	Max	Cate		
Code	Course True	L	Т	Р	Creuit	CA	ESE	Total	gory
Theory/Theo	ory with Practical								
20MAT41	Statistics and Numerical Methods	3	1	0	4	40	60	100	BS
20CHT21	Chemical Process Utilities	3	1	0	4	40	60	100	PC
20CHT41	Mechanical Operations	3	0	0	3	40	60	100	PC
20CHT42	Process Heat Transfer	3	0	0	3	40	60	100	PC
	Open Elective I	3	1/0	0/2	4	40/ 50	60/ 50	100	OE
Practical / E	mployability Enhancement								
20CHL41	Mechanical Operations Laboratory	0	0	2	1	60	40	100	PC
20CHL42	Process Heat Transfer Laboratory	0	0	2	1	60	40	100	PC
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	60	40	100	HS
20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I \$				2	100	0	100	EC
	Total Credits to be earned				23				

	SEMEST	ER – V							
Course		Но	urs / V	Veek	One all t	Max	kimum	Cotogony	
Code	Course Title	L	т	Р	Credit	CA	ESE	Total	Category
Theory/The	ory with Practical								
20CHT51	Mass Transfer I	3	1	0	4	40	60	100	PC
20CHT52	Chemical Reaction Engineering I	3	0	0	3	40	60	100	PC
20CHT53	Chemical Equipment Design and Drawing	3	1	0	4	40	60	100	PC
	Professional Elective I	3	0	0	3	40	60	100	PE
	Open Elective II	3	1/0	0/2	4	40/ 50	60/ 50	100	OE
Practical / I	Employability Enhancement								
20CHL51	Chemical Reaction Engineering Laboratory	0	0	2	1	60	40	100	PC
20CHL52	Process Computation Laboratory	0	0	2	1	60	40	100	PC
20GEL61/ 20GEI61	Professional Skills Training II / Industrial Training II @				2	100	0	100	EC
	Total Credits to be earned				22				

\$ 80 hours of training

	SEME	STER -	VI						
Course	October Title	Но	urs / V	Veek	One all	Max	kimum	Marks	Catagory
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	Category
Theory/The	eory with Practical								
20CHT61	Mass Transfer-II	3	0	0	3	40	60	100	PC
20CHT62	Process Modeling and Simulation	3	0	0	3	40	60	100	PC
20CHT63	Process Instrumentation Dynamics and Control	3	0	0	3	40	60	100	PC
	Open Elective III	3	1/0	0/2	3	40	60	100	OE
Practical / I	Employability Enhancement								
20CHL61	Mass Transfer Laboratory	0	0	2	1	60	40	100	PC
20CHL62	Process Modeling and Simulation Laboratory	0	0	2	1	60	40	100	PC
20CHL63	Process Instrumentation Dynamics and Control Laboratory	0	0	2	1	60	40	100	PC
20CHP61	Project Work I	0	0	4	2	100	0	100	EC
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS
20GEP61	Comprehensive Test and Viva				2	100	0	100	EC
	Total Credits to be earned				21				

@ 80 hours of training

	SEMESTER	R – VI	l						
Course		Но	urs / V	/eek	Credit	Мах	imum	Catagory	
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	Category
Theory/The	ory with Practical								
20CHT71	Process Engineering and Economics	3	0	0	3	40	60	100	HS
20CHT72	Transport Phenomena	3	1	0	4	40	60	100	PC
	Professional Elective II	3	0	0	3	40	60	100	PE
	Professional Elective III	3	0	0	3	40	60	100	PE
	Professional Elective IV	3	0	0	3	40	60	100	PE
	Professional Elective V	3	0	0	3	40	60	100	PE
Practical / I	Employability Enhancement								
20CHP71	Project Work II Phase I	0	0	12	6	50	50	100	EC
	Total Credits to be earned	•	•	•	25		•		

SEMESTER	R – VIII								
Course	Course Title	Но	urs / V	Veek	Cradit	Max	laximum Marks		Catagory
Code	Course The	L	т	Р	Credit	СА	ESE	Total	Category
Theory/The	ory with Practical								
	Open Elective IV	3	0	0	3	40	60	100	OE
	Professional Elective VI	3	0	0	3	40	60	100	PE
Practical / I	Employability Enhancement								
20CHP81	Project Work II Phase II			8	4	50	50	100	EC
	Total Credits to be earned				10				

Total Credits: 169

S. No.	Course Code	Course Name	L	т	Р	С	Domain Stream
		Semester-V					
		Elective I					
1.	20CHE01	Chemical Process Plant Safety	3	0	0	3	PPO
2.	20CHE02	Organic Synthesis	3	0	0	3	AC&RE
3.	20CHE03	Instrumental Methods of Analysis	3	0	0	3	AC&RE
4.	20CHE04	Chemical Analysis	3	0	0	3	AC&RE
5.	20CHE05	Bio Chemical Engineering	3	0	0	3	СТ
		Semester-VII					
		Elective II					
6.	20CHE06	Pulp and Paper Technology	3	0	0	3	СТ
7.	20CHE07	Chemical Reaction Engineering -II	3	0	0	3	AC&RE
8.	20CHE08	Surface Coating Technology	3	0	0	3	СТ
9.	20CHE09	Energy Technology	3	0	0	3	E&E
10.	20CHE10	Modern Separation Processes	3	0	0	3	PPO
		Elective III					
11.	20CHE11	Air Pollution Control	3	0	0	3	E&E
13.	20CHE12	Process Instrumentation	3	0	0	3	CSMS&C
14.	20CHE13	Fertilizer Technology	3	0	0	3	СТ
15.	20CHE14	Corrosion Technology	3	0	0	3	СТ
16.	20GEE01	Fundamentals of Research	3	0	0	3	GE
		Elective IV					
17.	20CHE15	Natural Gas Engineering	3	0	0	3	СТ
18.	20CHE16	Nano Materials and Composite Materials for Chemical Engineers	3	0	0	3	AC&RE
19.	20CHE17	Fundamentals of Computational Fluid Dynamics	3	0	0	3	CSMS&C
20.	20CHE18	Pharmaceutical Process Technology	3	0	0	3	СТ
21.	20CHE19	Process optimization	3	0	0	3	CSMS&C
22.	20CHE20	Total Quality Management	3	0	0	3	GE
		Elective V					
23.	20CHE21	Nuclear Engineering for Chemical Engineers	3	0	0	3	СТ
24.	20CHE22	Numerical Techniques in Chemical Engineering	3	0	0	3	CSMS&C
25.	20CHE23	Petroleum Refinery Engineering	3	0	0	3	СТ
26.	20CHE24	Industrial Waste Water Treatment	3	0	0	3	E&E
27.	20CHE25	Piping Engineering	3	0	0	3	T&TO
		Semester-VIII					

LIST OF PROFESSIONAL ELECTIVES (PE)

Č.

Kongu Engineering College, Perundurai, Erode – 638060, India

		Elective VI					
28.	20CHE26	Battery and Fuel Cell Technology	3	0	0	3	E&E
29.	20CHE27	Fluid Movers	3	0	0	3	T&TO
30.	20CHE28	Advanced Process Control	3	0	0	3	CSMS&C
31.	20CHE29	Ores and Mineral Processing	3	0	0	3	PPO
32.	20CHE30	Polymer Technology	3	0	0	3	СТ

* Domain/Stream Abbreviations: T&TO-Thermodynamics & Transport Operations, CSM&S-Chemical Systems Modeling & Simulation & Control, AC&RE –Applied Chemistry & Reaction Engineering, PPO-Process Plant Operation, CT-Chemical Technology, E&E-Energy & Environment

LIST OF OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)

(Common to all departments except offering department)

0.11			Но	urs/We	ek		•
S.No.	Course Code	Course Title	L	Т	Ρ	Credit 4 4 4 4 4 4 4 4 4 3 4 4 4 4 5 6 7 <th>Sem</th>	Sem
1.	20CHO01	Drugs and Pharmaceuticals Technology	3	1	0	4	IV
2.	20CHO02	Process Automation	3	1	0	4	IV
3.	20CHO03	Renewable Bioenergy Resources	3	1	0	4	V
4.	20CHO04	Intelligent Controllers	3	1	0	4	V
5.	20CHO09	Industrial Enzymology	3	1	0	4	V
6.	20CHO10	Waste to Energy Conversion	3	1	0	4	V
7.	20CHO11	Applied Nanotechnology	3	1	0	4	V
8.	20CHO05	Food as Medicine	3	0	0	3	VI
9.	20CHO06	Organic Farming	3	0	0	3	VI
10.	20CHO12	Air Pollution Monitoring and Control	3	0	0	3	VI
11.	20CHO13	Paints and Coatings	3	0	0	3	VI
12.	20CHO14	Powder Technology	3	0	0	3	VI
13.	20CHO07	Cosmetics and Personal health Care Products	3	0	0	3	VIII
14.	20CHO08	Brewing and Alcohol Technology	3	0	0	3	VIII
15.	20CHO15	Hydrogen Energy	3	0	0	3	VIII
16.	20CHO16	Industrial Accident Prevention and Management	3	0	0	3	VIII
17.	20CHO17	Electrochemical Engineering	3	0	0	3	VIII
18.	20CHO18	Smart and Functional Materials	3	0	0	3	VIII

20EGT11 - ENGLISH LANGUAGE SKILLS

(Common to all Engineering and Technology Branches)

Programme &	Branch	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisites		Nil	1	HS	3	0	0	3
Preamble		rse is designed to impart required levels of fluency in using the n Framework (CEFR).	English	Language at A2	/B1 Le	vel in	the	Common
Unit - I	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabulary. Ac	ctivity B	ased Learning	– Phas	se – I:	1	9
and transporta	ation - Re	ut past experiences - listening to descriptions - Speaking - Exch ading - Life and achievements of a famous personality - Global tra Grammar & Vocabulary – Past tense – Expressions of quantity –	ansport	systems - Writing				
Unit - II	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabulary. Ac	ctivity B	ased Learning	– Phas	se – II	:	9
- Talking abou	ut food - F	about hotels and accommodation - Recipes and food items - Spea Reading - Habit formation and changing habits - International cuis & Vocabulary – Evaluations and Comparisons with adjectives – S	sine - W	riting - Personal	email	- ema	ails a	
Unit - III	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabulary. Ac	ctivity B	ased Learning	– Phas	se – II	I:	9
complaints ar	d offering	about travel - descriptions / conversations about family life - g explanations - Reading - Tourist places and travel experience avelling - Writing guidelines and checklists – Grammar & Vocabula	es - Gr	oup behaviour a	and po	litene	ss -	Writing -
Unit - IV	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabulary. Ac	ctivity B	ased Learning	– Phas	se – I	V :	9
traditions - Re	eading - S	s about festivals - Presentations on technology - Speaking - Sports, hobbies and past time - About different cultures - Writin – Infinitives and Gerunds for uses and purposes – Imperatives fo	ng - Pro	duct Description	n - Wr	iting v	veb	content -
Unit - V	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabulary. Ac	ctivity B	ased Learning	– Phas	se – V	':	9
Skills and abi	lities, Pers es – Jobs	ut changes - Job preferences - Speaking - Comparing different p sonality Development - Employability Skills – Reading - Reading and Personality – Writing - Writing about one's past, present and /ocabulary – Time contrasts – Conditional sentences with "if claus) about l d future	ife experiences – Researching jo	- Emo ob opti	tions = ons –	and	feelings -

Total: 45

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 2", 4th Edition, Cambridge University Press, New York, 2017.

REFERENCES:

TEXT BOOK:

2. Pamela Hartmann and Brenda Wegmann, "New Interactions English Language Learning and Assessment	
Platform (Level Intro - Level IV)", McGraw Hill India, 2020.	

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use language effectively and accurately acquiring vocabulary from real-life context	Applying (K3)
CO2	listen/view and comprehend different spoken discourses / excerpts in different accents	Applying (K3)
CO3	read different genres of texts adopting various reading strategies	Analyzing (K4)
CO4	write cohesively, coherently and flawlessly avoiding grammatical errors, using a wide range of vocabulary, organizing their ideas logically on a topic	Creating (K6)
CO5	speak clearly, confidently, comprehensibly and communicate with others using appropriate communicative strategies	Creating (K6)
	Mapping of COs with POs and PSOs	

l														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			2	3	2	2		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		1		
CO5									2	3		2		
1 - Slight 2 - M	Inderate	3 - Sub	stantial	RT- Bloo	m's Tay	nomy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		16	30	37		17	100
CAT2		17	30	37		16	100
CAT3		13	33	37		17	100
ESE		7	21	37		35	100

20MAC11 - MATRICES AND DIFFERENTIAL EQUATIONS

(Common to All Engineering and Technology Branches)

Progran	nme & Branch	All BE/BTech branches	Category	L	Т	P	Credit	
Prerequ	lisites	Nil	1	BS	3	1*	2*	4
Preamb	ole To provid	the skills to the students for solving different real time problems	s by apply	ing matrices an	d differe	ntial equ	ations.	
Unit - I	Matrices							ę
proof) –	- Cayley - Hamilt	ristic equation – Eigen values and Eigen vectors of a real matrix on theorem (Statement and applications only) – Orthogonal matr tic form – Nature of Quadratic forms - Reduction of quadratic forr	ices – Ort	hogonal transfo	rmation	of a sym	nmetric r	
Unit - II	Ordinary	/ Differential Equations:						ę
	ction – Solutions 's equation.	s of First order differential equations: Exact differential equatio	ns – Leib	nitz's Linear Ec	quation	– Bernol	ulli's equ	uation -
Unit - II	I Ordinary	/ Differential Equations of Higher Order:						ç
	^{ax} sinbx and e ^{ax} n.	tions of second and higher order with constant coefficients - Par cosbx – x ⁿ sinax and x ⁿ cosax – Differential Equations with vari ions of Ordinary Differential Equations:						
		parameters – Simultaneous first order linear equations with con – Electric circuits (Differential equations and associated condition			cations	of differe	ntial eq	uations
Unit - V	Laplace	Transform & Inverse Laplace Transform:						ç
Transfo Laplace	rms of derivative	nditions for existence – Transform of elementary functions – Ba es and integrals – Transform of unit step function – Transform c ementary functions – Partial fraction method – Convolution theo fficients.	of periodic	functions. Inve	erse Lap	lace tran	nsform:	Inverse
ist of E	Exercises / Exp	eriments:						
1.	Introduction to N	IATLAB						
		eigen values and eigen vectors						
	_	alizing single variable functions						
	_	d second order ordinary differential equations						
-		ultaneous first order ODEs						
6.	Solving second	order ODE by variation of parameters						
7.	Determining Lap	place and inverse Laplace transform of basic functions						

*Alternate week

TEXT BOOK:

8.

Lecture: 45, Tutorial and Practical:15, Total:60

1. Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.

REFERENCES: Kreyszig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley Sons, 2011. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014. S.Chand and Co.. New Delhi. Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics – I", 2nd Edition, Pearson India Education, New Delhi, 2018.

BTech - Chemical Engineering, Regulations 2020, Curriculum and Syllabi

Solution of Second order ODE by employing Laplace transforms

4. MATLAB Manual.

COUR	SE OUTCOMES:	BT Monnod
	mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve engineering problems which needs matrix computations.	Applying (K3)
CO2	identify the appropriate method for solving first order ordinary differential equations.	Applying (K3)
CO3	solve higher order linear differential equations with constant and variable coefficients.	Applying (K3)
CO4	apply the concept of ordinary differential equations for modeling and finding solutions to engineering problems.	Applying (K3)
CO5	apply Laplace Transform to find solutions of Linear Ordinary Differential Equations	Applying (K3)
CO6	know the basics of MATLAB and computing eigen values and eigen vectors of real matrix by MATLAB.	Understanding (K2), Manipulation (S2)
C07	solve ordinary differential equations with constant and variable coefficients and simultaneous first order ordinary differential equations using MATLAB.	Applying (K3), Manipulation (S2)
CO8	compute Laplace and inverse Laplace Transform of basic functions and solve Second Order ODE by using Laplace Transform with MATLAB.	Applying (K3), Manipulation (S2)

					Марр	oing of C	Os with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1										
CO2	3	3	2	1										
CO3	3	3	2	1										
CO4	3	3	2											
CO5	3	3	2	1										
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 – N	/loderate,	3 – Sub	stantial,	BT- Bloo	m's Taxo	onomy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	10	20	70				100								
CAT2	10	20	70				100								
CAT3	10	20	70				100								
ESE	10	20	70				100								

20PHT11 - APPLIED PHYSICS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

Preamble This course aims to impart the essential concepts of propagation of elastic waves, acoustics, ultrasonics, laser and fiber optics, quantum physics, crystal structure and crystal defects. It also describes the physical phenomena related to the aforementioned concepts and their applications in engineering and provides motivation towards innovations

Unit - I Propagation of Elastic Waves:

Oscillatory Motion: Introduction to simple harmonic motion - Damping velocity - Damping coefficient - Differential equation of simple harmonic motion - Velocity and acceleration - Restoring force - Vibration of a spring and mass system - Frequency response - Phase response - Resonance - Wave motion: Definition of a plane progressive wave - Attenuation of waves - Differential equation of a plane progressive wave - Phase velocity - Phase and phase difference - Solution of the differential equation of a plane progressive wave.

Unit - II Acoustics and Ultrasonics:

Acoustics: Introduction - Reverberation and reverberation time - Growth and decay of sound - Sabine's formula for reverberation time – Determination of sound absorption coefficient – Design of an auditorium: Factors affecting acoustics of buildings and the remedies. Ultrasonics: Introduction – Properties of ultrasonic waves – Generation of ultrasonic waves: Magnetostrictive generator and Piezoelectric generator - Determination of velocity of ultrasonics in a liquid: Acoustic grating – Industrial application: Non-destructive testing - Other applications of ultrasonic waves (qualitative).

Unit - III Laser and Fiber Optics:

Laser and Applications: Introduction – Interaction of light with matter - Three quantum process: Stimulated absorption, spontaneous emission and stimulated emission - Population inversion - Einstein's coefficients and their relations - Pumping methods - Nd:YAG laser - CO₂ laser - Holography. Fiber Optics and Applications: Introduction - Numerical aperture and acceptance angle - Classification of optical fibers based on refractive index, modes and materials - Fiber optics communication system (qualitative) - Fiber optic sensors: Temperature and displacement sensors.

Unit - IV Quantum Physics:

Introduction - Blackbody radiation - Planck's quantum hypothesis - Compton scattering (qualitative) - de Broglie's hypothesis - Properties of matter waves - Application of Heisenberg uncertainty principle - Schrodinger's time independent and time dependent wave equations - Physical significance of wave function - The free particle - Potential energy step - Infinite potential well (one - dimensional).

Unit - V Crystal Physics:

Introduction - Classification of solids - Space lattice - Crystal structure - Unit cell - Bravais lattice - Single and polycrystalline materials - Lattice planes - Miller indices - Indices of crystal direction - Interplanar spacing in cubic system - Hexagonal close packed crystal structure and c/a ratio - Symmetry -Symmetry elements in cubic crystal - Crystal imperfections: line, surface and volume imperfections - Features of crystal imperfections (qualitative).

TEXT BOOK:

Total: 45

9

9

9

9

9

1. Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics", 11th Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2019.

REFERENCES:

- 1. Purnima Khare and Swarup A.,"Engineering Physics: Fundamentals and Modern Applications", 1st Edition, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2009.
- 2. Gaur R.K. and Gupta S.L., "Engineering Physics", 8th Edition, Dhanpat Rai and Sons, New Delhi, 2009.
- 3. Tamilarasan K. and Prabu K., "Engineering Physics I", 3rd Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	make use of the concepts of oscillatory and wave motion to comprehend the phenomena related to the propagation of elastic waves.	Applying (K3)
CO2	apply the concepts of growth and decay of sound energy in a hall to compute Sabine's formula to recognize the requirements of acoustically good buildings, and to describe the production of ultrasonic wave, working of acoustic grating & non-destructive testing using ultrasonic waves.	Applying (K3)
CO3	apply the concepts of stimulated emission to explain the working and the applications of laser in engineering and technology, and to apply the principle of propagation of light through optical fiber to compute acceptance angle and numerical aperture to comprehend the loss in optical fiber, fiber optic communication system and working of fiber optic sensors.	Applying (K3)
CO4	use the concepts of quantum mechanics to describe the behavior of electrons in a metal by solving Schrodinger's wave equation for particle motion in infinite potential well.	Applying (K3)
CO5	utilize the concepts of the seven crystal systems to obtain interplanar spacing in cubic lattice and c/a ratio of HCP crystal structure, and to comprehend symmetry elements, reciprocal lattice and the types of crystal imperfections and their impacts.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2 – N	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	40	40				100			
CAT2	20	35	45				100			
CAT3	25	35	40				100			
ESE	20	40	40				100			

20CYT11 - APPLIED CHEMISTRY

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

Applied Chemistry course explores the basic principles and advancements of chemistry in the field of engineering and technology.
It aims to impart the fundamentals of chemistry towards innovations in science and technology and also for societal applications.

Unit - I Water Technology:

Introduction - sources of water - impurities in water - types of water - hardness of water- expression of hardness (simple problems) - units of hardness – estimation of hardness of water by EDTA method – determination of alkalinity - disadvantages of using hard water in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittlement, priming and foaming - softening of water: i) Internal treatment process - carbonate and calgon conditioning ii) External treatment method -demineralization process iii) Treatment of water for municipal water supply (Removal of suspended particles and disinfection methods, Break-point of chlorination).

Unit - II Electrochemistry:

Introduction – electrochemical cells - applications of electrochemical series - reference electrode - standard calomel electrode - ion selective electrode - glass electrode - concentration cells - electrode and electrolyte concentration cells (simple problems) -applications- potentiometric titrations - acid-base, redox, precipitation titrations - advantages- conductometric titrations - strong acid vs strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base- advantages of conductometric titrations.

Unit - III Corrosion and its Control:

Introduction – causes and effects of corrosion - types of corrosion - chemical corrosion – Pilling Bed-worth rule - electrochemical corrosion – types - galvanic corrosion, concentration cell corrosion – other types of corrosion -stress, intergranular and microbiological corrosion - galvanic series factors influencing rate of corrosion – corrosion control methods - design and material selection, anodic protection, corrosion inhibitors, protective coatings - i) metallic coatings : hot dipping (tinning and galvanizing) ii) non-metallic coating : anodizing iii) organic coating : paints – constituents and their functions.

Unit - IV Fuels and Combustion:

Introduction – classification of fuels - characteristics of a good fuel - combustion - calorific values – gross and net calorific values - Dulong's formula (simple problems) - Flue gas analysis by Orsat's method - ignition temperature - spontaneous ignition temperature - explosive range - solid fuels - coal and its varieties – proximate and ultimate analysis – significance – metallurgical coke - Otto-Hoffman byproduct method - liquid fuel - refining of petroleum – manufacture of synthetic petrol - hydrogenation of coal - Bergius process - knocking - octane number – cetane number - gaseous fuel - water gas.

Unit - V Polymers:

Introduction – terminology - classification - polymerization - types of polymerization (definition only)- polymerisation techniques- bulk, solution, suspension and emulsion polymerisation - plastics- difference between thermoplastics and thermosetting plastics - compounding of plastics-plastic moulding methods - compression, injection, extrusion and blow moulding methods - industrial polymers: preparation, properties and applications of PVC, PAN, polyurethane, polyesters –biodegradable polymers-classification and applications.

TEXT BOOK:

1.	Wiley Editorial Board, "Wiley Engineering Chemistry", 2 nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019.
REF	ERENCES:

- Palanisamy P.N., Manikandan P., Geetha A.& Manjula Rani K., "Applied Chemistry", 6th Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2019.
- 2. Payal B. Joshi, Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.
- 3. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017.

9

9

9

9

9

Total: 45

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the suitable water softening methods to avoid boiler troubles.	Applying (K3)
CO2	apply the principle of electrochemistry for various applications.	Applying (K3)
CO3	make use of corrosion control methods to solve corrosion related problems.	Applying (K3)
CO4	illustrate the quality of fuels from its characteristics.	Understanding (K2)
CO5	explain the types of polymers, plastics and fabrication methods.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1												
CO5	3	1												
– Slight, 2 – M	loderate,	3 – Sub	stantial,	BT- Bloo	m's Tax	onomy								

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	40				100			
CAT2	25	35	40				100			
CAT3	25	35	40				100			
ESE	25	35	40				100			

20MEC11 - ENGINEERING DRAWING

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE(Civil, Mech, MTS, Auto) &BTech(Chem, FT)	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	1	ES	2	0	2	3

Preamble To impart knowledge on orthographic, isometric projections, sectional views and development of surfaces by solving different application oriented problems.

Unit - I General Principles of Orthographic Projection:

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning - Projections of Points, Lines and Planes - General principles of orthographic projection - First angle projection - Layout of views - Projection of points located in all quadrant and straight lines located in the first quadrant - Determination of true lengths and true inclinations and location of traces - Projection of polygonal surface and circular lamina inclined to both reference planes.

Unit - II	Projections of Solid:	9
Projections of method.	simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of	position
Unit - III	Sectioning of Solids:	9
	solids - prisms, pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference pl to the other - Obtaining true shape of section.	ane and
Unit - IV	Development of Surfaces:	9
	of lateral surfaces of simple solids like prisms, pyramids, cylinders and cones – development of simple truncated solids ids, cylinders and cones.	involving
Unit - V	Isometric Projection and Introduction to AutoCAD:	9
	cometric projection - Isometric scale - Isometric projections of simple and truncated solids like prisms, pyramids, cylinders and fisometric projection into orthographic projection - Introduction to AutoCAD.	nd cones

Lecture:30, Practical:30, Total:60

9

TEXT BOOK:

1. Venugopal K. and Prabhu Raja V., "Engineering Graphics", 15th Edition, New Age International Pvt. Ltd., New Delhi, 2018. **REFERENCES:**

1. Basant Agrawal, Agrawal C.M., "Engineering Drawing", 2nd Edition, McGraw Hill Education, 2019.

2. Gopalakrishnana K.R. "Engineering Drawing", Volume. I & II, Subhas Publications, Bengaluru, 2014.

3. Parthasarathy N.S., Vela Murali. "Engineering Drawing", 1st Edition, Oxford University Press, 2015.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret international standards of drawings and sketch the projections of points, lines and planes.	Understanding (K2)
CO2	draw the projections of 3D primitive objects like prisms, pyramids, cylinders and cones.	Applying (K3)
CO3	construct the various sectional views of solids like prisms, pyramids, cylinders and cones.	Applying (K3)
CO4	develop the lateral surfaces of simple and truncated solids.	Applying (K3)
CO5	sketch the isometric projections of simple and truncated solids and convert isometric drawing in to orthographic projection.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2								3	2	2	2	3
CO2	3	2	1	1						3	2	3	2	3
CO3	3	2	1	1						3	2	3	2	3
CO4	3	2	1	1						3	2	3	2	3
CO5	3	2	1	1						3	2	3	2	3
1 - Slight 2 - I	- Slight 2 - Moderate 3 - Substantial BT- Bloom's Taxonomy													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	25	35	40				100						

20CHT11 - CHEMICAL PROCESS INDUSTRIES

Programme &	& Branch	BTech – Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisites	5	Nil	1	PC	3	0	0	3
Preamble	This cou	rse will educate students about manufacture process of various	chemical p	products				
Unit - I	Introduc	tion to Chemical Industry:						9
	sion and	al Engineering and chemical industries, role of Chemical Engi conversion factors of units; Classification of unit operations a						
Unit - II	Inorgani	c Alkalis and Acids Industries:						9
Manufacture acid	of sodium	chloride, soda ash, sodium bicarbonate, caustic soda and chlo	rine, hydro	ochloric acid, su	lfuric aci	d, phosp	horic a	cid, nitric
Unit - III	Fertilize	r Industries:						9
		ia, urea, ammonium phosphate, ammonium sulphate, single a chloride- compound fertilizers	and triple	super phospha	te, pota	ssium ni	trate, p	otassium
Unit - IV	Polymer	Industries:						9
Polymerizatic rubber	on technolo	ogy - Manufacture of polypropylene, polystyrene, PVC, nylons	6, nylons	66, polyesters,	ABS ar	nd SBR,	vulcani	zation of
Unit - V	Miscella	neous Chemical Industries:						9
•		- Sugar industries, Pulp and Paper industries, Manufacture of white gloss enamels, red oxide primer and exterior emulsi		ent - Manufact	ure of g	glass - I	Paint ir	dustries-
TEXT BOOK:								Total: 4

1. Gopala Rao M. and Marshall Sittig, "DRYDEN'S Outlines of Chemical Technology", 3rd Edition, East-West Press, New Delhi, 2008. **REFERENCES:**

1. George T.Austin, "Shreve's Chemical Process Industries",5th Edition, Tata McGraw-Hill, New Delhi, 2012.

2. Mark W.V. and Bhatia S.C., "Chemical Process Industries", Volume-I and II, 2nd Edition, CBS Publishers and Distributors, New Delhi, 2007.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the role of chemical engineers and develop the process flow diagram	Applying (K3)
CO2	sketch and explain the production of alkali-based products and mineral acids	Applying (K3)
CO3	illustrate the manufacturing process of chemical fertilizers using flow diagram	Applying (K3)
CO4	describe the manufacturing process of polymer and allied product with the help of process flow sheet	Applying (K3)
CO5	draw a process flow diagram and elaborate production of sugar, paper and pulp, cement, glass and paint	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1		1	1	1	1				1	3	1
CO2	2	1	1		1	1	1	1				1	3	1
CO3	2	1	1		1	1	1	1				1	3	1
CO4	2	1	1		1	1	1	1				1	3	1
CO5	2	1	1		1	1	1	1				1	3	1
1 - Slight 2 - M	– Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY

L								
Test / Blo Catego		Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT	1	20	60	20				100
CAT	2	20	80					100
CAT	3	20	80					100
ESE	Ξ	20	70	10				100

20VEC11 – YOGA AND VALUES FOR HOLISTIC DEVELOPMENT

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	1	HS	1	0	1	1

Preamble Providing Value Education to improve the Students' character - understanding yogic life and physical health - maintaining youthfulness - Measure and method in five aspects of life Unit - I Physical Health: 2 Manavalakalai (SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education - Yoga for youth Empowerment. Simplified Physical Exercises: Need and Objectives of Simplified Physical Exercise - Hand, Leg, Breathing, Eye exercises -Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Relaxation exercises - Benefits. Yogasanas: Pranamasana -Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Thuvipatha asva Sanjalana asana - Astanga Namaskara - Bhujangasana -Atha Muktha Savasana - Aswa Sanjalana Asana - Pada Hasthasana - Hastha Uttanasana - Pranamasana. Pranayama: Naddi suddi - Clearance Practice - Benefits. Unit - II Life Force: 2 Reasons for Diseases: Body Function - Reason for Diseases and Prevention - Natural reasons (Genetic / imprints, Planetary Position, Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, Deeds). Philosophy of Kaya kalpa: Enriching Bio-Magnetism -Physical body - Sexual vital fluid - Life force - Bio-Magnetism - Mind. Maintaining youthfulness: Postponing old age - Transformation of food into seven components - Importance of sexual vital fluid - Measure and method in five aspects of life - Controlling undue Passion. Kayakalpa practice: Aswini Mudra - Ojas breath - Benefits of Kaya Kalpa. Unit - III Mental Health: 2 Mental Frequencies: Beta, Apha, Theta and Delta wave - Agna Meditation explanation - benefits. Shanti meditation: Shanthi Meditation explanation – benefits. Thuriya Meditation: Thuriya Meditation explanation – benefits. Benefits of Blessing: Self blessing (Auto suggestion) -Family blessing - Blessing the others - World blessing - Divine protection. Unit - IV Values: 2 Human Values: Self control - Self confidence - Honesty Contentment - Humility – Modesty - Tolerance - Adjustment - Sacrifice – Forgiveness -Purity (Body, Dress, Environment) - Physical purity - Mental purity - Spiritual purity. Social Values: Non violence - Service. Patriotism - Equality. Respect for parents and elders - care and protection - Respect for teacher. Punctuality - Time Management. Unit - V Morality (Virtues): 2 Importance of Introspection: I - Mine (Ego, Possessiveness). Six Evil Temperaments - Greed - Anger - Miserliness - Immoral sexual passion -Inferiority and superiority Complex - Vengeance. Maneuvering of Six Temperaments: Contentment - Tolerance - Charity - Chastity - Equality -Pardon (Forgiveness). Five essential Qualities acquired through Meditation: Perspicacity - Magnanimity - Receptivity - Adaptability - Creativity (Improved Memory Power).

TEXT BOOK:

Lecture:10, Practical:10, Total:20

Thathuvagnani Vethathiri Maharishi, "Yoga for Youth Empowerment", Vethathiri Publications, 2019.
 REFERENCES:

 Thathuvagnani Vethathiri Maharishi, "Yoga for Modern Age", Vethathiri Publications, 2019.
 Thathuvagnani Vethathiri Maharishi, "Simplified Physical Exercises", Vethathiri Publications, 2019.
 Thathuvagnani Vethathiri Maharishi, "Simplified Physical Exercises", Vethathiri Publications, 2019.
 Neelam Sharma, "Holistic Education and Yoga", Shipra Publications, 2017.
 Dr. Joseph Murphy, "The Power of Your Subconscious Mind", Pushpak Publication, 2019.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the importance of physical health and practice simplified physical yoga exercise.	Applying (K3)
CO2	understand the importance of Kayakalpa exercise to enrich Bio-Magnetism and practice it.	Applying (K3)
CO3	understand the significance of meditation and do meditation to get sound mind.	Applying (K3)
CO4	understand the human and social values to provide service to society.	Applying (K3)
CO5	understand the evil temperaments and five essential qualities acquired through meditation	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3		2	1			1		
CO2						3		2				1		
CO3						3		3				1		
CO4						3		2	1			1		
CO5						3		3				1		
1 – Slight, 2 – M	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	NA												
CAT2	NA												
CAT3			100				100						
ESE	NA												

20PHL11 - PHYSICAL SCIENCES LABORATORY I

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	1	BS	0	0	2	1

Preamble This course aims to impart hands on training in the determination of the physical parameters such as Young's modulus, rigidity modulus, frequency of vibration, velocity of ultrasonic waves, compressibility of water, wavelength of laser, acceptance angle and the numerical aperture of an optical fiber, and to develop the skills in handling different basic instruments and also aims to impart the basic concepts of volumetric, conductometric and pH meter experiments and thereby, to improve the analytical capability.

List of Exercises / Experiments:

1.	Determination of the Young's modulus of the material of a given beam using uniform bending method.
2.	Determination of the rigidity modulus of the material of a given wire using torsional pendulum.
3.	Determination of frequency of electrically vibrating rod by forming standing waves using Melde's apparatus.
4.	Determination of the velocity of ultrasonic waves in a liquid and the compressibility of a liquid using ultrasonic interferometer.
5.	Determination of (i) the wavelength of a semiconductor laser and (ii) the acceptance angle and the numerical aperture of a given optical fiber.
6.	Estimation of total, temporary and permanent hardness of water by EDTA method.
7.	Estimation of Ca ²⁺ and Mg ²⁺ hardness separately by EDTA method.
8.	Estimation of alkalinity of the given water sample.
9.	Conductometric titration -Mixture of acids.
10.	Estimation of hydrochloric acid using pH meter.
	Total: 3

REFERENCES:

1. Tamilarasan K. and Prabu K.,"Physics Laboratory Manual', 1st Edition, SCM Publishers, Erode, 2020.

2. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2020.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine the Young's modulus of a material using the concepts of elasticity and bending moment of a beam and to determine the rigidity modulus of a wire using the concepts of twisting couple and to compute the frequency of electrically vibrating rod using the concept of standing waves formed in fixed vibrating string.	Applying (K3), Precision (S3)
CO2	determine the wavelength of a semiconductor laser beam using the concept of diffraction of light, and to compute the acceptance angle and the numerical aperture of an optical fiber using the concepts of total internal reflection and divergence of light in air and estimate the amount of hardness for the given water sample by EDTA method, and the amount of alkalinity for the given water sample.	Applying (K3), Precision (S3)
CO3	demonstrate the conductivity meter and pH meter to estimate the amount of the given solution.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3										
CO2				3										
CO3				3										
1 – Slight, 2 – N	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEL11 - ENGINEERING PRACTICES LABORATORY

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE (Civil, Mech, MTS, Auto) & BTech (Chem, FT)	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	1	ES	0	0	2	1

Preamble This course is designed to provide a hands-on experience in basic of mechanical and electrical engineering practices.

List of Exercises / Experiments:

	PART A – MECHANICAL ENGINEERING
1.	To prepare square or rectangular shaped MS plates using power tools for cutting, polishing and shaping to the required dimensions.
2.	To carryout drilling, tapping and assembly on the given MS plates.
3.	To carryout thread forming on a GI/PVC pipes and prepare water leak proof water line from overhead tank.
4.	To prepare a wood or plywood box/tray/any innovative models using modern power tools like cutting machine, router, jigsaw, power screw driver etc.
5.	Welding practice through arc welding / simulator
	PART B – ELECTRICAL AND ELECTRONICS ENGINEERING
1.	Safety Aspects of Electrical Engineering, Electrical Symbols, Components Identification, Fuse selection and installation, Circuit Breakers selection
2.	Wiring circuit for fluorescent lamp and Stair case wiring
3.	Measurement of Earth resistance
4.	Soldering of Simple Circuits and trouble shooting
5.	Implementation of half wave and full wave Rectifier using diodes
REFE	Total: 30 RENCES /MANUAL / SOFTWARE:

1. Engineering Practices Laboratory Manual.

	OURSE OUTCOMES: n completion of the course, the students will be able to												BT Mapped (Highest Level)					
CO1	plan the sequence of operations for effective completion of the planned models/ innovative articles													ating (K6), sision (S3)				
CO2	identify and use appropriate modern power tools and complete the exercises/models accurately												Applying (K3), Precision (S3)					
CO3	select fuses and Circuit breakers												Understanding (K2), Manipulation (S2)					
CO4	perform h	nouse wi	ring and	realize th	ne impor	tance of	earthing						Applying (K3), Manipulation (S2)					
CO5	5 trouble shoot the electrical and electronic circuits												Applying (K3), Manipulation (S2)					
						Mapr	oing of C	Os with	POs and	d PSOs								
CO	Ds/POs	PO1	PO2	PO11	PO12	PSO1	PSO2											

COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2		3	3	2	1			3	3		3		
CO2	2		3	3	2				3	3		3		
CO3	3		3	3	1				2	2		3		
CO4	3		3	3	1				2	3		3		
CO5	3		3	3	1				2	2		3		
1 – Slight, 2 – M	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20EGT21 ADVANCED COMMUNICATION SKILLS

(Common to all Engineering and Technology Branches)

Programme	& Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisite	5	20EGT11 – English Language Skills	2	HS	3	0	0	3
Preamble		rse is designed to impart required levels of fluency in using ork (CEFR).	the English	Language at B1	Level in	the Co	ommon	Europear
Unit - I	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabular	y. Activity I	Based Learning	j – Phas	e –VI:		Ş
and profession	onal skills - difference y – Gerunc	areer related descriptions and conversations – requests of dif – making requests and responding to requests – Reading – es – Writing – Resumes, CVs and job oriented advertise ds and elements of comparison – requests and indirect reques bg , Speaking , Reading , Writing and Grammar & Vocabular	Jsing texts : ments – bu sts.	about jobs and o usiness and ca	careers - reer rela	- about o ated em	different	societies
describing –	talking abo	y and narrative descriptions – information about different of out other countries and other cultures – Reading – Using text	s about med	lia and informati	on techn	ology –	living at	proad and
experiencing noun phrases		cultures – Writing – Blog writing – brochures and tourist par ive clauses.	nphlets – G	rammar & Voca	abulary	– The p	ast tens	se forms
Unit - III	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabular	y. Activity I	Based Learning	j – Phas	e – VIII:		9
Talking about segregating	ıt problem wastes – r	ism – product description – complaints and redressal – envir is, issues, complaints – solutions and redressal – talking recycling and reusing – texts on environmental issues – W ry – Phrases and sentences used for describing problems – p	about envi r iting – On	ronmental issue line reviews, ar	es – Re ticles ar	ading - nd writin	- Using	texts or
Unit - IV	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabular	y. Activity I	Based Learning	J – Phas	e – IX:		9
improvement advice and s Writing – W	for succes elf improve riting abou	a, learning and the choice of courses – various services in ss in life – Speaking - Discussions about educational and car ement – Reading – Reading about learning strategies and le it hobbies – pastime and individual skills – writing short articl of "would" and certain gerund forms – use of modals, verbs, g	eer oriented arning style es on every	issues – talking es – using texts day life and pers	about p	ersonalit developr	ty devel	opment -
Unit - V	Listenin	g, Speaking, Reading, Writing and Grammar & Vocabular	y. Activity I	Based Learning	g – Phas	e – X:		Ş
Speaking - The science	Talking abo e – using	narratives – biographies and learning about the future – im out the past, present and the future – talking about important texts about social organization, culture and social practice tages of life and getting along with people – Grammar & Vo	events in lif es – Writin	e – Reading – 1 g – Biographica	Fexts ab al sketch	out new nes – hi	technol storical	ogies and events -

TEXT BOOK:

Total: 45

 Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 3", 4th Edition, Cambridge University Press, New York, 2017.

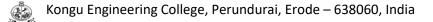
REFERENCES:

Sanjay Kumar and Pushp Lata, "Communication Skills: A Workbook based on AICTE Syllabus", Oxford University Press, 2018.
 Board of Editors, "Skills Annexe: Functional English for Success", Orient BlackSwan, Hyderabad, 2013.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use functional grammar for improving communication skills	Applying (K3)
CO2	listen and comprehend different spoken excerpts critically and infer Unspoken and implied meanings.	Applying (K3)
CO3	read different genres of texts, infer implied meanings and critically analyze and evaluate them for ideas as well as for method of presentation.	Analyzing (K4)
CO4	write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.	Creating (K6)
CO5	speak effectively, to express opinions clearly, initiate and sustain a discussion and also negotiate using appropriate communicative strategies.	Creating (K6)

					Марр	oing of C	Os with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			1	3	1	1		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		2		
CO5									2	3		2		

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1		13	30	33	-	17	100						
CAT2		13	33	37	-	17	100						
CAT3		20	30	33	-	17	100						
ESE		6	40	36	-	18	100						



20MAC21 - MULTIVARIABLE CALCULUS AND COMPLEX ANALYSIS

(Common to All Engineering and Technology Branches)

		(Common to All En	ngineering an	d Technolog	y Brar	iches)			-i
Programi Branch	me &	All BE/BTech branches	Sem.	. Category	L	Т	P	Credit	t
Prerequis	sites	Nil	2	BS	3	1*	2 *	4	-
Preamble	loir	mpart the knowledge of partial derivative ytic functions to the students for solving the							
Unit - I	Fund	ctions of Several Variables:							9
		o or more variables – Partial derivatives – inima – Constrained maxima and minima –					s for f	functior	ns of two variables –
Unit - II	Mult	iple Integrals:							9
		tion in cartesian coordinates – Change c on in cartesian coordinates –Volume as trip			– Apr	plicatio	on: A	vrea be	stween two curves -
Unit - III	Vect	tor Calculus:							9
Solenoic above th	idal and heorems	ivative – Gradient of a scalar point functi Irrotational vectors – Green's, Stoke's and s and evaluation of integrals using them.							f) – Verification of the
Unit - IV	Anal	lytic Functions:							9
Unit - V	Com	tion – Conformal mapping: w = z + a, az, 1 plex Integration:							9
Classific cosine fu	cation – functions	Cauchy's theorem (without proof) – Cauch - Cauchy's residue theorem (without proof s over the circular contour.							
		F / Experiments:							
	Ū	rdinary and partial derivatives							_
		g extremes of a single variable function							_
		g double and triple integrals							_
	0	e area between two curves							_
		g gradient, divergence and curl of point fur Mileo. Thomson method for constructing or		<u>.</u>					_
		Milne-Thomson method for constructing an ation of Mobius transformation for the give							_
		ation of Mobius transformation for the give oles and residues of an analytic function	3n set or poin	nts					_
Alternate	01								
TEXT BO						Lec	ture:	45, Tute	torial and Practical:15, T
		ingh, Mukul Bhatt "Engineering Mathematics", 1	1 st Edition, M	cGraw Hill E	ducati	on, Ne	w Del	ihi, 2016	δ
REFEREN									
		"Advanced Engineering Mathematics", 10 th Ed		-					
2. Das	₃s H K, "	"Higher Engineering Mathematics", 3 rd Re	Joised Editio	n, S.Chand	and	Co., N	lew D	Jelhi, 20	014.
	aisamy C hi, 2018.	C., Vengataasalam S., Arun Prakash K. and Su	uresh M., "Eng	gineering Ma	thema	itics —	I", 2 nd	Edition	, Pearson India Educatio

4. MATLAB Manual.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	compute extremal values which arise in function of several variables.	Applying (K3)
CO2	solve Problems involving Double and Triple integrals.	Understanding (K2)
CO3	apply the concept of vectors in engineering problems.	Applying (K3)
CO4	identify, construct and apply analytic functions in electrostatics and fluid flow problems.	Applying (K3)
CO5	evaluate complex integrals which are extensively applied in engineering.	Applying (K3)
CO6	compute maxima and minima of a single variable function, gradient, curl and divergence of a vector function using MATLAB.	Understanding (K2), Manipulation (S2)
C07	evaluate Double, Triple integrals and determine area between two curves using MATLAB	Applying (K3), Manipulation (S2)
CO8	construct analytic function, find bilinear transformation and compute poles and residues using MATLAB.	Applying (K3), Manipulation (S2)

					Мар	ping of	COs w	ith POs	and PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3												
CO2	3	3	2											
CO3	3	3												
CO4	3	3												
CO5	3	3	2											
CO6					3									
C07			-		3									
CO8					3									

ASSESSMENT PATTERN - THEORY Evaluating (K5) Creating (K6) Test / Bloom's Remembering Understanding (K2) Applying Analyzing Total % Category* (K1) % % (K3) % (K4) % % % 10 20 CAT1 70 100 CAT2 10 20 70 100 CAT3 10 20 70 100 ESE 10 20 70 100

20PHT25 - PHYSICS FOR CHEMICAL ENGINEERING

Programme & Branch	BTech – Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisites	Applied Physics	2	BS	3	0	0	3

Preamble	This course aims to impart the knowledge on the physics of ferrous metals and alloys, non-ferrous metals and alloys, ceramics, composites and advanced functional materials. It also describes the select characterization techniques and the applications of aforementioned materials in Chemical Engineering and provides motivation towards innovations.
Unit - I	Ferrous Metals and Alloys: 9
Vegards law -	 Iron ore - Composition and classification of pig iron and cast iron–Manufacture of pig iron and cast iron – Solid solution alloys – Lever rule - Mechanical mixtures -Iron-Carbon equilibrium diagram - Effect of impurities on Cast iron - Types of cast iron: Grey cast cast iron – Chilled cast iron - Mottled cast iron - Malleable cast iron - Ductile cast iron – Alloy cast iron – Wrought iron – Steel: carbon

Unit - II Non-Ferrous Metals and Alloys:

Introduction - Aluminum and Aluminum alloys: Duralumin, Magnalumin - Copper and Copper Alloys: Brass, Bronze, Gun Metal, German Silver -Nickel and Nickel alloys: Monel, Inconel, Nichrome, Nimonic - Chromium and Chromium alloys: Chrome moly, Stellite - Lead and Lead alloys: Solder lead, Antimonial lead.

steel - Alloy steels - Tool and Die Steel - Special steels: High speed steel - Stainless steel - Heat resisting steels - Shock resisting steels.

Unit - III Ceramics and Composites:

Ceramics: Introduction – Classification of ceramics: Glasses – Clay products – Refractories – Abrasives – Cements – Advanced Ceramics -General properties and applications. Composites: Introduction – Fibre Phase - Matrix Phase - Classification of composites based on matrix materials: Polymer-matrix composites, Metal-matrix composites, Ceramic-matrix composites.

Unit - IV Advanced Functional Materials:

Metallic glasses: Preparation, properties and applications – Shape memory alloy: Characteristics and applications – Superconductors: Properties and applications – Carbon fibers – Biomaterials: Basic requirements of biomaterials – Biocompatibility – Classification of biomaterials – Metallic and alloy biomaterials (qualitative): Cobalt–chromium alloys and Titanium and titanium alloys.

Unit - V Materials Characterization:

Importance of materials characterization - X-ray diffraction - Scanning electron microscope and Energy dispersive spectroscopy: principle, construction and working - Transmission electron microscope: principle, construction and working - Spectroscopy: IR and UV-visible spectroscopy - Raman spectroscopy (qualitative) - Thermal analysis: Thermo gravimetric analysis – Differential scanning calorimetry.

TEXT BOOK:

Total:45

9

9

9

9

 William D. Callister Jr. and David G. Rethwisch, "Callister's Materials Science and Engineering (Adapted by R.Balasubramaniam)", 2nd Edition, Wiley India Pvt Ltd., New Delhi, 2014.

- 1. Donald K. Askeland, Pradeep P. Fulay and Wendelin J. Wright, "The Science and Engineering of Materials", 6th Edition, Centage Learning, Singapore, 2011.
- 2. Sam Zhang, Lin Li and Ashok Kumar, "Materials Characterization Techniques", 1st Edition, CRC Press, Boca Raton, 2008.
- 3. Tamilarasan K. and Prabu K., "Materials Science", 1st Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2019.

	RSE OUTCOMES: completion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concepts of phase rule, cooling curve and binary phase diagram (Fe-C) to explain the composition, properties and applications of the select ferrous metals and their alloys (iron and steel).	Applying (K3)
CO2	apply the basic concepts of phase rule, cooling curve and binary phase diagram (Cu-Ni) to explain the composition, properties and applications of the select non-ferrous metals and their alloys (Aluminum, Copper, Nickel, Chromium, Lead and their alloys).	Applying (K3)
CO3	utilize suitable physical concepts to comprehend the properties and applications of select ceramics and composites with different composition.	Applying (K3)
CO4	utilize appropriate methods to prepare select advanced functional materials (metallic glasses, shape memory alloys, superconductors, carbon fibers and bio-materials) and to comprehend their properties and applications.	Applying (K3)
CO5	apply the concepts of X ray diffraction, matter wave, absorption of light, Raman effect and thermogram to describe the principle and working of the select material characterization techniques.	Applying (K3)

				N	lappin	g of C	Os witl	n POs	and PS	SOs				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	– Mode	erate, 3	3 – Sub	stantia	I, BT- E	Bloom's	s Taxor	nomy						

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	30	30	40				100						
CAT3	25	35	40				100						
ESE	20	40	40				100						

20CYT24 - INDUSTRIAL CHEMISTRY

Programme & Branch	B.Tech - Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisites	Applied Chemistry	2	BS	3	0	0	3

Preamble Industrial chemistry aims to equip the chemical engineering students to have a sound knowledge of chemistry in order to meet the industrial needs. Unit - I Modern Analytical Techniques: 9 Introduction - Beer Lambert's law -UV-vis spectroscopy - chromophore - auxochrome - electronic transition - instrumentation and applications of UV-vis spectroscopy - Infra Red spectroscopy - interaction between infrared radiation and molecular vibrations - mode of vibration - FTIR instrumentation and applications of FTIR spectroscopy, Flame Photometry - principle - instrumentation - estimation of sodium, Atomic Absorption Spectroscopy – principle – instrumentation – estimation of nickel. Unit - II Phase Rule: 9 Introduction - Statement and explanation of terms involved - one component system - water system - Polymorphism - experimental determination of transition point - sulphur system - condensed phase rule - construction of phase diagram by thermal analysis - two component system - simple eutectic system - Silver-Lead System-Potassium lodide-Water System - congruent and incongruent melting point. Unit - III **Chemical Kinetics :** 9 Introduction-order - determination of order of the reaction by i) integrated rate equations ii) graphical method iii) half-life period iv) differential method and v) Ostwald isolation method - Lindeman's equation for unimolecular collision - transition state theory - kinetics of simultaneous reactions - opposing, consecutive, parallel reactions (first order examples) - kinetics of photochemical reactions - Hydrogen-Chlorine reaction and Hydrogen-bromide reaction, steady state approximation. Unit - IV Catalysis : 9 Introduction - types-catalytic poisoning - autocatalysis -kinetics of surface catalyzed reactions - Reaction between two adsorbed molecules (Langmuir-Hinshelwood mechanism) - hydrogenation of ethene in presence of nickel - acid-base catalysis - mechanism of acid catalysis - enzyme catalysis-mechanism of enzyme catalysis -characteristics of enzyme catalysis -Industrial applications of catalyst.

Unit - V Surface Chemistry :

Introduction - mechanism of adsorption - types of adsorption - Langmuir adsorption isotherm - derivation of Langmuir isotherm - adsorption of solutes from solutions – important adsorbents used in industries –applications of adsorption – chromatography, Role of adsorbent in catalysis and ion exchange adsorption and pollution abatement.

TEXT BOOK:

Total: 45

9

Arun Bahl, Bahl B.S. & Tuli G.D., "Essentials of Physical Chemistry". S.Chand Publishing, New Delhi, 2019 for Units II, III, IV, V.
 Wiley Editorial Board ."Wiley Engineering Chemistry". 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019 for Units I, II, III, IV, V.

	1.	Payal B. Joshi & Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.
	2.	Puri B.R., Sharma L.R. & Pathania M.S., "Principles of Physical Chemistry", Vishal Publishing Company, Jalandhar, 2019.
[3.	Dara S.S. and Umare S.S., "A Textbook of Engineering Chemistry", 12 th Edition, S. Chand & Company Ltd. New Delhi, 2010.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the principle of various spectro-analytical techniques for real time analysis.	Applying (K3)
CO2	draw the phase diagram and phase equilibria for different eutectic systems.	Applying (K3)
CO3	make use of the principle of kinetics for designing the reactor .	Applying (K3)
CO4	apply the knowledge of catalysis in industry.	Understanding (K2)
CO5	experiment with different reaction mechanisms of surface chemistry.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1	-	-										
CO5	3	2	1	1										
1 – Slight, 2 – N	Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	40				100			
CAT2	25	35	40				100			
CAT3	25	35	40				100			
ESE	25	35	40				100			

20CHT21 - CHEMICAL PROCESS UTILITIES

Programme & Branch	B.Tech. – Chemical Engineering	Sem.	Category	L	т	Р	Credi t
Prerequisites	Nil	2/4	PC	3	1	0	4

Preamble	This course highlights the working of various utilities used in chemical process industries.	
Unit – I	Steam and Water	9+3
calorimeters	operties of steam, Mollier chart, determination of dryness fraction of steam- Different s; Efficient use of steam in process plants, Insulation of Steam Mains. Water: Sou ics of water- soft and Demineralised water - Treatment of water for boiler and cooling towers.	• •
Unit - II	Compressed Air and Inert Gas:	9+3
· ·	d Air – Introduction, Plant Air Systems, Instrument Air Systems, Operation and Maintenan operties, Uses of inert gases, Sources and Methods of Generation	ce. Inert
Unit - III	Boilers:	9+3
	classification of boilers: water tube, fire tube, coal, oil and gas fired boilers; Stoker fired, pulver d boilers. Mountings and accessories. Performance and efficiency calculation of boilers	ized and
Unit - IV	Refrigeration:	9+3
· ·	compression and absorption refrigeration systems, calculation of efficiency and capacity of refr properties of refrigerants - eco- friendly refrigerants.	igeration
Unit - V	Vacuum System:	9+3
Ejector, Me	, Classification of Vacuum, Vacuum Generation equipment – Liquid Ring Vacuum Pump, S chanical Vacuum Pump, Vacuum Measurement using McLeod Gauge, Vacuum Conveying of p ration and Drying	
TEXT BOOP	Lecture:45, Tutorial:15	,Total:60
	oughton, "Process Utility System - Introduction to Design Operation and Maintenance", 1 st on of Chemical Engineers, United Kingdom, 1994 for units I, II, III & IV.	Edition,
2. Wolfgar	ng Jorisch, "Vacuum Technology in the Chemical Industry", 1 st Edition, Wiley VCH, 2014 for uni	t V.
DECEDENC		

- 1. Lyle O, "Efficient use of Steam", 1st Edition, H M S O Publishers, United Kingdom, 2000.
- Eskel Nordell, "Water treatment for industrial and other uses", 1st Edition, Reinhold Publishing Corporation, New York, 1961.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the water treatment and steam utilization practices in process industries	Applying (K3)
CO2	discuss the fundamentals and applications of compressed air and inert gases in process industries	Understanding (K2)
CO3	describe different types of boiler and calculate the performance efficiency	Applying (K3)
CO4	describe the principles of refrigeration processes and analyze their performance	Applying (K3)
CO5	explain the working of different vacuum generation equipment and their applications	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2			2						1	2	1
CO2	3	1				1						1	2	1
CO3	3	2	2			2						1	2	1
CO4	3	2	2			2						1	2	1
CO5	3	1				1						1	2	1
I – Slight, 2	2 – Mo	derate	e, 3 – S	Substa	ntial, I	BT- Bl	oom's	Taxor	iomy					

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	60	20				100			
CAT2	20	70	10				100			
CAT3	20	60	20				100			
ESE	20	60	20				100			

20CHT22 - ELECTRICAL DRIVES AND INDUSTRIAL ELECTRONICS

Programme & Branch	B.Tech – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisite s	NIL	2	ES	3	0	0	3

This course forms the basis for understanding various types of dynamic machines and their starting, Preambl braking and speed control methods. It provides the fundamental concepts of power electronic e converters and its applications. Unit - I **Electrical Drives and Motor Characteristics:** 9 Basic Elements of Drive - Types of Electric Drives - Factors Influence the Choice of Electrical Drives -Classification of Load Torques and Classes of Duty – Selection of Power Rating for Drive Motors – Torque Equation of DC Machine – Speed-Torque Characteristics of DC Motors: Series, Shunt Motor – Torque Equation and Speed-Torque Characteristics of Three Phase Induction Motor – Application: Submersible pump. Motor Starting and Braking Methods: 9 Unit - II Types of Starters: Two Point Starter, Three Point Starter, Four Point Starter, DOL Starter, Y-Δ Starter. Braking of Electrical Motors: Shunt Motor, Series Motor, Three Phase Induction Motor - Trouble Shooting of Electrical Motors. Unit - III Power Electronics: 9 Introduction - Construction, Principle of Operation, Static Characteristics of SCR, IGBT-Phase Angle Control -Single Phase Full wave Controlled Rectifiers with R, RL and RLE Load - Three phase Voltage Source Inverters (120° and 180° Mode) – Chopper Operation (Step-Up and Step-Down). Unit - IV Conventional and Solid State Speed Control of DC Drives: 9 Speed Control of DC Series and Shunt Motors – Armature and Field Control, Ward-Leonard Control System – Controlled Rectifiers Fed DC Drive and Chopper Based DC Drive (Four Quadrant Operation) – Selection of DC Drives for Cranes and Paper Mill.

Unit - V Conventional and Solid State Speed Control of AC Drives:

Speed Control of Three Phase Induction Motor – Voltage Control, Voltage / Frequency Control – Slip Power Recovery Scheme (Static Kramer and Scheribus drive) – Inverter and AC Voltage Controller Based Induction Drives – Selection of AC Drives for Textile Mill and Air Compressors.

TEXT BOOK:

1 Dubey G.K., "Fundamentals of Electrical Drives", 2nd Edition, Narosa Publishing House, New Delhi, 2019.

REFERENCES:

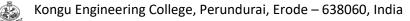
¹ Muhammad H. Rashid, "Power Electronics: Devices, Circuits and Applications", 4th Edition, Pearson Educati New Delhi, 2018.

2 Vedam Subrahmaniam, "Electric Drives: Concepts and Applications", 2nd Edition, Tata McGraw Hill Publishing Company, New Delhi, 2010.

9

Total:45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	infer the fundamentals of electrical drives and the characteristics of electric motors	Understanding (K2)
CO2	classify and interpret the operation of starting and braking methods of AC and DC machines	Understanding (K2)
CO3	sketch the characteristics of various power electronic converters	Applying (K3)
CO4	apply the appropriate speed control techniques for DC drives and their applications	Applying (K3)
CO5	implement the speed control techniques for AC drives and their applications	Applying (K3)


	Mapping of COs with POs and PSOs													
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	1												
CO2	2	1												
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %						
CAT1	25	35	40				100						
CAT2	25	35	40				100						
CAT3	25	35	40				100						
ESE	25	35	40				100						

20PHL29 - PHYSICAL SCIENCES LABORATORY II

Prog. & B	Branch BTech - Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Pre requi	site Nil	2	BS	0	0	2	1
Preamble	This course aims to impart hands on training in the determin resistance, thermal conductivity, thickness of a thin film and pa handling different basic instruments. This course also aims to improve the analytical capability.	rticle size, way	elength of Hg sp	ectrum an	d to de	evelop t	he skills in
List of Ex	ercises / Experiments:						
1. D	etermination of the Young's modulus of a stainless steel using non-un	iform bending	method.				
2. D	etermination of the specific resistance of a non-ferrous material using	Carey Foster's	Bridge.				
3. D	etermination of the thermal conductivity of a ceramic/composite mater	ial using Lee's	disc arrangement				
4. D	etermination of the thickness of a metallic glass thin film using air-wed	ge arrangeme	nt.				
5. D	etermination of wavelength of Hg spectrum using spectrometer grating	J.					
6. E	stimation of iron by colorimetry.						
7. D	etermination of transition temperature of a hydrated salt.						
8. C	onstruction of phase diagram – simple eutectic system.						
9. D	etermination of rate constant of acid - catalyzed hydrolysis of an ester						
10. V	erification of Freundlich isotherm –adsorption of oxalic acid on charcoa	al.					
I							Total: 30

1 Ta	milarasan l	K and P	rahu K	"Physics	Laborato	ry Manu	al" 1 st F	dition S		shers Fr	ode 2020			
				,		,	,	,			,	", 1 st Edition, ∣	Kalaikathir	Publishers,
Co	pimbatore, 2	2020.							-					
	SE OUTCC	-	e, the stu	udents wi	ll be able	e to								lapped st Level)
CO1	beam an	id to de ity, and t	termine to determ	the spea	cific resi	stance o	of non-fe	rrous m	aterials	using th	e concept	moment of a t of electrical phoept of heat		ing (K3), sion (S3)
CO2	the wave Determin	length of e the ar ation of e	electrom nount of	nagnetic iron us	waves (v ing colo	visible pa	and to c	spectrun demonstr	n) using trace the	the conce simple e	ept of diffra	I to determine action of light. /stem for the of transition		ing (K3), sion (S3)
CO3	determine process.	e the rat	e consta	nt of hy	drolysis	of an es	ster and	verify th	e Freun	dlich isot	herm for	an adsorption	,	ing (K3), sion (S3)
						Mapping	g of COs	with PC)s and P	SOs				
COs/P s	PO PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3											
CO2			3											
CO3			3											
1 – Slię	ght, 2 – Mo	derate, 3	– Substa	antial, BT	- Bloom's	s Taxono	my							

20CHL21- ELECTRICAL DRIVES AND INDUSTRIAL ELECTRONICS LABORATORY

Programme & Branch	CHEMICAL ENGINEERING	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	2	ES	0	0	2	1

List of Exercises / Experiments :

4	
1.	Load Test on DC Shunt Motor
2.	Speed Control of DC Shunt Motor (Armature control and Field control)
3.	Load Test on Three Phase Squirrel Cage Induction Motor
4.	Speed Control of Three Phase Squirrel Cage Induction Motor
5.	Identification of AC and DC Machines Parts
6.	Steady State Characteristics of SCR
7.	R and RC firing circuits for SCR
8.	Single Phase Fully Controlled Rectifier
9.	Three Phase Inverter (120° & 180° Mode Operation)
10.	Operational Analysis of Choppers (Step Up and Step Down)

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	execute the method of speed control in electrical machines	Applying (K3), Manipulation (S2)
CO2	sketch the characteristics of power electronic devices	Applying (K3), Manipulation (S2)
CO3	analyze the various power electronics converters	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											1	2
CO2	3	2	1	1									2	3
CO3	3	2	1	1									2	3
1 – Slight, 2 – N	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Total:30

20MAT31 - PROBABILITY AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Civil, Mechanical, Mechatronics, Automobile, Chemical & Food Technology branches)

Programme	& Branch	BE & Civil, Mechanical, Mechatronics, Automobile Engineering & BTech Chemical, Food Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisite	s	NIL	3	BS	3	1	0	4
Preamble		de the skills for solving the real time engineering problems involving probability concepts in their respective fields and express function	01			and impa	rt know	ledge ir
Unit - I	Randon	n Variables:						9+3
		ity – Definition of random variable – Discrete and Continuous rand al expectation and Variance – Moments – Moment generating fund		ables – Probab	ility Mass	s and Pro	obability	/ density
Unit - II	Standar	d Probability Distributions:						9+3
		Binomial distribution – Poisson distribution – Geometric distribu – Normal distribution.	ution – C	Continuous Dist	tributions	: Unifori	n distril	bution -
Unit - III	Fourier	Series:						9+3
Dirichlet's co – Harmonic a		General Fourier series – Change of interval – Odd and even funct	tions – H	alf range Sine s	series – I	Half rang	e Cosir	ne series
Unit - IV	Partial I	Differential Equations:						9+3
	•	erential equations by elimination of arbitrary constants and arbitration of arbitrary constants and arbitration arbitration of higher order with constant coefficients	•	ions – Lagrang	je's linea	r equatio	on – So	olution of
Unit - V	Applica	tions of Partial Differential Equations:						9+3
Classification	n of secon	d order quasi linear partial differential equations – Solutions of o	ne dimei	nsional wave e	quation ·	– One di	mensio	nal heat

Lecture: 45, Tutorial: 15, Total: 60

TEXT BOOK:

1. Ravish R. Singh, Mukul Bhatt, "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.

1.	Erwin Kreyszig, "Advanced Engineering Mathematics", 10 th Edition, John Wiley & Sons Limited, 2019.
2.	Veerarajan T., "Transforms and Partial Differential Equations", 3 rd Reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2013.
3.	Jay L. Devore., "Probability and Statistics for Engineering and the Sciences", 9th Edition, Cengage Learning, USA, 2016.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the concept of random variables.	Applying (K3)
CO2	implement the exact distribution for solving engineering problems.	Applying (K3)
CO3	express the given function or data in terms of Fourier series.	Applying (K3)
CO4	formulate and solve higher order partial differential equations	Applying (K3)
CO5	apply Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1											
CO2	3	3	2											
CO3	3	2												
CO4	3	3	1											
CO5	3	3	2											
1 – Slight, 2 – N	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	10	80	-	-	-	100						
CAT2	10	10	80	-	-	-	100						
CAT3	10	10	80	-	-	-	100						
ESE	10	20	70	-	-	-	100						

20CSC31 - PROGRAMMING IN C (Common to all BE/BTech Engineering & Technology branches except CSE, IT)

	gramme & nch	All BE/BTech Engineering & Technology branches except CSE, IT	Sem.	Category	L	Т	Р	Credit					
Prer	requisites	NIL	3	ES	3	0	2	4					
Prea	with t	ne techniques needed to practice computational th ms and the ways the computers can be used to s	inking,	the art of u	using	com	puters	to solve					
Unif	it - I Introc	uction to Computer and Problem Solving:						9					
tech	nniques: Algo												
Unif	it - II Introc	uction to C and Control Statements:						9					
– ide	entifiers- Basic data Types – Variables – constants – Input/Output statements – operators - decision mal looping statements												
Unif	it - III Array												
		: Introduction- Using functions, function declaration and definition - function call - return stateme											
Fun	sing paramete	luction- Using functions, function declaration and de ers to functions: basic data types and arrays – storage		- function	call ·	 retu 							
Fun pass Unit	ictions : Introd sing parameter it - IV String	luction- Using functions, function declaration and de ers to functions: basic data types and arrays – storag is and Pointers:	je class	 – function es – recurs 	call ive fu	– retu Inctioi	าร	9					
Fun pass Unit Strir char arith	actions : Introd sing paramete it - IV String ngs :Introduct tracter manipu hmetic, passir	luction- Using functions, function declaration and de ers to functions: basic data types and arrays – storag s and Pointers: on – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin	e class nation, g pointe	 – function es – recurs comparing er variables 	call ive fu and – pc	– retu inction copyin binter	ns ng – s expres	9 tring and ssion and					
Fun pass Unit Strir char arith strin	Functions : Introduction- Using functions, function declaration and definition – function call – return statemed passing parameters to functions: basic data types and arrays – storage classes – recursive functions Unit - IV Strings and Pointers: Strings :Introduction – operations on strings : finding length, concatenation, comparing and copying – string character manipulation functions, Arrays of strings. Pointers : declaring pointer variables – pointer expression arithmetic, passing arguments to function using pointers -pointers and 1D arrays –arrays vs pointers , pointers strings, Unit - V User-defined Data Types and File Handling: User-defined data types: Structure: Introduction – nested structures– arrays of structure – structure and functions – enumerated data type. File Handling : Introduction - opening and closing files – reading and writing												
Funi pass Unit Strir char arith strin Unit Use -unio	it - V User- er-defined data	Auction- Using functions, function declaration and de ars to functions: basic data types and arrays – storag and Pointers: and Pointers: and Pointers: bon – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening	nation, g pointe 1D arra arrays g and cl	 – function es – recurs comparing er variables ays –arrays of structure 	call ive fu and – pc vs po	- retu inction copyin binter binter binter	ng – s expres s , poir e and	9 tring and ssion and nters and 9 functions					
Funi pass Unit Strir char arith strin Unit Use -unio	Prerequisites NIL 3 ES 3 0 2 Preamble with the techniques needed to practice computational thinking, the art of using computers to suproblems and the ways the computers can be used to solve problems. This course also focuses developing programming skills using C language. Unit - 1 Introduction to Computer and Problem Solving: Overview of computers : Types, Generations, Characteristics, Basic computer Organization – Problem solv techniques: Algorithms - Flowcharts – Pseudo codes – Structuring the logic: Sequential, selection and repeti structure Unit - 1 Introduction to C and Control Statements: Introduction to C and Control Statements: The structure of a C program – Compiling and executing C program – C Tokens – Character set in C – Keywe - Identifiers- Basic data Types – Variables – constants – Input/Output statements – operators - decision mail and looping statements Unit - 11 Arrays and Functions: Introduction – operations, function declaration and definition – function call – return statement passing parameters to functions: function declaration and definition – function call – return statement passing parameters to functions on strings : finding length, concatenation, comparing and copying – string character manipulation functions on strings : finding length, concatenation, comparing and copying – string character manipulation functions on strings : finding length, concatenation, comparing and copying – string character manipulation functions on strings : finding length, concatenation, comparing and copying – string character manipulation functions, structure : needed structures – arrays of structure – structure and functi- runions												
Fun- pass Unit Strir char arith strin Unit Use -unic to fil st of Exercises:	actions : Introductions asing parameter asing parameter asing parameter asing parameter ngs :Introduct acter maniput hmetic, passimal hmetic, passimal asing parameter asing parameter asing parameter maximum asing parameter	Auction- Using functions, function declaration and de ers to functions: basic data types and arrays – storage and Pointers: ion – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p	nation, g pointe 1D arra arrays g and cl	 function recurs comparing er variables ays –arrays of structure losing files - 	call ive fu and - pc vs pc - str - rea	– retu inction copyin binter binter binter binter binter binter	ng – s expres s , poir e and and wr	9 tring and sion and nters and 9 functions iting data					
Funipass Unit Strir char arith strin Unit Use -unic to fil st of Exercises: 1.	Actions : Introductions in parameter Actions : Introduction Introduction Ings : Introduction Ings : Introduction Intervention Interventintervention	Auction- Using functions, function declaration and de ars to functions: basic data types and arrays – storag is and Pointers: ion – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p uctures r demonstrating the use of different types of oper	nation, g pointe 1D arra arrays g and cl	 function recurs comparing er variables ays –arrays of structure osing files - is involving 	call ive fu and - pc vs pc - str - rea	- retu inction copyin binter binter binter ructur ding a	ng – s expres s , poir e and and wr	9 tring and ssion and nters and 9 functions ting data					
Funipass Unit Strir char arith strin Unit Use -unic to fil st of Exercises: 1.	actions : Introductions asing parameter asing p	Auction- Using functions, function declaration and de ers to functions: basic data types and arrays – storage is and Pointers: fon – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p uctures r demonstrating the use of different types of oper ators	nation, g pointe 1D arra arrays g and cl	 function recurs comparing er variables ays –arrays of structure osing files - is involving 	call ive fu and - pc vs pc - str - rea	- retu inction copyin binter binter binter ructur ding a	ng – s expres s , poir e and and wr	9 tring and ssion and nters and 9 functions ting data					
Funipass Unit Strir char arith strin Unit Use -unid to fil st of Exercises: 1. 2. 3.	Actions : Introductions : Introductions Action is in the series of the series in the series of the series	Auction- Using functions, function declaration and de ars to functions: basic data types and arrays – storag is and Pointers: ion – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p uctures r demonstrating the use of different types of oper ators ing decision making and repetitive statements	nation, g pointe 1D arra arrays g and cl problem ators li	 – function es – recurs comparing er variables ays –arrays of structure osing files - is involving ke arithmet 	call ive fu and - pc vs pc - str - rea	- retu inction copyin binter binter binter ructur ding a	ng – s expres s , poir e and and wr	9 tring and ssion and nters and 9 functions ting data					
Funipass Unit Strir char arith strin Unit Use -unid to fil st of Exercises: 1. 2. 3.	Actions : Introductions in parameter asing parameter asing parameter asing parameter asing parameter ngs :Introduction aracter manipution hmetic, passing asing parameter hmetic, passing bit - V User- er-defined data ions – enumer ieles -Manipular Writing algorization str Programs for Programs us Programs for Programs for Programs for Programs for	Auction- Using functions, function declaration and de ars to functions: basic data types and arrays – storage is and Pointers: ion – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p uctures r demonstrating the use of different types of oper ators ing decision making and repetitive statements demonstrate modular programming concepts using	e class nation, g pointe 1D arra arrays g and cl problem ators li al nume	 function recurs comparing er variables ays –arrays of structure losing files - is involving ke arithmet eric array 	call ive fu and - pc vs pc - str - read sequ	- retu inction copyin binter binter ointer ructur ding a	ng – s expres s , poir e and and wr , Selec relatio	9 tring and ssion and nters and 9 functions iting data ction and onal and					
Funipass Unit Strir char arith strin Use -unit to fil st of Exercises: 1. 2. 3. 4.	Actions : Introductit - IVStringasing parameterasing	Auction- Using functions, function declaration and de ars to functions: basic data types and arrays – storage is and Pointers: ion – operations on strings : finding length, concate lation functions, Arrays of strings. Pointers : declarin g arguments to function using pointers -pointers and defined Data Types and File Handling: a types: Structure: Introduction – nested structures– ated data type. File Handling : Introduction - opening ing file position indicator : fseek(), ftell() and rewind() ithms and drawing flowcharts using Raptor Tool for p uctures r demonstrating the use of different types of oper ators ing decision making and repetitive statements demonstrate modular programming concepts using	e class nation, g pointe 1D arra arrays g and cl problem ators li al nume	 function recurs comparing er variables ays –arrays of structure losing files - is involving ke arithmet eric array 	call ive fu and - pc vs pc - str - read sequ	- retu inction copyin binter binter ointer ructur ding a	ng – s expres s , poir e and and wr , Selec relatio	tring and ssion and nters and 9 functions iting data					

Lecture:45, Practical : 30, Total:75

TEXT BOOK:

1. Reema Thareja, "Programming in C", 2nd Edition, Oxford University Press, New Delhi, 2018.

1. Yashavant Kanetkar, "Let us C", 16th Edition, BPB Publications, 2018.

2. Sumitabha Das, "Computer Fundamentals and C Programming", 1st Edition, McGraw Hill, 2018.

3. Balagurusamy E., "Programming in ANSI C", 7th Edition, McGraw Hill Education, 2017.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
	outline the basics of computers and apply problem solving techniques to express the solution for the given problem	Applying (K3)
CO2:	identify the appropriate looping and control statements in C and develop applications using these statements	Applying (K3)
CO3:	develop simple C programs using the concepts of arrays and modular programming	Applying (K3)
CO4:	apply the concepts of pointers and develop C programs using strings and pointers	Applying (K3)
CO5:	make use of user defined data types and file concept to solve given problems	Applying (K3)
CO6:	demonstrate the execution of flowcharts for the given problem using Raptor	Applying (K3), Precision (S3)
CO7:	demonstrate the application of sequential, selective and repetitive control structures	Applying (K3), Precision (S3)
CO8:	develop solutions to the given problem using derived /user defined data types and functions and also using file concepts	Applying (K3), Precision (S3)

					Mappir	ng of C	Os witl	h POs	and PS	SOs				
COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO 1	PSO 2
CO1	3	2	1						1	1		1		
CO2	3	2	2						1	1		1		
CO3	3	2	2						1	1		1		
CO4	3	2	2						1	1		1		
CO5	3	2	2						1	1		1		
CO6	3	2	2	2	1				1	1		1		
CO7	3	2	2	2	1				1	1		1		
CO8	3	2	2	2	1				1	1		1		
1 – Slig	ht, 2 –	Modera	te, 3 – 3	Substa	ntial, B	T- Bloo	m's Ta	konomy	/					

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	30	50				100						
CAT2	10	30	60				100						
CAT3	10	30	60				100						
ESE	20	30	50				100						

20CSC41 PYTHON PROGRAMMING

Common to all BE/BTech Engineering and Technology branches except CSE,IT)

Programme& Branch	All branches except CSE,IT	Sem	Categor y	L	Т	Р	Credit
Prerequisites	Nil	3/4	ES	3	0	2	4

Preamble	This course introduces the core python programming. It emphasizes on developing python with all data types, functions, classes, objects and numpy	programs
Unit- I	Introduction:	9

Problem solving strategies – program design tools – Types of errors – Testing and Debugging- Basics: Literals – variables and identifiers – data types - input operation – comments – reserved words – indentation – Operators and Expressions – Decision Control Statements: Introduction – conditional statement – iterative statements – Nested Loops – break, continue and pass statements – else in loops.

Unit- II Lists, Tuples and Dictionary:

Lists:Access, update, nested, cloning, operations, methods, comprehensions, looping - Tuple:Create, utility, access, update, delete, operations, assignments, returning multiple values, nested tuples, index and count method - Dictionary: Create, access, add and modify, delete, sort, looping, nested, built-in methods – list vs tuple vs dictionary.

Unit- III Strings and Regular Expressions:

Strings:Concatenation, append, multiply on strings – Immutable – formatting operator – Built-in string methods and functions – slice operation – functions – operators – comparing – iterating – string module – Regular Expressions – match, search, sub, findall and finditer functions – flag options.

Unit- IV Functions and Modules:

Functions and Modules: Functions:Introduction - definition – call – variable scope and lifetime – return statement – function arguments – lambda function – documentation strings – programming practices recursive function- Modules: Modules – packages – standard library methods – function redefinition.

Unit- V Object Orientation, NumPy, Matplotlib:

Object Orientation: Class and Objects: Class and objects – class methods and self – constructor – class and object variables – destructor – public and private data member. NumPy: NumPy Arrays – Computation on NumPy Arrays. Matplotlib : Line plots – Scatter Plots.

ListofExercises/Experiments:

1	Programs using conditional and looping statements
2	Implementation of list and tuple operations
3	Implementation of dictionary operations
4	Perform various string operations
5	Use regular expressions for validating inputs
6	Demonstration of different types of functions and parameter passing
7	Develop programs using classes and objects
8	Perform computation on Numpy arrays
9	Draw different types of plots using Matplotlib

Lecture:45, Practical:30, Total:75

TEXTBOOK:

9

g

9

9

1 ReemaThareja., "Python Programming using problem solving approach", 3rd impression, Oxford University Press., New Delhi, 2017.

REFERENCES:

1 NageswaraRao, "Core Python Programming", 2nd Edition, DreamTech Press, New Delhi, 2018.

2 Jake Vander Plas ," Python Data Science Handbook Essential Tools for Working with Data", O'Reilly publishers,1st Edition,2016.

	SEOUTCOMES: pletionof thecourse, the studentswillbe ableto	BT Mapped (HighestLevel)
CO1	understand the basics of python programming using nested and control statements	Understanding (K2)
CO2	apply list, tuple and dictionary to handle variety of data	Applying(K3)
CO3	apply strings and regular expression for searching in a string.	Applying(K3)
CO4	solve the problems using functions and modules	Applying(K3)
CO5	understand the object oriented concepts and perform data science operations for applications	Applying(K3)
CO6	implement the basic data types and control statements	Applying (K3), Precision(S3)
C07	demonstrate functions, regular expressions and object oriented concepts	Applying(K3), Precision(S3)
CO8	perform numpy operations and analyse results using matplotlib	Applying(K3), Precision(S3)

MappingofCOswith POsandPSOs														
COs/PO s	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1		2			2	2		2		
CO5	3	2	1	1		2			2	2		2		
CO6	3	2	1	2	2	2			2	2		2		
CO7	3	2	1	2	2	2			2	2		2		
CO8	3	2	1	2	2	2			2	2		2		

1–Slight,2–Moderate,3–Substantial,BT-Bloom'sTaxonomy

	ASSESSMENTPATTERN-THEORY												
Test / Bloom's Category *	Rememberin g(K1)%	Understandin g(K2)%	Applying (K3)%	Analyzing (K4)%	Evaluating (K5)%	Creating (K6)%	Tota I %						
CAT1	25	25	50				100						
CAT2	20	20	60				100						
CAT3	20	20	60				100						

ESE	25	25	50		100

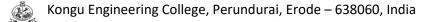
	(Col	mmon to Automobile, Civil, Mechanical, Chem	ical, Food	Technolog	ly Brand	<mark>ches)</mark>		
Progra	mme & Branch	Automobile, Civil, Mechanical, Chemical, Food Technology	Sem.	Categ ory	L	Т	Р	Credi
Prerequ	uisites	Programming in C	3	PC	3	0	2	4
Preamb	ble	This course is indented to introduce the con- algorithms to novice learner from cross disci						of
Unit – I		List:						9
		stract Data Types (ADT) - List ADT and Arra Copying Singly Linked List - Doubly Linked Lis				st- Singly	y Linked	List-
	nit – II	Stack and Queues:		II -Deletioi	1.			9
		nd Linked List implementation of Stacks - Ap						stfix -
	ostfix Expression E nit – III	valuation - Queue ADT – Array and Linked Lis Trees:	st impleme	ntation of (Queues	- Applica	ations	9
		– Binary Trees –Binary Tree Traversals -	The Sear	ch Tree A	DT – B	inary Se	earch Tr	-
		FindMin – FindMax – Insertion – Deletion- Exp						
Uı	nit – IV	Graphs:						9
		s – Graph Traversals: Breadth First Search						
Ur	nweighted Shortes	t Paths – Dijkstra's Algorithm – Minimum Spar	ning Tree	– Prim's A	lgorithm	 Kruska 	ıl's Algor	ithm
			•		0			
	-:+ \/	· · · ·	-		0			0
	nit – V orting - Preliminari	Sorting and Hashing:					h Functi	9
Sc		Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so					h Functi	-
Sc	orting - Preliminari	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so					h Functi	-
So Se	orting - Preliminari	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing					h Functi	-
Sc Se LIST O	orting - Preliminari eparate Chaining – F EXPERIMENTS	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing					h Functi	-
Sc Se LIST OI 1.	F EXPERIMENTS	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing / EXERCISES:					h Functi	-
Sc Se LIST OI 1. 2.	F EXPERIMENTS	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing / EXERCISES: of C programs using pointers					h Functi	-
Sc Sc LIST OI 1. 2. 3.	F EXPERIMENTS	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing / EXERCISES: of C programs using pointers of singly linked list and its operations					h Functi	-
Sc Se	FEXPERIMENTS	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing / EXERCISES: of C programs using pointers of singly linked list and its operations of doubly linked list and its operations					h Functi	-
Sc Sc LIST OI 1. 2. 3. 4.	FEXPERIMENTS FEXPERIMENTS Implementation Implementation Implementation Implementation Implementation	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing /EXERCISES: of C programs using pointers of singly linked list and its operations of doubly linked list and its operations of Stack and its operations					h Functi	-
Sc Sc LIST OI 1. 2. 3. 4. 5. 6.	pring Preliminari eparate Chaining F EXPERIMENTS Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation Implementation	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing /EXERCISES: of C programs using pointers of singly linked list and its operations of doubly linked list and its operations of Stack and its operations of Queue and its operations					h Functi	
Sc Se LIST OI 1. 2. 3. 4. 5. 6. 7.	Ferring - Preliminarie Eparate Chaining - FEXPERIMENTS Implementation Evaluate the Point	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing /EXERCISES: of C programs using pointers of singly linked list and its operations of doubly linked list and its operations of Stack and its operations of Queue and its operations of Stack and Queue using Singly Linked List					h Functi	
Sc Sc LIST OI 1. 2. 3. 4. 5.	FEXPERIMENTS FEXPERIMENTS Implementation Implementation	Sorting and Hashing: es – Insertion Sort – Quicksort – Merge so Open Addressing /EXERCISES: of C programs using pointers of singly linked list and its operations of doubly linked list and its operations of Stack and its operations of Stack and its operations of Queue and its operations of Stack and Queue using Singly Linked List ost-fix Expression using Stack ADT					h Functi	

TEXT E	000K:						
1.	Weiss M. A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson	Education Asia, New Delhi, 2016.					
REFER	ENCES/ MANUAL / SOFTWARE:						
1.	Horowitz Sahni, Andreson Freed, "Fundamentals of Data Structures in C", 2nd Edition, Universities Press, Hyderabad, 2011.						
2.	Langsam Y.M., Augenstein J. and Tenenbaum A. M., "Data Structures using C an Education, 2015.	d C++", 2nd Edition, Pearson					
COURS	SE OUTCOMES:	BT Mapped					
On con	npletion of the course, the students will be able to	(Highest Level)					
CO1	apply List ADT for solving the given problems	Applying (K3) Precision (S3)					
CO2	make use of arrays and linked lists to create Stack and Queue ADTs.	Applying (K3) Precision (S3)					
CO3	utilize Tree ADT to develop simple application	Applying (K3) Precision (S3)					
CO4	make use of Graph ADT for standard problems	Applying (K3) Precision (S3)					
CO5	illustrate the use of standard sorting and Hashing Techniques	Applying (K3) Precision (S3)					

Mapping of COs with POs and PSOs														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO 8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evalua ting (K5) %	Creating (K6) %	Total %				
CAT1	10	60	30				100				
CAT2	5	35	60				100				
ESE	5	35	60				100				
* ±3% may be var	ied (CAT 1 & 2 – 60 ma	rks & ESE – 100 m	arks)		· ·						

20CHT31 - CHEMICAL ENGINEERING THERMODYNAMICS


Programme &	Branch	B.TECH. – Chemical Engineering	Sem.	Category	ry L T P						
Prerequisites		Nil	3	ES	3	1	0	4			
Preamble		urse introduces the laws and concepts of thermodynamics whance of various systems and processes in the field of chemical engi		h be applied fo	r analyz	ing and	evalua	ting the			
Unit - I	Laws of Thermodynamics:										
		applications to non-flow and flow processes. Second Law: heat er	ocesses ngines -	- interna Carnot cycle an		ergy m- Entro		enthalpy. ulations.			
Unit - II	Properti	es of Real Gases and Thermodynamics Formulations:						9+3			
	ch & Kwoi	s: compressibility factor - two-and three-parameter theorems of cong – Peng &Robinson equations. Basic energy relations. Maxwell res of Solutions:						9+3			
Partial molar p changes in mix		. Chemical potential. Fugacity and activity coefficients. Gibbs-Dueal solution.	hem eq	uation. Enthalpy	entropy	/ and Gi	ibbs free	e energy			
Unit - IV	Phase E	quilibria:						9+3			
		stability. Criteria for equilibrium between phases in single and and non-ideal solutions. Azeotropes. Raoult's law and Henry's la									
Unit - V	Chemica	al Reaction Equilibria:						9+3			
		uilibrium. Standard free energy change and reaction equilibrium of mogeneous chemical reactions. Thermodynamic analysis and pred					sure on	reactior			

TEXT BOOK:

Lecture:45, Tutorial:15, Total:60

 Joseph Mauk Smith, Hendrick C. Van Ness, Michael M. Abbott, Mark Thomas Swihart, "Introduction to Chemical Engineering Thermodynamics", 8th Edition, McGraw Education, New Delhi, 2017.

1.	Noel De Nevers, "Physical and chemical Equilibrium for Chemical engineers", 2 nd Edition, John Wiley & Sons, Inc., New Jersey, 2012.
2.	Milo D. Koretsky, "Engineering and Chemical Thermodynamics", 2 nd Edition, Wiley, 2012.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the laws of thermodynamics to practical systems and processes	Applying (K3)
CO2	determine the volumetric properties of pure fluids	Applying (K3)
CO3	analyze the molar and partial molar properties of solutions	Analyzing (K4)
CO4	apply phase equilibrium concepts to systems at VLE	Applying (K3)
CO5	analyze the homogeneous chemical reactions and evaluate the equilibrium composition	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	3	2
CO2	3	3	2	1								1	3	2
CO3	3	3	2	2								1	3	2
CO4	3	3	3	2								1	3	2
CO5	3	3	3	2								1	3	2
1 – Slight, 2 – M	loderate,	3 – Subs	stantial, E	3T- Blooi	m's Taxo	nomy								

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	30	60				100				
CAT2	10	30	40	20			100				
CAT3	10	30	40	20			100				
ESE	10	30	40	20			100				

20CHT32 - APPLIED ORGANIC CHEMISTRY

Progra	amme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerec	quisites	Nil	3	PC	3	0	0	3

Preamble	To gain knowledge in writing organic reactions and understand the reaction mechanism for various applications.	
Unit – I	Basic Principles:	9
ketone, amin	n of organic compounds - Aliphatic, Aromatic compounds - saturated and unsaturated compounds - Functional groups – alo ne, amide, acids, Shapes and Structural representation of organic compounds, Isomerism, Steric-hindrance, Inductive effo structures. Separation and Purification of organic compounds.	
Unit – II	Organic Reactions:	9
Nucleophilic	of Electrophilic reaction and applications – Friedel craft reaction, Riemer Tiemann Reaction, Beckmann rearrangements; Mecha reactions and applications -Aldol condensation, Perkins reaction, Benzion condensation; Mechanism of Free radical reactio - Halogenations of Alkanes, Addition of HBr on Alkenes in presence of peroxide, Thermal halogenations reaction.	
Unit – III	Carbohydrates and Protein:	9
	of carbohydrates, Mono saccharides – Glucose and Fructose, Disaccharides – Sucrose and maltose -Polysaccharides – Sta Structural aspects. Industrial uses of starch and cellulose. Protein Classification and Properties - Amino Acids – classificat	
Unit – IV	Synthesis of Dyes and Drugs:	9
	n, Synthesis and applications of Dyes – Congo red. Triphenylmethane dyes –Malachite green, Para Rosaniline, Alizarin, d applications of drugs – Sulphanilamide, Sulphapyridine, Chloroquine, penicillin, erythromycin.	, Eosin;
Unit – V	Oils, Fats, Soaps and Detergents:	9
	– Occurrence and Extraction, Physical and chemical characteristics, Analysis of oil/fat and Uses, hydrogenation of oil. So aw material, manufacture of detergent, biodegradability, purification of fatty acids, manufacture of glycerin and synthetic detergent	

TEXT BOOK:

Total:45

1. Tiwari K.S, Vishnoi N.K, "A text book of organic chemistry", 4th Edition, Vikas Publication, India, 2014.

REFERENCES:

Graham Solomons T.W., Craig B. Fryhle, Scott A. Snyder, "Organic Chemistry", 11th Edition, John Wiley & Sons Inc, New York, 2013.
 Jonathan Clayden, Nick Greeves, Stuart Warren, "Organic Chemistry", 2nd Edition, Oxford University Press Inc, United State of America, 2012.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Infer about the organic compounds and separate the compounds using simple techniques	Remembering (K1)
CO2	Interpret the mechanism of the organic reactions	Understanding (K2)
CO3	classify the carbohydrates, amino acids with characteristics	Understanding (K2)
CO4	demonstrate the synthesis of dyes and drugs	understanding (K2)
CO5	Summarize the extraction and uses of oils and carry out the synthesis of soaps and detergents	Understanding (K2)

					Мар	oing of C	Os with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	1	1	1	1				1	2	1
CO2	3	2	1	1	1	1	1	1				1	3	1
CO3	3	2	1	1	1	1	1	1				1	3	1
CO4	2	1	1	1	1	1	1	1				1	3	1
CO5	2	1	1	1	1	1	1	1				1	2	1
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

Substantial, B1- Bloom's Taxonomy woderate, 3 Silgin, Z

ASSESSMENT PATTERN - THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	60					100
CAT2	40	60					100
CAT3	40	60					100
ESE	40	60					100

20CHT33 - FLUID MECHANICS

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	3	0	0	3

Preamble This course provides a brief knowledge about the fundamentals of momentum transfer, metering and transportation of fluids

Unit - I Fluid Properties and Fluid Statics:

Nature of fluids: Liquids and Gases - Properties of fluids - Fluid statics: Basic equations, Pressure-depth relationships- Pressure measurement: Manometer and its types - Units and Dimensions: Dimensional analysis and its methods- Principles of Similarity.

Unit - II Flow of Incompressible fluids in Pipes:

Types of fluid flow – Boundary layer - Basic equation of fluid flow: Mass balance equation- Bernoulli's equation and its applications-Fluid friction in steady, one dimensional flow: Reynolds's experiment- Laminar flow- Turbulent flow – Moody's chart – Enlargement and Contractions - Fitting losses- Flow of compressible fluids.

Unit - III Flow Past Immersed Bodies:

Flow around submerged objects: Drag and drag coefficients- Flow through porous media: Determination of pressure drop using Ergun equation. Fluidization: Types- Determination of minimum fluidization velocity and pressure drop – Motion of particles through fluids.

Unit - IV Fluid Flow Measurements:

Classification and selection of flow meters- Pitot tube, Venturi, Orifice and Rotameters - Determination of discharge coefficient -Principle and applications of Anemometers, Turbine, Coriolis, Vortex flow and Magnetic flow meters - Introduction to notches and weirs.

Unit - V Transportation of Fluids:

Classification and selection of pumps and compressors: Positive displacement pumps and compressors- Centrifugal pumps and compressors- Rotary pumps and compressors- Elementary principles of gear, air lift, diaphragm and submersible pumps - Introduction to pipe, fittings and valves.

TEXT BOOK:

Noel de Nevers, "Fluid Mechanics for Chemical Engineers", 3rd Edition, Mc Graw-Hill Chemical Engineering Series, 2004.

REFERENCES:

- McCabe W.L, Smith J.C. and Harriot P, "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill Education, United States of America, 2017
- 2. Frank M White, "Fluid Mechanics", 8th Edition, McGraw Hill International Edition, United State of America, 2015.

9

9

9

9

9

Total:45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine pressure drop and power based on properties of fluids	Applying (K3)
CO2	apply the principles of flow behavior for incompressible fluids	Applying (K3)
CO3	analyze the hydrodynamic behavior of packed and fluidized bed	Analyzing (K4)
CO4	analyze the choice of flow meters for the given fluid flow application	Analyzing (K4)
CO5	inspect the selection of pumps, compressors and valves in process industries	Analyzing (K4)

					Маррі	ing of C	Os with	POs a	nd PSO	s				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	3	2
CO2	3	3	2	1								1	3	2
CO3	3	3	3	2								1	3	2
CO4	3	3	3	2								1	3	2
CO5	3	3	3	2								1	3	2
I – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	30	40	10			100				
CAT2	10	30	30	30			100				
CAT3	10	20	35	35			100				
ESE	10	20	40	30			100				

20CHT34 - CHEMICAL PROCESS CALCULATIONS

Programme Branch	8 &	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisit	es	Nil	3	PC	3	1	0	4
Preamble	This co	urse provides basic knowledge of materials and energy	balance calc	ulation in chem	nical ind	ustries.		
Unit - I	Basics of Process Calculation:							
		tures and solutions – molality, molarity, normality, mol mixture calculation; Calculations of pressure, volume a					alton's	law and
Unit - II Material Balance for Unit Operation:					9+3			

Material balance calculations - distillation, evaporation, crystallization, drying, extraction and mixing; Humidification and Dehumidification - Calculation of absolute, molal, relative, percentage, and saturation humidity; use of Psychrometric chart.

Unit - III Material Balance for Unit Process:

Stoichiometric principles - limiting and excess reactants, conversion, yield and selectivity; material balance with bypass, recycle and purging.

Unit - IV Energy Balance:

Heat requirement calculations for solids, liquids, and gases using molal and mean molal heat capacity; Enthalpy change - reaction, formation, combustion, solution, mixing; Effect of pressure and temperature on heat of reaction; Adiabatic flame temperature..

Unit - V Fuels and Combustion:

Classification and analysis of fuels; Calculation of calorific value and composition of fuels; theoretical and excess air for combustion of solid, liquid and gaseous fuels; Composition of flue gases by Orsat analyzer.

TEXT BOOK:

Lecture:45, Tutorial:15, Total:60

9+3

9+3

9+3

1. Narayanan K.V., Lakshmikutty B, "Stoichiometry and Process Calculations", 2nd Edition, Prentice Hall of India, New Delhi, 2016.

- Himmelblau D.M, "Basic Principles and Calculations in Chemical Engineering", 8th Edition, Prentice Hall of India, New Delhi, 2013.
- 2. Venkataramani V., Anantharaman N. and Sheriffa Begam K.M, "Process Calculations", 2nd Edition, Prentice Hall of India, New Delhi, 2011.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	compute the composition of mixture and solution; apply ideal gas law	Applying (K3)
CO2	calculate the mass/ molar flow rate and composition of streams for diverse unit operation	Applying (K3)
CO3	apply stoichiometric principles to various unit process, bypass, purge and recycle operation	Applying (K3)
CO4	analyze the enthalpy change and adiabatic flame temperature for given system	Analyzing (K4)
CO5	examine the calorific value of fuel, composition of fuel and flue gas and percentage excess air	Analyzing (K4)

COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 CO1 3 3 1 2 3					5	nd PSOs	POs ar	Os with	ng of C	Mappi					
CO1 3 3 1 2 3	I PSO2	PSO1	PO12	PO11	PO10	PO9	PO8	P07	PO6	PO5	PO4	PO3	PO2	P01	COs/POs
	2	3	2								1		3	3	CO1
CO2 3 3 1 2 2 3	2	3	2								2	1	3	3	CO2
CO3 3 3 1 2 2 3	2	3	2								2	1	3	3	CO3
CO4 3 3 1 2 2 3	2	3	2								2	1	3	3	CO4
CO5 3 3 1 2 2 3	2	3	2								2	1	3	3	CO5

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	10	10	80				100		
CAT2	10	10	80				100		
CAT3	10	10	20	60			100		
ESE	10	10	40	40			100		

20CHL31 APPLIED ORGANIC CHEMISTRY LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	ES	0	0	2	1

List of Exercises / Experiments :

	•
1.	Determination of carbohydrates from unknown organic compounds
2.	Determination of acids from unknown organic compounds-ester
3.	Determination of esters from unknown organic compounds-thiourea
4.	Determination of amine from unknown organic compounds-nitro compound
5.	Determination of amide from unknown organic compounds
6.	Determine the yield of m-dinitro benzene from nitro benzene
7.	Determine the yield of benzoic acid from ethyl benzoate
8.	Determine the yield of benzoic acid from benzaldehyde
9.	Estimation of phenol/aniline using Winkler's method
10.	Determination of qualitative separation of acid from hydrocarbon mixture
11.	Estimation of acid value and iodine value of the given oil sample
12.	Determination of the alkali content and fatty acid content in the given sample soap

REFERENCES/MANUAL/SOFTWARE:

Laboratory Manual

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine the functional group of Carbohydrate, Ester, Amide, Amine and Acid	Applying (K3), Precision (S3)
CO2	synthesis of the organic compounds and calculate its yield	Applying (K3), Precision (S3)
CO3	estimation of phenol and/or aniline by Winklers methods/ separation efficiency of binary mixtures	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs																						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2									
CO1	3					1	1	1	3	2		1	3	1									
CO2	3	2				1	1	1	3	2		1	3	1									
CO3	2	1				1	1	1	3	2		1	3	1									
– Slight, 2 – N	/loderate,	3 – Sub	stantial, E	3T- Blooi	m's Taxo	nomy					Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy												

Total:30

20CHL32 FLUID MECHANICS LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit						
Prerequisites	Nil	3	PC	0	0	2	1						
List of Exercises / Exp	List of Exercises / Experiments :												

LISCO	Exercises / Experiments .
1.	Estimate the discharge coefficient of variable head flow meters
2.	Investigate of flow characteristics of Rotameter
3.	Estimate the discharge coefficient of V- notch and open drum
4.	Measure the air velocity using Pitot tube
5.	Determine the loss coefficient of valves and pipe fittings
6.	Verify the Moody diagram for flow through straight pipe and Helical coils
7.	Study the effect of Reynolds number on friction factor for flow through concentric pipes
8.	Verify Bernoulli's Theorem by Bernoulli's apparatus
9.	Determine the pressure drop for flow through Packed bed
10.	Determine the minimum fluidization velocity for flow through fluidized bed
11.	Estimate the characteristics of centrifugal and reciprocating pump
12.	Estimate the characteristics of vacuum and gear pump

Total:30

REFERENCES/MANUAL/SOFTWARE: Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Estimate coefficient of discharge for flow through open and closed channels, show the relationship between Reynolds number and friction factor for flow through closed conduits	Applying (K3), Precision (S3)
CO2	Estimate pressure drop and minimum fluidization velocity through packed bed and fluidized bed	Applying (K3), Manipulation (S2)
CO3	Perform characteristic studies of centrifugal and reciprocating pump	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs														
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														PSO2	
CO1	3	2	1			2		1	3	2		2	3	2	
CO2	3	2	1			2		1	3	2		2	3	2	
CO3	3	2	1			2		1	3	2		2	3	2	
	A	0 0	- 4 4 ¹ - 1 - F												

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

20MAT41 - STATISTICS AND NUMERICAL METHODS

(Common to all Engineering and Technology Branches except ECE, CSE and IT)

Programme & Branch	All BE/BTech branches except ECE, CSE and IT branches	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	4	BS	3	1	0	4

Preamble To impart knowledge in testing of samples, ANOVA and interpolation. Also develop skills to apply numerical algorithms to identify roots of algebraic and transcendental equations and solve linear and ordinary differential equations.

Unit - I Testing of Hypothesis:

Introduction – Critical region and level of significance – Types of Errors – Large sample tests: Z-test for single proportion and difference of two sample proportions – Z-test for single mean and difference of means – Small sample tests: Student's t-test for testing significance of single mean and difference of means – Small sample tests: Test of goodness of fit – Test of independence of attributes.

Unit - II Design of Experiments: 9+3

Introduction – Analysis of variance – One way classification: Completely Randomized Design – Two way classification: Randomized Block Design – Three way classification: Latin Square Design.

Unit - III	Solution to Algebraic and Transcendental Equations:	9+3
------------	---	-----

Method of false position – Newton-Raphson method – Solution of linear system of equations – Direct methods: Gauss elimination method and Gauss - Jordan method – Iterative methods: Gauss Jacobi and Gauss-Seidel methods.

Unit - IV Interpolation, Numerical Differentiation and Integration::	9+3
--	-----

Interpolation: Interpolation with equal intervals: Newton's forward and backward difference formulae – Interpolation with unequal intervals: Lagrange's interpolation formula – Newton's divided difference formula.

Numerical Differentiation and Integration: Differentiation using Newton's forward, backward and divided difference formulae – Numerical integration: Trapezoidal rule – Simpsons 1/3rd rule.

Unit - V Numerical Solution of First order Ordinary Differential Equations:

Single step methods: Taylor series method – Euler method – Modified Euler method – Fourth order Runge-Kutta method – Multi step methods: Milne's predictor corrector method – Adam's Bashforth method.

TEXT BOOK:

Veerarajan T, Ramachandran T., "Statistics and Numerical Methods", 1st Edition, Tata McGraw Hill Publishing Company, New Delhi, 2018.

REFERENCES:

 Walpole R.E., Myers R.H., Myers S.L. and Ye K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2012.
 Jay L. Devore, "Probability and Statistics for Engineering and the Sciences", 9th Edition, Cengage Learning, USA, 2016.
 Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", 7th Edition, McGraw-Hill Education, 2014.
 Ravish R. Singh, Mukul Bhatt, "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.

9+3

9+3

Lecture: 45, Tutorial: 15, Total: 60

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)		
CO1	apply statistical tests for solving engineering problems involving small and large sample tests.	Applying (K3)		
CO2	handle experimental data with the knowledge of ANOVA.	Applying (K3)		
CO3	apply various numerical techniques to solve algebraic and transcendental equations	Applying (K3)		
CO4	compute intermediate values of given data, numerical derivatives and integral values	Applying (K3)		
CO5	obtain the solution of first ordinary differential equations by numerical methods.	Applying (K3)		

					Мар	ping of C	COs with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3										
CO2	3	2	1	3										
CO3	3	3	2											
CO4	3	2												
CO5	3	3	1											
	1	0 0			'- T									

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	10	20	70				100								
CAT2	10	20	70				100								
CAT3	10	20	70				100								
ESE	10	30	60				100								

20CHT41 - MECHANICAL OPERATIONS

Programme & I	Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	P	Credi			
Prerequisites		Nil	4	PC	3	0	0	3			
Preamble	This cou	rse enables the students to understand the handling	and operation of solids								
Unit - I	Properties and Handling of Particulate Solids:										
Particle charact	terization	, agglomeration and segregation; Methods of handlin	ng, transportation and s	torage of bulk s	olids						
Unit - II	Size Reduction:										
Laws and mech	nanism o	f size reduction; types of crushing equipment; indust	rial screens and screen	effectiveness.							
Unit - III	Separation of Particulate Solids:										
Gravity separat	ion: clas	sifier, clarifier, settler; sedimentation and centrifugal s	separation; flotation, ma	agnetic separato	ors and e	ectrosta	atic prec	cipitator.			
Unit - IV	Filtration:										
Filtration theory	, classifi	cation of filtration process, Selection of filters; Industr	rial filtration equipment.								
Unit - V	Agitatio	n and Mixing:									
Significance of powders and pa		n and mixing, equipment for agitation, types of imp xing index.	pellers, power requirem	ent for mixing	of Newt	onian liq	uids; M	lixers fo			

TEXT BOOK:

1.

Total:	45
--------	----

Swain A.K, Patra H. and Roy G.K, "Mechanical Operations", 1st Edition, Tata McGraw Hill Education Pvt. Ltd, New Delhi, 2017.

REFERENCES:

1. Coulson J.M. and Richardson J.F, "Chemical Engineering", 5th Edition, Butterworth-Heinemann Ltd, United States of America, 2002.

 Badger Walter L. and Banchero Julius T, "Introduction to Chemical Engineering", 1st Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2008.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)		
CO1	determine the characteristics of solids, conduct size analysis, demonstrate the transportation and storage of solids	Applying (K3)		
CO2	categorize the size reduction equipment and estimate the power consumption and effectiveness of the screen	Applying (K3)		
CO3	examine the separation equipment for solid-solid, solid-liquid and solid-gas system and design of thickener	Applying (K3)		
CO4	categorize various filters and determine the rate of filtration	Applying (K3)		
CO5	analyze the working of various types of impellers, mixers and determine the power consumption for mixing and agitation	Applying (K3)		

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		1	1		2	2				1	3	1
CO2	3	3	1				2	2				1	3	1
CO3	3	2	1				2	2				1	3	2
CO4	3	2	1				2	2				1	3	2
CO5	3	2	1				2	2				1	3	2
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering (K1) Understanding (K2) Applying (K3) Analyzing (K4) **Evaluating (K5)** Creating (K6) Total % Category* % % % % % % CAT1 20 40 40 100 CAT2 20 40 40 100 CAT3 10 50 40 100 ESE 20 40 40 100

20CHT42 - PROCESS HEAT TRANSFER

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	PC	3	0	0	3

11		
	This course will help the students to apply the modes of heat transfer and its application in design of heat transfer equipment.	

Unit - I	Conduction:	9

Nature and Modes of heat transfer. Concept of heat conduction -Fourier's law, thermal conductivity of materials, one dimensional steady state heat conduction equation for composite flat plate, hollow cylinder, and hollow sphere, heat conduction through a series of resistances. Relationship between Individual and overall heat transfer coefficients; critical thickness of insulation; fundamental concepts in extended surfaces heat transfer; Transient heat conduction.

Unit - II Convection:

Natural and forced convection –Application of dimensional analysis for convection and dimensionless numbers, Reynolds and Colburn analogy –jH factor, Equations for forced convection under laminar and turbulent flow conditions in pipes, Equations for natural convection in vertical plates and vertical and horizontal cylinders

Unit - III Heat Transfer with Phase Change:

Boiling heat transfer-General aspects, boiling regimes, factors affecting boiling, boiling correlations, condensation heat transfer—film and dropwise condensation, Evaporator-Types and method of feed -steam economy and surface area calculations for single effect evaporator.

Unit - IV Heat Exchangers:

Types of heat exchangers; LMTD; use of correction factor charts; Fouling factors; surface area calculations for double pipe and shell and tube heat exchangers; effectiveness and number of transfer units –Wilson's plot.

Unit - V Radiation

Concept and nature of thermal radiations -Concept of Black and grey bodies; Stefan Boltzmann, Kirchhoff's, Planck's and Wien laws; Radiation between surfaces –configuration factor; radiation shield.

TEXT BOOK:

1. Rajput R.K, "Heat and Mass Transfer", 5th Edition, S.Chand, New Delhi, 2007

REFERENCES:

Holman. J.P. and Souvik Battacharyya, "Heat Transfer", 10th Edition, McGraw-Hill Education, Europe, 2011
 Binay K. Dutta, "Heat Transfer: Principles and Applications", 7th Edition, PHI Learning Pvt. Ltd., 2000
 Kern D.Q, "Process Heat Transfer", 2nd Edition, Tata McGraw Hill Europe, 1997.

4. Necati Ozisik.M, Helcio R. B. Orlande, "Inverse Heat Transfer", 1st Edition Taylor and Francis, New York, 2000.

Total:45

9

9

9

9

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)			
CO1	calculate heat transfer rate for different geometries under steady state and transient heat conduction	Applying (K3)			
CO2	apply the different flow conditions by convective heat transfer.	Analyzing (K4)			
CO3	Inspect the fundamentals of boiling and condensation and determine the economy of evaporator	Applying (K3)			
CO4	design and analyze the performance of heat exchangers.	Analyzing (K4)			
CO5	apply the laws of radiation heat transfer for different configurations.	Analyzing (K4)			

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								2	3	2
CO2	3	3	2	1								2	3	2
CO3	3	3	3	2								2	3	3
CO4	3	3	3	2								2	3	3
CO5	3	3	2	2								2	3	2
1 – Slight, 2 – N	loderate,	3 – Subs	stantial, E	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy										

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	30	50				100				
CAT2	10	30	60				100				
CAT3	10	30	60				100				
ESE	10	30	60				100				

20CHL41 - MECHANICAL OPERATIONS LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	PC	0	0	2	1

List of Exercises / Experiments :

1.	Determine the crushing law constants and the power consumption using Jaw crusher and Roll crusher						
2.	Examine the critical speed and the power consumption using ball mill						
3.	Calculate the average particle size using size analysis and finding the effectiveness of Screen						
4.	Estimate the particle size distribution and the average particle size using Beaker decantation						
5.	Examine the specific surface area of the given powder using Air permeability						
6.	Determine of the specific cake resistance and filter medium resistance using plate and frame filter press /leaf filter						
7.	Calculate the performance analysis of a screw conveyor						
8.	Estimate the separation efficiency of cyclone separator						
9.	Conduct the batch sedimentation test to design a thickener						
10.	Determine the power consumption for mixing in a liquid agitator						
-							

REFERENCES/MANUAL/SOFTWARE:

Laboratory Manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine crushing characteristics, power requirements and constants of crushing laws for different crushers	Applying (K3), Manipulation(S2)
CO2	calculate the screen effectiveness, average particle size and particle distribution using particle size analyzing techniques.	Applying (K3), Manipulation (S2)
CO3	estimate the separation efficiency, performance and power consumption of filters, conveyors, agitator and mixing vessel	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				1	1	1	3	2		2	3	2
CO2	2	1				1	1	1	3	2		2	3	2
CO3	2	1				1	1	1	3	2		2	3	2
Slight 2 N	- Slight 2 - Moderate 3 - Substantial BT- Bloom's Tayonomy													

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

20CHL42 - PROCESS HEAT TRANSFER LABORATORY

Progra	amme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit		
Prerec	rerequisites Nil 4 PC 0 0									
List of	f Exercises / Exp	eriments :								
1.	Calculate the the	ermal conductivity of a material.								
2.	Estimate transie	nt heat conduction- constant flux and constant temperature								
3.	Evaluate the over	erall heat transfer coefficient and heat transfer rate in a Column.								
4.	Calculate the he	at transfer coefficient and fin efficiency in an extended surface								
5.	Investigate the h	neat transfer coefficient under natural convective heat transfer.								
6.	Estimate the hea	at transfer coefficient under forced convective heat transfer								
7.	Evaluate the Ste	fan Boltzmann constant								
8.	Determine the c	ombined convective and radiative heat transfer coefficient								
9.	Investigate the b	poiling mechanism in heat transfer equipment								
10.	Estimate the ste	am economy and efficiency of a single effect evaporator.								
11.	Evaluate the hea	at transfer coefficient in horizontal and vertical condensers.								
12.	Calculate the he	at transfer coefficient in a jacketed vessel.								
13.	Estimate and compare the heat transfer coefficient in a double pipe heat exchanger for co-current and counter current flow pattern.									
14.	Determine the o	verall heat transfer coefficient in a shell and tube heat exchange	r for parall	el flow pattern.						

Total:30

REFERENCES/MANUAL/SOFTWARE: Laboratory Manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the heat transfer concepts to solve steady state and unsteady state heat transfer	Applying (K3), Manipulation (S2)
CO2	appraise boiling and condensation mechanism to evaluate steam economy in evaporator and heat transfer coefficient in condenser	Applying (K3), Manipulation (S2)
CO3	evaluate the heat transfer coefficient for jacketed vessel, double pipe and shell and tube heat exchanger	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				1	1	1	3	2		2	3	2
CO2	3	3				1	1	1	3	2		2	3	2
CO3	3	3				1	1	1	3	2		2	3	2
1 – Slight, 2 – N	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20EGL31 - ENGLISH FOR WORKPLACE COMMUNICATION

(Common to all Engineering and Technology branches)

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	Т	Р	Cred
Prerequisites	Nil	5	HS	0	0	2	1
Preamble							

Language Practice Domains:	
1. Listening:	6
Techniques for effective listening - Listening and note taking - Listening activities using listening texts - L discourse samples of native English speakers – Focussed listening for improving pronunciaition - understandir accents.	
2. Reading:	6
Developing reading skills - Reading aloud - Group reading activities - Reading with correct word stress and into	nation.
3. Soft Skills:	
Attitude - Goal setting - Time Management - Team Work - Telephonic conversation skills.	
4. Writing:	
Making preparatory notes, drafts and PPT's for laboratory activities - Word editing features - editing and proof r	eading.
5. Speaking:	
Verbal and non-verbal communication - Introducing oneself - Introducing others - Mock Interviews - Making	

Total:30

REFERENCES/MANUAL/SOFTWARE:

1. Sanjay Kumar & Pushp Lata, "Communication Skills", 2nd Edition, Oxford University Press, New Delhi, 2017.

2. Laboratory Manual.

	OURSE OUTCOMES: n completion of the course, the students will be able to							
CO1	acquire effective listening and reading skills	Understanding (K2), Imitation (S1)						
CO2	acquire and demonstrate appropriate professional skills for the workplace	Applying (K3), Naturalization (S5)						
CO3	speak fluently and write meaningfully in English in the given context	Applying (K3), Articulation (S4)						

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									2	3		3		
CO2									2	2		2		
CO3									2	2		2		
– Slight, 2 – M	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20GET51 - UNIVERSAL HUMAN VALUES (Common to all BE/BTech branches)

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	T	Р	Credit
Prerequisites	Nil	5	MC	2	0	0	2

Preamble	To make the student to know what they 'really want to be' in their life and profession, understand the meaning of happiness and
	prosperity for a human being. Also to facilitate the students to understanding of harmony at all the levels of human living, and live
	accordingly

Unit - I Introduction: 9

Need and Basic Guidelines of Value Education – Content and Process of Value Education – Self Exploration – purpose of self-Exploration – Content and Process of Self exploration – Natural Acceptance – Realization and Understanding – Basic Human Aspirations – Continuous Happiness and Prosperity – Exploring Happiness and Prosperity – Basic Requirement for Fulfillment of Human Aspirations – Relationships – Physical Facilities – Right Understanding.

Unit - II Harmony in the Self and Body:

Human Begin and Body – Understanding Myself as Co–existence of Self ('I') and Body, Needs of the Self and Body, Activities in the Self and Body, Self ('I') as the Conscious Entity, the Body as the Material Entity – Exercise – Body as an Instrument– Harmony in the Self ('I) – Understanding Myself – Harmony with Body.

Unit - III Harmony in the Family and Society:

Harmony in the Family – Justice – Feelings (Values) in Human Relationships – Relationship from Family to Society – Identification of Human Goal – Five dimensions of Human Endeavour.

Unit - IV Harmony in Nature and Existence:

Order of Nature – Interconnectedness – Understanding the Four order – Innateness – Natural Characteristic – Basic Activity – Conformance – Introduction to Space – Co–existence of units of Space – Limited and unlimited – Active and No–activity – Existence is Co–existence.

Unit - V Implications of the above Holistic Understanding of Harmony on Professional Ethics:

Values in different dimensions of Human Living – Definitiveness of Ethical Human Conduct –Implications of Value based Living – Identification of Comprehensive Human Goal – Humanistic Education – Universal Human Order – Competence and Issues in Professional Ethics.

TEXT BOOK:

Total: 45

9

9

9

9

 Gaur R.R., Sangal R., Bagaria G.P., "A Foundation Course in Human Values and Professional Ethics", 1st Edition, Excell Books Pvt. Ltd., New Delhi, 2016.

REFERENCES:

1. Ivan Illich, "Energy & Equity", The Trinity Press, USA, 1974.

2. Schumacher E.F., "Small is Beautiful: a study of economics as if people mattered", Britain, 1973.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the significance of value inputs in a classroom, distinguish between values and skills, understand the need, basic guidelines, content and process of value education, explore the meaning of happiness and prosperity and do a correct appraisal of the current scenario in the society.	Understanding (K2)
CO2	distinguish between the Self and the Body, understand the meaning of Harmony in the Self the Co-existence of Self and Body.	Understanding (K2)
CO3	understand the value of harmonious relationship based on trust, respect and other naturally acceptable feelings in human-human relationships and explore their role in ensuring a harmonious society.	Understanding (K2)
CO4	understand the harmony in nature and existence, and work out their mutually fulfilling participation in the nature.	Understanding (K2)
CO5	distinguish between ethical and unethical practices, and start working out the strategy to actualize a harmonious environment wherever they work.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1		3						
CO2								2						
CO3						1		3						
CO4								2						
CO5								3						
1 - Slight, 2 - N	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	75					100
CAT2	25	75					100
CAT3	NA						
ESE	NA						

20CHT51 MASS TRANSFER- I

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Chemical Process Calculations	5	PC	3	1	0	4

Preamble The subject focuses on the diffusion, mass transfer co-efficient, theories of mass transfer, the process aspects and equipment used in the operations like Absorption, Adsorption, Ion Exchange and Humidification.

Unit – I Diffusive Mass Transfer:

Molecular diffusion in gases and liquids, measurement and calculation of diffusivities, steady state diffusion in multi component mixtures. Diffusion in solids, molecular and Knudsen diffusion in porous solids.

Unit - II Turbulent Transfer of Mass and Interface Mass Transfer:

Mass transfer in turbulent flow, eddy diffusion, mass transfer coefficients, estimation of mass transfer coefficient in wetted wall column, correlations for the calculation of mass transfer coefficients. Theory of interface mass transfer, Individual and overall mass transfer coefficients, steady state cocurrent and counter current mass transfer processes, stages and stage efficiencies, cross flow and counter current cascades of stages, Kremser equations for the calculation of number of theoretical stages. Equipments for gas-liquid contact operations.

Unit - III Absorption:

Gas Absorption - Tray tower absorber, absorption factor, calculation number of theoretical stages, Murphree efficiency - point efficiency, tray efficiency and overall tray efficiency, calculation of actual number of trays.Packed tower absorber - HETP, HTU and NTU calculations Non-isothermal absorber, absorption with chemical reaction.

Unit - IV Adsorption and Ion Exchange:

Adsorption – Types of adsorption, nature of adsorbents, adsorption equilibria, effect of pressure and temperature on adsorption isotherms, Freundlich equation. Adsorption operation – stage wise operations, steady state moving bed absorbers, unsteady state fixed bed adsorbers, break through curves, rate of adsorption in fixed beds, design of fixed bed adsorbers. Ion Exchange – Selectivity, univalent, divalent-univalent, ion diffusion – particle and film control, Equipment – Fixed bed, Fluidized bed, Higgins moving packed bed, Industrial applications.

Unit - V Humidification:

Humidification - Humidity chart, adiabatic saturation curves, wet bulb temperature and measurement of humidity, Lewis relation, equipments for humidification operations, water cooling towers and spray chambers. Theory and calculation of humidification processes - gas liquid interaction, conditions in the top and bottom of cooling towers, design of cooling towers and dehumidifiers.

TEXT BOOK:

Lecture:45, Tutorial:15, Total:60

9+3

9+3

9+3

9+3

9+3

1. Treybal R. E., "Mass-Transfer Operations", 3rd Edition, McGraw Hill Education, India, 1981.

REFERENCES:

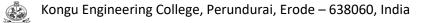
1.	Binay K Dutta, "Principles of Mass Transfer and Separation Process", 4 th Edition ,PHI learning private limited, 2007.
2.	Anantharaman N., Meera Sheriffa Begum K.M., "Mass Transfer Theory and Practice", Prentice Hall of India Pvt. Ltd, New Delhi, 2017.
3.	Geankoplis C.J., "Transport Processes and Separation Process Principles", 4 th Edition, Prentice-Hall of India, New Delhi, 2005.
4.	Coulson J.M. and Richardson J.F., "Chemical Engineering", 5 th Edition, Butterworth Heinemann, United State of America, 2002.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	measure and determine diffusion coefficients of gas, liquid systems	Applying (K3)
CO2	determine mass transfer coefficients and appreciate stage concept	Applying (K3)
CO3	perform process design calculations related to absorption and stripping operations	Applying (K3)
CO4	perform process design calculations related to adsorption operation and describe ion exchange concepts	Applying (K3)
CO5	perform process design calculations related to humidification operation	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1								2	3	1
CO2	3	3	3	1								2	3	2
CO3	3	3	3	2								2	3	2
CO4	3	3	3	2								2	3	2
CO5	3	3	3	2								2	3	2
– Slight, 2 – N	/loderate,	3 – Sub:	stantial, E	3T- Bloor	n's Taxo	nomy	1							1

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	50	20				100							
CAT2	10	30	60				100							
CAT3	10	30	60				100							
ESE	20	20	60				100							

20CHT52 CHEMICAL REACTION ENGINEERING-I


Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Chemistry & Chemical Process Calculations	5	PC	3	0	0	3

Preamble	This course enables the student to learn about basic concepts of kinetics and design of various ideal reactors.	
Unit - I	Elements of Reaction Kinetics:	9
	n of chemical reactions, rate equation, Reaction Mechanism–elementary and non-elementary reaction. Integral and differential m g kinetic data-constant volume and variable volume batch reactor, half life period, irreversible and reversible reaction.	nethods
Unit - II	Ideal Reactor:	9
Temperature	e dependency on rate equation, Performance equations and kinetics studies for Batch, Semi-batch and steady state flow reactors	5.
Unit - III	Design for Single Reactions:	9
•••••		
Size compari	rison of Single reactors: Batch reactor with plug flow reactor, Mixed flow reactor with plug flow reactor. Multiple reactor system: C I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel	CSTR in
Size compari		CSTR in
Size compari series, equal Unit - IV Parallel reac	I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel	9
Size compari series, equal Unit - IV Parallel reac	I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel Design for Multiple Reactions: ctions: Product distribution and reactor size Series reactions: Irreversible reactions. Yield: Fractional yield and Selectivity. F	9
Size compari series, equal Unit - IV Parallel reac reactor, Auto Unit - V Equilibrium in	I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel Design for Multiple Reactions: ctions: Product distribution and reactor size Series reactions: Irreversible reactions. Yield: Fractional yield and Selectivity. Focatalytic reactions.	9 Recycle 9
Size compari series, equal Unit - IV Parallel reac reactor, Auto Unit - V Equilibrium in	I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel Design for Multiple Reactions: ctions: Product distribution and reactor size Series reactions: Irreversible reactions. Yield: Fractional yield and Selectivity. Focatalytic reactions. Reaction Equilibrium: in chemically reactive systems, evaluation of reaction equilibrium constant, effect of temperature on equilibrium conversion. Of progression, reactor sizing.	9 Recycle 9 ptimum
Size compari series, equal Unit - IV Parallel reac reactor, Auto Unit - V Equilibrium in temperature TEXT BOOK	I and different size of CSTRs in series, Different types of reactors in series, Plug flow reactors in series and parallel Design for Multiple Reactions: ctions: Product distribution and reactor size Series reactions: Irreversible reactions. Yield: Fractional yield and Selectivity. Focatalytic reactions. Reaction Equilibrium: in chemically reactive systems, evaluation of reaction equilibrium constant, effect of temperature on equilibrium conversion. Of progression, reactor sizing.	9 Recycle 9

REFERENCES:

1. Fogler H.S., "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of India, New Delhi, 2008.

2. Mark E. Davis, Robert J. Davis, "Fundamentals of Chemical Reaction Engineering", 1st Edition, Tata McGraw Hill Publishing Company Ltd, New York, 2014.

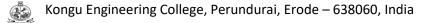
	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the principles of reaction kinetics and formulate rate equations	Applying (K3)
CO2	analyze ideal reactor concepts to develop the performance equation to workout conversion and space time	Analyzing (K4)
CO3	analyze the experimental kinetic data to select a suitable reactor combination for a particular application	Analyzing (K4)
CO4	determine selectivity and yield for series, parallel and mixed reactions	Applying (K3)
CO5	calculate reaction equilibrium constant, equilibrium conversion and optimum size of reactor	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	1	1	1	1				2	2	1
CO2	3	3	2	1	1	1	1	1				2	3	3
CO3	3	3	2	1	1	1	1	1				2	3	3
CO4	3	3	2	1	1	1	1	1				2	3	3
CO5	3	2	2	1	1	1	1	1				2	3	2
1 – Slight, 2 – N	Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	30	40				100							
CAT2	20	20	30	30			100							
CAT3	20	30	50				100							
ESE	20	20	30	30			100							

20CHT53 - CHEMICAL EQUIPMENT DESIGN AND DRAWING

Programme & E	Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit				
Prerequisites		Chemical Process Calculations & Process Heat Transfer	5	PC	3	1	0	4				
		re knowledge on process and mechanical design of various pro d standards like ASME, ASTM and BIS.	ocess equ	uipment used in	process	s industr	ies with	suitable				
Unit - I V	Vessels: 9-											
Introduction to d Design of storag		Codes and Standards. Design of Pressure vessel – under intell.	ernal pre	ssure, external	pressure	e and co	mbined	loading.				
Unit - II H	leat Tra	nsfer Equipment:						9+3				
Design of Shell a	and tube	and double pipe heat exchangers										
Unit - III H	leat Tra	nsfer Equipment with Phase change:						9+3				
Design of conde	nsers. D	esign of vertical thermosyphon reboiler. Design of single effect ev	aporator									
Unit - IV 🛛 🛛	lass Tra	ansfer Equipment:						9+3				
Design of distilla	tion colu	umn for binary systems – estimation of height and diameter. Desig	n of plate	e and packed at	osorption	column.						
Unit - V R	leactors							9+3				
Mechanical and	process	design of conventional mixed flow reactor, packed/tubular reactor	r and flui	d reactor								


TEXT BOOKS:

Lecture:45, Tutorial:15, Total:60

- Towler C. Gavin and Sinnott Ray, "Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design", 6th Edition, Butterworth-Heinemann, Burlington, USA, 2019 for units I,II,III & IV
- 2. BI, Thakore SB, "Introduction to Process Engineering and Design", 2nd Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2015 for unit V

REFERENCES:

1.	Bh Luyben, William Lat, "Chemical Reactor Design and Control", 1 st Edition, John Wiley & Sons, New Jersey, 2007.
2.	Perry's , "Chemical Engineers Handbook", 9th Edition, Tata McGraw Hill Publishing Company Ltd, United State of America, 2018.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the different stresses and estimate the plate thickness required for pressure, storage vessel under different pressure conditions	Analyzing (K4)
CO2	estimate the suitable design parameters of shell and tube and double pipe heat exchangers for the given process conditions	Analyzing (K4)
CO3	calculate the required design dimensions of a condenser, reboiler and single effect evaporator for the given duty	Analyzing (K4)
CO4	compute the height and diameter of the distillation and absorption columns for the given systems	Analyzing (K4)
CO5	perform the mechanical and process design of reactors for the given operating conditions	Analyzing (K4)

					Мар	ping of	Cos with	n Pos an	d PSOs					
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	2				1		1	2	3	3
CO2	3	2	1	1	2				1		1	2	3	3
CO3	3	2	1	1	2				1		1	2	3	3
CO4	3	2	1	1	2				1		1	2	3	3
CO5	3	2	1	1	2				1		1	2	3	3
1 – Slight 2 – I	Moderate	3 – Sub	stantial	BT- Bloo	m's Taxo	nomv								

 Moderate, 3 – Substantial, BT- Bloom's Taxonomy Siigni, Z

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		5	30	65			100
CAT2		5	30	65			100
CAT3		5	30	65			100
ESE		5	30	65			100

20CHL51 - CHEMICAL REACTION ENGINEERING LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	PC	0	0	2	1

1.	Investigate the kinetics of equimolar and non-equimolar reactions in a batch reactor
2.	Determine the effect of flow rate of reactants on conversion in a plug flow reactor
3.	Determine the effect of flow rate of reactants on conversion in a mixed flow reactor
4.	Compare of plug flow and mixed flow reactors
5.	Investigate the effect of flow rate of reactants on conversion in a combined reactor
6.	Study the effect of temperature on reaction rate and conversion in a batch reactor
7.	Estimate the effect of temperature on reaction rate and conversion in a plug flow reactor/ mixed flow reactors
8.	Calculate the residence time distribution in a plug flow and mixed flow reactors
9.	Evaluate the non-ideal reactors using dispersion and tank in series models
10.	Estimate the residence time distribution studies in fixed bed/ fluidized bed reactors
11.	Determine the surface area using BET isotherm
12.	Compare the catalytic and non catalytic systems in batch reactor

REFERENCES/MANUAL/SOFTWARE:

Total:30

Laboratory Manual

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the fundamentals of reaction engineering for batch and continuous systems and analyze the reactor performance	Applying(K3)/ Manipulating(S2)
CO2	perform experiments to develop models for non ideal reactors	Applying(K3)/ Manipulating(S2)
CO3	apply the principles of catalytic reactions and determine the surface area of a catalyst	Applying(K3)/ Manipulating(S2)

					Мар	ping of (COs with	POs an	d PSOs					
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2			1			1	3	2		2	3	1
CO2	3	2		1	1			1	3	2		2	3	1
CO3	3	2		1	1			1	3	2		2	3	1
- Slight 2 - M	Moderate	3 _ Sub	stantial	RT- Bloo	m's Tavo	nomy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

20CHL52 - PROCESS COMPUTATION LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	PC	0	0	2	1

List of Exercises / Experiments :

1.	Perform basic Thermodynamic calculations using spreadsheet
2.	Linearization and Error Analysis of graphical data using spreadsheet
3.	Solving Material and Energy Balance for Non-Reactive systems using spread sheet
4.	Development of a Process Flow Diagram using AutoCAD
5.	Development of Piping and Instrumentation Diagram using AutoCAD and MS Visio
6.	3D drawing of a pressure vessel/ tubular reactor/ flash column using AutoCAD and MS Visio
7.	Basic Commands and Operations in MATLAB: a) Matrix computations b) Solving algebraic, ODE and PDE problems c) 2D and 3D Plots using MATLAB
8.	(a) Determine the average heat transfer coefficient for forced and natural convection using MATLAB(b) Determine the friction factor for laminar and turbulent flows using MATLAB
9.	Design of Shell and Tube heat exchanger using MATLAB / C Programming
10.	Calculation of Transfer Function of I, II and higher order processes using MATLAB
11.	Design of Double pipe heat exchanger using PYTHON Programming
12.	Design of Single / Multiple effect evaporator using PYTHON Programming
13.	Design of Plug Flow / Mixed Flow Reactor for a given reaction using PYTHON Programming

REFERENCES/MANUAL/SOFTWARE:

Laboratory Manual

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Perform Chemical Process Calculations using Spreadsheet	Analyzing(K4), Manipulating(S2)
CO2	Develop Process Flow and Process Instrumentation Diagrams in AUTOCAD	Applying(K3), Manipulating(S2)
CO3	Design Chemical Engineering Equipment/Processes using MATLAB / C Programming / PYTHON Programming	Applying(K3), Manipulating(S2)

	Mapping of Cos with Pos and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	1	1	2	2		1	3	1
CO2	3	2	3	3	1	1	1	1	2	2		1	3	1
CO3	3	2	3	3	1	1	1	1	2	2		1	3	1
1 Slight 2 N	ladarata	0.0.1.	te a tiel F											

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20GEL51 - PROFESSIONAL SKILLS TRAINING I (Common to all BE/ BTech / MSc /MCA /BSc Branches)

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	EC	0	0	80	2

Preamble	This subject is to enhance the employability skills and to develop career competency	
Unit - I	Soft Skills – I:	20
	l its importance: Pleasure and pains of transition from an academic environment to work environment-Need for change- Fear on in the professional world-Importance of positive attitude- Self motivation and continuous knowledge upgradation-Self-conf	

and competition in the professional world-Importance of positive attitude- Self motivation and continuous knowledge upgradation-Self-confidence. Professional grooming and practices: Basics of corporate culture-Key pillars of business etiquette- Basics of etiquette-Introductions and greetings-Rules of the handshake, earning respect, business manners-Telephone etiquette- Body Language.

Unit - II Quantitative Aptitude & Logical Reasoning – I:

Problem solving level I: Number System-LCM &HCF-Divisibility test-Surds and indices-Logarithms- Ratio-proportions and variation-Partnership-Time speed and distance-Data interpretation-data representation. Logical reasoning: Family tree-Deductions-Logical connectives-Binary logic Linear arrangements- Circular and complex arrangement

Unit - III Written Communication & Verbal Aptitude:

Writing Skills: Writing strategies and formats – Importance of Résumés – Writing a Cover letter – Writing a fresher's CV / Résumés – Responding to Job Advertisements – Professional e-mail Writing – Responding to e-mails and business letters – Technical Report writing – Interpretation of Technical Data (Transcoding) – Writing One-page Essays. Verbal Aptitude – Synonyms – Antonyms – Homonyms – One word substitution – Idioms and Phrases – Paired words – Analogies – Spelling test – Cloze test – using suitable verb forms – using appropriate articles and prepositions; Spotting Errors – Sentence Correction and Formation – Grammar Based questions (Transformation : Active-Passive & Direct-Indirect); Rearranging Jumbled Sentences & Jumbled paragraphs, Identifying Facts, Inferences and Judgements statements.

TEXT BOOK:

1

Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

1 Bailey Stephen, "Academic Writing: A practical guide for students", Routledge, New York, 2011.

2 Raman, Meenakshi and Sharma, Sangeeta, "Technical Communication - Principles and Practice", 3rd Edition, Oxford University Press, New Delhi, 2015.

30

30

	COURSE OUTCOMES: On completion of the course, the students will be able to			
CO1	develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)		
CO2	solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)		
CO3	apply communication skills effectively to understand and deliver information in various written discourses grammatically with accuracy	Applying (K3), Precision (S3)		

					Мар	ping of (COs with	POs and	l PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				3	3		3		3	2		
CO2	3	2				3	3		3		3	2		
CO3		2				3	3		3	3	3	2		
1 Clight 0	Madan				om'o Tovo									

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	50	30				100				
CAT2		50	50				100				
CAT3		50	50				100				
ESE	NA										

20CHT61 - MASS TRANSFER- II

Programme	& Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisite	es	Mass Transfer I	6	PC	3	0	0	3
Preamble		ect focuses on the process aspects and equipment us tallization.	ed in the operations	s like Distillation	, Extract	ion and l	_eaching	g, Dryin
Unit - I	Distillati	on:						
diagrams. Pr	rinciple of di	- Raoult's law, relative volatility, vapour liquid equilibriu stillation - flash distillation, differential or simple distilla s by Ponchan - Savarit method, Total reflux, minimum	on, steam distillation	on, multistage co				
Unit - II	Stage Ca	alculations:						
		by McCabe - Thiele method, effect of operating con actual number of stages, batch distillation with reflux, p					tage and	d overa
					• • • • • • • •			
Liquid - liquid current and d stationary so	d extraction counter curr blid beds, m	on and Leaching: , ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact	s, equipments for l ed extraction with re (shank's system)	eflux. Leaching	action, s - Leachi	tage wise	rcolation	ct - cros
Liquid - liquid current and o stationary so continuous c	d extraction counter curr blid beds, m	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b	s, equipments for l ed extraction with re (shank's system)	eflux. Leaching	action, s - Leachi	tage wise	rcolation	t - cros throug lti stage
current and c stationary so continuous c Unit - IV	d extraction counter curr blid beds, m ross curren Drying: mechanism	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stag of drying-drying characteristics of materials-batch an	s, equipments for l ed extraction with re (shank's system) efficiency.	eflux. Leaching , equipments fo	action, s - Leachii r leachii	tage wise ng by per ng opera	rcolation tion, mu	through Ilti stage
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a	d extraction counter curr blid beds, m ross curren Drying: mechanism	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stag of drying-drying characteristics of materials-batch an plications.	s, equipments for l ed extraction with re (shank's system) efficiency.	eflux. Leaching , equipments fo	action, s - Leachii r leachii	tage wise ng by per ng opera	rcolation tion, mu	t - cros through iti stage
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a Unit - V Crystallizatio	d extraction counter curr blid beds, m ross curren Drying: mechanism and their ap Crystalli on - principle	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stag of drying-drying characteristics of materials-batch an plications.	s, equipments for l ed extraction with re (shank's system) efficiency.	eflux. Leaching , equipments fo g-calculation for	action, s - Leachir r leachir continud	tage wise ng by per ng opera pus dryin	rcolation tion, mu g-variou	et - cross through liti stage us drying
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a Unit - V Crystallizatio heat and ma	d extraction counter curr blid beds, m cross curren Drying: mechanism and their ap Crystalli on - principle terial balance	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stag of drying-drying characteristics of materials-batch an plications. zation: es of crystallization, types of crystals, nucleation theorie	s, equipments for l ed extraction with re (shank's system) efficiency.	eflux. Leaching , equipments fo g-calculation for	action, s - Leachir r leachir continud	tage wise ng by per ng opera pus dryin	rcolation, mu tion, mu g-variou f crystals	t - cros throug Ilti stag us dryin s, yields
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a Unit - V Crystallizatio heat and ma	d extraction counter curr blid beds, m ross curren Drying: mechanism and their ap Crystalli on - principle terial balance	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stag of drying-drying characteristics of materials-batch an plications. zation: es of crystallization, types of crystals, nucleation theorie	s, equipments for l ed extraction with re (shank's system) e efficiency. d continuous drying s, crystal growth ar	eflux. Leaching , equipments fo g-calculation for nd law, particle s	action, s - Leachir r leachir continud	tage wise ng by per ng opera pus dryin	rcolation, mu tion, mu g-variou f crystals	et - cross through liti stage us drying
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a Unit - V Crystallizatio heat and ma TEXT BOOK 1. Treybal	d extraction counter curr blid beds, m cross curren Drying: mechanism and their ap Crystalli on - principle terial balance (: R.E., "Mass	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stage of drying-drying characteristics of materials-batch an plications. zation: es of crystallization, types of crystals, nucleation theorie ces in crystallization, equipments for crystallization.	s, equipments for l ed extraction with re (shank's system) e efficiency. d continuous drying s, crystal growth ar	eflux. Leaching , equipments fo g-calculation for nd law, particle s	action, s - Leachir r leachir continud	tage wise ng by per ng opera pus dryin	rcolation, mu tion, mu g-variou f crystals	t - cros throug llti stage us dryin s, yields
Liquid - liquid current and o stationary so continuous c Unit - IV Theory and equipments a Unit - V Crystallizatio heat and ma TEXT BOOK 1. Treybal REFERENC	d extraction counter curr blid beds, m cross curren Drying: mechanism and their ap Crystalli on - principle terial balance C: R.E., "Mass ES:	, ternary liquid- liquid equilibrium, solvent characteristic ent extraction, continuous contact extraction, packed b noving bed leaching, counter current multiple contact t and counter current leaching, stage calculations, stage of drying-drying characteristics of materials-batch an plications. zation: es of crystallization, types of crystals, nucleation theorie ces in crystallization, equipments for crystallization.	s, equipments for l ed extraction with re (shank's system) e efficiency. I continuous drying s, crystal growth ar o., New York, 1981	eflux. Leaching , equipments fo g-calculation for nd law, particle s	action, s - Leachir r leachir continud	tage wise ng by per ng opera pus dryin	rcolation, mu tion, mu g-variou f crystals	t - cros throug Ilti stag us dryin s, yields

3. Geankoplis C.J., "Transport Processes and Separation Process Principles", 4th Edition, Prentice-Hall of India, New Delhi, 2005.

4. Coulson J.M., Richardson J.F., "Chemical Engineering", 5th Edition, Vol. II, P. Butterworth Heinemann, New Delhi, 2002.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concept of vapour-liquid equilibrium and its application in the distillation	Applying(K3)
CO2	analyze distillation operations through stage concept	Analyzing(K4)
CO3	analyze extraction and leaching operations through ternary diagrams	Analyzing(K4)
CO4	determine drying time requirements for various devices and design industrial driers	Applying(K3)
CO5	estimate crystal yields for batch and continuous equipments	Applying(K3)

					Мар	ping of C	COs with	POs an	d PSOs					
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2								2	3	3
CO2	3	3	3	2								2	3	3
CO3	3	3	3	2								2	3	3
CO4	3	3	3	2								2	3	2
CO5	3	3	3	2								2	3	2
1 – Slight, 2 – I	Moderate,	3 – Sub	stantial, I	BT- Bloo	m's Taxo	nomy								

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	10	20	50	20			100
CAT3	10	30	60				100
ESE	10	20	60	10			100

20CHT62 - PROCESS MODELING AND SIMULATION

Programm Branch	e &	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisi	tes	Nil	6	PC	3	0	0	3
Preamble	nume	ake the students knowledgeable in different aspects of modeling prical simulation of models in fluid flow operations, separation ledge on the fundamental concepts of recent techniques in process	process	es and react				
Unit – I	Fund	lamentals of process modeling:						9
		deling, use of modeling, fundamental laws used in modeling, Modeundary conditions, black box modeling, gray box modeling, Introd				tions, i	nitial	
Unit – II	Mode	eling of Reactors:						ç
Batch read	tor, CS	STR, CSTBR (bio reactor), fed batch bio reactor, tubular reactor						
Unit - III	Mode	eling of Separation Processes:						S
Batch disti	llation of	column, batch reactive distillation column, gas absorber column, li	quid-liqui	d extractor				
Unit - IV	Num	erical methods and simulation:						9
		wton-Raphson method for solving of a set of nonlinear algebraic e del equations developed for CSTBR, fed-batch bio reactor, absorb			itta me	thod fo	or IVP (ODES.
Unit – V	Proc	ess simulation:						9
		tial modular flow sheeting and equation oriented mode. Over view nmonia synthesis process flowsheet, major blocks used and basic						
				Tota	l:45			

ТЕХ	(T BOOK:
1.	Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", 3 rd Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2017 for units I, II, III and IV.
2.	Finlayson, B.A, "Introduction to Chemical Engineering Computing", 1 st Edition, Wiley India, New Delhi , 2006 for unit V.

REFERENCES:

1.	Luyben W.L, "Process Modeling, Simulation and Control for Chemical Engineers", 2 nd Edition, Tata McGraw Hill Publishing Company Ltd, New York, 1990.
2.	Babu B.V, "Process Plant Simulation", 1 st Edition, Oxford University Press, New Delhi, 2004.

	RSE OUT			ne stude	nts will k	be able t	0							BT Mappe lighest Le	
CO1	describ	e the fur	Idament	al princi	oles, typ	es and a	applicati	ons of m	nodeling	and sim	ulation		Unc	lerstandin	g (K2)
CO2	develop	mather	natical n	nodels fo	or variou	is reacto	ors used	in proce	ess indu	stries				Applying (I	K 3)
CO3		o mathe on units	matical	models	s for in	dustrial	separa	ation pr	ocesses	-distillat	tion, abs	orption an	d A	Applying (I	K 3)
CO4	apply a	ppropria	te nume	rical tecl	hniques	for mod	eling an	d simula	ating rea	ctors an	d absorbe	ər	4	Applying (I	<3)
			aimula	tion illu	strate th	ne simul	ation of	unit op	erations	and pro		using Aspe	n A	Applying (I	K 3)
CO5		process ftware pa													
CO5		•								d PSOs					
		•		PO3	PO4						PO10	PO11	P012	PSO1	
СО	plus sol	ftware pa	ackage			Mappir	ng of CC	Ds with	POs an	d PSOs					
CO (plus sol	ftware pa	PO2	PO3		Mappir PO5	ng of CC	Ds with	POs an	d PSOs		P011	P012	PSO1	PSO2
CO ((plus sol s/POs	PO1	PO2	PO3		Mappir PO5 2	ng of CC	Ds with	POs an	d PSOs		PO11	PO12 2	PSO1	PSO2
CO () ()	s/POs	PO1 3 3	PO2 3 3	PO3 2 2		Mappir PO5 2 2	ng of CC	Ds with	POs an	d PSOs		PO11	PO12 2 2	PSO1 3 3	PSO2 2 2 2

	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	80					100			
CAT2	10	30	60				100			
CAT3	10	30	60				100			
ESE	10	30	60				100			

20CHT63 - PROCESS INSTRUMENTATION DYNAMICS AND CONTROL

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	PC	3	0	0	3

Preamble	This course will enable the students to compute the response of various control system strategies for different process dynam	ics
Unit – I	Principles of Measurement:	g
	measurement and hardware elements - Transducer function and types – Static and Dynamic characteristics of measuring de inciple of temperature transmitter – Types and principle of pressure transmitter - Types and principle of level transmitter - Type w transmitter	
l Init – II	Transient response of system:	0

Unit – II Transient response of system:

Introduction to process control – Review of Laplace transforms principles – Transfer function for chemical system- Standard input functions – Transient response and characteristic of first and second order system – Linearization of nonlinear system

Unit – III Development of Feedback control system:

Feedback control system concept, hardware element and development of block diagrams – Controller types and transfer function – Principles of pneumatic and electronic controller – Pneumatic control valve working mechanism and transfer function – Transportation lag

Unit – IV Analysis of closed loop system:

Servo and regulator mechanism problems – reduction of feedback control loop – dynamic response of closed loop system – offset calculations; Stability analysis: Routh test and root locus diagrams

Unit – V Frequency Response Analysis and Advanced Control System:

Introduction to frequency response – frequency response characteristic – Bode diagram – Bode stability criterion – Phase and gain margin – Tuning of controller setting : Ziegler-Nichols and Cohen-Coon method; Advanced control systems : principle and applications of cascade, ratio and feed forward control

TEXT BOOKS:

Alan S Morris, "Measurement and Instrumentation: Theory and Application", 3rd Edition, Butterworth-Heinemann, New Delhi, 2001 for unit I.

 Donald R. Coughanowr, Steven E. LeBlanc, "Process Systems Analysis and Control", 3rd Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2013 for units II, III, IV and V.

REFERENCES:

 Stephanopoulos S.G, "Chemical Process Control: An Introduction to Theory and Practice", 1st Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2012.

9

9

9

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe various measuring instruments and transmitters used in process industries	Understanding (K2)
CO2	examine the response of first and second order systems	Applying (K3)
CO3	explain the principle and types of controllers and control elements for different applications	Applying (K3)
CO4	analyze the closed loop control systems to determine the transient response, offset and their stability	Analyzing (K4)
CO5	assess the frequency response of closed loop systems and describe the advanced control strategies	Analyzing (K4)

	Mapping of Cos with Pos and PSOs													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1									2	3	1
CO2	3	3	1									2	3	1
CO3	3	3	2									2	3	1
CO4	3	3	2									2	3	1
CO5	3	3	1									2	3	1
1 – Slight, 2 –	Moderate	, 3 – Sub	ostantial,	BT- Bloc	om's Taxo	onomy								

	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	50	40				100						
CAT2	10	30	60				100						
CAT3		20	40	40			100						
ESE	10	20	30	40			100						

20CHL61 - MASS TRANSFER LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	PC	0	0	2	1

List of	Exercises /	Experiments:
LISCO		Experiments.

Total:30

1.	Determine the diffusivity of a fluid – fluid and fluid - solid system
2.	Estimate the mass transfer co-efficient using Wetted wall column
3.	Estimate the mass transfer coefficient of a air-water system in a cooling tower
4.	Conduct the batch drying study and estimate the mass transfer coefficient and psychometric ratio
5.	Conduct the drying experiment using Vacuum dryer
6.	Determine the activity coefficients & Van Laar constant for the given system by performing VLE experiments
7.	Verify Raleigh's equation for the given system using simple distillation setup
8.	Estimate the height equivalent to a theoretical plate (HETP) and find out percentage recovery of the overhead and bottom products of given system under total reflux conditions
9.	Determine the vaporization efficiency (Ev) and thermal efficiency (Et) of the given system using steam distillation apparatus
10	Conduct simple Leaching studies using given system
11.	Conduct the liquid - liquid extraction studies and plot binodal curve for the given ternary system
12.	Verify adsorption isotherms by Batch Adsorption
13.	Determine the exchange rate and saturation point by deionising water using Ion-Exchange experiment
REFE	RENCES/MANUAL/SOFTWARE:

REFERENCES/MANUAL/SOFTWARE:

Laboratory Manual

	E OUTCO	-	e, the stuc	lents will	be able to	J						BT Mapped (Highest Level)						
	D1 determine diffusivity and mass transfer co-efficient of a given system using mass transfer operations												Applying (K3), anipulating(S2					
CO2	D2 evaluate the performance and design parameters for various distillation operations											Applying (K3), Manipulating (S2)						
СОЗ	CO3 estimate the separation efficiency of various mass transfer equipment										Applying (K3), Manipulating (S2)							
					٩	Mapping	of COs v	with Pos a	and PSOs	3								
Cos/Pos	s PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2				
CO1	3	2			1			1	3	2		2	3	1				
CO2	3	2		1	1			1	3	2		2 3						
CO3	3	2		1	1			1	3	2		2 3 1						

20CHL62 - PROCESS MODELING AND SIMULATION LABORATORY

Progra	amme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credi			
Prerec	quisites	Nil	6	PC	0	0	2	1			
List of	f Exercises / Exp	eriments :									
1.	Analyse of physi	ical properties and thermodynamic equilibrium diagram construction	n								
2.	Estimate the phy	vsical property for a non- data bank component									
3.	Design pump, valves and pipes for fluid transport										
4.	Simulate the hea	at exchanger using Aspen Plus by short cut and detailed method									
5.	Simulate the mix	ker and flash separator									
6.	Simulate the dis	tillation column									
7.	Perform the sen	sitivity analysis and influence of flow rate of single component on a	absorptio	n and its optimiz	zation						
8.	Simulate the ste	ady state plug flow reactor									
9.	Simulate the ste	ady state mixed flow reactor									
10.	Generate a simp	ble process flow diagram and perform simulation study									
								Total:30			

REFERENCES/MANUAL/SOFTWARE: Laboratory Manual

1. Aspen Plus

COURSE OUTCOMES

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	construct T-x-y / P-x-y diagrams, estimate the physical properties of non-data bank component and perform fluid flow problems	Applying (K3), Manipulating (S2)
CO2	simulate heat and mass transfer equipments	Analyzing (K4), Manipulating(S2)
CO3	perform simulation of reactors and simple process flow diagram	Analyzing (K4), Manipulating(S2)

	Mapping of Cos with Pos and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		2	3				3		2	2	3	1
CO2	3	2		2	3				3		2	2	3	1
CO3	3	2		2	3				3		2	2	3	1
1 - Slight 2 - N	Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

20CHL63 - PROCESS INSTRUMENTATION DYNAMICS AND CONTROL LABORATORY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	PC	0	0	2	1

List of Exercises / Experiments :

1.	Estimate the time constant for first order system
2.	Study the response and evaluate the time constant for two tank non-interacting level systems
3.	Evaluate the time constant for two tank interacting level systems
4.	Verify the flow coefficient and performance characteristics of pneumatic control valves
5.	Examine the response of servo problem for various controller (P/PI/PID) in pressure control loop.
6.	Study the response of regulator problem for a choice of controller(P/PI/PID) in temperature control loop.
7.	Analyze the response of different controller setting for PI & PID controller in level control loop
8.	Perform comparison of ON-OFF and different gain value for P controller in flow control loop
9.	Estimate the optimum controller settings using shell and tube heat exchanger.
10.	Analyze the response of ratio control system
11.	Study the response of cascade control system
12.	Perform experiment using feed forward control system
	Total:30

REFERENCES/MANUAL/SOFTWARE:

Laboratory Manual

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	estimate time constant and transient response of various dynamic systems	Applying (K3), Manipulation (S2)
CO2	analyze the response of controllers for different applications	Applying (K3), Manipulation (S2)
CO3	estimate optimum controller setting and study the advanced control system responses	Applying (K3), Manipulation (S2)

	Mapping of Cos with Pos and PSOs													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			1			1	3	2		2	3	1
CO2	3	2		1	1			1	3	2		2	3	1
CO3	3	2		1	1			1	3	2		2	3	1
– Slight, 2 – I	Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20CHP61 - PROJECT WORK-I

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	EC	0	0	4	2

	E OUTCOMES: Deletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify and define the problems that need to be solved	Applying (K3)
CO2	select appropriate literature and frame the objectives	Applying (K3)
CO3	develop/ design value added products equipment using research tools and methods	Creating(K6)
CO4	analyze the experimental data and device the valid conclusion	Analyzing(K4)
CO5	elaborate the project in the form of oral presentation, report and technical paper publication	Creating(K6)

	Mapping of Cos with Pos and PSOs													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	2	2	3	2	3	3	3	3	3	3
CO2	3	2	2	2	3	2	2	2	3	3	3	3	2	2
CO3	3	3	3	3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	2	3	3	2	2	2	3	3	3	3	2	2
CO5	3	2	2	2	2	2	2	2	3	3	3	3	2	2
1 – Slight, 2	- Mode	rate, 3 – 5	Jubstantia	I, BT- Blo	om's Tax	onomy								

20GEL61 - PROFESSIONAL SKILLS TRAINING II (Common to all BE/ BTech / MSc /MCA /BSc Branches)

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	EC	0	0	80	2

Preamble	This subject is to enhance the employability skills and to develop career competency	
Unit - I	Soft Skills – II:	20
Group discus	sions: Advantages of aroun discussions-Structured CD- Team work: Value of team work in organizations- Definition of a tea	m why

Group discussions: Advantages of group discussions-Structured GD- Team work: Value of team work in organizations- Definition of a team, why team-Elements of leadership, disadvantages of a team, stages of team formation- Group development activities. Facing an interview: Foundation in core subject- industry orientation / knowledge about the company- professional personality-Communication skills-Activities before Interview, upon entering interview room, during the interview and at the end Mock interviews.

Unit - II Quantitative Aptitude & Logical Reasoning – II:

Problem solving level II: Money related problems-Mixtures-Symbol base problem-Clocks and calendars-Simple-linear-quadratic and polynomial equations-Special, equations-Inequalities-Sequence and series-Set theory-Permutations and combinations-Probability-Statistics-Data sufficiency-Geometry-Trigonometry-Heights and distances-Co-ordinate geometry-Mensuration. Logical reasoning: Conditionality and grouping-Sequencing and scheduling- Selections-Networks:-Codes; Cubes-Venn diagram in logical reasoning- Quant based reasoning-Flaw detection- Puzzles-Cryptarithms.

Unit - III Reading & Speaking Skills:

Reading: Reading comprehension– Effective Reading strategies – Descriptive, Inferential, & Argumentative reading passages – Identifying and locating factual information within a text – global reading/skimming for general understanding – selective comprehension / scanning for specific information – detailed comprehension / intensive reading – understanding the development of an argument – identifying the writer's attitude and opinions – Reading news articles in business magazines, newspapers – Reading notices and book reviews –Interpreting graphic data & Advertisements. Speaking: Mock Interviews –Self-Introduction – Sharing of Real Time Experience; Conversational Practices –Role Play – Short Talks / TED Talks –Extempore; Giving a Presentation on Various Topics – Technical / Non-Technical Topics – Project Review Presentation – Oratory and Effective Public Speaking; Pair Discussion – Group Discussion – The process of Group Discussion – Strategies to be adopted – Skills Assessed – Telephonic Conversations & Skills – Negotiating Skills.

TEXT BOOK:

Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

1 Aruna Koneru, "Professional Speaking Skills," Oxford University Press India, 2015.

2 Thorpe, Showick and Edgar Thorpe, "Winning at Interviews," 5th edition, Pearson Education, India, 2013.

3 Rizvi, Ashraf M, "Effective Technical Communication," 2nd Edition, McGraw Hill Education India, 2017.

30

30

On com	On completion of the course, the students will be able to							
CO1	develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)						
CO2	solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)						
CO3	apply reading and speaking skills effectively for various academic and professional purposes	Applying (K3), Precision (S3)						

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2				3	3		3		3	2		
CO2	3	2				3	3		3		3	2		
CO3		2				3	3		3	3	3	2		

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2		50	50				100							
CAT3		50	50				100							
ESE	NA													

20GEP61 - COMPREHENSIVE TEST AND VIVA

(Common to all BE/BTech branches)

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	6	EC	0	0	0	2

	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	demonstrate knowledge in their respective programme domain.	Applying (K3)			
CO2	defend any type of interviews, viva-voce, and aptitude tests conducted for career progression	Applying (K3)			
CO3	exhibit professional etiquette and solve related engineering problems	Applying (K3)			

	Mapping of Cos with Pos and PSOs													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2					1	2	2	3	3	2
CO2	3	3	2	2					1	2	2	3	3	2
CO3	CO3 3 2 2 1 2 2 3 3 2													
1 – Slight, 2	Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20CHT71 - PROCESS ENGINEERING AND ECONOMICS

Programme & B	ranch	B.TECH. – Chemical Engineering	Sem.	Category	L	T	P	Credi
Prerequisites		Nil	7	HS	3	0	0	3
		se enables students to learn the process design developments, taxes and depreciation	velopment, plant loca	ation and layout	, cost ac	counting	and e	stimation
Unit – I Pr	ocess	Design Development:						
		re- Types of designs-Feasibility survey-Process de The preliminary design- Economics- Scale up in des						from th
Unit – II Pl	ant Lo	cation and Layout:						
		ite – factors- Plant layout- Preparation of the layout- e- materials handling- patent considerations.	Plant operation and	l control- Instrur	nentatior	n- Mainte	enance	 Utilities
Unit – III Co	ost acc	ounting and Estimation:						
cash flow for indu	ustrial o	ocedure- basic relationships in accounting- balance s perations- tree diagram- cumulative cash position- fa pany Policies- Operating Time and Rate of Production	ctors affecting investi	ment and produc				
Unit – IV Ta	axes ar	d Depreciation:						
depreciation- ser	vice life	ty taxes- excise taxes- income taxes- Depreciation - salvage value- present value- Methods for determ reak even analysis.						

Fixed-Capital Investment- Working Capital- estimation of capital investment- Types of capital cost estimates- Cost Indexes- cost factors in capital investment- estimating equipment costs by scaling – Methods for estimating capital investment- estimation of total product cost. Selection of alternatives and equipment replacement.

TEXT BOOK:

1.

Unit – V

Capital Investments:

Peter and Timmerhaus, "Plant Design and economics for Chemical Engineers", 5th Edition Reprint, Mc Graw Hill Book Co, New York, 2017.

REFERENCES:

1.		Harry Silla, " Chemical Process Engineering: Design and Economics", 1 st Edition, CRC press, USA, 2003
2.	•	Sivasubramanian V, "Process Economics and Industrial Management",1 st Edition, New Delhi, Galcotia Publishers, 2008.

9

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the procedure for process design development in process industries.	Applying (K3)
CO2	explain the factors affecting plant location and layout	Understanding (K2)
CO3	estimate the cost for industrial operations	Applying (K3)
CO4	determine taxes and depreciation for industrial operations	Applying (K3)
CO5	calculate the capital cost investment for process industries	Applying (K3)

1	Mapping of COs with POs and PSOs											
COs/Pos P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 F									PSO2			
CO1	1	1	2							3		
CO2		1	2				1			3	2	
CO3	1	2	1							3	2	
CO4	1	2	1							3	1	
CO5	2	2								3	2	
1 – Slight, 2 – M	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy								 	 		

1 – Slight, 2 – Modera	te, 3 – Substantial, BT- Bloom	n's laxonomy

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	60	20				100		
CAT2	20	50	30				100		
CAT3	15	60	25				100		
ESE	15	65	20				100		

20CHT72 - TRANSPORT PHENOMENA

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Fluid Mechanics, Mass Transfer I, Process Heat Transfer	7	PC	3	1	0	4

Preamble	To enable students to relate the concepts of heat, mass and momentum transfer.					
Unit - I	Fundamentals of Transport Phenomena:	9+3				
Importance of Transport Phenomena; Analogous nature of transfer processes; Conservation laws; Newtonian and Non-Newtonian flui Rheological models; Transport properties of gases and liquids- theories, pressure and temperature effects						
Unit - II	Shell Momentum Balances and Velocity Distribution in Laminar Flow:	9+3				
Shell balance and boundary conditions; Momentum flux and velocity distribution in falling film, circular tube, annulus and two adjacent immiscib fluids; creeping flow around a Sphere. Equations of Continuity and Motion.						
Unit - III	Shell Energy Balances and equations of change:	9+3				

Heat Conduction with Electrical, Nuclear and Viscous Heat Sources; Heat Conduction - Composite Walls and Cooling Fin; Use of equations of change to solve tangential flow in an annulus with viscous Heat Generation and Transpiration cooling.

Diffusion - Stagnant Gas Film, Heterogeneous and Homogeneous Chemical Reactions, Falling Liquid Film (Gas Absorption); Diffusion and Chemical Reaction inside a Porous Catalyst.	Unit - IV	Shell Mass Balance and Concentration Distributions in Solids and Laminar Flow:	9+
			on an

Unit - V Analogies of Transport Process: 9+3

Development and applications of analogies between momentum, heat and mass transfer- Reynolds, Prandtl, Von Karman and Chilton-Colburn analogies.

TEXT BOOK:

1. Bird R.B., Stewart W.E. and Lightfoot E.N, "Transport Phenomena", 2nd Edition, John Wiley & Sons, USA, 2007.

REFERENCES:

- Brodkey Robert S. and Hershey Harry C., "Transport Phenomena A united approach", 1st Edition, Brodkey Publications, United State of America, 2003.
- Welty J.R., Wicks C. E. and Wilson R. E., "Fundamentals of Momentum, Heat and Mass Transfer", 5th Edition, John Wiley & Sons Inc, United State of America, 2007.

Lecture:45, Tutorial:15, Total:60

COURSE OUTCOMES: On completion of the course, the students will be able to					
comprehend the analogous nature of Transport processes; Gain insight about different rheological models and transport properties of fluids	Applying (K3)				
apply the shell momentum balance approach to determine momentum flux and velocity distribution; understand equations of continuity and motion	Applying (K3)				
use equations of change to solve heat transfer problems; Develop shell balance approach for conduction and convection	Applying (K3)				
develop solutions for homogeneous and heterogeneous chemical reactions by applying shell mass balance	Applying (K3)				
interpret the analogy between the transport processes	Applying (K3)				
r	Inpletion of the course, the students will be able to comprehend the analogous nature of Transport processes; Gain insight about different rheological models and transport properties of fluids apply the shell momentum balance approach to determine momentum flux and velocity distribution; understand equations of continuity and motion use equations of change to solve heat transfer problems; Develop shell balance approach for conduction and convection develop solutions for homogeneous and heterogeneous chemical reactions by applying shell mass balance				

					Марг	ping of C	COs with	POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	3	1
CO2	3	3	2	1								1	3	1
CO3	3	3	2	1								1	3	1
CO4	3	3	2	1								1	3	1
CO5	3	3	2	1								1	3	1
1 – Slight, 2 – M	loderate,	3 – Subs	stantial, F	3T- Bloor	m's Taxo	nomy								

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	30	50				100
CAT3	20	40	40				100
ESE	20	30	50				100

20CHP71 - PROJECT WORK -II PHASE- I

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	EC	0	0	6	3

		Total:90
	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify and define the problems that need to be solved	Applying (K3)
CO2	select appropriate literature and frame the objectives	Applying (K3)
CO3	develop/ design value added products equipment using research tools and methods	Creating(K6)
CO4	analyze the experimental data and device the valid conclusion	Analyzing(K4)
CO5	elaborate the project in the form of oral presentation, report and technical paper publication	Creating(K6)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	3	2	2	3	2	3	3	3	3	3	3	
CO2	3	2	2	2	3	2	2	2	3	3	3	3	2	2	
CO3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	
CO4	3	3	2	3	3	2	2	2	3	3	3	3	2	2	
CO5	3	2	2	2	2	2	2	2	3	3	3	3	2	2	
1 – Slight, 2	2 – Mod	erate, 3 -	- Substa	ntial, BT	- Bloom's	s Taxono	my								

20CHP81 - PROJECT WORK- II Phase -II

Programme & Branch	B.Tech. & Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	EC	0	0	14	7

	OURSE OUTCOMES: n completion of the course, the students will be able to				
CO1	identify and define the problems that need to be solved	Applying (K3)			
CO2	select appropriate literature and frame the objectives	Applying (K3)			
CO3	develop/ design value added products equipment using research tools and methods	Creating(K6)			
CO4	analyze the experimental data and device the valid conclusion	Analyzing(K4)			
CO5	elaborate the project in the form of oral presentation, report and technical paper publication	Creating(K6)			

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	3	2	2	3	2	3	3	3	3	3	3	
CO2	3	2	2	2	3	2	2	2	3	3	3	3	2	2	
CO3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	
CO4	3	3	2	3	3	2	2	2	3	3	3	3	2	2	
CO5	3	2	2	2	2	2	2	2	3	3	3	3	2	2	
			1	 Slight, 	2 – Moo	derate, 3	– Substa	antial, BT	- Bloom	's Taxon	omy				

20CHE01 - CHEMICAL PROCESS PLANT SAFETY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisites	Applied Chemistry, Industrial Chemistry & Chemical Process Industries	5	PC	3	0	0	3

Preamble	he course outlines the workplace safety and associated terms applicable to the Process Industries									
Unit - I	Industrial Safety and Standards:	Ş								
Industrial Sat	aty programs Training and Education: Porconal protective Equipments: Safety codes & Standards: NEDA ADI IS and									

Industrial Safety programs - Training and Education; Personal protective Equipments; Safety codes & Standards: NFPA, API, IS and OSHA standards, Colour codes for pipe lines; Materials Safety Data sheets.

Unit - II Hazards and Occupational Health:

Occupational health hazards and their control - Types of Hazards & Exposure Controls; Safety in storage and handling of hazards; Designs to prevent fire and explosion hazards; Relief valves; Occupational diseases –Types, Causes, effects and Control measures.

Unit - III Process Safety and Safety Studies:

Safety in processes and plant operations, Process Safety Information (Key Terminologies & Definitions), Plant Layout spacing (Safety Distance), Inherently Safer plant Design Principles, Chemical Reactivity (Runaway reactions)- Handling of unstable products, Safety Critical Elements, Classification of Electrical Equipment's in Hazardous area, Fire and Gas Detection Systems, Fire Protection Systems, Emergency Planning and Response. Hazard Identification Safety Reviews – HAZID, HAZOP & SIL. Hazard Evaluation Safety Studies – Risk Assessment (QRA, FERA), Toxic Release & Dispersion Models, Layer of Protection Analysis, Fault tree, Event tree Methods for Risk analysis, ALARP, Risk Management Approach.

Unit - IV Industrial Accidents and Case Studies:

Accidents - Causes, Effects, Costs, and Prevention; Accident Investigation; Accident proneness; Major Accident Case Histories and Loss statistics - The Flixborough UK - Cyclohexane Disaster, Seveso Accident, The Chernobyl Nuclear Disaster, Bhopal Gas Tragedy; Field visits.

Unit - V Legal Aspects of Industrial Safety:

Safety Laws - Factories act, ESI act and Workmen's compensation act; Promotion of safety - Role of Government, Management, Safety organizations, and Trade unions; Rules and requirements governing Chemical industries in India.

TEXT BOOK:

1. Daniel A. Crowl, Joseph F. Louvar, "Chemical Process Safety: Fundamentals with Applications", 3rd Edition, Prentice Hall, India, 2011.

REFERENCES:

Roy E. Sanders, "Chemical Process Safety: Learning from case histories", 4th Edition, Butterworth Heinemann, United State of America, 2015.
 Raju K.S.N, "Chemical Process Industry Safety", 1st Edition, McGraw Hill International Edition, New Delhi, 2017.

9

q

9

Total:45

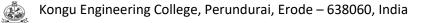
9

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	recall the industrial safety programs and the safety standards	Understanding (K2)
CO2	recognize the industrial hazards and associated safety procedures to ensure occupational health	Applying (K3)
CO3	describe the process safety in plant operations and analyze the safety failures through safety studies	Applying (K3)
CO4	examine major industrial accidents, their consequences and describe the preventive methods	Applying (K3)
CO5	summarize the safety law and regulations and recognize the roles played by different bodies in promoting safety	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	1				3	3	2	1	2		2	1	1
CO2	2	1				3	3	2	1	2		2	1	1
CO3	2	2	1			3	3	2	1	2		2	1	1
CO4	2	2		1		3	3	2	1	2		2	1	1
CO5	1					3	3	2	1	2		2	1	1
1 - Slight, 2 - N	loderate,	3 – Sub	stantial, l	BT- Blooi	m's Taxo	nomy								

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20CHE02 - ORGANIC SYNTHESIS


U	& Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	T	P	Credi
Prerequisite	es	Nil	5	PE	3	0	0	3
Preamble	This cours	se highlights the synthesis of industrially important organic compo	unds					
Unit - I		and Amination:						
		Nitro compounds and Nitration esters- Typical industrial equipmen nination, methods – reduction and its methods, Manufacture of An						ene, an
Unit II	Halogen	ation and Sulfonation Processes						9
Unit III	Amn f Ammonoly	nation of benzene, potassium anthraqunioline sulfonate and produ	uction of e				d Moth	9
		rsis. Aminating agents and survey of amination reactions, Manu					u weny	lamine
	Oxidation,	rsis. Aminating agents and survey of amination reactions, Manu Oxidizing agents, Types of Oxidative reaction, Synthesis of Acetic					u werry	lamine
								lamines
Principles of Unit – IV Production a	Hydroger	Oxidizing agents, Types of Oxidative reaction, Synthesis of Acetic	acid, For	maldehyde and	Styrene			
Principles of Unit – IV Production a	Hydroger and Properti Methanatio	Oxidizing agents, Types of Oxidative reaction, Synthesis of Acetic nation and Hydroformylation es of Hydrogen, Catalytic hydrogenation and Hydrogenolysis-Hydrogen	acid, For	maldehyde and	Styrene			

TEXT BOOK:

1. Groggins, P.H., "Unit Processes in organic synthesis", 5th Edition, McGraw Hill Book Co, New York, 2007.

REFERENCES:

1	1.	Austin, G.T, "Shreve's chemical process industries", 5 th Edition, McGraw Hill International Edition, New York, 2005.
2	2.	Tiwari, K.S., Vishnoi, N.K., "A Textbook of Organic Chemistry", 4th Edition, Vikas Publications, India, 2014.

	OURSE OUTCOMES: n completion of the course, the students will be able to						
CO1	describe the nitration and amination in various unit processes	Applying (K3)					
CO2	explain the halogenation and sulfonation processes	Applying (K3)					
CO3	sketch process flow diagrams for ammonolysis and oxidation processes	Applying (K3)					
CO4	employ various methods for production of hydrogen and hydrocarbon	Applying (K3)					
CO5	demonstrate the unit processes involved in hydrolysis, esterification reaction and alkylation reaction	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1			1	1	1				1	3	1
CO2	3	1	1			1	1	1				1	3	1
CO3	3	2	1			1	1	1				1	3	1
CO4	3	2	1			1	1	1				1	3	1
CO5	3	1	1			1	1	1				1	3	1
1 Clight 2 M	Slight 2 Moderate 2 Substantial PT Plaam's Toxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	40	60					100					
CAT2	40	60					100					
CAT3	40	60					100					
ESE	40	60					100					

20CHE03 - INSTRUMENTAL METHODS OF ANALYSIS

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	PE	3	0	0	3

Preamble This course helps the student to understand the basic principle, instrumentation and applications of various chemical analysis techniques

Unit – I Introduction to Instrumental Methods and UV-Visible and IR Spectroscopy:

Classification of instrumental methods based on physical properties of molecules – The electromagnetic spectrum – Interaction of photons with matter – Absorbance and transmittance – Beer and Lambert's laws. Ultra violet and Visible spectrometry: Theory – Types of Transitions – Red and blue shifts – Instrumentation – Single beam and double beam spectrophotometers and applications. Infrared spectrometry: Requirements for IR absorption – Modes of vibrations – Instrumentation- Applications – Finger print region.

Unit – II	Flame emission Photometer, Thermal Methods and Morphology Analysis	9
-----------	--	---

Flame emission photometer, Polarimetry and Refractometry – Principle, instrumentation and applications – Thermogravimetry: Principle, instrumentation and applications, factors affecting shapes of thermograms. Differential Thermal Analysis: Principle, instrumentation and applications. Differences between DSC and DTA. Application of DSC (Inorganic & Polymer samples). Morphology Analysis – Scanning Electron Microscopy – Transmission Electron Microscopy – Principle and Applications.

Unit – III	Atomic Absorption Spectrophotometer, NMR and Mass spectroscopy:	9
------------	---	---

Advantages of ASS over FES – Principle, Instrumentation – Interference and applications. Nuclear Magnetic Resonance: Introduction to NMR – Energy levels of nucleus – Equivalent and non-equivalent protons – Chemical shift – Shielding – TMS – Factors affecting chemical shift and instrumentation (proton NMR) – Applications. Theory – components of mass spectrometer – General rules for Interpretation of mass spectra – Applications of mass spectra.

Unit – IV Conductance, EMF measurement and Electrophoresis

Definitions, conductance measurements, applications, Types, advantages and disadvantages of Conductometric titrations. Potential measurements, pH determination, Potentiometric Titrations. Basic principles of electrophoresis, theory and application of paper, starch gel, agarose, PAGE, SDS-PAGE electrophoresis.

Unit – V Chromatographic Methods :

Introduction – Classification of chromatographic methods: Column chromatography, Thin Layer chromatography, Paper chromatography, Gas chromatography and High Performance Liquid Chromatography (HPLC) – Principle, important components and their functions mode of separation, Instrumentation and applications

TEXT BOOK:

Gurdeep R. Chatwal Shan K Anand, "Instrumental methods of Chemical Analysis", 5th Edition, Himalaya Publishing House, New Delhi, 2018.

REFERENCES:

3.

1. Willard H.H., Merritt L.L., Dean J.A., and Settle F.A., "Instrumental Methods of Analysis", 7th Edition, C B S Publishers & Distributors, Delhi, 2004.

2. Daniel C. Harris, "Qualitative chemical analysis", 9th Edition, W. H. Freeman and Company, New York, 2015.

Banwell. G. C, "Fundamentals of Molecular Spectroscopy", 5th Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2013.

Total:45

9

q

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe UV-Visible, IR instrument for chemical analysis	Applying (K3)
CO2	infer the principle of thermal and Morphology techniques for chemical Analysis.	Understanding (K2)
CO3	explain the principle, instrumentation and applications of ASS, NMR and Mass spectroscopy	Understanding (K2)
CO4	demonstrate the usage of conductance and potential measurements for chemical components and separation by electrophoresis.	Understanding (K2)
CO5	identify suitable chromatographic methods to separate and quantify the chemical components.	Understanding (K2)

	Mapping of COs with Pos and PSOs													
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3	2	1	1	1				1	2	1
CO2	3	3		2	2	1	1	1				1	2	1
CO3	3	3		3	2	1	1	1				1	2	1
CO4	3	3		2	2	1	1	1				1	2	1
CO5	3	3		3	2	1	1	1				1	2	1
1 Clight 0	Madarata	0 0												

	ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	60	10				100							
CAT2	40	60					100							
CAT3	40	60					100							
ESE	30	60	10				100							

20CHE04 - CHEMICAL ANALYSIS

Programme	e & Branch B.Tech. & Chemical Engineering	Sem.	Category	L .	T	P	Credit
Prerequisite	es Nil	5	PE	3	0	0	3
Preamble	This course helps the student to understand the basic principles in chemic base titrations.	al analys	is, chemical eq	uilibria, a	ind differ	ent type	es of acio
Unit - I	Chemical Measurements						9
SI units, Che Experimenta	emical concentration, preparing solution, stoichiometry calculations for gravir al error.	metric and	alysis, Introduct	ion to tit	ration ar	nd its ca	lculation,
Unit – II	Chemical equilibrium in chemical analysis						9
	constants, solubility products, complex formation, protic acids and bases. salt, systematic treatment of equilibrium. Activity coefficients.	Strength	of acid and b	ases. Ef	fect of i	onic str	ength on
Unit – III	Acid-Base equilibria and its titrations						9
Monoprotic a	and polyprotic equilibria, types of acid-base titration, buffers, indicators. Metal	ion indica	ators and EDTA	titrations	s with tee	chnique	s.
Unit – IV	Electrodes and potentiometry						9
Reference e	electrodes, indicator electrodes, junction potential, pH measurement and ion se	elective e	lectrodes, solid	state che	emical s	ensors.	
Unit - V	Redox titrations and Electro analytical techniques						9
	ions, finding end points, oxidation state analysis – oxidation with KMnO4 and pulometry, Amperometry and Voltammetry	K2Cr2O7.	Fundamentals	of electr	olysis, E	lectrogi	avimetrie
							Total:4

TEXT BOOK:

1. Daniel C. Harris, "Quantitative Chemical Analysis", 8th Edition, W. H. Freeman and Company, New York, 2010.

REFERENCES:

1. Skoog D.A. and West D.M, "Fundamentals of Analytical Chemistry", 7th Edition, Saunders College Publishing, New York, 1996.

2. Banwell. G. C, "Fundamentals of Molecular Spectroscopy", 5th Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2013.

	COURSE OUTCOMES: On completion of the course, the students will be able to								
CO1	understand the concepts in calculation for gravimetric analysis and titrations	Understanding (K2)							
CO2	explain about equilibria for the solubility of ionic compounds, complex formation and acid base reactions	Understanding (K2)							
CO3	describe the acid base equilibria, different types of titrations and buffers.	Understanding (K2)							
CO4	Illustrate the different types of electrodes and the role of chemical sensors	Understanding (K2)							
CO5	outline the basics of redox titrations and the fundamentals of coulometry, amperometry and voltammetry	Understanding (K2)							

		N	A apping	g of CO)s with F	POs and	d PSOs	;						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	1	1	1	1	1				1	3	1
CO2	3	1	2	1	1	1	1	1				1	3	1
CO3	3	1	2	1	1	1	1	1				1	3	1
CO4	3	1	2	1	1	1	1	1				1	3	1
CO5	3	1	2	1	1	1	1	1				1	3	1
1 – Slight, 2 – Moderate, 3 – Substa	antial, BT- Bl	oom's 7	Taxonor	ny										

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	60					100						
CAT2	40	60					100						
CAT3	30	70					100						
ESE	40	60					100						

20CHE05 - BIO CHEMICAL ENGINEERING

Pr	ogramme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Pr	erequisites	Nil	5	PE	3	0	0	3

Preamble	To gain knowledge in Microbes, Enzymes and Bioreactors for various Industrial applications.	
Unit - I	Microbes and Microbial Kinetics:	Ş

Classification of Microbes, Typical growth characteristics of microbial cells- Factors affecting growth, Monod model, Microbial Taxonomy.

Unit - II Enzyme Kinetics:

Classification of Enzymes- Mechanism of enzymatic reactions, Michaelis-Menten Kinetics. Enzyme Inhibition. Industrial Applications of Enzymes, Immobilization of Enzymes.

Unit - III Sterilization and Fermentation:

Batch and Continuous Sterilization, Sterilization of Air, Effect of Sterilization on Quality of Nutrients Requirements of fermentation process, Aerobic and Anaerobic fermentation Processes, Solid state and Submerged fermentation.

Unit - IV Transport in Microbial Systems:

Theories of Diffusional Mass Transfer, Mass Transfer by Convection, Measurement of mass transfer coefficient K_La, Oxygen Transfer Methodology, Factors affecting Oxygen Transfer Rate.

Unit - V Bioreactors and Downstream Processes:

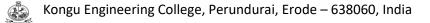
Classification based on feeding Mechanism-batch, continuous, fed batch reactors, Fluidized bed reactor, Immobilized cell reactor, Air-Lift reactor. Suspended solids removal, Filtration, Sedimentation, Centrifugation, Cell disruption, Extraction, Membrane Separation, Chromatography, Crystallization and Drying.

TEXT BOOK:

Total:45

9

9


9

9

Bailey, J. E. and Ollis, D. F, "Biochemical Engineering Fundamentals", 2nd Edition, Tata McGraw-Hill, New Delhi, 2010.

REFERENCES:

Rao, D.G., "Introduction to Biochemical Engineering", 2nd Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2009.
 T Palmer and P L Bonner, "Enzymes Biochemistry, Biotechnology, Clinical Chemistry", 2nd Edition, Woodhead Publishing, Europe, 2007.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	classify microbes and describe microbial growth kinetics	Understanding (K2)
CO2	explain Michaelis Menten Kinetics and various immobilization techniques	Applying (K3)
CO3	describe the sterilization and fermentation process	Understanding (K2)
CO4	explain theories of mass transfer to microbial systems	Understanding (K2)
CO5	classify bioreactors and explain the downstream processing techniques	Understanding (K2)

					Мар	ping of C	COs with	h POs and	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1					2					1	2	2
CO2	3	1					2					1	2	2
CO3	3	1					2					1	2	2
CO4	3	2					2					1	2	2
CO5	3	1					2					1	2	2
1 _ Slight 2 _ M	Vodorato	2 Sub		BT- Blog	m's Tax	anomy								

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40	60					100			
CAT2	20	60	20				100			
CAT3	40	60					100			
ESE	20	60	20				100			

20CHE06 - PULP AND PAPER TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	P	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Unit - I	Wood Preparation and Pulping:	-
Basics of pul		9
	Ip and paper technology- Wood as raw material- Pulpwood harvesting, debarking, chipping, screening and storage- Mecl nical pulping and Semi chemical pulping- Chemical recovery.	hanical
Unit - II	Processing and Bleaching of Pulp:	9
	of pulp- Cooking, Defibering, Deknotting ,Washing, Screening and Thickening- Bleaching- Oxygen bleaching, Chlorine-o drosulfite bleaching, Peroxide bleaching, Ozone bleaching - Stock preparation.	dioxide
Unit - III	Paper Manufacture Operations:	9
•	ber Processing- Paper making process- Wet end operations- Fourdrinier paper machine- Forming and Pressing- Dry end oper dering, Reeling, winding and Roll finishing -Surface treatments- Sizing, Coating and super calendering.	ations-
Unit - IV	Specific grades and Testing of Pulp and Paper:	9
	g techniques of Specific paper and Board grades – Properties and testing of pulp - Properties and testing of paper - Paper enc g, Converting and Printing - Process control- Quality assurance.	1 uses-
Unit - V	Sources and control of Pollution:	9
	ollutants from pulp and paper industry – Characteristics of pollutants-Solid, liquid & gaseous wastes- Water pollution control- ollution control- Solids handling and Land disposal.	- Coloi

TEXT BOOK:

1.

Smook G.A., "Handbook for Pulp & Paper Technologists", 3rd Edition, Angus Wilde Publications, Incorporation, USA, 2003.

REFERENCES:

1.	Kenneth W. Brittt, "Handbook of Pulp and Paper Technology", 2 nd Edition, John Wiley & Sons Inc, United State of America, 1971.
2.	Kent J.A., "Riggel's Hand Book of Industrial Chemistry", 1 st Edition, Van Nostrant Reinhold, United State of America, 1974.

Total:45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	discuss the various methods for wood preparation and pulping	Understanding (K2)
CO2	explain the processing and bleaching of pulp	Understanding (K2)
CO3	deduce the various paper manufacturing operations	Understanding (K2)
CO4	demonstrate various methods for testing of pulp and paper	Understanding (K2)
CO5	demonstrate control measures relevant to solid , liquid and gaseous pollution from pulp and paper industry	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2						2	1
CO2	2	1					2						3	1
CO3	3	3					2						3	1
CO4	3	2					2						3	1
CO5	2	1					2						3	1
1 - Slight, 2 - N	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30	70					100				
CAT2	20	80					100				
CAT3	30	70					100				
ESE	30	70					100				

20CHE07 - CHEMICAL REACTION ENGINEERING -II

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Chemical Reaction Engineering I	7	PE	3	0	0	3

Residence time distribution studies; models for non-ideal flow- segregation, maximum mixedness, dispersion and tanks-in-series; conversion in non-ideal reactors.

Unit – II	Adsorption and Catalytic Reaction:	

Catalysis, Types, Nature of catalysis, catalyst preparation and characterization, catalyst deactivation; surface area and pore-volume distribution, Adsorption isotherm and rates of adsorption, desorption and surface reaction; analysis of rate equation and rate controlling steps.

Unit – III	Diffusion and Reaction in Porous Catalysts:	9
Diffusion within	a catalyst particle, offective thermal conductivity, many and heat transfer within establist polleter effectiveness factor	

Diffusion within catalyst particle, effective thermal conductivity, mass and heat transfer within catalyst pellets; effectiveness factor

Unit – IV	Catalytic Reactors:	
Types and op	eration of Fixed bed, Fluidized bed, Slurry, Trickle bed and Airlift Reactors. Industrial application of multiphase reactors	

Unit – V	Fluid-Solid non-Catalytic Reactions:	
Models for exp and mixed size	plaining the kinetics; shrinking core model; controlling resistances and rate controlling steps; time for complete conversion for sparticle	or singl

TEXT BOOK:

1.

Total:45

Smith, J. M., "Chemical Engineering Kinetics", 3rd Edition, Tata McGraw Hill Publishing Company Ltd, New York, 1981.

REFERENCES:

1.10		
	1.	Fogler H.S, "Elements of Chemical Reaction Engineering", 5 th Edition, Prentice Hall of India Pvt. Ltd, India, 2015.
		Martin Schmal, "Chemical Reaction Engineering: Essentials, Exercises and Examples", 1st Edition, CRC Press, United State of America, 2014.
	3.	Viswanathan B, Sivashankar S and Ramasamy A V, "Catalysis- Principles and Applications", Narosa Publications, 2002

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concepts of residence time distribution for the design of non ideal reactors	Applying (K3)
CO2	discuss the types of catalysts, their preparation techniques and analyze the mechanism of adsorption	Analyzing (K4)
CO3	deduce the mechanism of catalysis for porous catalysts and determine the effectiveness factor	Analyzing (K4)
CO4	discuss the multiphase reactors used in industries	Applying (K3)
CO5	explain the principles of non-catalytic fluid-solid reactions and understand their mechanisms	Applying (K3)

					Мар	oing of C	COs with	POs an	d PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	1	1	1				2	3	1
CO2	3	3	2	2	2	1	1	1				2	3	1
CO3	3	3	2	2	2	1	1	1				2	3	1
CO4	3	3	1	2	2	1	1	1				2	3	1
CO5	3	3	1	2	2	1	1	1				2	3	1
Clight 2	A adarata	2 Cube			m'a Tava	n o mai (

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	10	20	50	20			100
CAT3	20	30	50				100
ESE	10	30	50	10			100

20CHE08 - SURFACE COATING TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	To gain knowledge on surface engineering, chemical conversion, surface coating, electro-deposition coating methods and guidelines for surface coating	desigr
Unit - I	Surface Engineering:	ç
	to surface engineering, scope of surface engineering, surface engineering to combat corrosion and wear, Surface prepa rface hardening, laser melting, shot peening, shot blasting, sand blasting, vapor phase degreasing and hydro-blasting.	aration-
Unit - II	Chemical Conversion Coating:	9
	and chromate chemical conversion coating – types and applications. Aluminium, chromic, sulfuric and hard coat anodizing. Op Diffusion heat treatment coatings and pack-cementation diffusion coatings.	xidation
Unit - III	Surface coating methods:	g
Organic coa	ating - paints, Ceramic coating and Linings – Glass lining, porcelain enamels, concrete and cementations coating and linin	a, hiah
	e ceramic coating and lining, Hot dipping - Batch and continuous process, coating microstructure, galvanized aluminium an	
performance		
performance coatings. Unit - IV Electrochem	e ceramic coating and lining, Hot dipping – Batch and continuous process, coating microstructure, galvanized aluminium an	d terne
performance coatings. Unit - IV Electrochem electroless p	e ceramic coating and lining, Hot dipping – Batch and continuous process, coating microstructure, galvanized aluminium an Electro-deposition coating methods nical deposition – aqueous solution electroplating, continuous electro deposition, fused-salt electroplating, precious metal	d terne
performance coatings. Unit - IV Electrochem electroless p Unit - V Pre-process	e ceramic coating and lining, Hot dipping – Batch and continuous process, coating microstructure, galvanized aluminium an Electro-deposition coating methods nical deposition – aqueous solution electroplating, continuous electro deposition, fused-salt electroplating, precious metal plating, and composite coatings. Weld-overlay coatings, Thermal spray coatings, Chemical and physical vapor deposition coating	d terne 9 plating, s. 9

1.

J.R. Davis and Associates, "Surface Engineering for corrosion and wear resistance", ASM internationals and IOM communications, 2001.

REFERENCES:

- Rudolf Strauss, "Surface Mount Technology", Butterworth-Heinemann Publisher, 1994 1.
- Brian Griffiths, "Manufacturing Surface Technology: Surface Integrity and Functional Performance (Manufacturing Processes Modular S.) 2. (Manufacturing Processes Modular)", 2001.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basics of surface engineering and surface preparation methods.	Understanding (K2)
CO2	describe the principles and applications of different chemical conversion coating methods.	Understanding (K2)
CO3	illustrate the principles and applications of different surface coating methods.	Understanding (K2)
CO4	explain the principles and applications of various surface laying methods.	Understanding (K2)
CO5	demonstrate the design guidelines and surface preparation methodologies for various surfaces.	Understanding (K2)

					Марг	ping of (Cos with	n POs an	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1				1						2	2
CO2	3	2	1				1						2	2
CO3	3	2	1				1						2	2
CO4	3	2	1				1						2	2
CO5	3	2	3				1						2	2
1 - Slight 2 - M	Moderate	3 – Sub	stantial /	BT- Bloo	m'e Tavc	nomy								

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2	50	50					100
CAT3	30	70					100
ESE	30	70					100

20CHE09 - ENERGY TECHNOLOGY

Programme &	Branch B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3
Preamble	be course outlines the world energy scenario, avail	able energy resources and pro	duction technolo	nies			

	The course outlines the world energy scenario, available energy resources and production technologies	
Unit - I	Overview of Energy Scenario:	9
	o Global and domestic energy supply and consumption and Energy statistics, Sector wise energy consumption, Energy Crisis, Units of energy and conversion factors, Classification of Energy Sources.	, Energy
Unit - II	Non – Renewable Sources:	ç
	Coal - Classification and Conversion technologies, Petroleum - Products and Properties, Shale oil and gas, Natural gas - C	NG and
LING. NUClea	r energy sources - Fission and fusion processes, Types of nuclear reactors, Nuclear Power plants.	
Unit - III	Renewable Energy Sources-I:	9
Unit - III Biomass Ene		g ts, Winc
Unit - III Biomass Ene	Renewable Energy Sources-I: rgy - Resources and conversion processes, Fundamentals of power generation systems and applications - Hydro power plan	ts, Winc
Unit - III Biomass Ene mills and Sola Unit – IV Fundamental	Renewable Energy Sources-I: rgy - Resources and conversion processes, Fundamentals of power generation systems and applications - Hydro power plan ar energy systems.	9

Energy forecasting and planning, Energy conservation – Act, Waste heat recovery and heat pipes, Energy Audits, Cogeneration practices in industries, Energy Storage – Batteries and Fuel Cells, and Energy efficiency in emerging economies.

TEXT BOOKS:

1. Rao S. and Dr. B.B. Parulekar, "Energy Technology", 4th Edition, Khanna Publishers, 2005 for units I, II, III & IV.

2. Twidell John and Weir Tony, — "Renewable Energy Sources", 2nd Edition, Taylor and Francis, New York, 2006 for unit V.

REFERENCES:

1. Beggs Clive, "Energy: Management Supply and Conservation", Butterworth-Heinemann, Oxford, 2002.

2. Fay James A. and Golomb Dan S., "Energy and the Environment", Oxford University Press Inc., New York, 2002

Total:45

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Summarize the global energy scenario and available sources for energy production	Understanding (K2)
CO2	Explain the energy production and associated technologies from fossil fuels and nuclear sources	Understanding (K2)
CO3	Illustrate the energy production from renewable energy sources like biomass, hydro, wind and solar systems	Understanding (K2)
CO4	Explain the contributions of renewable resources like geothermal, ocean energy, fuel cells and hydrogen technologies in energy production	Understanding (K2)
CO5	Describe the energy conservation measures and efficient energy management practices.	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	2				3					1	2		
CO2	2	2	2	1			3					1	2	2	
CO3	2	2	2	1			3					1	2	2	
CO4	2	2	2	1			3					1	2	2	
CO5	2	2	2			2	3	2	2		3	2	2	2	
1 - Slight, 2 - N	/loderate,	, 3 – Sub [,]	stantial,	BT- Bloo	m's Taxo	nomy									

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	60					100							
CAT2	40	60					100							
CAT3	40	60					100							
ESE	40	60					100							

20CHE10 - MODERN SEPARATION PROCESSES

Programme	& Branch B.TECH. – Chemical Engineering	Sem.	Category	L	T	P	Credit
Prerequisite	s Nil	7	PE	3	0	0	3
Preamble	This course highlights the modern separation techniques adopted in proces	ss industr	ies.				
Unit - I	Fundamentals and Filtration:						
Basic Conce Filtration Pro	pts – Characteristics and Mechanism of Separation, Feasibility of Separa cess	tion Proc	esses. Theory	and Se	lection c	f Equip	oment fo
Unit - II	Membrane Process:						
Theory of Me	mbranes Process, Types and Choice of Membranes, Types and Relative Me	rits of Me	mbrane Module	s			
Unit - III	Applications of Membrane Process:						
Unit - IV	Applications of Dialysis and Electro Dialysis; Nano Filtration and Reverse Os Other Separation Process I:		• •				
	Other Separation Process I: Applications of Ion Exchange, Electrophoresis, Dielectrophoresis, Lyophil	isation (hromatograph	/-Cas C	bromato	aranhy	Column
Paper, HPLC		ioution, c	, in official officia	out t	in officiato;	grapity,	Column
Unit - V	Other Separation Process II:						
	nd Applications of Supercritical Fluid Extraction, Zone melting, Adductive c Thermal Diffusion, Cryoseparations	rystalliza	tion, Reversible	e Chemi	cal Com	plexatio	on, Foan
	:		Total:4	15			
1. Seader,	J.D., Ernest J., Henley, Keith Roper D., "Separation Process Principles", 3rd E	Edition, Jo	ohn Wiley & Sor	ns, USA	, 2010.		
REFERENC	ES:						
1. Coulsor	, J.M., Richardson, J.F, "Chemical Engineering", 4 th Edition, Butterworth- Hei	nemann,	United State of	America	a, 1996.		
2 0							

 Scott K., Hughes R, "Industrial Membrane Separation Technology", 1st Edition, Blackie Academic and Professional Publications, United State of America, 1996.

3. Ronald W Rousseau, "Handbook of Separation Process Technology", 1st Edition, Wiley India Pvt Ltd, 2008.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the separation processes for selecting optimal process for new and innovative applications and the novel techniques of filtration	Understanding (K2)
CO2	apply the types of membranes and membrane materials and exhibit the understanding of various membrane separation processes	Applying (K3)
CO3	explain the basic principles of common membrane separation processes and its application in process industries	Applying (K3)
CO4	apply the latest concepts like Ion Exchange, Electrophoresis, Dielectrophoresis, Chromatography in chemical process industries	Applying (K3)
CO5	discuss the advancement of recent separation techniques	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3	2		1	2					3	3	2	
CO2	3	3	2	2		1	2					3	3	2	
CO3	3	3	3	2		1	2					3	2	2	
CO4	3	3	3	3		1	2					3	2	2	
CO5	CO5 3 2 3 3 1 2 2 3 2														
1 – Slight, 2 – N	loderate,	3 – Subs	stantial, E	3T- Bloor	n's Taxo	nomy									

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	10	30	60				100								
CAT2	10	30	60				100								
CAT3	10	30	60				100								
ESE	10	30	60				100								

20CHE11 - AIR POLLUTION CONTROL

Programme	& Branch B.TECH. – Chemical Engineering	Sem.	Category	L	T	P	Credit
Prerequisite	s Nil	7	PE	3	0	0	3
Preamble	This course delivers the framework of different air pollutants and the control	lling equi	pment				
Unit - I	Introduction to Air Pollution:						9
	 History, air quality standards, monitoring and measurement, sampling and latory system: Framework in India- clean air act – provisions for recent development 		classifications	of pollut	ants – sc	ources a	and
Unit - II	Gaseous pollutants and Particulates:						9
	d physical properties of gaseous pollutants- Stack Plumes- models, ger particle size distribution- collection efficiency.	neral cha	aracteristics and	d types	. Particu	lates: (Collection
Unit - III	Air Pollution Controlling Equipment:						9
Incinerators, improvement	Absorbers, Thermal oxidizers, Gravity settling chambers – classification	ns, opera	ation, typical a	pplicatic	ons and	sugges	stions for
Unit - IV	Design of Equipment:						9
Cyclone sepa	arators, Electrostatic precipitators, Bag house filters design, operations and	maintena	ance, typical app	olication	S.		
Unit - V	Hybrid systems and Air Pollution Survey:						9
Hybrid system	ns – Wet electrostatic precipitators, Dry scrubbers, Electrostatically augmente	d fabria f					

TEXT BOOKS:

IE.	
1.	Louis Theodore, Anthony J. Buonicore, "Air Pollution Control Equipment Calculations",1 st Edition, Wiley, USA, 2008 for units I,II,III & IV.
2.	Rao M.N. and Rao H.V.N, "Air Pollution", 1 st Edition, McGraw Hill International edition, India, 2001 for units IV & V.

REFERENCE:

1. Cooper C.D. and Alley F.C, "Air Pollution Control-A Design Approach", 4th Edition, Waveland Pr Inc, United State of America, 2010.

2. C. S. Rao, "Environmental Pollution Control Engineering", Revised second Edition, New Age International, 2007

Total:45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the evolution procedure in analyzing the air pollutants based on air quality standards	Understanding (K2)
CO2	explain the characteristics of gaseous pollutants and particulates	Understanding (K2)
CO3	demonstrate the operations and applications of air pollution control equipment	Understanding (K2)
CO4	Execute the operations, applications and design of air pollution control equipment.	Applying (K3)
CO5	explain the concepts involved in hybrid systems and air pollution survey	Understanding (K2)

					Мар	oing of C	COs with	POs an	d PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1	1			3	3				2		2	2
CO2	3	2	2			3	3				2		2	2
CO3	3	2	2			3	3						2	2
CO4	3	2	3		2	3	3				2		3	2
CO5	3	2	2	2	2	3	3						3	2
1 - Slight 2 - M	Inderate	3 - Subs	stantial F	RT- Bloor	n's Taxo	nomv								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	30	70					100								
CAT2	35	65					100								
CAT3	10	60	30				100								
ESE	20	60	20				100								

20CHE12 - PROCESS INSTRUMENTATION

Programme &	Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	T	P	Credit			
Prerequisites		Nil	7	PE	3	0	0	3			
	This cou variables	rse will help the students to be aware of various measurement	system	used in chemic	al indust	ries to n	neasure	proces			
Unit - I	Principles of Measurement:										
		Introduction and its types- Elements and its function. Transduc antification of systematic and Random errors. Performance chara						g errors			
Unit - II	Temperature Measurement:										
Thermal expans	sion meth	e measurement: Thermoelectric effect sensors - Varying resistands - Fibre-optic temperature sensors - Selection of temperature									
		Measurement: Manometers - Bourdon tube - Bellows - Diaphra e devices - Dead-weight gauge - Special measurement device									
Unit – IV I	Flow and	Viscosity measurement:									
		urement : Mass flow rate measurement and Volume flow rate reasurement: Capillary and tube viscometers - Falling body visco				low met	ers for _l	particula			
Unit – V I	Level Me	easurement:									
		surement: Float systems - Pressure measuring devices - Capacithods - Vibrating level sensor and Laser methods - Choice betwee				uge - Ra	adar (mi	crowave			

TEXT BOOK:

1.

Alan S Morris, Reza Langari, "Measurement and Instrumentation: Theory and Application", 3rd Edition, Academic Press, USA, 2001.

REFERENCES:

- 1. William C Dunn, "Fundamentals of Industrial Instrumentation and Process Control", 1st Edition, McGraw Hill International Edition, New Delhi, 2005.
- 2. Singh S.K, "Industrial Instrumentation and Control", 2nd Edition, McGraw Hill International Edition, New Delhi, 2006.

Total:45

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the type, performance characteristics and error generation of measurement	Understanding (K2)
CO2	explain temperature measurement device applied in chemical industries	Understanding (K2)
CO3	describe various range of pressure measuring system used in process industries	Understanding (K2)
CO4	illustrate flow and viscosity measurement techniques related to production industries	Understanding (K2)
CO5	elaborate level measurement tool adopted in industries	Understanding (K2)

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1										2	2	
CO2	3	1										2	2	
CO3	3	1										2	2	
CO4	3	1										2	2	
CO5	3	1										2	2	
1 _ Slight 2 _ M	Inderate	3 Sub	stantial F		m'e Tavo	nomy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY

Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
20	80					100
20	80					100
20	80					100
20	80					100
	% 20 20 20 20	% % 20 80 20 80 20 80 20 80	% % % 20 80 20 80 20 80 20 80	% % % % 20 80 20 80 20 80 20 80	% % % % % 20 80 % % % % % % % % % % % % % % % % %	% %

20CHE13 - FERTILIZER TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	This course offers an insight into the sources and production of different fertilizers	
Unit - I	Overview of Fertilizer:	9
fertilizers con	ilizers, Classification of fertilizers, Role of essential Elements in plant Growth, Macro elements and Micro elements, Appl sidering Nutrient Balance and types of crop. Development of fertilizer industry; Fertilizer production and consumption in India ertilizers; Secondary nutrients; Synthetic fertilizers, Classification of fertilizers, Feedstock and raw materials for nitrogenous, p fertilizers.	; Nutrient
Unit - II	Nitrogen based Fertilizers:	9
Intermediate	o Nitric acid: Chemical, physical properties and applications, Manufacturing of Nitric Acid by Pressure ammonia oxidation pro pressure ammonia oxidation process, Concentration of Nitric acid by Mg(NO ₃) ₂ . Manufacturing of Ammonium nitrate b nonium sulphate from Ammonium carbonate and gypsum, Ammonium chloride from Ammonium sulphate and sodium chloride	by Prilling
Unit – III	Ammonia & Urea:	9
Ammonia co	o Ammonia: Physical & chemical properties, applications, Synthesis gas by Catalytic partial oxidation Steam Hydrocarbon r nverters: Design aspect of Single bed and multi-bed converter, Kellogg process and Haldor Topsoe process, Sto n of Ammonia. Urea: Physical, chemical properties, Manufacturing of Urea by Stamicarbon's CO ₂ stripping process, Toyo-Ko ss	rage and
Unit - IV	Potassium Fertilizers:	9
	mical properties and uses of Potassium Chloride, Potassium nitrate, Potassium sulphate, Manufacturing of potassium chlo paration of Potassium nitrate, Potassium sulphate	oride from
Unit - V	Miscellaneous Fertilizer and Bio Fertilizers:	9
	g of NPK, Ammonium Sulphate Phosphate (ASP), Calcium Ammonium Nitrate(CAN), Biofertilizers, Types and prepa Nitrogen fixing biofertilizers, Phosphate-solubilizing biofertilizers; liquid fertilizers	aration of

TEXT BOOK:

Total:45

^{1.} Collings G.H., "Commercial Fertilizers", 5th Edition, Mc Graw Hill, New York, 1995.

REFERENCES:

1. Editorial Board, The Fertilizer Association of India, "Handbook of Fertilizer Technology", 1977.

2. Slacks A V., "Chemistry and Technology of Fertilizers", Interscience, New York, 1966.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the essential plant growth nutrients, components, significance of fertilizers and the industrial manufacturing practices	Understanding (K2)
CO2	describe the physical, chemical properties, manufacturing and applications of nitrogen based fertilizers	Understanding (K2)
CO3	explain the physical, chemical properties, manufacturing and applications of ammonia and urea	Understanding (K2)
CO4	summarize the physical, chemical properties and production of potassium fertilizers	Understanding (K2)
CO5	describe the miscellaneous types of fertilizers and production of bio fertilizers.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3					2	2					1	1	2
CO2	3					2	2					1	1	2
CO3	3					2	2					1	1	2
CO4	3					2	2					1	1	2
CO5	3					2	2					1	1	2
1 - Slight, 2 - N	/loderate,	3 – Subs	stantial, E	3T- Bloor	n's Taxo	nomy								

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHE14 CORROSION TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	To gain knowledge on the principles of corrosion, its testing methods, control measures in specific environments.	
Unit - I	Types of Corrosion and Testing:	9
Stress corro Purpose, Ma	oles of corrosion and its control: Forms of corrosion, Uniform, Galvanic, Crevice, Pitting, Inter-granular, Selective leaching, I sion. Hydrogen Blistering and Embrittlement, Cracking, Cavitation and their Fracture Mechanics. Corrosion testing: Classi terial and Specimen, Surface preparation, Measuring and Weighing. Exposure techniques: Duration – Planned interval test; NA ow-Strain-Rate test, Linear Polarization, AC Impedance method.	fication,
Unit - II	Corrosion Prevention Methods:	9
	hibitors, Electroplated coatings, Conversion coatings, Anodizing, Hot dipping, Spray metal coatings, Zinc coating by a ric coatings and electro painting, Powder coating. Corrosion minimization by material selection. Cathodic and Anodic protections	
Unit - III	Corrosion in Specific Environments:	9
	y organic acids and alkalies. Seawater and Fresh water corrosion on concrete structures, Corrosion in automobiles, Bi alogen corrosion of metals, Corrosion in Petroleum industry, Corrosion in aerospace.	ological
Unit - IV	Corrosion in Specific Cases and Control:	9
	d selection of materials of pulp and paper plants. Corrosion of wet scrubbers in pollution control. Nuclear waste isolation and co al and fused salts. Corrosion of surgical implants and prosthetic devices. Corrosion in electronic equipment.	orrosion
Unit - V	Corrosion Inspection and Management:	9

Unit - V Corrosion Inspection and Management:

Corrosion inspection methods: visual, liquid penetration, magnetic particle, radiographic, eddy current, ultrasonic, thermography testing. Corrosion management systems. Process maintenance procedures.

TEXT BOOKS:

1.	Fontana M.G., "Corrosion Engineering", 1 st edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2005 for units I, II, III & IV.
2.	Pierre R. Roberge, "Corrosion Inspection and Monitoring", 1 st edition, John Wiley and Sons Inc, Canada, 2008 for unit V

REFERENCES:

1. Jones D.A, "Principle and Protection of Corrosion", 1st Edition, Prentice Hall of India Pvt. Ltd, India, 1996.

 Sastri V.S., Ghali E., Elboujdaini M., "Corrosion Prevention and Protection: Practical Solutions", 1st Edition, John Wiley & Sons Inc, United State of America, 2007.

Total:45

	COURSE OUTCOMES: On completion of the course, the students will be able to							
CO1	describe the different types of corrosion and their testing methods	Understanding (K2)						
CO2	explain the corrosion protection methods for applications in chemical process industries	Applying (K3)						
CO3	describe the corrosion in specific environments and its control	Understanding (K2)						
CO4	explain the corrosion control methods in industrial applications and case studies	Applying (K3)						
CO5	demonstrate corrosion inspection and management practices	Understanding (K2)						

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2			1	2	2						2	1
CO2	3	2			1	2	2						2	1
CO3	3	2			1	2	2						2	1
CO4	3	2			1	2	2						2	1
CO5	3	2			1	2	2						2	1
1 – Slight, 2 – M	<i>N</i> oderate	, 3 – Sub	stantial, I	3T- Bloo	m's Taxo	nomy								

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	60	20				100						
CAT2	20	60	20				100						
CAT3	20	60	20				100						
ESE	20	60	20				100						

20GEE01 - FUNDAMENTALS OF RESEARCH (Common to all BE/BTech branches)

Programme &	Branch All BE/BTech branches	Sem.	Category	L	T	P	Credit
Prerequisites	NIL	7	PE	3	0	0	3
Preamble	This course familiarize the fundamental concepts/techniques adopted process involved in collection, consolidation of published literature and		· •				
Unit - I	Introduction to Research						
	Research: Types and Process of Research - Outcome of Research - S lem - Errors in Selecting a Research Problem - Importance of Keywords.	ources o	f Research Pro	blem -	Charac	teristics	of a Good
Unit - II	Literature Review						
Literature Revie	ew: Literature Collection - Methods - Analysis - Citation Study - Gap Ana	lysis - Pi	oblem Formula	tion Tec	hniques	3.	
Unit - III	Research Methodology						
	odology: Appropriate Choice of Algorithms/Methodologies/Methods - Mearoblem - Interpretation - Research Limitations.	asuremer	nt and Result A	nalysis -	Investi	gation of	Solutions
Unit - IV	Journals and Papers:						
	Papers: Journals in Science/Engineering - Indexing and Impact factor cers - Original Article/Review Paper/Short Communication/Case Study.	of Journa	ls. Plagiarism	and Re	esearch	Ethics.	Types o
Unit - V	Reports and Presentations						
	resentations: How to Write a Report - Language and Style - Format of I d Sub-Headings - Footnotes - Tables and Figures - Appendix - Bibliogra h Tools.						
TEXT BOOK:							Total: 4
1. Walliman,	Nicholas. "Research Methods: The basics". Routledge, 2017.						
REFERENCES	-						
1. Melville S.	Goddard W. "Research Methodology: An Introduction For Science and Er	aineerina	a Students". Ke	าwvn: Jเ	uta & Co	5 Ltd., 19	96.
	5,	0	,	,		,	

2. Kumar, Ranjit. "Research Methodology: A step-by-step guide for beginners". SAGE Publications Limited, 2019.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	list the various stages in research and categorize the quality of journals.	Analyzing (K4)
CO2	formulate a research problem from published literature/journal papers	Evaluating (K5)
CO3	write, present a journal paper/ project report in proper format	Creating (K6)
CO4	select suitable journal and submit a research paper.	Applying (K3)
CO5	compile a research report and the presentation	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2	1	3	3	3	3	3	3	3	3	3	
CO2	3	3	3	3	2	3	3	3	3	3	3	3	3	3	
CO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO4	3	2	1	1		3	3	3	2	2	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
1 - Slight 2 - M	Andorato	2 Sub	ctantial /		m'e Taya										

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1		40	35	25			100							
CAT2		30	40	30			100							
CAT3				50	50		100							
ESE		25	25	25	25		100							

20CHE15 - NATURAL GAS ENGINEERING

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	This course offers an insight into the properties, production, application and safety features of Oil and Natural Gas Industry	
Unit - I	Natural gas fundamentals and exploration:	9

Unit - I Natural gas fundamentals and exploration:

Natural gas origin, classification of sources – conventional and non-conventional / shale gas, composition and classification of natural gas; Properties of natural gas – chemical, physical properties, thermodynamic, Natural gas reservoirs, Natural gas exploration – conventional, nonconventional / shale gas, well deliverability

Unit - II	Natural gas transportation and storage:	9
Transportation	methoda Dipolines LNC CNC Cas to liquida Cas to soild. Cas to wire Underground assistances	Doploted recomunity

Transportation methods – Pipelines, LNG, CNG, Gas-to-liquids, Gas-to-soild, Gas-to-wire, Underground gas storage – Depleted reservoirs, aquifers, salt caverns

Unit - III Multiphase gas transmission and operation:

Multiphase flow terminologies- superficial velocity, mixture velocity, holdup, phase velocity, slip, Mixture-density, viscosity, pressure drop, enthalpy. Multiphase flow regimes- two, three phase and condensate phase. Multiphase pipeline operations - leak detection, pipeline depressurization, pigging. Gas hydrates and prevention techniques.

Unit - IV Natural Gas treatment:

Chemical absorption processes- alkanolamine solvents, potassium carbonate solution, Physical Solvent processes - propylene carbonate, dimethyl ether of polyethylene glycol, methanol, Solid bed absorption process- Iron sponge, Zinc oxide, Solid bed adsorption process.

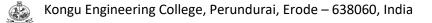
Unit - V Dehydration and Sulfur recovery: 9

Water content determination, Natural Gas Dehydration – Glycol dehydration – TEG, Enhanced TEG, glycol injection, Sufur recovery – Modified Claus process, Direct oxidation process, Tail gas cleanup processes – reduction, sulfur dioxide scrubbing, catalytic oxidation

TEXT BOOK:

Saeid Mokhatab, William Poe and John Mak, "Handbook of Natural Gas Transmission and Processing", 4th Edition, Gulf Professional Publishing, USA, 2019.

REFERENCES:


1. Charles Sheppard, "World Seas: An Environmental Evaluation: Volume III: Ecological Issues and Environmental Impacts", 2nd Edition, Academic Press, UK, 2019.

2. Primož Potocnik, "Natural Gas", 1st Edition(reprint) Intech Open, Croatia, 2010.

9

9

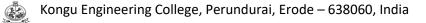
Total:45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basic properties of natural gas and classify traps based on formation	Understanding (K2)
CO2	describe the purification, compression and liquefaction of oil and natural gas for storage and transportation	Understanding (K2)
CO3	exemplify the deliverability and flow behaviour in a reservoir	Understanding (K2)
CO4	demonstrate the techniques involved in natural gas treatment	Understanding (K2)
CO5	explain the dehydration and sulfur recovering techniques	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1	3	1			2	2	2						2	1	
CO2	3	1			2	2	2						2	1	
CO3	3	2			2	2	2						3	1	
CO4	3	1			2	2	2						2	1	
CO5	3	1			2	2	2						2	1	
		<u> </u>			· -										

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	60					100						
CAT2	40	60					100						
CAT3	40	60					100						
ESE	40	60					100						

20CHE16 - NANO MATERIALS AND COMPOSITE MATERIALS FOR CHEMICAL ENGINEERS


Programme &	& Branch B.TECH. – Chemical Engineering	Sem.	Category	L	Т	P	Credi					
Prerequisites	equisites Nil 7 PE 3 0 0											
Droomblo	This source will able to belt of idents to gain knowledge in propagation and	oppligati	on of popomoto	iolo								
Preamble	This course will able to help students to gain knowledge in preparation and	applicati	on of nanomate	lais								
Unit – I	Overview of Nanomaterials						9					
Introduction a	and Classification, Nanostructure induced effects on properties. Introduction to	o Fabrica	ation and prepara	ation tec	hniques							
Unit - II	Characterization of Nanomaterials											
	sification of characterization techniques, Usage of Microscopy – SEM, TEM y – IR, NMR and Raman Spectroscopy.	I, STM &	AFM, Usage o	Crystal	lography	/ – XRD	& XRF					
Unit - III	Key nanostructures and applications	ey nanostructures and applications										
	niconductors, Nanomagnetic Materials, Carbon based Nanomaterials – es, Nano catalysts, Biological Nanomaterials – Polypeptides, DNA	Bucky k	oall, CNT, Grap	hite an	d Graph	ene. Te	mplated					
Unit – IV	Introduction to Composite materials											
	composite materials, Fibers and Matrices, Key properties of composites. Maing, Sandwich composites	anufactur	ing processes –	Molding	, Formir	ng, 3D a	ssembly					
Unit - V	Applied composites						9					
	of Composite materials – Aerospace construction, Automotives, Wind turb bottle, Bogie Frame, Offshore installations, Biomechanical applications, Cab	,	1 07	, ,	,		ations					
1												

1.	Robert Kelsall, Ian W Hamley and Mark Geoghegan, "Nanoscale Science and Technology", 1 st Edition, Wiley, UK, 2005 for units I, II & III.

2. Daniel Gay, "Composite Materials – Design and applications", CRC Press, Boca Raton, USA, 2014 for units IV & V.

REFERENCE:

1. William A. Goddard, "Hand book of Nanoscience, Engineering and Technology ", 1st Edition, CRC Press, United State of America, 2003.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the phenomena of nanosize and the general synthesis techniques	Understanding (K2)
CO2	explain the techniques available for characterization of nanomaterials	Understanding (K2)
CO3	discuss the synthesis characterization and applications of various nanomaterials	Understanding (K2)
CO4	Explain the key features of composites and their manufacturing techniques	Understanding (K2)
CO5	illustrate the important applications of composite and nano composite materials in various sectors	Understanding (K2)

1					Мар	ping of C	Cs with	h POs and	d PSOs					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1				1	1	1				1	3	2
CO2	3	1	1	1	2	1	1	1				1	3	2
CO3	3	1	1	1	2	1	1	1				1	3	2
CO4	3	2	1	1	2	1	1	1				1	3	2
CO5	3	2	1	1	2	1	1	1				1	3	2
1 – Slight, 2 – N	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	70					100						
CAT2	30	70					100						
CAT3	20	80					100						
ESE	20	80					100						

20CHE17 - FUNDAMENTALS OF COMPUTATIONAL FLUID DYNAMICS

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	With the advent of high speed computing, CFD has become an integral part of engineering design, simulation and per analysis. This course deals with the fundamentals of CFD, grid generation, meshing and solution techniques using finite method.	
Unit - I	Conservation Laws of Fluid Motion and Boundary Conditions:	9
	equations of fluid flow and heat transfer: Equations of state -Navier-Stokes equations for Newtonian fluid - conservative quations of flow - differential and integral forms of general transport equations - classification of physical behavior.	e form of
Unit – II	Turbulence and its Modeling:	9
	om laminar to turbulent flow - effect of turbulence on properties of the mean flow - Reynolds-averaged Navier-Stokes equa oulence models - mixing length model – k-ε model; Turbulent models - Reynolds Stress model and large eddy simulation.	tions and
Unit – III	Finite Volume Method for Diffusion and Convective-Diffusion Problems:	9
diffusion- Dis	e method for one-dimensional, two-dimensional and three-dimensional steady state diffusion - steady one-dimensional conve scretization schemes: the central differencing scheme - Properties of discretization schemes - Assessment of the central dif convection-diffusion problems - upwind differencing scheme - Hybrid differencing scheme - power-law scheme.	
Unit – IV	Solution Algorithms for Pressure-Velocity Coupling in Steady Flows:	9
	rid - momentum equations - SIMPLE algorithm - Assembly of a complete method - SIMPLER, SIMPLEC, and PISO algorithms dequations: Tri-diagonal matrix algorithm - application of TDMA to two-dimensional and three-dimensional problems.	. Solution
Unit – V	Finite Volume Method for Unsteady Flows:	9

One-dimensional unsteady state heat conduction - implicit method for two-and three-dimensional problems - discretization of transient convectiondiffusion equation - solution procedures for unsteady flow calculations - steady state calculations using pseudo-transient approach.

TEXT BOOK:

Preamble

1. Versteeg H.K. and Malalasekara W, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", 2nd edition, Pearson Education, India, 2007.

REFERENCES:

- 1. Anderson John D., "Computational Fluid Dynamics-The Basics with Applications", 1st edition, Tata McGraw Hill Publishing Company Ltd, United State of America, 2012.
- 2. https://www.ansys.com/en-in/products/fluids/ansys-fluent https://www.solidworks.com/

Total:45

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain governing equations for fluid flow and heat transfer.	Applying (K3)
CO2	explain the different types of models for turbulence.	Applying (K3)
CO3	apply finite volume method for developing solution of steady state diffusion and convection diffusion problems.	Analyzing (K4)
CO4	describe the solution algorithms for pressure-velocity coupling in steady flows.	Applying (K3)
CO5	apply the knowledge of algorithms in solving unsteady flow heat conduction and convection diffusion processes.	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							2	2	2
CO2	3	3	2	2	2							2	2	2
CO3	3	3	2	3	2							2	2	2
CO4	2	3	2	3	2							2	2	2
CO5	2	3	2	3	2							2	2	2
1 - Slight 2 - M	Inderate	3 - Sub	stantial 7	BT- Bloo	m's Taxc	nomy								

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	60	30				100					
CAT2	10	20	50	20			100					
CAT3	10	20	50	20			100					
ESE	10	20	50	20			100					

20CHE18 - PHARMACEUTICAL PROCESS TECHNOLOGY

ering	Sem.	Category	L	т	Р	Cred	
	7	PE	3	0	0	3	
nanufacturing of drugs and its quality a	analysis	S.					
of organic therapeutic agents, phare.	maco k	inetics-Absorpti	ion, Dist	ribution,	metabo	olism ai	
ion, condensation and cyclisation, d	dehydra	tion, esterificat	ion, halo	ogenatio	n, oxida	ition ar	
s -Formulation and Manufacturing; pa	arential	solutions, oral	liquids, i	injections	s and oi	intment	
analgesics-Types and Mechanisms,	antacid	ls and antisepti	cs-class	ification,	mecha	nism ai	
lity analysis – raw materials, process	s and fir	nished products	. Good	Manufac	turing F	ractice	
						Total:	
		rmagautics and Dharmagakingtics. A Tractice'	rmagautics and Dharmagakingtica. A Tractica" 4 st Edition 1/a				

 Brahmankar D.M. and Sunil B. Jaiswal, "Bio pharmaceutics and Pharmacokinetics: A Treatise", 1st Edition, Vallabah Prakashan India, 2017 for units I, II & III.

2. Arthur Owen Bentley, "Text book of Pharmaceutics", 8th Edition, All India Traveller Book Seller, India, 2002 for units IV & V.

REFERENCE:

1. Banker G.S. and Rhodes C.T., "Modern Pharmaceutics", 4th Edition, Marcel Dekker Inc, United State of America, 2002.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the drug metabolism and pharmaco-kinetic principles	Understanding (K2)
CO2	illustrate the different chemical conversion processes in pharmaceutical industries	Understanding (K2)
CO3	outline the formulation and manufacturing of drug delivery systems	Understanding (K2)
CO4	describe the manufacturing processes of different types of pharmaceutical products	Understanding (K2)
CO5	elaborate the importance of good manufacturing practices and quality control procedures	Understanding (K2)

					Марг	ping of C	Cos with	POs an	d PSOs			Mapping of COs with POs and PSOs									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2							
CO1	3	1				1						1	2	2							
CO2	3	1				1						1	2	2							
CO3	3	1				1						1	2	2							
CO4	3	1				1						1	2	2							
CO5	3	1				1						1	2	2							
1 – Slight, 2 – N	Noderate,	, 3 – Sub [,]	stantial, !	BT- Bloo [,]	m's Taxo	nomy															

		ASSESSMENT	PATTERN - TH	EORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHE19 - PROCESS OPTIMIZATION

Programme & Branch	B.Tech. – Chemical Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisites	Engineering Mathematics	7	PE	3	0	0	3	

Unit - I	Developing Models for Optimization:	ies.
Preamb	This course provides knowledge about the fundamentals of optimization and its applications in process industri	ioc

Unit - I Developing Models for Optimization:

Scope and hierarchy of optimization, Essential features of Optimization problems, Classification of Models, Building a model, Factorial experimental designs, Degree of freedom.

Unit – II **Basic Concepts of optimization:**

Formation of objective function, continuity of functions, NLP problem statement, convexity and applications, Interpretation of objective function based on its Quadratic approximation, Necessary and sufficient conditions for an extremum.

Unit - III **Optimization of Unconstrained Functions:**

Methods for one dimensional search, Newton's method and Quasi - Newton methods for uni-dimensional search. Polynomial approximation methods.

Unit - IV Unconstrained Multivariable Optimization:

Methods using function value only, methods using first derivative, Newton's method, Quasi – Newton methods.

Unit - V Linear Programming and applications of optimization:

Simplex method, Barrier method, sensitivity analysis, Linear mixed integer programs. Applications of optimization in chemical processes.

Total: 45

9

9

9

9

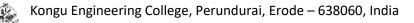
TEXT BOOK: 1.

Edgar T.F., Himmelblau D.M. and Ladson L.S., "Optimization of Chemical Processes", 2nd Edition, McGraw Hill, New York, 2003.

REFERENCES:

1. Urmila M. Diwekar, "Introduction to Applied Optimization", 2nd Edition, Springer, 2008.

2. Rao S.S., "Engineering Optimization: Theory and Practice", 4th Edition, New Age Publishers, 2011.



	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Explain different optimization models in a system.	Understanding (K2)
CO2	Develop and interpret the objective functions of optimization.	Applying (K3)
CO3	Apply unidirectional search methods in solving unconstrained functions.	Applying (K3)
CO4	Solve optimization problems using unconstrained multivariable optimization.	Applying (K3)
CO5	Describe the methods of linear programming and apply optimization techniques to solve chemical engineering problems.	Applying (K3)

					Маррі	ng of C	Os with	POs a	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1							2		
CO2	3	3	3	3	1							2		
CO3	3	3	3	2	1							2		
CO4	3	3	3	3	1							2		
CO5	3	3	3	3	1							2		
– Slight, 2 –	Moderat	te, 3 – S	ubstanti	al, BT- I	Bloom's	Taxono	my							

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	25	65				100				
CAT2	10	25	65				100				
CAT3	10	30	60				100				
ESE	10	30	60				100				

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100

20CHE20 - TOTAL QUALITY MANAGEMENT

Programme & Branch	B.Tech & Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble This course deals with quality concepts and Total Quality Management (TQM) principles focusing on process quality to assure product quality to the customers. It also deals with the basic and modern quality management tools including ISO standards 9

Quality Concepts and Principles Unit - I

Definition of Quality, Dimensions of Quality, Quality Planning, Quality Assurance and Control, Quality Costs With Case Studies, Elements/Principles of TQM - Historical Review, Leadership-Qualities/Habits, Quality Council, Quality Statements, Strategic Planning - Importance - Case Studies, Deming Philosophy, Barriers to TQM Implementation.

Unit - II **TQM-Principles and Strategies**

Customer Satisfaction – Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement Motivation - Empowerment - Teams - Recognition and Reward- Performance Appraisal, Continuous Process Improvement –Juran's Trilogy - PDSA Cycle - 5S - Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating RelationshipDevelopment, Performance Measures-Purpose- Methods-Cases.

Unit - III **Control Charts for Process Control**

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals -Measures of Central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for Variables and Attributes - Process Capability- Case Study- Introduction to Six Sigma.

Unit - IV **TQM-Modern Tools:**

New Seven Tools of Quality, Benchmarking-Need - Types and Process, Quality Function Deployment-House Of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design-Quality Loss Function — Design of Experiments (DOE), Total Productive Maintenance (TPM)-Uptime Enhancement, Failure Mode and Effect Analysis(FMEA)-Risk Priority Number (RPN) - Process Case Studies.

Unit - V **Quality Systems**

Need For ISO 9000 and Other Quality Systems - ISO 9000 : 2015 Quality System -Elements - Implementation of Quality System Documentation - Quality Auditing, Introduction to ISO 14000- IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO 20000 - ISO 22000. Process of Implementing ISO - Barriers in TQM Implementation.

Total: 45

9

9

9

TEXT BOOK:

Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, Urdhwareshe Hemant, UrdhwaresheRashmi. "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

REFERENCES:

1.	Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
2.	James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
3	David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8th Edition, Pearson, 2015.

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the evolution of TQM principles.	Applying (K3)
CO2	illustrate the principles and strategies of TQM	Applying (K3)
CO3	make use of various tools and techniques of quality management	Applying (K3)
CO4	apply various quality tools and techniques in both manufacturing and service industry	Applying (K3)
CO5	explain the concepts of quality management system and ISO.	Applying (K3)

					Марр	ing of C	Os with	n POs ar	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	1	1				2	2	3	2	2	1	1		3
CO2	1	1				3	2	3	3	3	1	1	2	3
CO3	3	2	2	2	2	2		1	2	2	1	1	1	3
CO4	2	2	2	2	2	2		1	2	2	1	1	2	3
CO5						3	3	2	3	2	1	1		3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMEN	T PATTERN - 1	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	45	30				100
CAT2	20	40	40				100
CAT3	25	45	30				100
ESE	20	40	40				100

20CHE21 - NUCLEAR ENGINEERING FOR CHEMICAL ENGINEERS

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble This course offers an insight into the fundamentals and applications of Nuclear engineering

Unit - I Foundations of Nuclear Sciences:

Introduction to Nuclear Energy – Binding and Separation Energy, Nuclear Reactions – Classification, Conservation of charge, Q – value for reactions, Radioactivity – Types of radioactive decay, Characteristics, Half life and Decay Chain, Radio – Isotopes

Unit - II Nuclear energetics – I:

Characteristics of Nuclear Fission – Fission Products, Neutron Emission, Energy Released; Characteristics of Nuclear Fusion – Energy generation, Nucleogenesis, Conservation of mass, energy and linear momentum, Reaction Threshold Energy

Unit - III Nuclear energetics – II:

Nuclear Chain reaction – Controllable and Uncontrollable reaction, Nuclear fuel cycle, Fuel bundle preparation, Moderation of neutrons, selection of moderators, Homogenous and Heterogeneous cores, Neutron Reflectors

Unit - IV Nuclear Reactor Technology:

Generation of Nuclear reactor technology, Nuclear Thermal Reactors – Components and steam cycles of BWR, PWR, PHWR, LWR, AGR. Fast Breeder Technology – Fissile material for fast reactors, Breeder Reactor Technologies, Problems with Fusion Reaction, Economics of Nuclear Power

Unit - V Instrumentation and Safety:

Detection and Measurement of Radiation – Gas filled detectors, Scintillation detectors, Semi-conductor Ionizing Detectors, Personal Dosimeters. Hazard Assessment – Containment Technology, natural exposure for humans, Health and hereditary effects, Cancer Risks, Personal Protective equipment, Radiation Protection Standards

TEXT BOOK:

Total:45

9

9

9

9

9

1. J. Kenneth Shultis, Richard E Faw, "Fundamentals of Nuclear Science and Engineering", 3rd Edition, CRC press, USA, 2016.

REFERENCES:

1.	Rüdiger Meiswinkel, Julian Meyer, Jürgen Schnell, "Design and Construction of Nuclear Power Plants", 1 st Edition, Ernst & Sohn, Germany, 2013.
2.	James H. Rust, "Nuclear Power Safety", 1 st Edition, Pergamon Publishers, Paris, 2013.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the fundamental concepts of nuclear reactions and radio-activity	Understanding (K2)
CO2	describe the characteristics of nuclear fission and fusion for energy generation	Understanding (K2)
CO3	explain the nuclear fuel cycle and the preparatory aspects of nuclear reactor	Understanding (K2)
CO4	describe the working and economics of various fission reactors	Understanding (K2)
CO5	illustrate the working of radiation instruments and discuss about the nuclear safety	Understanding (K2)

				N	lappin	g of C	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					1						1	3
CO2	3	2					1						1	3
CO3	3	2					1						1	3
CO4	3	2					1						1	3
CO5	3	2					1						1	3
1 – Slight, 2	 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy 													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHE22 - NUMERICAL TECHNIQUES IN CHEMICAL ENGINEERING

Programme & Branch	B.Tech. – Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Engineering Mathematics	7	PE	3	0	0	3

Preamble This course will enable the students to understand and apply various numerical techniques for solving chemical engineering problems

Unit - I Solutions to Transcendental equations and Eigen value problems:

Solution of equations – iteration method – Newton-Raphson Method – solution of linear system by Gaussian elimination and Gauss-Jordan method – iterative methods – Gauss-Jacobi and Gauss-Seidel methods – inverse of a matrix by Gauss-Jordon method –finding the Eigenvalue of a matrix by power method.

Unit – II Interpolation:

Lagrange's interpolating polynomials – interpolation with equal intervals – Newton's forward and backward difference formulae – central difference formulae – interpolation with unequal intervals – divided differences – Newton's divided difference formula.

Unit - III Numerical Differentiation and Integration:

Differentiation using interpolation formulae – numerical integration by trapezoidal and Simpson's 1/3 and 3/8 rules – Romberg's method – two and three point Gaussian quadrature formulae – double integrals using Trapezoidal and Simpson's rules.

Unit - IV Numerical solutions of Ordinary Differential Equations:

Single-step methods – Taylor series method – Euler method for first order equation – Fourth order Runge-Kutta method for solving first and second order equations – multi-step methods – Milne's and Adam's predictor-corrector methods.

Unit - V Numerical Solutions of Partial Differential Equations:

Classification of second order PDE - finite-difference approximations to partial derivatives – solution of Laplace and Poisson equations – solution of one-dimensional heat equation – solution of two-dimensional heat equation - solution of wave equation.

TEXT BOOK:

Total: 45

9

9

9

9

9

1. S.S. Sastry, Introductory Methods of Numerical Analysis, 4th Edition, PHI Learning Private Limited, New Delhi, 2007.

REFERENCES:

- Kenneth J Beers, "Numerical Methods for Chemical Engineering–Applications in MATLAB" Cambridge University Press, New York, USA, 2007.
- 2. John H. Mathews and Kurtis D. Fink, "Numerical Methods using MATLAB", 4th Edition, PHI Learning Private Limited, New Delhi, 2007.
- 3. B.S. Grewal, "Numerical methods in Engineering and Science C,C++, and MATLAB, 2018, Mercury Learning and Information LLC, 2019.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply various numerical methods to solve transcendental equations and Eigenvalue problems	Applying(K3)
CO2	utilize interpolation method for solving problems involved in chemical systems	Applying(K3)
CO3	apply the differentiation and integration equations using numerical methods	Applying(K3)
CO4	solve ordinary differential equations using numerical techniques	Applying(K3)
CO5	Develop solutions for partial differential equations used in chemical engineering systems	Applying(K3)

				N	lappin	g of CO	Os witł	n POs a	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1							2		
CO2	3	3	2	2	1							2		
CO3	3	3	2	3	1							2		
CO4	3	3	3	3	1							2		
CO5	3	3	3	3	1							2		
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		40	60				100
CAT2		40	60				100
CAT3		40	60				100
ESE		40	60				100

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100

20CHE23 - PETROLEUM REFINERY ENGINEERING

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble This course covers classification of petroleum products, purification and upgradation techniques and basic safety measure to be followed in the refinery.

Unit - I Petroleum Formation and Evaluation:

Origin and formation, Composition of petroleum, Evaluation of petroleum – UOP Characterization factor, Correlation Index, Distillation Characteristics – Crude Assay analysis, TBP apparatus, Average boiling point.

Unit - II Petroleum product fractions, properties and Test methods:

Thermal properties of petroleum fractions – Specific heat, Heat of Combustion, Latent heat of vaporization, thermal expansion, spontaneous ignition temperature, Viscosity, Thermal conductivity, Test methods – ASTM distillation, Reid vapor pressure, Octane number, Oxidation stability, Sulfur, Carbon content, Pour point, Smoke point, Fire point, Flash point, Aniline point

Unit - III Fractionation and Treatment techniques:

Dehydration and desalting of crudes, Distillation (ADU, VDU), Production and treatment of LPG, Gasoline – Copper chloride process, Inhibitor sweetening, caustic and methanol, lead doctoring, Merox treatment, sulfuric acid treatment , catalytic desulfurization

Unit - IV Upgradation Processes:

Thermal cracking- vis braking, Dubbs two coil process, Catalytic cracking – fixed, moving bed, fluidized bed (FCC), Catalytic reforming, Naphtha cracking, Coking (Delayed, Fluidized), Hydrocracking (single, two stage), Hydrodesulphurization, Alkylation (Sulfuric and Fluoric acid methods), Isomerization (Aluminum chloride method)

Unit - V Asphalt technology, Biodiesel and Oil spill management:

Asphalt – source, chemical structure, types, Air blowing of Bitumen, Biodiesel production, Oil spill management – Cleaning equipment – Skimmers.

TEXT BOOK:

Bhaskara Rao.B.K, "Modern Petroleum Refining Processes", 6th Edition, Oxford and IBH Publishing Company, New Delhi, 2017.

REFERENCES:

1.	Nelson.W.L, "Petroleum Refinery Engineering", 4th Edition, McGraw Hill International Edition, New York, 1958.
2.	Mark J. Kaiser, Arno deKlerk, James H. Gary and Glenn E.Handwerk, "Petroleum Refining: Technology,
	Economics, and Markets", 6th Edition, CRC Press, United Kingdom, 2019.

9

9

9

9

9

Total:45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	elucidate the formation, classification and properties of petroleum	Applying (K3)
CO2	explain the crude properties and test methods for petroleum	Applying (K3)
CO3	describe the various production and treatment techniques	Understanding (K2)
CO4	exemplify the various upgradation processes like cracking	Understanding (K2)
CO5	describe the process of asphalt technology and oil spill management	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1					1						2	2
CO2	3	1					1						2	2
CO3	3	1					1						2	2
CO4	3	1					1						2	2
CO5	3	1					1						2	2
1 - Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy						

	ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	70	10				100	
CAT2	20	70	10				100	
CAT3	30	70					100	
ESE	20	70	10				100	

20CHE24 - INDUSTRIAL WASTEWATER TREATMENT

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble To promote understanding of basic and advanced concepts in Industrial wastewater treatment technologies

Unit – I Sources and types of Industrial Wastewater:

Sources and types of industrial wastewater – Characterization: Physical, Inorganic non metallic constituents, metallic constituents, Organic constituents, Biological Characteristic, Toxicity tests

Unit – II Introduction to process selection:

Physical unit operation: Screening, Coarse solid reduction, Mixing and flocculation, Equalization, Gravity separation, Grit removal, Sedimentation, Neutralization, Clarification, Flotation. Role of Chemical unit operations in wastewater treatment, Chemical unit Process: Chemical Coagulation, Chemical Precipitation- Heavy metal Removal, Phosphorus removal, Chemical oxidation, Chemical Neutralization and stabilization

Unit – III Biological Treatment:

Composition and Classification, Bacterial growth, Microbial growth, Aerobic biological oxidation, biological Nitrification, Anaerobic fermentation and oxidation, Biological removal of heavy metals, Activated sludge process, Trickling Filters, Rotating Biological Contactors, Combined aerobic treatment processes, Anaerobic treatment process, Anaerobic sludge blanket process, Attached growth process

Unit – IV Advanced wastewater treatment:

Depth filtration, surface filtration Membrane filtration, Adsorption, Ion exchange, advanced oxidation process, Photo catalysis, Wet Air Oxidation, Evaporation. Disinfection Processes: Disinfection with chlorine, Disinfection with chlorine dioxide, Dechlorination, Disinfection with ozone, Ultraviolet radiation Disinfection. Other chemical Disinfection methods

Unit – V Industrial Effluent Treatment Plants:

Individual and Common Effluent Treatment Plants – Zero effluent discharge systems -Wastewater reuse – Disposal of effluent on land – Quantification, characteristics and disposal of Sludge. Industrial process description, wastewater characteristics, source reduction options and waste treatment flow sheet for Textiles – Tanneries – Pulp and paper – metal finishing - Pharmaceuticals – Sugar and Distilleries – Food Processing –Fertilizers – Industrial Estates, Indian regulations.

Total:45

9

9

9

9

9

TEXT BOOK:

 Metcalf Eddy by George Tchobanoglous, Franklin L. Burton, "Wastewater Engineering: Treatment and Reuse", 1st Edition, McGraw Hill Book Co, USA, 2011.

REFERENCES:

1. Eckenfelder, W.W., "Industrial Water Pollution Control", 1st Edition, McGraw Hill International edition, United State of America, 1999.

2. Frank Woodard, "Industrial waste treatment Handbook", 1st Edition, Butterworth Heinemann, New Delhi, 2001.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the sources and types of Industrial Wastewater	Understanding (K2)
CO2	apply the principles of physical and chemical unit operations in wastewater treatment	Understanding (K2)
CO3	explain the industrial biological wastewater treatment techniques	Understanding (K2)
CO4	describe the advanced wastewater treatment techniques used in industries	Understanding (K2)
CO5	demonstrate the operations of various industrial effluent treatment plants	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					3						3	2
CO2	3	2	2				3				1		3	2
CO3	3	1	2				3						3	2
CO4	3	2	2		2		3					2	3	3
CO5	3	2	2				3					2	3	2
1 – Sliaht, 2	– Mode	erate 3	– Subs	stantial	BT- B	loom's	Taxon	omv						

1 – Siign	it, 2 – Moderat	e, 3 – Substantial, I	BI-BIOOMS	Taxonomy

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	50	20				100
ESE	30	60	10				100

20CHE25 - PIPING ENGINEERING

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisites	Fluid Mechanics	7	PE	3	0	0	3	

Preamble This course offers an insight into the design, operation and maintenance of pipes and piping networks Unit - I Piping Fundamentals:		
Unit - I	Piping Fundamentals:	9
Introduction	n to Piping – Pipe and tube, Classification of Pipes, Piping Materials and Selection criteria, Pi	iping

Introduction to Piping – Pipe and tube, Classification of Pipes, Piping Materials and Selection criteria, Piping components – Valves, Joints and Fittings. Fluid Flow Problems – Estimation of Major and Minor Losses, Pumping requirements

Unit - II Piping in practice:

Piping Network – Series and Parallel pipes, Pipe Network analysis using spreadsheets. piping for pumps and compressor

Unit - III Generic Piping design:

Usage of Standard and codes. Piping Design – material compatibility, estimation of optimum diameter, selection of valves and fittings, complexity factor, stress analysis, selection of pipe supports.

Unit - IV Piping Systems:

Design considerations for piping systems – water and waste water, steam, compressed air, industrial gases, oil, refrigeration, solid and slurry systems

Unit - V Operation and Maintenance:

Inspection of Pipelines – Testing techniques and leak detection. Maintenance – Cleaning, coating, freeze prevention, drag reduction, insulation, Common failures and repair techniques, Piping Plan development.

TEXT BOOKS:

^{1.} Henry Liu, "Pipeline Engineering", 2nd Edition, Lewis Publishers, USA, 2003 for units I & II.

 Mohinder L. Nayyar, "Piping Handbook", 7th Edition, Tata McGraw Hill Publishing Company Ltd, USA, 2000 for units III, IV & V.

REFERENCE:

^{1.} John J Mcketta, "Piping Handbook", 3rd Edition, Marcel Dekker Inc, United State of America, 1992.

9

9

9

9

Total:45

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the fundamental principles of fluid mechanics to solve fluid flow problems	Applying (K3)
CO2	interpret the piping symbols, codes and sketch a piping layout for a given problem	Applying (K3)
CO3	apply the concepts of generic piping design for optimal design of piping systems	Applying (K3)
CO4	perform the process design of various pipeline systems	Applying (K3)
CO5	demonstrate the techniques involved in inspection and maintenance of pipelines	Applying (K3)

				N	lappin	g of CO	Os with	n POs a	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1		1							1	3	1
CO2	3	3	1		2							1	3	1
CO3	3	3	1		1							1	3	2
CO4	3	3	1									1	3	2
CO5	3	2	1									1	3	2
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	60	30				100
CAT2	10	60	30				100
CAT3	10	60	30				100
ESE	10	60	30				100

20CHE26 - BATTERY AND FUEL CELL TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course deals with the fundamentals of electrochemical engineering and its applications.

Unit - I Basics of Electrochemistry:

Importance of electrochemical systems: Faraday's law - Current density - Potential and Ohm's law. Cell potential. Electrochemical kinetics: Double layer - Butler–Volmer Kinetic Expression - Influence of Mass Transfer on the Reaction Rate - Current efficiency.

Unit – II Transport phenomena and Electrodes

Mobility of electrons in cells, Concentration over potential, Current distribution and membrane transport. Electrode configuration – Porous electrodes, characterization, current distribution, Three phase electrodes, Electrodes with flow

Unit - III Batteries and Fuel cells:

Components of a cell - Classification of batteries and cell - Theoretical capacity and state of charge - Cell characteristics and electrochemical performance - Heat efficiency of secondary cells- Charge retention and self-discharge - capacity fade in secondary cells. Fuel cell fundamentals: Types of fuel cells- Current–voltage characteristics and polarizations - Electrode structure - Proton-Exchange Membrane (PEM) fuel cells - Solid Oxide Fuel cells.

Unit – IV Electrochemistry for e-vehicles

Introduction to fuel cell stack and super capacitors. Electric and Hybrid vehicles - Objectives, power demand determination, regenerative braking, Battery electric vehicle, Hybrid electric vehicle, Start-Stop hybrid, Fuel Cell Hybrid systems

Unit – V Electro-deposition and Corrosion:

Electro-deposition: Fundamentals – Nucleation - Deposit morphology – Additives - Impact of side reactions and resistive substrates. Corrosion: Fundamentals - Thermodynamics of corrosion systems - Localized corrosion - Corrosion protection.

TEXT BOOK:

Total:45

9

9

9

9

^{1.} Thomas F.Fuller and John N.Harb, "Electrochemical Engineering", 1st Edition, John Wiley & Sons, USA, 2018.

REFERENCE:

1. Allen J.Bard and Larry R. Faulkner, "Electrochemical Methods, Fundamentals and Applications", 2nd Edition, John Wiley & Sons Inc, United State of America, 2000.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basics of electrochemical systems and electrochemical kinetics.	Understanding (K2)
	describe the transport properties of electrochemical systems and electro analytical techniques.	Understanding (K2)
CO3	explain the fundamental properties and classification of batteries and fuel cells.	Understanding (K2)
CO4	describe the technology of electrochemical systems for electric vehicles	Understanding (K2)
CO5	illustrate the concepts of electro-deposition and corrosion prevention.	Understanding (K2)

				Ν	lappin	g of C	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2										2	2	1
CO2	3	2										2	2	1
CO3	3	2										2	2	1
CO4	3	2										2	2	1
CO5	3	2										2	2	1
1 – Slight 2	-	rato 2	Sub	tontial	DTD	loom's	Taxon	omv				-	-	

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHE27 - FLUID MOVERS

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course helps the student to understand the basic principle, working, construction and applications of various pumps, compressor, fan and blowers in industries.

Unit – I Kinetic Pump:

Classification and selection of pumps. Centrifugal pump-Theory, analysis, performance and construction. Multistage pumping. Selection of pump materials. Industrial application

Unit – II Pump Parts:

Pump drives and power transmission-pump drives and speed varying devices. Pump sealing-Centrifugal pump packing, mechanical seal and injection type shaft seals. Pump noise measurement-noise measurement techniques, estimating pump noise level and noise control techniques. Pump testing- classification of testing, test procedure and measurement

Unit – III Reciprocating Pump:

Displacement pump-Theory, design and construction of Diaphragm, Screw, Jet, Rotary, Lobe, Solid handling and Gear Pump. Multistage pump. Industrial application

Unit – IV Compressor:

Compressor Theory- Compressed air and air usage. Compressor-Types and selection. Effect of operating conditions .Thermodynamic compression. Real gas effects. Description and control of surge in centrifugal and axial compressor. Multistage and inter-cooling system. Performance analysis of compressor

Unit – V Fan and Blower:

Theory and types of Fan and Blowers. Working Principle of blowers. Cross flow and vortex blowers –Flow pattern and performance. Velocity Triangle and Parametric Calculations: Work, Efficiency and Number of Blades and Impeller sizes. Types, Selection, Law, Performance and efficiency of Fan. Fan less air movers. Vacuum cleaners

TEXT BOOKS:

- Igor J. Karassik, Joseph P. Messina, Paul Cooper, Charles C. Heald, "Pump Handbook", 4th Edition, McGraw Hill Book Co, New Delhi, 2008 for units I, II & III.
- Jonathan Moore, "Hand book of Fluid Movers: Pumps, Compressors, Fans, and Blowers", 1st Edition, Delve Publishing, USA, 2015 for units IV & V.

REFERENCES:

- Giampaolo Tony, "Compressor Handbook -Principles and Practices", 1st Edition, Fairmount Press Incorporation, United State of America, 2010.
- Christie J. Geankoplis, "Transport Processes and Separation Process Principles", 4th Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 1993.

9

9

9

9

9

Total:45

COURSE OUTCOMES: On completion of the course, the students will be able to		BT Mapped (Highest Level)
CO1 elaborate the types, characteristics, construction and performance of c	entrifugal pump	Understanding (K2)
CO2 familiarize the drives, parts and power transmission of pumps; testing c	of pump	Understanding (K2)
CO3 illustrate the types, characteristics, construction and performan displacement pumps	ice of positive	Understanding (K2)
CO4 explain the types, characteristics and performance of compressors		Understanding (K2)
CO5 exhibit familiarity with the types, theory, performance and applicate blowers	on of fans and	Understanding (K2)

				Ν	lappin	g of C	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1										1	3	2
CO2	3	1										1	3	2
CO3	3	1										1	3	2
CO4	3	1										1	3	2
CO5	3	1										1	3	2
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	BT-B	loom's	Taxon	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	60					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHE28 - ADVANCED PROCESS CONTROL

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble This course provides basic knowledge about the advanced process control techniques in chemical industries

Unit - I Introduction to process control:

Principles of measurement and classification of process control instruments; temperature, pressure, fluid flow, liquid level, velocity, fluid density, viscosity. Instrument scaling; sensors; transmitters and control valves

Unit - II Process Automation:

Basic concepts - terminology and techniques for process control - control modes - controller design - Tuning process controllers

Unit - III Advanced Control Systems:

feed forward, ratio control, Cascade control, split rage control, adaptive control system; MIMO: Degrees of freedom, Alternative loop configurations, interaction of control loops, relative gain array, selection of loops; ; statistical process control; expert system; multivariable control techniques; supervisory control.

Unit - IV Digital Control:

Digital Computer, Computer- process interface for data acquisition and control, computer control loops, continuoustime to discrete –time systems, sampling continuous, reconstruction of continuous signal, conversion of continuous to discrete time model

Unit – V Discrete Time Response:

z transforms - function ad Applications; discrete time response of dynamic systems, design of digital feedback controllers - Introduction to SCADA

TEXT BOOK:

1. Stephanopoulos G., "Chemical Process Control", Tata McGraw-Hill, New Delhi, 1993.

REFERENCES:

1. Chidambaram M., "Computer Control of Processes", Alpha Science International Ltd, India, 2002.

2. Nakara B.C. and Choudary K.K., "Instrumentation and Analysis", Tata McGraw-Hill, New Delhi, 1993.

9

9

9

9

9

Total:45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the principles of measurement techniques in process industries	Understanding(K2)
CO2	explain the concepts of process control strategies	Understanding(K2)
CO3	elaborate the advanced control techniques used in process control	Understanding(K2)
CO4	explain the digital controllers and discrete time model approaches	Understanding(K2)
CO5	illustrate the discrete time response of dynamic system	Understanding(K2)

Mapping of COs with POs and PSOs														
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
3	3	1									2	3	1	
3	3	1									2	3	1	
3	3	2									2	3	1	
3	3	2									2	3	1	
3	3	1		1							2	3	1	
	3 3 3 3 3	3 3 3 3 3 3 3 3 3 3	3 3 1 3 3 1 3 3 2 3 3 2	PO1 PO2 PO3 PO4 3 3 1 3 3 1 3 3 2 3 3 2	PO1 PO2 PO3 PO4 PO5 3 3 1 3 3 1 3 3 2 3 3 2 3 3 2	PO1 PO2 PO3 PO4 PO5 PO6 3 3 1 <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 1</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 1 <</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 1</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 1</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 1 <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2</td><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3</td></td>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 3 1 <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 3 1 <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2</td> <td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3</td>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3	

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	80					100							
CAT2	20	80					100							
CAT3	20	80					100							
ESE	20	80					100							

20CHE29 - ORES AND MINERAL PROCESSING

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Mechanical Operations	8	PE	3	0	0	3

Preamble The student will gain knowledge on the principles of ores and mineral processing.

Unit - I Mineralogy:

Studies of important metallic and non-metallic minerals, their characteristics, origin etc. application of non-metallic minerals. Sea as a source of minerals. Status of mineral beneficiation industry in India. Study of some representative beneficiation practices with flow sheets. Sampling methodology and equipment

Unit - II Comminution and Screening:

Classification of size reduction equipment. Cylindrical and cylindro conical ball mills, Rod mills, Tube / Pot mills, and their performances, capacities, reduction ratios etc. Dry and Wet Grinding. Open and closed circuit grinding. Work Index calculations. Interlocking and liberation of minerals. Particle size distribution, Sorting, Sizing and Pneumatic classifiers and their performances. Thickeners, Hydro cyclones.

Unit - III Gravity Concentration Techniques:

Theory and practice of sedimentation and filtration. Working of Rotary vacuum filters. Principles of Jigging, Tabling and Heavy Media Separation. Processes with equipment used, important controlling factors in operation and application. Beneficiation practice for arsenopyrite containing scheelite.

Unit – IV Froth Flotation:

Natural and Artificial Floatability of minerals. Frothers, Collectors, Depressants, Activators / Deactivators, pH Modifiers, etc. Flotation machines. Study of representative sulfide and non-sulfide minerals and non-metallic ores. Multistage flotation and Column Flotation

Unit – V Electrostatic and Magnetic Separation:

Principles of Electrostatic and Magnetic Separation (Dry and Wet type). Separation units used in practices and examples in the industries. Calculation of Recovery and ratio of concentration and Mass balance calculations in ore dressing. Industrial set up of Ore Dressing plant

Total:45

9

9

9

9

9

TEXT BOOK:

 Barry A Wills and Tim Napier Munn., "Will's Mineral Processing Technology – An introduction to the practical aspects of ore treatment and mineral recovery", 7th Edition, Butterworth Heinemann - Elsevier Imprint, Amsterdam, 2006.

REFERENCES:

l	1.	Rutley F., "Elements of Mineralogy", 27th Edition, CBS Publishers and Distributors, New Delhi, 2005.
	2.	Gaudin A.M., "Principles of Mineral Dressing", 1 st Edition, Tata McGraw Hill Publishing Company Ltd, New York, 2005.
ſ	3.	Pryor E.J, "Mineral Processing", 3rd Edition, Kluwer Academic Publishers, New York, 1965.

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the sources, beneficiation, sampling methodologies in mineral processing	Understanding (K2)
CO2	describe the various comminution and solid screening techniques	Understanding (K2)
CO3	explain the aspects of gravity concentration techniques	Understanding (K2)
CO4	illustrate the importance of froth flotation in ore processing	Understanding (K2)
CO5	describe the various electro and magnetic separation techniques	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO2	PO3	PO4	PO5	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3	2		1			2	2					1	1
CO2	3	2		1			2	2					1	1
CO3	3	2		1			2	2					1	1
CO4	3	2		1			2	2					1	1
CO5	3	2		1			2	2					1	1
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy						

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	70					100						
CAT2	30	70					100						
CAT3	30	70					100						
ESE	30	70					100						

20CHE30 - POLYMER TECHNOLOGY

Programme & Branch	B.TECH. – Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	PE	3	3	0	3

Preamble	This course highlights the importance, properties and production of various polymers

Unit - I Introduction:

Monomer-functionality and degree of polymerizations- polymers and their classification- Types of polymerization and mechanisms- addition, condensation and copolymerization- bulk, solution, emulsion and suspension polymerizations.

Unit - II Structure and Classification:

Structure of polymers- linear, branched and cross linked-Characterization of polymers- molecular weight- crystallinityglass transition and mechanical properties- Ultrasonic waves- Photo degradation- High energy radiation- Oxidative and hydrolytic.

Unit – III Polymers and Applications:

Polyethylene- poly propylene- polystyrene-polymethyl methacrylate - polyvinyl chloride; polytetrafluoroethylenepolyacrylate- nylon 6- nylon 6,6 and polyesters- Phenol formaldehyde- urea formaldehyde and melamine formaldehyde- epoxy-urethanes and silicones-ion exchange polymers.

Unit - IV Chemical Analysis of Polymer:

X-ray diffraction- Microscopic technique-Light scattering- SEM- Spectroscopic methods- IR,NMR- Thermal analysis-DSC, DTA and TGA.

Unit - V Introduction to Plastics:

Anti-oxidants and stabilizers- polymer additives- fillers- plasticizers-colorants- Molding methods-Injectioncompression- transfer and blow molding- Processing techniques- Calendaring- casting- extrusion-thermoformingfoaming.

TEXT BOOKS:

Rodriguez. F., Cohen, C., Ober, C, Archer, L.A., "Principles of Polymer Systems", 5th Edition, Taylor and Francis, Great Britain, London, 2014 for units I, II, III & IV.

 Manas Chanda, Salil K. Roy, "Plastics Technology Handbook", 5th Edition, CRC Press, United States of America, 2017 for unit V.

REFERENCES:

- 1. Bahadur P., Sastry N.V., "Principles of Polymer Science", 2nd Edition, Narosa, India, 2002.
- 2. Stevens M.P., "Polymer Chemistry: An Introduction", 3rd Edition, Oxford University Press, New York, 1999.

9

9

9

9

9

Total:45

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the principles, types and mechanism of polymerization processes	Understanding (K2)
CO2	describe the structure and properties of polymers	Understanding (K2)
CO3	explain the properties and manufacturing processes of polymers	Understanding (K2)
CO4	apply the characterization techniques for polymers using microscopic and spectroscopic instruments	Applying (K3)
CO5	outline the principles and methods of molding plastics	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	1	3				2						1	2
CO2	2	1	3				2						1	2
CO3	2	1	3				2						1	2
CO4	3	2	3				2						3	2
CO5	2	1	3				2						1	2
1 – Slight	1 – Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	70					100						
CAT2	30	70					100						
CAT3	20	60	20				100						
ESE	20	70	10				100						

20GEO011 ENTREPRENEURSHIP DEVELOPMENT

(Common to all Engineering and Technology Branches)

Programme& Branch	All BE/BTech branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Process Engineering and Economics	6	EC	3	0	0	3

Preamble The purpose of this course to create entrepreneurial awareness among engineering students.

Unit - I Entrepreneurship Concepts:

Entrepreneurship & Entrepreneur- Role in Economic Development - Factors affecting Entrepreneurship- Creativity and Innovation - Entrepreneurship vs Intrapreneurship- Entrepreneurial Motivation factors – Types of Entrepreneurship & Entrepreneurs - Characteristics of Entrepreneurs -Entrepreneurship Development in India

Unit - II Entrepreneurial Ventures and opportunity assessment:

New venture creation – Bootstrapping, Minipreneurship, Start-ups, Acquiring, Franchising & Social venturing - Venture development stages - Models of market opportunity- Opportunity assessment: Critical Factors In Opportunity Assessment, Idea vs Opportunity, Evaluation process, Global opportunities for entrepreneurs.

Unit - III Business Plan:

Designing Business Model- Business Model Canvas- Objectives of a Business Plan - Business Planning Process – Structure of a Business Plan – Technical, Marketing, Financial Feasibility assessment - Competitive analysis -Common errors in Business Plan formulation - Presentation of the Business Plan: The 'Pitch'- case studies

Unit - IV Financing and accounting:

Forms of entrepreneurial capital – Sources of Financial capital: debt financing- Commercial banks and other sources, equity financing: Initial Public offering (IPO), Private placement - Venture capitalists - Angel investors-New forms of financing: Impact investors, Micro-financing, Peer-to-Peer Lending, Crowd funding - Natural capital. Preparing Financial Budget, Break even analysis, Taxation-Direct and indirect taxes, Insolvency and Bankruptcy.

Unit - V Small Business Management:

Definition of Small Scale Industries: Strengths and Weaknesses, Sickness in Small Enterprises: Symptoms -Causes and remedies- Indian Startup Ecosystem – Institutions supporting small business enterprises, Business Incubators – Government Policy for Small Scale Enterprises - Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger, FDI and Sub-Contracting

Total:45

9

9

9

9

9

TEXT BOOK:

1. Donald F. Kuratko,"Entrepreneurship: Theory, Process, Practice", 11th Edition, Cengage Learning, Boston, 2020.

REFERENCES:

- 1. Robert D. Hisrich, Michael P. Peters & Dean A. Shepherd, Sabyasachi Sinha "Entrepreneurship", 11th Edition, McGraw Hill, Noida, 2020.
- 2. Charantimath Poornima .M, "Entrepreneurship Development and Small Business Enterprises", 3rd Edition, Pearson Education, Noida, 2018.

3. Gordon E & Natarajan K, "Entrepreneurship Development", 6th Edition, Himalaya Publishing House, Mumbai, 2017.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the importance of entrepreneurship and demonstrate the traits of an entrepreneur	Applying (K3)
CO2	identify suitable entrepreneurial ventures and business opportunity	Applying (K3)
CO3	assess the components of business plan	Analyzing (K4)
CO4	appraise the sources of finance and interpret accounting statements	Applying (K3)
CO5	interpret the causes of sickness of small scale enterprises and its remedies	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	1	1		3	2		1
CO2	1	2	2	2		2	2	1	1		3	2		2
CO3	2	2	2	2	2	2	2	2	2	2	3	2		1
CO4	1	1	2	1		2	1	1	1	2	3	2		1
CO5	1	1	2	1		2	1	1	1	2	3	2		1
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy						

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	40				100		
CAT2	20	30	30	20			100		
CAT3	30	30	40				100		
ESE	20	30	40	10			100		

20CHO01 - DRUGS AND PHARMACEUTICALS TECHNOLOGY (Offered by Department of Chemical Engineering)

Programme & Branch	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

Preamble	To gain knowledge in formulation and manufacturing of drugs and its quality analysis.	
Unit - I	Principles and Kinetics:	9+3
	n to drugs and pharmaceutical, application of organic therapeutic agents, pharmaco kinetics-Absor n, Metabolism and Excretion-Mechanism and physico chemical principles.	ption,

Chemical Conversion process- alkylation, carboxylation, condensation and cyclisation, dehydration, esterification, halogenation, oxidation and sulfonation reactions.

Unit - III Drug Delivery Systems:

Tablets and capsules, types of Tablets and capsules-Formulation and Manufacturing, parential solutions, oral liquids, injections and ointments-methods of preparation.

Unit - IV Pharmaceutical Products:

Vitamins-Functions, laxatives-classification and uses, analgesics-Types and Mechanisms, antacids and antisepticsclassification, mechanism and applications.

Unit - V Quality Control:

Concept of quality control-IPQC tests for tablets, Quality analysis - raw materials, process and finished products. Good Manufacturing Practices-cGMP,FDA regulations.

Lecture:45, Tutorial:15, Total:60

9+3

9+3

9+3

TEXT BOOK:

1.

Brahmankar D.M. and Sunil B. Jaiswal, "Biopharmaceutics and Pharmacokinetics: A Treatise", 1st Edition, Vallabah Prakashan, India, 2017.

REFERENCES:

- 1. Arthur Owen Bentley, "Text book of Pharmaceutics", 8th Edition Edition, All India Traveller Book Seller, New Delhi, 2002.
- 2. Banker G.S. and Rhodes C.T, "Modern Pharmaceutics", 4th Edition Edition, Marcel Dekker Inc, New York, 2002.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the drug metabolism and pharmaco-kinetic principles	Understanding (K2)
CO2	illustrate the different chemical conversion processes in pharmaceutical industries	Understanding (K2)
CO3	outline the formulation and manufacturing of drug delivery systems	Understanding (K2)
CO4	describe the manufacturing processes of different types of pharmaceutical products	Understanding (K2)
CO5	elaborate the importance of good manufacturing practices and quality control procedures	Understanding (K2)

				Ν	<i>l</i> lappin	g of CO	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1				1						1	2	2
CO2	3	1				1						1	2	2
CO3	3	1				1						1	2	2
CO4	3	1				1						1	2	2
CO5	3	1				1						1	2	2
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	30	70					100
CAT3	30	70					100
ESE	30	70					100

20CHO02 - PROCESS AUTOMATION (Offered by Department of Chemical Engineering)

Programme & Branch	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

Preamble	This course provides basic knowledge about the process automation techniques in process industrie	es
Unit - I	Introduction to process instrumentation:	9+3

Principles of measurement and classification of process control instruments; temperature, pressure, fluid flow, liquid level, velocity, fluid density, viscosity. Instrument scaling; sensors; transmitters and control valves;

Unit - II Process Automation:

Basic concepts - terminology and techniques for process control - control modes - controller design - Tuning process controllers

Unit - III Advanced Control Systems:

feed forward, ratio control, Cascade control, split rage control, adaptive control system; MIMO: Degrees of freedom, Alternative loop configurations, interaction of control loops, relative gain array, selection of loops; ; statistical process control; expert system; multivariable control techniques; supervisory control.

Unit - IV Digital Control

Digital Computer, Computer- process interface for data acquisition and control, computer control loops, continuoustime to discrete -time systems, sampling continuous, reconstruction of continuous signal, conversion of continuous to discrete time model

Unit - V Discrete Time Response

z transforms - function ad Applications; discrete time response of dynamic systems, design of digital feedback controllers - Introduction to SCADA

Lecture:45, Tutorial:15, Total:60

9+3

9+3

9+3

9+3

TEXT BOOK:

1. Stephanopoulos G., "Chemical Process Control", Tata McGraw-Hill, New Delhi, 1993.

REFERENCES:

1. Chidambaram M., "Computer Control of Processes", Alpha Science International Ltd, India, 2002.

2. Nakara B.C. and Choudary K.K., "Instrumentation and Analysis", Tata McGraw-Hill, New Delhi, 1993.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the principles of measurement techniques in process industries	Understanding (K2)
CO2	explain the concepts of process control strategies	Understanding (K2)
CO3	elaborate the advanced control techniques used in process control	Understanding (K2)
CO4	explain the digital controllers and discrete time model approaches	Understanding (K2)
CO5	illustrate the discrete time response of dynamic system	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	1									2			
CO2	3	3	1									2			
CO3	3	3	2									2			
CO4	3	3	2									2			
CO5	3	3	1		1							2			
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	80					100							
CAT2	20	80					100							
CAT3	20	80					100							
ESE	20	80					100							

20CHO03 - RENEWABLE BIO ENERGY RESOURCES (Offered by Department of Chemical Engineering)

Programm Branch	е&	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisi	tes	Nil	5	OE	3	1	0	4
Preamble	This co technic	purse will help students to gain knowledge in the a	available	bio energy a	nd the	prese	nt cor	version
Unit - I	Bio En	nergy Resources						9+3
		es of Biomass – Crop residue, fuel wood, aquatic ste and energy forming. Properties of biomass reso		sugar crops	, oil cro	ops, ar	nimal	manure,
Unit – II	Types	of bio fuel technologies						9+3
and starchy Anaerobic	y crops, process							bic and
Unit - III	Torref	action and Pyrolysis						9+3
		duction, Challenges, Products of Torrefaction, Pyrolysis, Processes, Bio oil and its properties	Biochar,	Properties	of To	rrefact	ion p	roducts.
Unit - IV	Gasific	cation and Liquefaction						9+3
		luction, Types of gasifiers and its applications, luction, Types of gasifiers and its applications, luct, Direct and other biomass liquefaction processes		on to advanc	ed ga	sifiers.	Lique	faction:
Unit - V	Bioma	ss Combustion technologies						9+3
Introductior issues and		s of biomass combustion systems, Applications ges.	of bioma	ss combustio	on sys	tems,	Susta	ainability

Lecture: 45, Tutorial:15, Total:60

TEXT BOOK:

1. Sergio C Capareda, "Introduction to Biomass Energy Conversion", 1st Edition, CRC Press, United Kingdom, 2013

REFERENCE BOOKS:

- Mukunda, H.S, "Understanding clean energy and Fuels from biomass", 1st Edition, Wiley India Pvt Ltd, New Delhi, 2012.
- 2. Nijaguna, B.T, "Biogas Technology", 1st Edition, New age International, India, 2002.

3. Lijun wang, "Sustainable bioenergy production", 1st Edition, CRC Press, United State of America, 2014.

 Sunggyu Lee, Y.T.Shah, "Bio fuels and bio energy; process and technologies", 1st Edition, CRC Press, United State of America, 2012.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the various sources of biomass and their properties	Applying (K3)
CO2	illustrate the different technologies for production of bio-energy	Applying (K3)
CO3	explain the technologies of torrefaction and pyrolysis of biomass	Applying (K3)
CO4	demonstrate the processes of gasification and liquefaction of biomass	Applying (K3)
CO5	describe the technologies of combustion of biomass	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	2	2		2	2					1			
CO2	3	2	2	2		2	2					1			
CO3	3	2	2	2		2	2					1			
CO4	3	2	2	2		2	2					1			
CO5	3	2	2	2		2	2					1			
1 Slight 2	Mode	vrata 2	Cube	tontial	рт р	loom'o	Tayan								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	70					100							
CAT2	30	70					100							
CAT3	30	70					100							
ESE	30	70					100							

* ±3% may be varied (CAT 1,2,3 - 50)

20CHO04 - INTELLIGENT CONTROLLERS (Offered by Department of Chemical Engineering)

Programme & Branch	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble This course will help students to gain knowledge in the available bio energy and the present conversion techniques.

Unit - I Fuzzy Logic Control:

Need for FLC, Mamdani type FLC, steps in the design of FLC, Fuzzification, Decision making Logic, Rule based logic and de-fuzzification interface. Simulation examples, FLC of a reactor, Development of Fuzzy Estimator, Multi level control using Fuzzy Logic. Fuzzy logic tuned PI controller.

Unit – II T-S fuzzy model:

Model structure, TS model from input output data, TS model from model using linearization method, TS model based control

Unit - III Artificial Neural Network based Control:

Architecture of ANN, supervised learning, Weights and Hidden Layers, Back Propagation algorithm, Control scheme based on ANN. Simulation examples.

Unit - IV RBFN:

Radial basis function, Learning in RBFN, Pseudo inverse technique, Gradient descent algorithm, examples, RBFN versus Multi stage network Controller Design for a T-S Fuzzy model; Linear controllers using T-S fuzzy model.

Unit - V Learning Automata:

Principles of learning Automata, Steps in Learning Automata(LA) based control, Performance specification, Initial Probability assignment, Reward and penality. Probability modification, Simulation application on a reactor, LA tuned PI controllers.

TEXT BOOKS:

Lecture:45; Tutorial : 15; Total: 60

9+3

9+3

9+3

9+3

9+3

- 1. Behera, L. and Indirani Kar, "Intelligent systems and control: principles and applications", Oxford University Press, New Delhi, 2009 for units II, III & IV.
- 2. M.Chidambaram, "Applied Process Control", Allied Publishers, New Delhi, 1998 for units I & V.

REFERENCES:

1. Cai,Z-X, "Intelligent Control: Principles, Techniques and Applications", Word Scientific, Singapore 1997.

2. M.Chidambaram, Computer Control of Processes, Narosa Publications, New Delhi, 2002.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)			
CO1	Understand the concept of Fuzzy Logic Control	Understanding (K2			
CO2	Use of T-S model based control	Understanding (K2)			
CO3	Develop ANN model and its use for controller	Understanding (K2)			
CO4	Development of Radial basis function NN	Understanding (K2)			
CO5	Design controllers using Learning automata	Understanding (K2)			

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	1		2	3		1						2			
CO2	1		2	3		1						2			
CO3	2		2	3		1						2			
CO4	2		2	3		1						2			
CO5	3		3	3		1						2			
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy	-	-		-		-	

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	70					100							
CAT2	30	70					100							
CAT3	30	70					100							
ESE	30	70					100							

	20CHO09 - INDUSTRIAL ENZYM	IOLOGY					
	(Offered by Department of Chemical	Engineering)					
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	The course helps the students to understand the basic poly kinetics, mechanism of enzyme action and inhibitors and processes						
Unit – I	Introduction to Enzymology						9+
energetics of enz state theory.	enzymes. Mechanisms of enzyme action; History of Industri syme substrate complex formation; specificity of enzyme action						
Unit – II	Kinetics of Enzyme Action						9+
mechanisms and	 substrate reactions; estimation of Michaelis – Menten para kinetics for steady state; Allosteric regulation of enzymes, M s & deactivation kinetics. 						
Unit – III	Purification and Production of Industrial Enzymes						9 +
Production and	purification of crude enzyme extracts from plant, animal and	d microbial sc	ources; metho	ods o	of cha	aracte	rization c
enzymes - micro	bial fermentation and downstream processing.						
Unit – IV	Industrial Application of Enzyme						9 +
	d in production process of Brewing and Baking industry, da maceutical industries	airy industry,	meat process	sing,	Fruit	and	Vegetabl
	Altering Enzyme Performance and Stability						9 +
Unit – V Modification of in regulatory aspec			derations, eva	aluati	on of	enzy	Safety an me safety
Unit – V Modification of in regulatory aspec	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering s: ethics in the use of enzymes in food products, medical and			aluati	on of	enzy	Safety an me safety
Unit – V Modification of in regulatory aspectoxicity considera	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering s: ethics in the use of enzymes in food products, medical and	dietary consid	derations, eva	aluati	on of	enzy	me safety
Unit – V Modification of in regulatory aspect toxicity consideration TEXTBOOK: 1.	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering is: ethics in the use of enzymes in food products, medical and tion in the use of enzymes almer, "Enzymes", 2 nd Edition, Horwood Publishing Ltd, 2007. . Whitehurst & Maarten van Oort, "Enzymes in Food Techn	dietary consid	derations, eva	aluati :45, ⁻	on of	ial:15	Safety an me safet <u>y</u> , Total:6
Unit – V Modification of in regulatory aspect toxicity consideration TEXTBOOK: 1. 2	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering is: ethics in the use of enzymes in food products, medical and tion in the use of enzymes almer, "Enzymes", 2 nd Edition, Horwood Publishing Ltd, 2007. . Whitehurst & Maarten van Oort, "Enzymes in Food Techn	dietary consid	derations, eva	aluati :45, ⁻	on of	ial:15	Safety an me safet <u>y</u> , Total:6
Unit – V Modification of in regulatory aspectory aspectory consideration TEXTBOOK: 1. Trevor P 2. Robert J (Unit IV, REFERENCES:	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering is: ethics in the use of enzymes in food products, medical and tion in the use of enzymes almer, "Enzymes", 2 nd Edition, Horwood Publishing Ltd, 2007. . Whitehurst & Maarten van Oort, "Enzymes in Food Techn	dietary consid . (Unit I, II, III) lology", 2nd E	derations, eva	aluati :45, ⁻	on of	ial:15	Safety an me safet
Unit – V Modification of in regulatory aspector toxicity consideration TEXTBOOK: 1. Z. Robert J. (Unit IV, REFERENCES: 1. Ed Godf	Altering Enzyme Performance and Stability dustrial enzyme function and stability by enzyme engineering ss: ethics in the use of enzymes in food products, medical and tion in the use of enzymes almer, "Enzymes", 2 nd Edition, Horwood Publishing Ltd, 2007. . Whitehurst & Maarten van Oort, "Enzymes in Food Techn V)	dietary consid (Unit I, II, III) ology", 2nd E d edition, 199	derations, eva Lecture dition, John	Wile	on of Tutor y & S	ienzy	Safety an me safet , Total:6 UK, 2009

		UTCOM		se, the st	udents	will be a	able to						BT Mapped (Highest Level)				
CO1	infei	the fun	dament	al concept	s of eco	onomics a	and fore	casting	in food	d process	sing		Un	derstandi	ng (K2)		
CO2	ana	yze the	cost ec	onomics in	n food ir	ndustry							Analyzing (K4)				
CO3	mak	e use o	f market	equilibriu	m and i	nterpret r	national	income	calcul	ation and	d inflatio	n issues		Applying	(K3)		
CO4	appl	y the m	anagem	ent princip	oles in f	ood proc	essing							Applying	(K3)		
CO5	outli	ne the c	organiza	tional strue	cture a	nd its type	es.						Un	derstandi	ng (K2)		
						Mappin	g of CO	s with	POs ai	nd PSOs	;						
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CC)1	3	2	2							1	1	2				
CC)2	3	2	2							2	2	2				
CC)3	3	2	2							1	1	2				
CC)4	3	2	1							2	2	2				
CC)5	3	2	1							2	2	2				
1 – Sli	ght, 2	– Mode	rate, 3 -	Substant	ial, BT-	Bloom's	Taxono	my									
						ASSES	SMENT	PATTE	ERN - 1	HEORY							
	st / Blo Catego	oom's ory*	Re	ememberi (K1) %	ng	Understa (K2)	•	Apply (K3)		Analyzi (K4) %		Evaluating (K5) %		reating (K6) %	Tota		
	CAT	1		20		40		20)	20					100		
	CAT	2		20		20	_	40)	20							
	CAT	3		20		40		40)						100		
	ESE	Ξ		20		40		30)	10					100		

	20CHO10 - WASTE TO ENERGY CO						
	(Offered by Department of Chemical	Engineering)		1	1	1	
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	This course focuses on Waste to Energy Conversion, co of various conversion processes. Students will learn how and economic impacts of waste-to-energy systems.						
Unit - I	Introduction to Waste Management and Energy Conv	version					9+3
	ste management and the importance of waste-to-energy con rgy conversion technologies and their applications in waste-to		es of wastes	and	their	chara	acteristics
Unit - II	Waste Characterization and Analysis						9 + 3
waste reduction	te characterization and analysis; Techniques for determining, reuse, and recycling; Collection and transport systems for ues and hazards associated.						
Unit - III	Thermal and Biological Conversion Technologies						9+3
	pyrolysis processes; Gasification and plasma arc gasific			an	d bio	gas p	roduction
Composting and	vermiculture - Operation, and optimization of thermal and bio	logical convers	sion systems				0
11	Chemical Conversion Technologies ction from waste; Synthesis of fuels and chemicals from was		No exetience en	ا م م	:	4:	9 + 3
Unit - IV					шила	uon o	r chemica
Hydrogen produ		te streams - C	peration, and	ι ορι			
							9 + 3
Hydrogen produ conversion syste Unit - V Environmental in	ms Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmen or waste-to-energy systems; Case studies of successful waste	s nt and sustair	nability analys	sis;	Econo	omic a	and policy
Hydrogen produ conversion syste Unit - V Environmental in considerations for	ms Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmen or waste-to-energy systems; Case studies of successful waste	s nt and sustair	nability analys ojects; Applic	sis; atior	Econo ns of	omic a waste	and policy -to-energy
Hydrogen produ conversion syste Unit - V Environmental in considerations for	ms Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmen or waste-to-energy systems; Case studies of successful waste	s nt and sustair	nability analys ojects; Applic	sis; atior	Econo ns of	omic a waste	and policy -to-energy
Hydrogen produ conversion syste Unit - V Environmental in considerations for technologies in v TEXTBOOK:	ms Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmen or waste-to-energy systems; Case studies of successful waste	s nt and sustair e-to-energy pr	nability analys ojects; Applic Lecture	sis; atior : 45,	Econo ns of Tuto	omic a waste rial:15	and policy -to-energy 5, Total:60
Hydrogen produ conversion syste Unit - V Environmental in considerations for technologies in v TEXTBOOK:	Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmer or waste-to-energy systems; Case studies of successful waster arious industries Rogoff, Francois Screve, "Waste-to-Energy: Technologies and	s nt and sustair e-to-energy pr	nability analys ojects; Applic Lecture	sis; atior : 45,	Econo ns of Tuto	omic a waste rial:15	and policy -to-energy 5, Total:60
Hydrogen produ conversion syste Unit - V Environmental in considerations for technologies in v TEXTBOOK: 1. Marc J. Science REFERENCES:	Environmental impact, case studies and applications mpact of waste-to-energy conversion; Life cycle assessmer or waste-to-energy systems; Case studies of successful waster arious industries Rogoff, Francois Screve, "Waste-to-Energy: Technologies and	s nt and sustair e-to-energy pr d Project Imple	nability analys ojects; Applic Lecture ementation" 2	sis; lation : 45,	Econo ns of Tutor	omic a waste rial:15	and policy -to-energy 5, Total:60 vier

		UTCOM		se, the st	udents	s will be a	able to						(BT Mapp Highest L		
CO1	expl	ain the i	importai	nce of was	te-to-e	nergy cor	nversion	and its	role ir	n sustaina	able dev	elopment	Ur	Understanding (K2)		
CO2		ly mether		waste ch	aracter	ization a	nd anal	ysis to	deter	mine wa	ste com	position a	nd	Applying	(K3)	
CO3				principles , biogas p								gasificatio	on, Ur	derstandi	ng (K2)	
CO4		imarize te strea		nciples of	hydrog	jen prodi	uction a	nd synt	thesis	of fuels	and ch	emicals fro	om Ur	derstandi	ng (K2)	
CO5				oncepts of ct of waste						lity analy	sis for e	valuating t	he Ur	Iderstandi	ng (K2)	
						Mappin	g of CO	s with	POs a	nd PSOs	6					
COs/	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CC	01	3	2					2					1			
CC)2	3	2					2					1			
CC)3	3	2					2					1			
CC)4	3	2					2					1			
CC)5	3	2					2					1			
1 – Sli	ght, 2	– Mode	rate, 3 -	- Substant	ial, BT-	Bloom's	Taxono	my								
						ASSES	SMENT	PATTE	ERN -	THEORY	,					
-	st / Bl Catego	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)	•	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %	
	CAT	1		30		60		10)						100	
	CAT	2		30		60		10)						100	
	CAT	3		30		70									100	
	ESE	-		30		60		10)						100	

				OGY	- APPLIED NANOTECHNOL	20CHO11 -	
				neering)	epartment of Chemical Engi	(Offered by De	
Credi	т	L	Category	Sem.	ot Chemical Engg.	All BE/BTech Branches except	ogramme & anch
4	1	3	OE	5		Nil	erequisites
terials	nanor	on of	and application	paration	dents to gain knowledge in pre	This course will able to help stude	amble
9 +						Overview of Nanomaterials	it - I
technique	eparat	nd pre	abrication an	ction to F	d effects on properties. Introdu	assification, Nanostructure induced	oduction and Cla
9+	-				erials	Characterization of Nanomateri	it - II
allography	of Cry	sage	M & AFM, Us	TEM, ST		on of characterization techniques, U roscopy – IR, NMR and Raman Spe	
9 +					ications	Key nanostructures and application	it - III
Graphen	hite a	Grap	y ball, CNT,			uctors, Nanomagnetic Materials, Cuuctures, Nano catalysts, Biological N	
9 +							
						Introduction to Composite mate	it - IV
- Moldin	ocess	ng pr	Manufacturin	posites.	aterials rices, Key properties of com	Introduction to Composite mater osite materials, Fibers and Matric bly and Tape laying, Sandwich com	finition of comp
- Moldin 9 +	ocess	ng pr	Manufacturin	posites.	aterials rices, Key properties of com	osite materials, Fibers and Matric	finition of comp
9 + /cles, Othe plications	Ski, E car, <i>i</i>	ling, Cable	s, Ship build oplications, C	d turbine	aterials rices, Key properties of con omposites onstruction, Automotives, Wir	osite materials, Fibers and Matric bly and Tape laying, Sandwich com	finition of comp ming, 3D assem it - V plication of Com
9 + /cles, Oth	Ski, E car, <i>i</i>	ling, Cable	s, Ship build oplications, C	d turbine	aterials rices, Key properties of con omposites onstruction, Automotives, Wir	osite materials, Fibers and Matric bly and Tape laying, Sandwich com Applied composites posite materials – Aerospace con	finition of comp ming, 3D assem it - V plication of Com plications – Pres
9 + /cles, Othe plications	Ski, E car, <i>i</i>	ling, Cable	s, Ship build oplications, C	d turbine	aterials rices, Key properties of con omposites onstruction, Automotives, Wir	osite materials, Fibers and Matric bly and Tape laying, Sandwich com Applied composites posite materials – Aerospace con	finition of comp ming, 3D assem it - V plication of Com plications – Pres
9 + vcles, Otho plications 15, Total:6	Ski, E car, <i>i</i> Futori a	ling, Cable : 45, 1	s, Ship build oplications, C Lecture:	d turbine anical a	aterials rices, Key properties of com omposites onstruction, Automotives, Wir Offshore installations, Biomecl	osite materials, Fibers and Matric bly and Tape laying, Sandwich com Applied composites posite materials – Aerospace con ssure gas bottle, Bogie Frame, Off sall, Ian W Hamley and Mark Geogh	finition of comp ming, 3D assem it - V blication of Com blications – Pres nocomposites
9 + ycles, Othe plications 15, Total:6 UK, 2005.	Ski, E car, <i>i</i> rutori a	ding, Cable	ns, Ship build oplications, C Lecture: nology", 1st E	d turbine aanical ap nd Techr	aterials rices, Key properties of com omposites onstruction, Automotives, Wir Offshore installations, Biomech ghegan, "Nanoscale Science a	osite materials, Fibers and Matric bly and Tape laying, Sandwich com Applied composites posite materials – Aerospace con ssure gas bottle, Bogie Frame, Off sall, Ian W Hamley and Mark Geogh	finition of comp ming, 3D assem it - V plication of Com plications – Pres nocomposites XTBOOK: Robert Kels (Units I, II &
9 + ycles, Othe plications 15, Total:6 UK, 2005.	Ski, E car, <i>i</i> rutori a	ding, Cable	ns, Ship build oplications, C Lecture: nology", 1st E	d turbine aanical ap nd Techr	aterials rices, Key properties of com omposites onstruction, Automotives, Wir Offshore installations, Biomech ghegan, "Nanoscale Science a	osite materials, Fibers and Matric bly and Tape laying, Sandwich com Applied composites posite materials – Aerospace con ssure gas bottle, Bogie Frame, Off sall, Ian W Hamley and Mark Geogh	finition of comp ming, 3D assem it - V plication of Com plications – Pres nocomposites XTBOOK: Robert Kels (Units I, II &

		UTCOM ion of t		se, the st	udents	will be a	able to							BT Mapı Highest L			
CO1	des	cribe the	e phenoi	mena of na	anosize	and the	general	synthe	sis tec	hniques			Und	derstanding	g (K2)		
CO2	estir	mate the	e physic	ochemical	charac	teristics o	of nanor	naterial	S				App	Applying (K3)			
CO3	disc	uss the	synthes	is characte	erizatio	n and ap	plication	s of var	ious n	anomate	rials		Und	derstanding	g (K2)		
CO4	expl	ain the	key feat	ures of co	mposite	es and the	eir manı	ufacturir	ng tech	niques			Und	derstanding	g (K2)		
CO5	illus	trate the	e importa	ant applica	itions o	f compos	ite and	nanocoi	mposit	e materia	als in va	rious secto	rs Uno	derstanding	g (K2)		
	-1					Mappin	g of CO	s with	POs a	nd PSOs	5						
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2		
CO	1	3	1				1	1	1				1				
CO	2	3	1	1	1	2	1	1	1				1				
CO	3	3	1	1	1	2	1	1	1				1				
CO	4	3	2	1	1	2	1	1	1				1				
CO	5	3	2	1	1	2	1	1	1				1				
1 – Sli	ght, 2	– Mode	rate, 3 -	- Substant	ial, BT-	Bloom's	Taxono	my									
						ASSES	SMENT	PATTE	RN -	THEORY	,						
	st / Bl Catego	oom's ory*	Re	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %		
	CAT	1		30		60		10)						100		
	CAT	2		30		60		10)						100		
	CAT	3		20		80									100		
	ESE	Ξ		30		60		10)						100		

20CHO05 - FOOD AS MEDICINE (Offered by Department of Chemical Engineering)

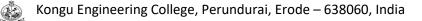
Programme Branch	e &	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisit	es	Nil	6	OE	3	0	0	3
Preamble	This cour diseases.	se will deal about the importance of nutrients a	nd its as	similation fo	or diffe	erent ag	e groups	to prevent
Unit - I	Food and	d Nutrition:						9
growth and	human we	ide pyramid and its importance, foods as a sou elfare; Definitions of terms used in nutrition -Rec chemicals; nutraceuticals; dietary supplements. N	ommenc	led dietary a	llowar			to health, diet; health;
Unit - II Er	nergy and	Body Composition:						9
considered Unit - III Digestion a health conc health prob	in meal/m Nutrition and absor ditions affections associated	tion – Five levels of body composition – body nenu planning. Factors affecting food intake deficiency: ption of carbohydrates, fats and proteins. Car cted by carbohydrates, Significance of dietary f ciated with lipids 7 Proteins -types, functions, so	and nut bohydrat	trients use, tes -Types, pids -Types,	nutrie functi funct	ons, so	burces, re	ion related 9 equirement, equirement,
		nd protein energy malnutrition.						9
Sources, u Eye health omega-3, synbiotics	understand h ingredien omega-6, , digestive	ing benefits of nutraceuticals. Scope involved in i its – lutein, zeaxanthin, astaxanthin, beta-card omega-9, beta-glucan, soy protein, phytosterols enzymes, zinc carnosine. Women health ingred ct, lycopene, phytoestrogens.	otene, b ; Digesti	vilberry extra ve Health In	acts; gredie	Heart I ents – p	health in rebiotics,	gredients - probiotics
Unit - V	Functio	onal Foods in Health care:						9
capsules, p	owders, so	y supplements, Dietary supplements – Need fo oft gels, gel caps, liquids. Agnus castus, Aloe vera g, Guarana, Kelp, Milk thistle, Saw palmetto, Spi	a, Bee pi	roducts, Chit	osan,	Echina	cea, Garl	ic, Ginger,

TEXT BOOK:

Super Foods.

Total:45

1. Mann Jim and Stewart Truswell (Eds), "Essentials of Human Nutrition", 5th Edition, Oxford University Press, Oxford, 2017.


	Wildman, Robert E.C.,Robert Wildman, Taylor C. Wallace(Eds)., "Handbook of Nutraceuticals and Functional Foods", 2 nd Edition, CRC Press, New York, 2007.
2.	John Shi, Chi-Tang Ho and Fereidoon Shahidi., "Asian Functional Foods", 1 st Edition, CRC Press, 2005

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the physiological and metabolic functions of nutrients	Understanding(K2)
CO2	explain the energy value of foods and body composition	Understanding(K2)
CO3	examine the nutrition requirement based on different age groups	Applying(K3)
CO4	identify the suitable nutraceutical for different deficiencies	Applying (K3)
CO5	select appropriate functional foods based on their health effects	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2		3						2			
CO2	3	3	2	2		3						2			
CO3	3	3	2	2		3						2			
CO4	3	3	2	2		3						2			
CO5	3	3	2	2		3						2			
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*					Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	50	50					100							
CAT2	20	50	30				100							
CAT3	20	50	30				100							
ESE	20	50	30				100							

20CHO06 - ORGANIC FARMING (Offered by Department of Chemical Engineering)

	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble	This course introduces the foundations of organic farming and its considerations	
Unit - I	Organic Farming:	9

Concept and definition, Organic vs Natural farming, Essential Characteristics, Principles, Objectives, Options in organic farming, Management and advantages of organic farming, components of organic farming. Green Manuring: Introduction, definition, objectives, classification, characteristics, choice, forms and Agronomy of green manure crops.

Unit – II Nutrient Management in Organic Farming:

Introduction, Concept and definition, different types of manures, Vermicomposting, benefits of vermicompost, applications.

Unit - III Management in organic farming:

Pest management: Introduction, Cultural methods, mechanical methods, biological methods. Weed management: Introduction, preventive methods, cultural, mechanical, soil solarization, biological methods, allelopathy.

Unit – IV National Standards:

NPOP, National structure, operational structure, National Standards for organic farming. Certification: Introduction, Standards and Regulations, Accreditation Processing method,

Unit - V Economic considerations:

Viability of organic farming, marketing and export potential, transition period, major products produced in India by organic farming

Total:45

9

9

9

9

TEXT BOOK:

1. Palaniappan SP, Annadurai K, "Organic Farming: Theory and Practice", 7th Edition, Scientific Publishers, Jodhpur, India, 2018

- 1. Somasundaram E, Udhaya Nandhini D, Meyyappan M, "Principles of Organic Farming", 1st Edition, CRC Press, London, 2021.
- 2. Sarath Chandran, Unni MR, Sabu Thomas, "Organic Farming- Global Perspectives and Methods", Woodhead Publishing, UK, 2019.

	RSE O		-	3: ourse, t	ne stud	lents	will b	be able	e to							BT Map lighest l			
CO1	deduo	ce the i	mpo	ortance of	of orga	nic fa	arming	g and	greer	manur	е				Un	derstand	ing(K2)		
CO2	expla	in the p	oroce	ess of ve	ermi-co	ompo	sting	and it	s ber	efits					Understanding(K2				
CO3															Understanding(K2				
CO4															Un	derstand	ing(K2)		
CO5	descr	ibe the	mar	rket and	econo	mic o	consi	deratio	on of	organic	farming	g produ	cts		Un	derstand	ing(K2)		
						Ма	appin	g of C	COs v	vith PO	s and I	PSOs							
COs	/POs	P01	PO	2 PO	3 PC	04 I	PO5	PO6	PO7	PO8	PO9	PO1	0 PO1	1	PO12	PSO1	PSO2		
С	01	2	2	2				3	3	2	2		2		3				
С	02	2	2	2				3	3	2	2		2		3				
С	O3	2	2	2				3	3	2	2		2		3				
С	04	2	2	2				3	3	2	2		2		3				
С	O5	2	2	2				3	3	2	2		2		3				
1 – S	light, 2	– Moc	lerat	e, 3 – S	ubstan	tial, I	BT- B	loom'	s Tax	onomy									
						AS	SSES	SMEN		TTER	I - THE	ORY							
	st / Bl Catego		F	Remem (K1)		Un	derst (K2	tandir) %	ng A	Applyin (K3) %		lyzing (4) %	Evalua (K5)			reating K6) %	Total %		
	CAT	1		40			6	0									100		
	CAT	2		40			6	0									100		
	CAT	3		30			7	0									100		
	ESE	=		30			7	0									100		

	(Offered by Department of Chemical	Engineering)					
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	6	OE	3	0	0	3
Preamble	This course will enable the students to have a compreher fundamentals	nsive understa	anding of pow	der	techn	ology	and its
Unit - I	Introduction to Air Pollution						9
	listory, air quality standards, monitoring and measurement, s ts. Regulatory system: Framework in India- clean air act – pro					is of p	ollutants
Unit - II	Gaseous pollutants and Particulates						9
	ysical properties of gaseous pollutants- Stack Plumes- moc nism- particle size distribution- collection efficiency	lels, general o	characteristics	s and	d typ	es. Pa	articulates
Unit - III	Ambient Air Quality Monitoring						9
Air-Quality Sampl	ling Program, Reference Methods and Continuous Monitorin	a. Environme	ental Surveilla	nce	and	Contro	ol System
	ing Train, Integrated Sampling Devices for Suspended Partic						,
Typical Air Sampl							9
Typical Air Sampl Unit - IV	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers –	culate Matter					9
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers –	culate Matter					9
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – nprovement	culate Matter	operation,	typic	al a	pplica	9 tions an 9
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems -	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey	culate Matter	operation,	typic	al a	pplica	9 tions an 9 surveyin
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems -	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey	culate Matter	operation,	typic	al a	pplica	9 tions an 9 surveyin
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems - guidelines TEXTBOOK: 1 Karl B. S	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey	classifications ally augmente	operation, d fabric filter	typic s. Ai	al a ir pol	pplica lution	9 tions an 9 surveyin Total:4
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems - guidelines TEXTBOOK: 1. Karl B. S Press, 20 Louis The	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey -Wet electrostatic precipitators, Dry scrubbers, Electrostatication chnelle, Jr., Russell F. Dunn, Mary Ellen Ternes "Air Pollution	classifications ally augmente	operation, d fabric filter	typic s. Ai	cal a ir pol	pplica lution	9 tions an 9 surveyin Total:4
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems - guidelines TEXTBOOK: 1. Karl B. S Press, 20 2 Louis The	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey -Wet electrostatic precipitators, Dry scrubbers, Electrostatica chnelle, Jr., Russell F. Dunn, Mary Ellen Ternes "Air Pollution 17. (Unit I, III)	classifications ally augmente	operation, d fabric filter	typic s. Ai	cal a ir pol	pplica lution	9 tions an 9 surveyin Total:4
Typical Air Sampl Unit - IV Incinerators, Abs suggestions for in Unit - V Hybrid systems - guidelines TEXTBOOK: 1. Karl B. S Press, 20 2. Louis The II, IV, V) REFERENCES:	ing Train, Integrated Sampling Devices for Suspended Partic Air Pollution Controlling Equipment sorbers, Thermal oxidizers, Gravity settling chambers – mprovement Hybrid systems and Air Pollution Survey -Wet electrostatic precipitators, Dry scrubbers, Electrostatica chnelle, Jr., Russell F. Dunn, Mary Ellen Ternes "Air Pollution 17. (Unit I, III)	classifications ally augmente on Control Ter nt Calculation	operation, d fabric filter chnology Han s", 1st Edition	typic s. A dboo	cal a ir pol	pplica lution	9 tions an 9 surveyin Total:4

		UTCOM		se, the st	udents	will be a	able to						(BT Mapp Highest L				
CO1				on proced				ollutan	ts bas	ed on air	quality s	standards	Und	lerstanding	g (K2)			
CO2	expl	ain the	characte	eristics of g	gaseous	s pollutar	nts and p	particula	ates				Und	lerstandin	g (K2)			
CO3	dem	onstrate		Understanding (K														
CO4														Understanding (K				
CO5	expl	ain the	concept	s involved	in hybr	id systen	ns and a	ir pollut	ion su	rvey			Und	lerstanding	g (K2)			
						Mappin	g of CO	s with	POs a	nd PSO:	5							
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CO)1	3	2	2			3	2										
CO	2	3	2	2			3	2										
CO	3	3	2	2			3	2										
CO	4	3	2	2			3	2										
CO	5	3	2	2			3	2										
1 – Sli	ght, 2	– Mode	rate, 3 -	Substant	ial, BT-	Bloom's	Taxono	my										
						ASSES	SMENT	PATTE	ERN -	THEORY	,							
	st / Blo Catego	oom's ory*	Re	ememberi (K1) %	ng	Jndersta (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %			
	CAT			30		70						· · ·		•	100			
	CAT	2		30		70									100			
	CAT	3		20		60	_	20)						100			
	ESE			20		60		20)						100			

	20CHO13 - PAINTS AND COAT	TINGS					
	(Offered by Department of Chemical I	Engineering)					
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	6	OE	3	0	0	3
Preamble	To gain knowledge on surface engineering, chemical con methods and design guidelines for surface coating	version, surfa	ce coating, el	ectro	o-dep	ositio	n coating
Unit - I	Surface Engineering:						9
preparation– selection hydro-blasting.	Irface engineering, scope of surface engineering, surface e ctive surface hardening, laser melting, shot peening, shot b	engineering to lasting, sand	combat corr blasting, vap	osio or pł	n and nase	d wea degre	asing an
Unit - II	Chemical Conversion Coating:						9
	hromate chemical conversion coating – types and applica on treatments, Diffusion heat treatment coatings and pack-ce				Ilfuric	and	hard coa
11.14							
Organic coating - lining, high perfo galvanized alumin	Surface coating methods: paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings.						ostructure
lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coatir	and continu	ous process	, co t ele	ating ectrop	micro	oating and ostructure 9 , preciou
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elect vapor deposition composition compositi compo	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coating coatings.	and continu	ous process	, co t ele	ating ectrop	micro	oating and ostructure 9 , precious d physica
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coatir	and continu	ous process	, co t ele	ating ectrop	micro	oating and ostructure 9 , precious
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elect vapor deposition c Unit - V Pre-processing ar	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coating coatings.	ectro depositing, Thermal	on, fused-sal spray coating Component	, co t ele s, C Disto	ating ectrop hemio	micro lating cal an Cons	pating and ostructure 9 I, precious d physica 9 iderations
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec vapor deposition o Unit - V Pre-processing ar Surface Roughnes	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coating coatings. Design guidelines for surface coating: nd Post processing Heat Treatment, Coating Thickness, Cas	ectro depositing, Thermal	on, fused-sal spray coating Component	, co t ele s, C Disto	ating ectrop hemio	micro lating cal an Cons	ating an ostructure 9 , preciou d physica 9 iderations importar
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec vapor deposition o Unit - V Pre-processing ar Surface Roughnes	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coating coatings. Design guidelines for surface coating: nd Post processing Heat Treatment, Coating Thickness, Cas	ectro depositing, Thermal	on, fused-sal spray coating Component	, co t ele s, C Disto	ating ectrop hemio	micro lating cal an Cons	pating and ostructure 9 I, preciou d physica 9 iderations
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec vapor deposition c Unit - V Pre-processing ar Surface Roughner considerations. TEXTBOOK: 1 J.R. Davis	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coating coatings. Design guidelines for surface coating: nd Post processing Heat Treatment, Coating Thickness, Cas	ectro depositing, Thermal e Depth, and , organic and	on, fused-sal spray coating Component inorganic coa	, co t ele s, C Disto ating	ating ectrop hemio ortion and	micro lating cal an Cons other	pating an ostructure 9 , preciou d physica 9 iderations importar Total:4
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elec vapor deposition c Unit - V Pre-processing ar Surface Roughnes considerations. TEXTBOOK: 1. J.R. Davis communic	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coatin coatings. Design guidelines for surface coating: nd Post processing Heat Treatment, Coating Thickness, Casiss and Finishing, Design guidelines for surface preparation, s and Associates, "Surface Engineering for corrosion and weat	ectro depositing, Thermal e Depth, and , organic and	on, fused-sal spray coating Component inorganic coa	, co t ele s, C Disto ating	ating ectrop hemio ortion and	micro lating cal an Cons other	pating an ostructure 9 , preciou d physica 9 iderations importar Total:4
Organic coating - lining, high perfo galvanized alumin Unit - IV Electrochemical d metal plating, elect vapor deposition c Unit - V Pre-processing ar Surface Roughnes considerations. TEXTBOOK: 1. J.R. Davis communic REFERENCES:	paints, Ceramic coating and Linings – Glass lining, porcelai rmance ceramic coating and lining, Hot dipping – Batch ium and terne coatings. Electro-deposition coating methods deposition – aqueous solution electroplating, continuous electroless plating, and composite coatings. Weld-overlay coatin coatings. Design guidelines for surface coating: nd Post processing Heat Treatment, Coating Thickness, Casiss and Finishing, Design guidelines for surface preparation, s and Associates, "Surface Engineering for corrosion and weat	a and continuectro depositings, Thermal e Depth, and , organic and	on, fused-sal spray coating Component I inorganic coa	, co t ele s, C Disto ating	ating ectrop hemio ortion and	micro lating cal an Cons other	pating an ostructure 9 , preciou d physica 9 iderations importar Total:4

		UTCOM ion of t	-	rse, the st	udent	s will be	able to						(BT Mapp Highest L	
CO1	expl	ain the	basics o	of surface e	engine	ering and	surface	prepara	ation n	nethods.			Unc	lerstanding	g (K2)
CO2	des	cribe the	e princip	les and ap	plicati	ons of dif	erent ch	emical	conve	rsion coa	iting met	hods.	Unc	lerstanding	g (K2)
CO3	illus	trate the	e princip	les and ap	plicati	ons of diff	erent su	rface co	pating	methods			Unc	lerstanding	g (K2)
CO4	expl	ain the	principle	es and app	licatio	ns of vario	ous surfa	ace layii	ng me	thods.			Unc	lerstandin	g (K2)
CO5	dem	onstrate	e the de	sign guide	lines a	and surfac	e prepa	ration m	nethod	ologies f	or variou	s surfaces.	Unc	lerstanding	g (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	5				
COs/I	POs	PO1	PO2	PO3	PO4	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO)1	3	1	1				1							
CO	2	3	2	1				1							
CO	3	3	2	1				1							
CO	4	3	2	1				1							
CO	5	3	2	3				1							
1 – Sli	ght, 2	– Mode	rate, 3	 Substant 	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN -	THEORY	,				
	st / Blo Catego	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)	•	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		50		50									100
	CAT	2		50		50)								100
	CAT	3		30		70)								100
	ESE	Ξ		30		70)								100

	20CHO14 - POWDER TECHNO	LOGY					
	(Offered by Department of Chemical	Engineering)	1	- I			1
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3
Preamble	This course will enable the students to have a comprehe fundamentals	nsive understa	anding of pow	der 1	techn	ology	and its
Unit - I	Particle size Characterization and Measurement						9
Particle Size, Particle Size, Particle Size, Particular Size Size Surface Methods.	article Size Distribution, Average Particle Size, Size M Visual methods, Separation methods, Stream scanning	easurement, methods, Fiel	Particle Size d scanning	An meth	alysis iods,	s Met Sedi	hods an mentatior
Unit - II	Particle shape Characterization and Measurement						9
Particle Density, I	haracterization. Introduction, Representative Size, Geometr Measurement Method for Particle Density, Hardness, Stiffnes Hardness, Measurement of Stiffness, Measurement of Tough	s and Toughn					
Diffusion of Parti Sedimentation, S Electrophoresis,	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in C Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate	Concentrated	Suspension, I	Partio	cle El	ectrifi	cation an
Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in C Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments	Concentrated Particle Impa	Suspension, I ict Breakage and Formation	Partio , Sir	cle El nterin Com	ectrifi g, Igr posite	s, Particl cation an nition an 9 Particles Mechanica
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in C Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices	Concentrated Particle Impa tion, Design a merization at	Suspension, I ct Breakage and Formation nd Precipitati	Partio , Sir n of on I	cle El nterin Comp n Sit	ectrifi g, Igr posite u, N	s, Particl cation an nition an 9 Particles Mechanica 9
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in C Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments	Concentrated Particle Impa tion, Design a merization al eposition of Pa lue, Respira lying Respira	Suspension, I act Breakage and Formation of Precipitati articles in the tory Protectiv tors, Protecti	Partio , Sir n of on I Resp e De on F	cle El nterin Comp n Sit Dirato	ectrifi g, Igr posite u, N ry Tra s for	s, Particl cation an nition an Particles Mechanica 9 nct, Fate c Particulat
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in O Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices te to Particle Matter, Respiratory System, Penetration and Detective devices, Health Effects of Inhaled Particles, Threshold Limit Vaf f Respirators, Air-Purifying Respirators, Atmosphere-Supp	Concentrated Particle Impa tion, Design a merization al eposition of Pa lue, Respira lying Respira	Suspension, I act Breakage and Formation of Precipitati articles in the tory Protectiv tors, Protecti	Partio , Sir n of on I Resp e De on F	cle El nterin Comp n Sit Dirato	ectrifi g, Igr posite u, N ry Tra s for	s, Particl cation an nition an Particles Mechanica 9 nct, Fate c Particulat
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in O Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices te to Particle Matter, Respiratory System, Penetration and Detective devices, Health Effects of Inhaled Particles, Threshold Limit Vaf f Respirators, Air-Purifying Respirators, Atmosphere-Supp	Concentrated Particle Impa tion, Design a merization al eposition of Pa lue, Respira lying Respira	Suspension, I act Breakage and Formation of Precipitati articles in the tory Protectiv tors, Protecti	Partio , Sir n of on I Resp e De on F	cle El nterin Comp n Sit Dirato	ectrifi g, Igr posite u, N ry Tra s for	s, Particl cation an nition an 9 Particles Mechanics 9 Ict, Fate of Particulat ontaneou
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of Ignition and Dust	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in O Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices te to Particle Matter, Respiratory System, Penetration and Detes, Health Effects of Inhaled Particles, Threshold Limit Vaf f Respirators, Air-Purifying Respirators, Atmosphere-Supp Explosion Mechanism and Prevention, Applications to indust	Concentrated Particle Impa tion, Design a merization al eposition of Pa lue, Respira lying Respira rial processes	Suspension, I act Breakage and Formation of Precipitati articles in the tory Protectiv tors, Protecti and equipme	Partic , Sir n of on I Resp e De on F ent.	Comp n Sit	ectrifi g, Igr posite u, N ry Tra s for I r, Sp	s, Particl cation an nition an Particles Mechanics Inct, Fate of Particulat ontaneou Total:4
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of Ignition and Dust	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in O Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices te to Particle Matter, Respiratory System, Penetration and Detes, Health Effects of Inhaled Particles, Threshold Limit Vaf f Respirators, Air-Purifying Respirators, Atmosphere-Supp Explosion Mechanism and Prevention, Applications to indust	Concentrated Particle Impa tion, Design a merization al eposition of Pa lue, Respira lying Respira rial processes	Suspension, I act Breakage and Formation of Precipitati articles in the tory Protectiv tors, Protecti and equipme	Partic , Sir n of on I Resp e De on F ent.	Comp n Sit	ectrifi g, Igr posite u, N ry Tra s for I r, Sp	s, Particl cation an nition an Particles Mechanics Inct, Fate of Particulat ontaneou Total:4
Diffusion of Parti Sedimentation, S Electrophoresis, Combustion Read Unit - IV Aerosol Particle (Surface Modifica Routes, Characte Unit - V Health Effects Du Deposited Particl Matter, Types of Ignition and Dust TEXTBOOK: 1. Hiroaki M Group, 20 REFERENCES: 1. Agba D. Elsevier,	Fundamental Properties of Particles icles, Optical Properties: Light Scattering, Light Extinction, Settling of Two Spherical Particles, Rate of Sedimentation in O Particle Deposition and Reentrainment, Agglomeration, ction, Solubility and Dissolution Rate Particle Generation and Fundamentals Generation, Generation of Particles by Reaction, Crystallization, methods, Microencapsulation and Nanocoating, Poly rization of Coated Particles, Recent developments Particle Hazards and protective devices te to Particle Matter, Respiratory System, Penetration and Detes, Health Effects of Inhaled Particles, Threshold Limit Vaf f Respirators, Air-Purifying Respirators, Atmosphere-Supp Explosion Mechanism and Prevention, Applications to indust Masuda, Ko Higashitani, Hideto Yoshida, Powder Technology 006.	Concentrated Particle Impa tion, Design a merization of Pa lue, Respira lying Respira rial processes Hand book, 3	Suspension, I act Breakage and Formation and Precipitati articles in the tory Protectiv tors, Protectiv and equipme	Partic , Sir n of on I Resp e De on F ent.	Comp Comp n Sit Dirato evices Facto	ectrifi g, Igr posite u, N ry Tra s for I r, Spr - aylor	s, Partic cation ar nition ar 9 Particle Mechanic 9 nct, Fate o Particulat ontaneou Total:4 Francis

		UTCOM		se, the st	udents	s will be a	able to						(BT Mapp Highest L				
CO1	dese	cribe va	rious pai	rticle size	charac	teristics a	ind its m	ieasurei	ment te	echnique	s		Ur	derstandi	ng (K2)			
CO2	expl	ain diffe	erent par	ticle shape	e chara	cteristics	and its	measur	ement	methods	S		Ur	Understanding (K				
CO3															ng (K2)			
CO4	expl	ain the	fundame	entals of te	echniqu	es availa	ble for p	article (genera	tion			Ur	derstandi	ng (K2)			
CO5	dese	cribe he	alth haza	ards of po	wders,	its health	effects	and pro	otective	e techniq	ues		Ur	derstandi	ng (K2)			
						Mappin	g of CO	s with	POs a	nd PSOs	5							
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
CC)1	3																
CO	2	3																
CO	3	3																
CO	4	3	2				2						1					
CO	5	3	1	3			3	3					2					
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's	Taxono	my										
						ASSES	SMENT	PATTE	RN - 1	HEORY	,							
-	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyzi (K4) 9	•	Evaluating (K5) %		reating K6) %	Tota %			
	CAT	1		30		70									100			
	CAT	2		30		70									100			
	CAT	3		30		70									100			
	ESE	Ξ		30		70									100			

20CHO07 - COSMETICS AND PERSONAL HEALTH CARE PRODUCTS

(Offered by Department of Chemical Engineering)

-	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Preamble This course is used to know about the preparation methods and uses of different cosmetics and personal health care products.

Unit - I . Introduction to Cosmetics:

Introduction, examples, uses, types. Lipsticks: Ideal Characteristics, Formulation, types of natural waxes, merits and demerits. Colouring Agents, Preparation of lipsticks, methods of preparation, evaluation of lipsticks, shampoo-types and formulation, preparation methods, evaluation of shampoos. Tooth paste: General requirements, formulation, preparation of tooth pastes.

Unit - II Types and preparation of powders, creams and hair dryers:

Introduction, characteristics, formulation and classification of powders, Evaluation of powders, Creams: classification, preparation and evaluation of creams. Hair dryers: types, formulation and evaluation of hair colourant.

Unit - III Introduction to Nail Care and herbal cosmetic products:

Basics- Cleansing- Hand, Foot, and Nail Treatments-Hand and Nail Cream-Hand Lotion-Cuticle Conditioners and Moisturizers-Cuticle Removers; Professional Salon Products- preservice sanitization, manicure and pedicure procedure, Hand Soaks and Foot Soaks; protective colloids; Waterborne nail polish, herbal medicinal plants and their uses in different cosmetic products - Aloe, Neem, Tulsi,Turmeric, Cucumber, Lemon, Orange, Multani Mitti, Sandal, Rose, honey, Glycerine.

Unit - IV Pigment Dispersions and Surfactants in Personal Care Products:

A Brief Introduction to Pigment; properties; Dispersion process- Pigment Wetting, Particle De-aggregation and Deagglomeration; Dispersion Stabilization; Ways and Benefits of Using Pigments to Formulate Cosmetic Products; Hydrocarbons in Pigmented Products: Color Cosmetics, Petroleum Products, Pigments and Dyes, Mineral Oil, Petrolatum, and Mineral Waxes, Eye Makeup. Surfactants: Adverse Effects of Surfactants; Encapsulation; Nanoparticles in cosmetic industry.

Unit - V Consumer Research and Ethics in the Development and Restaging of Personal Care Products:

Broad Classes of Consumer Research: Primary and Secondary research- Competitive and Business Analysis; Outsourcing the Market Research Function. Ethical responsibilities in formulating, marketing, and using antimicrobial personal products; Ethics, aesthetics, and health; Responsibilities of individuals, organizations; other humans and ourselves; Legal liability, public health approach.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Gaurav Kumar Sharma, Jayesh Gadiya, Meenakshi Dhanawat, "A Textbook of Cosmetic Formulations (e-book)", Pothi publishers, 2018.

- Martin J. Schick, Arthur T. Hubbard, "Surfactants in Personal Care Products and Decorative Cosmetics, 3rd Edition, Vol 135, CRC press, Taylor & Francis group, 2006.
- 2. Nava Dayan and Philip W. Wertz, Innate Immune System of Skin and Oral Mucosa, Properties and Impact in Pharmaceutics, Cosmetics, and Personal Care Products, Edited by, John Wiley & sons publications, 2011.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Learn about various characteristics, preparation methods and evaluation of various cosmetics.	Understanding
CO2	Know about types and preparation of powders, creams and hair dryers and their selection.	Understanding
CO3	Study the treatment technologies for nail care and manufacturing methods of herbal	Understanding
CO4	Learn about pigment dispersion methods and surfactants in personal care products	Understanding
CO5	Describe Consumer Research and Ethics in the Development and Restaging of Personal Care Products	Applying

				Ν	<i>l</i> lappin	g of C	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1			2						1		
CO2	3		1			2						1		
CO3	3		1			2						1		
CO4	3		1			2						1		
CO5	3		1			2		1				1		
– Slight, 2	– Mode	rate, 3	– Subs	tantial,	BT- Bl	oom's 1	Faxono	my						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2	50	50					100
CAT3	30	30	40				100
ESE	35	35	30				100

20CHO08 - BREWING AND ALCOHOL TECHNOLOGY (Offered by Department of Chemical Engineering)

Programme & Branch	All BE\B.TECH. branches except Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Ī	Unit - I	Introduction to Fermentation and Distillation:	9	
F		This course helps the students to understand the fermentation process for the production of Beer, Whis Production and Distilled Beverages	sky	

History and development of Alcoholic Beverages. Fermentation, types of fermentations and role of microorganism and other condition on fermentation. Distillation fundamentals and it types.

Unit - II Distillery Feed Stock:

Distillery feed Stock. Feed stock selection, parameters influencing selection, fermentable sugars. Criteria for selection of molasses for production of ethanol. Alternative feedstock for the process and feedstock flexibility.

Unit - III Whisky Production:

Malt and Grain distilling- Raw Materials, Specification and Process Description. Malting, Beating and Mashing.

Unit - IV Beer Production:

Yeast Handling and Management, Post-Fermentation Treatment of Yeast, Milling of malt and adjuncts, Mashing, Lautering, Wort boiling, Wort aeration and wort colling.

Unit - V Distilled Beverages:

Rum, Gin, Tequila, Vodka and Brandy - Raw material, Composition and Production.

TEXT BOOK:

Total: 45

9

9

9

9

1. K.A. Jacques, T.P. Lyons and D.R. Kelsall, "The Alcohol Textbook ",4th Edition, Nottingham University Press, 2003.

REFERENCES:

1. A.C. Chatterjee, B.M.Dutt, "Hand Book of Fermentation & Distillation" Poona Maharashtra Sugar Research Foundation", 1977.

 A.J.Buglass, "Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects", 1st Edition, Wiley, 2011.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	familiarize in distillery fermentation and distillation process	Understanding (K2)
CO2	understand distillery feed stock processes	Understanding (K2)
CO3	examine the production of whisky	Applying (K3)
CO4	examine the production of beer	Applying (K3)
CO5	categorize the various types of distillery beverages	Understanding (K2)

					Марр	ing of	COs w	ith PO	s and F	PSOs				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2												
CO2	3	2												
CO3	3	1												
CO4	3	2												
CO5	3	1											3	2

		ASSESSMEN	IT PATTERN	- THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	10	45	45				100
CAT3	10	45	45				100
ESE	20	50	30				100

	20CHO15 – HYDROGEN EI	-					
	(Offered by Department of Chemica	al Engineerir	ng)				
Programme& Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3
Preamble	To gain knowledge on fundamentals of hydrogen ene utilization, and safety.	gy as energ	y systems, p	orodu	ictior	proc	esses, storage
Unit - I	Introduction of Hydrogen Energy Systems						9
	ay's introduction – current uses, General introduction to infra tilization, and Hydrogen production power plants	astructure rec	quirement for	hydı	oger	n prod	uction, storage
Unit - II	Hydrogen Production Processes						9
	Reformation, Thermo chemical Water Splitting, Gasification, ochemical, Electrolysis, Photo electro chemical; Biological						
Unit - III	Hydrogen Storage						9
	emical properties, General storage methods, compressed sto /dride storage, chemical hydride storage and cryogenic storag		osite cylinders	s, Gla	ass r	nicro :	sphere storage
Unit - IV	Hydrogen Utilization						9
applications. Hyd	drogen utilization: I.C. Engines, gas turbines, hydrogen to lrogen fuel quality, performance, COV, emission and combust king, volumetric efficiency, hydrogen manifold and direct injecti	on characteri	stics of Sparl				
Unit - V	Hydrogen Safety						9
	agram, risk analysis, safety in handling and refueling stati , safety management, and simulation of crash tests.	on, safety in	vehicular a	nd s	tatior	nary a	pplications, fir
							Total:4
TEXT BOOK:							
1. Michael I	Ball and Martin Wietschel, "The Hydrogen Economy Opportun	ties and Cha	llenges", Carr	nbridg	ge Ui	niversi	ty Press, 2009
REFERENCES:							
1. Bent Sor	ensen, Giuseppe Spazzafumo; "Hydrogen and Fuel Cells", 3 ^{rc}	Edition, Else	vier, 2018				
2. Bockris.	J.O.M, "Energy options: real economics and the solar hydroge	n system", H	alsted Press a	and L	ondo	on pub	lisher, 1980

		JTCOM ion of t		se, the st	udents	will be a	able to							BT Ma (Highes	
CO1	expl	ain the	basics of	f hydrogei	n pathw	ays							Un	derstanding	I (K2)
CO2	desc	ribe the	e differer	nt producti	on proc	esses							Un	derstanding	I (K2)
CO3	illust	rate the	chemic	al and phy	ysical p	roperties	which a	re requi	ired for	storage	of Hydro	ogen	Un	derstanding	I (K2)
CO4	disc	uss maj	or utiliza	tion of hy	drogen	energy ir	various	sector	S				Un	derstanding	I (K2)
CO5	expl	ain vari	ous risk a	analysis a	nd safe	ty protoc	ols						Un	derstanding	(K2)
						Марр	oing of	COs wit	h POs	and PS	Os		<u> </u>		
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2										1		
CO	2	3	3										1		
CO	3	3	2										1		
CO	4	3	2										1		
CO	5	3	2										1		
1 – Slig	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's	Taxono	my							
						ASS	ESSME	NT PAT	TERN	- THEO	RY				
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng l	Jndersta (K2)	•	Apply (K3)		Analyzi (K4) %		Evaluatin (K5) %	ng (Creating (K6) %	Total %
	CAT	1		30		70									100
	CAT	2		30		70									100
	CAT	3		30		70									100
	ESE			30		70									100

	(Offered by Department of Chemical	Engineering)					
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	8	OE	3	0	0	3
Preamble	This course deals with the fundamentals of electrochemic	cal engineering	g and its appl	icatio	ons.		
Unit – I	Introduction						9
Reportable accide supervisors, work	Safety and productivity. Definitions: Accident, Injury, Unsatents. Theories of accident causation. Safety organization- termen, unions, government and voluntary agencies in sate ommittee-need, types, advantages.	objectives, ty	pes, function	s, R	ole c	of ma	nagemen
Unit – II	Personal protection in work environment						9
Housekeeping: R	ards related to PPEs. Monitoring Safety Performance: Frequesponsibility of management and employees. Advantages jectives, hot work and cold work permits. Typical industrial m Safety issues in construction	of good hous	ekeeping. 5 s	s of	hous	ekeep	oing. Wor
	nstruction industry and safety issues in construction Safety	in vorious com	otruction on a	rotic	200	F waa	-
space - Tempora	ter works – Under-pinning & Shoring – Ladders & Scaffold ary Structures. Familiarization with relevant Indian Standa	ds – Tunnelin rds and the I	g – Blasting National Build	– Do ding	emoli Cod	ition - e pro	- Confine visions o
space – Tempora construction safe Cumulative Traum Unit – IV	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergo na Disorders Safety hazards in machines	ds – Tunnelin rds and the I nomics Haza	g – Blasting National Build rds - Muscu	– Do ding losko	emoli Cod eletal	ition - e pro Diso	- Confine visions of orders and 9
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and sto chains slings, hoo	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines ard-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten	g – Blasting National Build rds - Muscu and devices Material Han es- lifting, ca	– Do ding losko s. Sa dling arryir	emoli Cod eletal afety -Clas	ition - e pro Disc in tu ssifica pulling	- Confine visions of orders and rning, and tion-safet , pushing wire rope
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and str chains slings, hoo Unit - V	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines uard-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind Hazard identification and analysis	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries	g – Blasting National Buik rds - Muscu and devices Material Han es- lifting, ca ance of com	– Do ding losko s. Sa dling arryir mon	emoli Cod eletal afety -Clas ng, p elen	ition – e pro Disc in tu ssifica bulling nents-	- Confine visions of orders and rning, and tion-safet , pushing wire rope 9
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and stu chains slings, hoo Unit - V Hazard and risk, Structure of haza rating of process (HAZOP)) – meth	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines ard-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries extinguishers, ards: Inventor nary hazard a	g – Blasting National Buik rds - Muscu and devices Material Han es- lifting, ca ance of com fire explosion y analysis, Fi unalysis, Haza	 Definition Definition S. Second Second 	emoli Cod eletal afety -Clas ng, p elen d to nd e and C	ition – e pro Disc in tu ssifica oulling nents- kic ga xplosi Dpera	- Confine- visions o orders and rning, and tion-safet , pushing wire rope 9 us release on hazard bility stud
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and stu chains slings, hoo Unit - V Hazard and risk, Structure of haza rating of process (HAZOP)) – meth	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines ward-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind Hazard identification and analysis Types of hazards –Classification of Fire, Types of Fire er rd identification and risk assessment. Identification of hazard plants - The Dow Fire and Explosion Hazard Index, Prelimi odology, criticality analysis, corrective action and follow-up.	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries extinguishers, ards: Inventor nary hazard a	g – Blasting National Buik rds - Muscu and devices Material Han es- lifting, ca ance of com fire explosion y analysis, Fi unalysis, Haza	 Definition Definition S. Second Second 	emoli Cod eletal afety -Clas ng, p elen d to nd e and C	ition – e pro Disc in tu ssifica oulling nents- kic ga xplosi Dpera	- Confine visions o orders an 9 rning, an tion-safet , pushing wire rope 9 us release on hazar bility stud propertie
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and ste chains slings, hoo Unit - V Hazard and risk, Structure of haza rating of process (HAZOP)) – meth of chemicals, Mate	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines ward-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind Hazard identification and analysis Types of hazards –Classification of Fire, Types of Fire er rd identification and risk assessment. Identification of hazard plants - The Dow Fire and Explosion Hazard Index, Prelimi odology, criticality analysis, corrective action and follow-up.	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries extinguishers, ards: Inventor nary hazard a	g – Blasting National Buik rds - Muscu and devices Material Han es- lifting, ca ance of com fire explosion y analysis, Fi unalysis, Haza	 Definition Definition S. Second Second 	emoli Cod eletal afety -Clas ng, p elen d to nd e and C	ition – e pro Disc in tu ssifica oulling nents- kic ga xplosi Dpera	- Confine visions o orders an 9 rning, an tion-safet , pushing wire rope 9 us release on hazar bility stud propertie
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and ste chains slings, hoo Unit - V Hazard and risk, Structure of haza rating of process (HAZOP)) – meth of chemicals, Mate	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergona Disorders Safety hazards in machines ward-Point-of-Operation, Principle of machine guarding -type and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind Hazard identification and analysis Types of hazards –Classification of Fire, Types of Fire er rd identification and risk assessment. Identification of hazard plants - The Dow Fire and Explosion Hazard Index, Prelimi odology, criticality analysis, corrective action and follow-up.	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries extinguishers, ards: Inventor nary hazard a Control of Ch	g – Blasting National Build rds - Muscu and devices Material Han es- lifting, ca ance of com fire explosion y analysis, Fi nalysis, Haza emical Hazar	– Do ding loske s. Sa dling arryir mon n an ire a ard a ds, H	emoli Cod eletal afety -Clas ng, p elen d too nd e and C Hazan	ition – e pro Disc in tu ssifica bulling nents- kic ga xplosi Dperal rdous	- Confine visions o orders an 9 rning, an tion-safet , pushing wire rope 9 as release on hazar bility stud propertie Total:4
space – Tempora construction safe Cumulative Traum Unit – IV Machinery safegu grinding. Welding consideration- ma palletizing and ste chains slings, hoo Unit - V Hazard and risk, Structure of haza rating of process (HAZOP)) – meth of chemicals, Mate	ary Structures. Familiarization with relevant Indian Standa ty. Relevance of ergonomics in construction safety. Ergo a Disorders Safety hazards in machines ard-Point-of-Operation, Principle of machine guarding -typ and Cutting-Safety Precautions of Gas 5 welding and A anual and mechanical handling. Handling assessments a ocking. Material Handling equipment-operation & maintena ks, clamps. Hearing Conservation Program in Production ind Hazard identification and analysis Types of hazards –Classification of Fire, Types of Fire er rd identification and risk assessment. Identification of hazar plants - The Dow Fire and Explosion Hazard Index, Prelimi odology, criticality analysis, corrective action and follow-up. erial Safety Data Sheets	ds – Tunnelin rds and the I nomics Haza bes of guards and technique nce. Mainten ustries extinguishers, ards: Inventor nary hazard a Control of Ch	g – Blasting National Build rds - Muscu and devices Material Han es- lifting, ca ance of com fire explosion y analysis, Fi nalysis, Haza emical Hazar	– Do ding loske s. Sa dling arryir mon n an ire a ard a ds, H	emoli Cod eletal afety -Clas ng, p elen d too nd e and C Hazan	ition – e pro Disc in tu ssifica bulling nents- kic ga xplosi Dperal rdous	- Confine visions o orders an 9 rning, an tion-safet , pushing wire rope 9 as release on hazar bility stud propertie Total:4

		UTCOM ion of t		rse, the st	udent	s will be a	able to						(BT Mapı Highest L	
CO1	dese	cribe the	e theorie	es of accid	ent cau	usation ar	nd preve	ntive m	easure	es of indu	strial ac	cidents.	Unc	lerstanding	g (K2)
CO2				onal protec ekeeping.	tive eq	uipment,	its selec	tion, sa	fety pe	erforman	ce & indi	cators and	Unc	lerstanding	g (K2)
CO3	expl	ain diffe	erent iss	ues in con	structio	on industr	ies						Unc	lerstanding	g (K2)
CO4	dese	cribe va	rious ha	zards ass	ociated	l with diffe	erent ma	chines	and m	echanica	al materia	al handling.	Unc	lerstanding	g (K2)
CO5		e differes		ard identifi azards	cation	tools in di	fferent i	ndustrie	s with	the know	ledge of	fdifferent	Unc	lerstanding	g (K2)
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	01	2	1				3	3	3	2	1	1	3		
CO)2	2	1	2			3	3	3	2	1	1	3		
CO)3	2	2	2	2		3	3	3	2	1	1	3		
CO)4	2	2		2		3	3	3	2	1	1	3		
CO)5						3	3	3	2	1	1	3		
1 – Sli	ight, 2	– Mode	rate, 3 -	 Substant 	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN - '	THEORY	,				
	st / Blo Catego	oom's ory*	R	ememberi (K1) %	ing	Understa (K2)	•	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		70		10)						100
	CAT	2		20		70		10)						100
	CAT	3		20		70		10)						100
	ESE	1		20		70		10)						100

	(Offered by Department of Chemical E	ngineering)					
Programme & Branch	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	8	OE	3	0	0	3
Preamble	This course deals with the fundamentals of electrochemica	al engineerin	g and its appl	icatio	ons.		
Unit - I	Basics of Electrochemistry:						9
	ctrochemical systems: Faraday's law - Current density - Poter yer - Butler–Volmer Kinetic Expression - Influence of Mass Tr						
Unit - II	Transport phenomena and Electrodes						9
	ns in cells, Concentration over potential, Current distribution a , characterization, current distribution, Three phase electrodes			Elec	trode	confi	guration
1.1							
Components of a	Batteries and Fuel cells cell - Classification of batteries and cell - Theoretical capa						
Components of a electrochemical pe cells. Fuel cell fun Exchange Membra	cell - Classification of batteries and cell - Theoretical capa erformance - Heat efficiency of secondary cells- Charge retent adamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells.	tion and self	discharge - c	apac	ity fa	de in :	ristics an secondar e - Protor
electrochemical pe cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fue	cell - Classification of batteries and cell - Theoretical capa- erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi	tion and self cs and polar cles - Obje	discharge - c izations - Ele ectives, powe	apac ctroc r de	ity fa le str manc	de in : ucture	ristics an secondar e - Protor 9
Components of a electrochemical pe cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fue regenerative braki	cell - Classification of batteries and cell - Theoretical capa erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi ng, Battery electric vehicle, Hybrid electric vehicle, Start-Stop	tion and self cs and polar cles - Obje	discharge - c izations - Ele ectives, powe	apac ctroc r de	ity fa le str manc	de in : ucture	ristics an secondar e - Protor 9
Components of a electrochemical pe cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fur regenerative braki Unit - V Electro-deposition	cell - Classification of batteries and cell - Theoretical capa- erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi	ion and self- cs and polar cles - Obje hybrid, Fuel dditives - In	discharge - c izations - Ele ectives, powe Cell Hybrid sy npact of side	apac ctroc r de /sten	ity fa le str manc ns	de in s ucture I dete s and	ristics an secondar - Protor 9 rminatior 9 d resistiv
Components of a electrochemical pe cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fur regenerative braki Unit - V Electro-deposition	cell - Classification of batteries and cell - Theoretical capa erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi ng, Battery electric vehicle, Hybrid electric vehicle, Start-Stop Electro-deposition and Corrosion : Fundamentals – Nucleation - Deposit morphology – Action	ion and self- cs and polar cles - Obje hybrid, Fuel dditives - In	discharge - c izations - Ele ectives, powe Cell Hybrid sy npact of side	apac ctroc r de /sten	ity fa le str manc ns	de in s ucture I dete s and	ristics an secondar - Protor 9 rminatior 9 d resistiv
Components of a electrochemical pe cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fur regenerative braki Unit - V Electro-deposition	cell - Classification of batteries and cell - Theoretical capa erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi ng, Battery electric vehicle, Hybrid electric vehicle, Start-Stop Electro-deposition and Corrosion : Fundamentals – Nucleation - Deposit morphology – Action	ion and self- cs and polar cles - Obje hybrid, Fuel dditives - In	discharge - c izations - Ele ectives, powe Cell Hybrid sy npact of side	apac ctroc r de /sten	ity fa le str manc ns	de in s ucture I dete s and	ristics an secondar e - Protor 9 ermination 9 1 resistiv
Components of a electrochemical pe- cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fue regenerative braki Unit - V Electro-deposition substrates. Corros	cell - Classification of batteries and cell - Theoretical capa erformance - Heat efficiency of secondary cells- Charge retent idamentals: Types of fuel cells- Current–voltage characteristic ane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehi ng, Battery electric vehicle, Hybrid electric vehicle, Start-Stop Electro-deposition and Corrosion : Fundamentals – Nucleation - Deposit morphology – Action	ion and self- cs and polar cles - Obje hybrid, Fuel dditives - In Localized co	discharge - c izations - Ele ectives, powe Cell Hybrid sy npact of side prosion - Corr	apac ctroc r de /sten rea	ity fa le str manc ns nction n pro	de in s ucture I dete s and tection	ristics an secondar e - Protor 9 ermination 9 1 resistiv
Components of a electrochemical pe- cells. Fuel cell fun Exchange Membra Unit – IV Introduction to fue regenerative braki Unit - V Electro-deposition substrates. Corros	 cell - Classification of batteries and cell - Theoretical caparerformance - Heat efficiency of secondary cells- Charge retented amentals: Types of fuel cells- Current–voltage characteristicane (PEM) fuel cells - Solid Oxide Fuel cells. Electrochemistry for e-vehicles el cell stack and super capacitors. Electric and Hybrid vehing, Battery electric vehicle, Hybrid electric vehicle, Start-Stop Electro-deposition and Corrosion Fundamentals – Nucleation - Deposit morphology – Action: Fundamentals - Thermodynamics of corrosion systems - 	ion and self- cs and polar cles - Obje hybrid, Fuel dditives - In Localized co	discharge - c izations - Ele ectives, powe Cell Hybrid sy npact of side prosion - Corr	apac ctroc r de /sten rea	ity fa le str manc ns nction n pro	de in s ucture I dete s and tection	ristics an secondar e - Protor 9 ermination 9 1 resistiv

		UTCOM	-	rse, the st	udent	s will be a	able to						(BT Mapp Highest L	
CO1	expl	lain the	basics	of electroc	nemica	l systems	and ele	ectroche	mical	kinetics.			Und	lerstanding	g (K2)
CO2	des	cribe the	e transp	ort proper	ies of e	electroche	emical s	ystems	and el	ectro ana	alytical t	echniques.	Und	lerstanding	g (K2)
CO3	expl	lain the	fundam	ental prop	erties a	ind classi	fication	of batter	ries an	d fuel ce	ells.		Und	lerstanding	g (K2)
CO4	des	cribe the	e techno	ology of ele	ectroch	emical sy	stems fo	or electr	ic vehi	icles			Und	lerstandin	g (K2)
CO5	illus	trate the	e conce	pts of elec	tro-dep	osition ar	nd corros	sion pre	ventio	n.			Und	lerstanding	g (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	S				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO)1	3	2	1											
CO)2	3	2	1											
CO)3	3	2	1											
CO)4	3	2	1											
CO)5	3	2	1											
1 – Sli	ght, 2	– Mode	rate, 3	 Substant 	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN - T	THEORY	,				
	st / Bl Catego	oom's ory*	R	emember (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		80)							<u> </u>	100
	CAT	2		20		80)								100
	CAT	3		20		80)								100
	ESE	=		20		80)								100

		(Offered by Department of Chemical	Engineering	3)				
Program Branch	me&	All BE/BTech Branches except Chemical Engg.	Sem.	Category	L	т	Ρ	Credit
Prerequis	sites	Nil	8	OE	3	0	0	3
Preamble	•	To acquire knowledge on smart and intelligent materials, t fields	their synthesi	s method and	the	r app	licatio	ns in variou
Unit – I		Smart Materials and Structures						9
Introductio	on, System	n intelligence- components and classification of smart s	structures, c	ommon smai	t ma	ateria	ls and	l associate
stimulus-r	response, A	application areas of smart systems.						
Unit - II		Ferroelectric Materials						9
		ectric materials- piezoelectric effect, Direct and converse, als as sensors, Actuators and bimorphs.	parameter d	efinitions, Pie	zoce	erami	cs, Pie	zopolymers
linit III								-
unit - III		Shape Memory Materials						9
Introductio		memory effect, Martensitic transformation, One way and tw	o-way SME,	training of SM	/As,	bina	ry and	-
Introduction systems, I	Functional		vo-way SME,	training of SM	/IAs,	bina	ry and	-
Introductionsystems, I Unit – IV Introduction	Functional on, Synthes	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn					-	ternary allo
Introduction systems, I Unit – IV Introduction Artificial m	Functional on, Synthes	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels					-	ternary allo
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic	Functional on, Synthes nuscles, Hy on, Elastic	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics.	nart hydroge	ls as actuato	rs, C	Contro	olled d	ternary allo 9 rug release 9
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic	Functional on, Synthes nuscles, Hy on, Elastic	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications commony composites, Smart corrosion protection co	nart hydroge	ls as actuato	rs, C	Contro	olled d	ternary allo 9 rug release 9
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic Transducc	Functional on, Synthes nuscles, Hy on, Elastic ers, MEMS,	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications commony composites, Smart corrosion protection co	nart hydroge	ls as actuato	rs, C	Contro	olled d	ternary allo 9 rug release 9 , Actuators
systems, I Unit – IV Introductic Artificial m Unit – V Introductic Transduce TEXT BO	Functional on, Synthes nuscles, Hy on, Elastic ers, MEMS,	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications commony composites, Smart corrosion protection co	nart hydroge atings, Self	ls as actuato	rs, C erials	Contro	olled d	ternary allo 9 rug release 9 , Actuators
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic Transducc TEXT BO	Functional on, Synthes nuscles, Hy on, Elastic ers, MEMS, POK: Schwartz. M	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications c memory composites, Smart corrosion protection co , Deployment devices, Molecular machines.	nart hydroge atings, Self- RC Press, 20	Is as actuato -healing mat	rs, C erials	Contro	olled d	ternary allo 9 rug release 9 , Actuators
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic Transducc TEXT BO 1. S 2. D	Functional on, Synthes nuscles, Hy on, Elastic ers, MEMS, POK: Schwartz. M	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications commons memory composites, Smart corrosion protection co , Deployment devices, Molecular machines.	nart hydroge atings, Self- RC Press, 20	Is as actuato -healing mat	rs, C erials	Contro	olled d	ternary allo 9 rug release 9 , Actuators
Introductic systems, I Unit – IV Introductic Artificial m Unit – V Introductic Transduce TEXT BO 1. S 2. D REFEREN 1. Y	Functional on, Synthes nuscles, Hy on, Elastic ers, MEMS, OK: Cok: Cok: Cok: Cok: Cok: Cok: Cok: Cok	memory effect, Martensitic transformation, One way and tw properties of SMAs. Smart Hydrogels sis, Fast responsive hydrogels, Molecular recognition, Sn rdrogels in microfluidics. Smart systems for space applications c memory composites, Smart corrosion protection co , Deployment devices, Molecular machines. , "New Materials, Processes, and Methods Technology", Cl ngineering Analysis of Smart Material Systems", Wiley 2007 my. R.J, "Reflexive Polymers and Hydrogels: Understanding	nart hydroge atings, Self RC Press, 20 7. (Unit IV, V)	Is as actuato healing mat	rs, C erials	Contro	blied d	ternary allo 9 rug releas 9 , Actuator Total:4

		OUTCO etion of		irse, the s	tudent	s will be	able to							BT Ma (Highest	
CO1	rec	all the o	classifica	ation and a	pplicati	ons of sr	nart mat	terials						Understan	ding (K2)
CO2	des	describe the various ferroelectric materials and its applications Understanding (K2)													
CO3	exp	explain the significance of shape memory materials and its functional properties Understanding (K2)													
CO4	ela	borate	the syntl	nesis of sn	nart hyc	Irogels a	nd their	applicat	tions in	various	fields			Understan	ding (K2)
CO5	enı	umerate	e the role	e of smart	systems	s in spac	e applic	ations						Understan	ding (K2)
	1					Марр	oing of (COs wit	th POs	and PS	SOs				
COs/F	os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	1					1	1	2			1		
CO2	2	3	1					1	1	2			1		
COS	3	3	1					1	1	2			1		
CO4	4	3	1					1	1	2			1		
COS	5	3	1					1	1	2			1		
1 – Sli	ght, 2	2 – Mod	lerate, 3	 Substar 	ntial, BT	- Bloom'	s Taxon	omy							
						ASSI	ESSMEI		TERN	– THEO	RY				
	t / Bl ateg	oom's ory*	Re	ememberi (K1) %	ng l	Jndersta (K2)		Apply (K3)		Analyz (K4)		Evaluating (K5) %		reating (K6) %	Total %
	CAT	Г1		30		70									100
	CAT	Г2		30		70									100
	CAT	ГЗ		30		70									100
ESE 30			70									100			

20GEO01 - GERMAN LANGUAGE LEVEL 1

(Offered by Department of Electronics and Communication Engineering)

Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Basics of Language	4,5,6,8	HS	4	0	0	4

Preamble To acquire the vocabulary as per the Common European framework of German language A1 level competence. This course will help to assimilate the basic grammar structures and gain vocabulary to understand and reciprocate in daily life situations on a broader sense. A thorough learner will be able to gain a comprehensive understanding of the German grammar and confidently articulate in day today situations.

Unit - I Contacts (Kontakte):

Understanding Letters, simple instructions, speaking about language learning, finding specific information in text, Acknowledging the theme and understanding conversations, Making appointments. Grammar – Preposition with Dative, Articles in Dative and Accusative possessive articles.

Unit - II Accommodation (Die Wohnung):

Understanding Accommodation advertisements, describing accommodation and directions, responding to an invitation, Expressing feelings, Colours. Grammar – Adjective with to be verb, Adjective with *sehr/zu*, Adjective with Accusative, prepositions with Dative

Unit - III Working Environment Communication (ArbeitenSie):

Daily Schedule, speaking about past, understanding Job openings advertisements, Opinions, Telephonic conversations, Speaking about Jobs. Grammar – Perfect tense, Participle II – regular and irregular verbs, Conjunctions – *und, oder, aber*.

Unit - IV Clothes and Style (Kleidung und mode) :

Clothes, Chats on shopping clothes, reporting on past, Orienting oneself in Supermarkets, Information and research about Berlin. Grammar – Interrogative articles and Demonstrative articles, Partizip II – separable and non-separable verbs, Personal pronouns in Dative, Verbs with Dative.

Unit - V Health and Vacation (Gesundheit und Urlaub):

Personal information, Human Body parts, Sports, Understanding instructions and prompts, health tips. Grammar – Imperative with *du/lhr*, Modal verbs – sollen, müssen, nichtdürfen, dürfen. Suggestions for travel, Path, Postcards, weather, Travel reports, Problems in hotel, Tourist destinations. Grammar – Pronoun: *man*, Question words – *Wer*, *Wen*, *Was*, *Wem*, Adverbs – *Zuerst, dann, Später, ZumSchl*

Total:60

12

12

12

12

12

TEXT BOOK:

1. "Stefanie Dengler, Paul Rusch, Helen Schmitz, TanjaSieber, "Netzwerk Deutsch alsFremdsprache A1–ursbuch, Arbeitsbuch und Glossar with 2 CDs", Goyal Publishers, Delhi, 2015.

- 1. https://ocw.mit.edu Massachusetts Institute of Technology Open Courseware Refer: German 1 for undergraduate students
- 2. https://www.dw.com/en/learn-german Deutsche Welle , Geramany's International Broadcaster

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understanding letters and simple texts	Remembering (K1)
CO2	assimilating vocabulary on accommodation and invitation	Understanding (K2)
CO3	comprehend concept of time, telephonic conversation and job-related information	Understanding (K2)
CO4	understanding how to do shopping in a German store	Understanding (K2)
CO5	understanding body parts and how to plan personal travel	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	3		3		
CO2								1	1	3		3		
CO3								1	1	3		3		
CO4								1	1	3		3		
CO5								1	1	3		3		
1 – Slight, 2	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	75					100		
CAT2	25	75					100		
CAT3	25	75					100		
ESE	25	75					100		

20GEO02 – JAPANESE LANGUAGE LEVEL 1

(Offered by Department of Electronics and Communication Engineering)

Programme& Branch	All BE/BTech Engineering & Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Basics of Language	4/5/6/8	HS	4	0	0	4

Preamble	To understand the basics of Japanese language which provides understanding of Hiragana, Katakana	
	and 110 Kanjis and provides the ability to understand basic conversations and also enables one to	
	request other person and also understand Casual form	

Unit - I Introduction to groups of verbs:

tai form-Verb groups-te form-Give and ask permission to do an action-Present continuous form-Restrict other person from doing an action-nouns-Basic Questions

Unit - II Introduction to Casual Form:

nai form-Dictionary form-ta form-Polite style and Casual style differences-Conversation in plain style-Place of usage of Polite style and Casual style

Unit - III Express opinions and thoughts:

Introduction to new particle-Express someone one's thought-Convey the message of one person to another-Ask someone if something is right -Noun modifications

Unit - IV Introduction to If clause and Kanjis:

If clause tara form-Express gratitude for an action done by other person-Hypothetical situation-Particles to use in case of Motion verbs-110 Kanjis

Unit - V Introduction to Counters:

How to use numbers-How to use quantifiers-Past form of adjectives and Nouns-Way to say preference-Way of expression degrees of an action-Other necessary particles-How to use numbers-How to use quantifiers-Past form of adjectives

Total:60

12

12

12

12

12

TEXT BOOK:

1. "MINNA NO NIHONGO–Japanese for Everyone", 2nd Edition, Goyal Publishers & Distributors Pvt. Ltd., New Delhi, 2017.

REFERENCES:

1. MargheritaPezzopane, "Try N5", 2nd Edition, Tankobon Softcover, Japan, 2017.

2. Sayaka Kurashina, "Japanese Word Speedmaster", 2nd Edition, Tankobon Softcover, Japan, 2018.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	read and understand typical expression in Hiragana and Katakana	Remembering (K1)
CO2	understand Polite form and Casual form of Japanese	Understanding (K2)
CO3	comprehend personal communication and express greetings	Understanding (K2)
CO4	understand the Kanjis in Japanese Script	Understanding (K2)
CO5	comprehend concept of time, counters and job-related information	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	3		3		
CO2								1	1	3		3		
CO3								1	1	3		3		
CO4								1	1	3		3		
CO5								1	1	3		3		
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	75					100		
CAT2	25	75					100		
CAT3	25	75					100		
ESE	25	75					100		

20GE003 - DESIGN THINKING FOR ENGINEERS

(Offered by Department of Computer Science and Engineering)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Problem Solving and Programming	6	OE	3	0	0	3

Preamble	In this course, systematic process of thinking which empowers even the most traditional thinker to
	develop new, innovative solutions to the problem at handare studied with an emphasis on bringing ideas
	to life based on how real users think, feel and behave.

Unit - I Introduction::

Introduction – Need for design thinking – Design and Business – The Design Process – Design Brief – Visualization – Four Questions, Ten Tools – Explore – STEEP Analysis – Strategic Priorities – Activity System – Stakeholder Mapping – Opportunity Framing.

Unit - II	Visualization:	9
	n – Visualization – Journey Mapping – Value Chain Analysis – Mind Mapping – Empathize –Observatio nding – User Personas.	ons
Unit - III	Brainstorming:	9
Introductio	n – Brainstorming – Concept Development – Experiment – Ideation – Prototyping – Idea Refinement.	
Unit - IV	Assumption Testing:	9
Introductio	n – Assumption Testing – Rapid Prototyping – Engage – Storyboarding.	
Unit - V	Customer Co-Creation Learning Launch:	9
Introductio	n – Customer Co-Creation Learning Launch – Leading Growth and Innovation – Evolve– Conce	ept

Synthesis – Strategic Requirements – Evolved Activity Systems – Quick Wins.

TEXT BOOK:

1. Jeanne Liedtka and Tim Ogilvie, "Designing for Growth: A Design Thinking Tool Kit for Managers", Columbia University Press, 2011.

REFERENCES:

1.	Lee Chong Hwa, "Design Thinking The Guidebook", Design Thinking Master Trainers of Bhutan, 2017.
	Jeanne Liedtka, Tim Ogilvie, and Rachel Brozenske, "The Designing for Growth FieldBook: A Step-by-Step
	Project Guide", Columbia University Press, 2014.

9

Total:45

COUI On co	BT Mapped (Highest Level)	
CO1	outline the basic concepts of design thinking	Understanding (K2)
CO2	make use of the mind mapping process for designing any system	Applying (K3)
CO3	develop many creative ideas through structured brainstorming sessions.	Applying (K3)
CO4	develop rapid prototypes to bring the ideas into reality	Applying (K3)
CO5	plan the implementation of the any system considering the real time feedback	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	BT-B	loom's	Taxono	omy						

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	70	20				100					
CAT2	10	30	60				100					
CAT3	10	20	70				100					
ESE	10	20	70				100					

20GEO04 - INNOVATION AND BUSINESS MODEL DEVELOPMENT

(Offered by Department of Mechatronics Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	8	OE	3	0	0	3

Preamble This course will inspire the students to think innovation concepts and ideas for business model developments.

Unit - I Innovation and Design Thinking:

Innovation and Creativity– Types of innovation – challenges in innovation- steps in innovation management- 7 concerns of design. Design Thinking and Entrepreneurship – Design Thinking Stages: Empathize – Define – Ideate – Prototype – Test. Design thinking tools: Analogies – Brainstorming – Mind mapping

Unit - II User Study and Contextual Enquiry:

Explanatory research – primary and secondary data – classification of secondary data – sources of secondary data – qualitative research – focus groups – depth interviews – analysis of qualitative data – survey methods – observations-Process of identifying customer needs –organize needs into a hierarchy –establish relative importance of the needs-Establish target specifications

Unit - III Product Design:

Techniques and tools for concept generation, concept evaluation – Product architecture –Minimum Viable Product (MVP)- Product prototyping – tools and techniques– overview of processes and materials – evaluation tools and techniques for user-product interaction

Unit - IV Business Model Canvas (BMC):

Lean Canvas and BMC - difference and building blocks- BMC: Patterns – Design – Strategy – Process–Business model failures: Reasons and remedies

Unit - V IPR and Commercialization:

Need for Intellectual Property- Basic concepts - Different Types of IPs: Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design- Patent Licensing - Technology Commercialization - Innovation Marketing

Total:45

9

9

9

9

9

TEXT BOOK:

1. Rishikesha T.Krishnan, "8 Steps To Innovation: Going From Jugaad To Excellence", Collins India, 2013.

- 1. Peter Drucker, "Innovation and Entrepreneurship", Routledge CRC Press, London, 2014.
- 2. Eppinger, S.D. and Ulrich, K.T. "Product design and development", 7th Edition, McGraw-Hill Higher Education, 2020.
- Alexander Osterwalder, "Business model generation: A handbook for visionaries, game changers, and challengers", 1st Edition, John Wiley and Sons; 2010.
- 4. Indian Innovators Association, "Patent IPR Licensing Technology Commercialization Innovation Marketing: Guide Book for Researchers, Innovators", Notion Press, Chennai, 2017.

COURS On com	BT Mapped (Highest Level)	
CO1	understand innovation need and design thinking phases	Understanding (K2)
CO2	identify, screen and analyse ideas for new products based on customer needs	Analysing (K4)
CO3	develop and analyse the product concepts based on the customer needs and presents the overall architecture of the product.	Analysing (K4)
CO4	predict a structured business model for MVP	Applying (K3)
CO5	practice the procedures for protection of their ideas' IPR	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2			2						3	2	2
CO2	3	3	3	3	2	2	2	2	3	3	3	3	2	2
CO3	2	2	3	3	3	3	3	3	3	3	3	3	2	2
CO4				3	2	2	2	3	3	3	3	3	2	2
CO5				3	2	2		3	2	3	3	3	2	2
1 – Slight, 2	– Mode	erate 3	– Subs	stantial	BT- B	loom's	Taxon	mv						

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	30	40	10			100					
CAT2	20	30	40	20			100					
CAT3	30	30	40				100					
ESE	20	30	30	20			100					

20GEO05 - GERMAN LANGUAGE LEVEL 2

(Offered by Department of Electronics and Communication Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	German Language Level 1	4/5/6/8	HS	4	0	0	4

Preamble This course aims to help the learner to acquire the vocabulary as per the Common European framework of German language A1 level competence. This course will help to assimilate the basic grammar structures and gain vocabulary to understand and reciprocate in daily life situations on a broader sense. A thorough learner will be able to gain a comprehensive understanding of the German grammar and confidently articulate in day today situations.

Unit - I Contacts(Kontakte):

Understanding Letters, simple instructions, speaking about language learning, finding specific information in text, Acknowledging the theme and understanding conversations, Making appointments. Grammar – Preposition with Dative, Articles in Dative and Accusative possessive articles.

Unit - II Accomodation(Die Wohnung):

Understanding Accommodation advertisements, describing accommodation and directions, responding to an invitation, Expressing feelings, Colours. Grammar – Adjective with to be verb, Adjective with *sehr/zu*, Adjective with Accusative, prepositions with Dative

Unit - III Are you Working?(Arbeiten Sie):

Daily Schedule, speaking about past, understanding Job openings advertisements, Opinions, Telephoni conversations, Speaking about Jobs. Grammar – Perfect tense, Participle II – regular and irregular verbs, Conjunction – *und, oder, aber.*

Unit - IV Clothes and Style(Kleidung und mode):

Clothes, Chats on shopping clothes, reporting on past, Orienting oneself in Supermarkets, Information and research about Berlin. Grammar – Interrogative articles and Demonstrative articles, Partizip II – separable and non-separable verbs, Personal pronouns in Dative, Verbs with Dative

Unit - V Health and Vacation(Gesundheit und Urlaub):

Personal information, Human Body parts, Sports, Understanding instructions and prompts, health tips. Grammar – Imperative with *du/lhr*, Modal verbs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel, Path, Postcards, weather, Travel reports, Problems in hotel, Tourist destinations. Grammar – Pronoun: *man*, Question words – *Wer*, *Wen*, *Was*, *Wem*, Adverbs – *Zuerst, dann, Später, Zum Schl*

Total: 60

12

12

12

12

12

TEXT BOOK:

1 Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk Deutsch als Fremdsprache A1–ursbuch, Arbeitsbuch und Glossar with 2 CDs", Goyal Publishers, Delhi, 2015.

REFERENCES:

1 https://ocw.mit.edu – Massachusetts Institute of Technology Open Courseware

2 https://www.dw.com/en/learn-german - Deutsche Welle , Geramany's International Broadcaster

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand letters and simple texts	Remembering (K1)
CO2	assimilate vocabulary on Accommodation and invitation	Understanding (K2)
CO3	comprehend concept of time, telephonic conversation and job-related information	Understanding (K2)
CO4	understand how to do shopping in a German store	Understanding (K2)
CO5	understand body parts and how to plan personal travel	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	3		3		
CO2								1	1	3		3		
CO3								1	1	3		3		
CO4								1	1	3		3		
CO5								1	1	3		3		
1 – Slight, 2	– Mode	erate. 3	– Subs	stantial	. BT- B	loom's	Taxon	omv						

. ·	oligin, z	Moderate, e	Cubotantial, DT	Bicomonation	

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	75	25					100				
CAT2	25	75					100				
CAT3	25	75					100				
ESE	25	75					100				

20GEO06 - GERMAN LANGUAGE LEVEL 3

(Offered by Department of Electronics and Communication Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	German Language Level 2	4/5/6/8	HS	3	0	0	3

Preamble This course provides enriching information about various everyday situations in personal and professional life and enhances the vocabulary and speaking ability to respond to and also seek information in those situations. It also equips one to express opinions and negotiate appointments. With diligent learning one can capture all basic grammatical structure to answer confidently in everyday situations.

Unit - I All about food (Rund Ums Essen):

Understand information about person, Speak about food, Introduce self and others, Understand and explain a picture base story, To justify something, To speak about feelings, To express opinions, To answer questions on a text, To describe a restaurant. Grammar: Possessive Articles in Dative, Yes/No questions, Reflexive verbs, Sentence with 'weil'

Unit - II School days (Nach der Schulzeit):

Understand School reports, Speak and write comments about schooldays, To speak about habits, Understand and provide City-Tipps, To Understand School types in Germany and speak about it. Grammar: Modal verbs in Past tense, Positional Verbs, Two-way prepositions in Dativ and Akkusativ.

Unit - III Media in everyday life (Medien in Alltag):

To speak about advantages and disadvantages of Media, formulate comparisons, Express your own opinion, Talk about Movies, Understand and Write Movie reviews. Grammar: Comparative degree, Comparative Sentences with 'Als' and 'Wie', Subordinate clause with 'dass', Superlative degree.

Unit - IV Feelings and expressions (Gefühle):

Express thanks and congratulations, Talk about feelings, To understand information about festivals and speak about it, To describe a city, Express joy and regrets, Understand and write Blog entries, Write appropriate heading. Grammar: Subordinate Clause with 'Wenn', Adjectives to be used along with definite articles.

Unit - V Profession and Travel (Beruf und Reisen):

To have a conversation at ticket counter, To talk about leisure activities, To gather information from Texts, Introduce people, Express career preferences, Ideate the dream job, To prepare and make telephone calls, To understand text about Workplace. Ask for information, Express uncertainty, Understand and give directions, Understand a newspaper article, Say your own opinion, Talk about the way to work, Describe a statistic, Understand information about a trip, Talk about travel. Grammar: Adjective to be used along with indefinite articles, Prepositions, verb – 'werden', Subordinate clause – indirect questions, All units will include elements for reading, writing, speaking and listening.

TEXT BOOK:

Total: 45

9

9

9

9

9

1. Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk Deutsch als Fremdsprache A1–ursbuch, Arbeitsbuch und Glossar with 2 CDs", Goyal Publishers, Delhi, 2015.

	Rosa-Maria Dallapiazza , Eduard von Jan, Till Schonherr, "Tangram 2 (German)" , Goyal Publishers, Delhi, 2011.
2.	https://www.dw.com/en/learn-german - Deutsche Welle , Geramany's International Broadcaster

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand German food style, restaurant and be able express oneself.	Remembering (K1)
CO2	understand German school system and discuss about habits and provide City-Tipps.	Understanding (K2)
CO3	analyze and compare media in everyday life.	Understanding (K2)
CO4	express feelings, describe a city and write blog entries.	Understanding (K2)
CO5	seek and provide information in a professional setup, give directions to others and talk about travel.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	3		3		
CO2								1	1	3		3		
CO3								1	1	3		3		
CO4								1	1	3		3		
CO5								1	1	3		3		
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	75	25					100
CAT2	25	75					100
CAT3	25	75					100
ESE	25	75					100

20GEO07 - GERMAN LANGUAGE LEVEL 4

(Offered by Department of Electronics and Communication Engineering)

Programm Branch	e &	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequis	tes	German Language Level 3	4/5/6/8	HS	3	0	0	3
Preamble	aspect unders the co langua	ourse imparts knowledge about interacting wit is, behaviour and addressing relationships in stand reports from various media and at work. En ore basic grammatical concepts which would la ige. With focused learning one should be able to iformal letters and text messages and be able ons.	personal a nhance lea ay the fou o read and	nd professior rner's gramm ndation to h respond to re	hal fro atical ave a eports,	nt. It exposu better write	helps ure an r hold simple	one to d cover of the formal
Unit - I	Learni	ing (Lernen):						9
reports abo and makin	out ever g a mii	d describing learning problems, Understanding a yday work life, Talking about everyday working ni-presentation. Grammar: Conjunctions- denn, ons – bis, über + Akkusativ,ab+dativ	life, Under	standing a ra	dio re	port, U	Inders	tanding
Unit - II	Athlet	ic (Sportlich):						9
Making si	uggestio ding diffi	siasm, hope, disappointment, Understanding an ons and reacting, Making an appointment, icult texts, Introducing a tourist attraction. Gramr v	Understan	ding a repo	ort ab	out a	n ex	cursion,
Unit - III Living Together (Zusammen Leben):								
-							-	

To complain, apologize & give in, As for something, Understand experience reports, Report on the past, Talk about pets, Respond to information, Write and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate clauses - als and Wenn.

Unit – IV Good Entertainment (Gute Unterhaltung):

Talk about music style, Buy concert tickets, Introduce a musician / band, Understand newspaper reports, Give more detailed information about a person, Understand information about painting, Understand description of a picture, Grammatik: Interrogative Articles: Was fuer eine?, Pronouns - man/jemand/niemand and Describe a picture. alles/etwas/nichts, Relative sentences in Nominativ.

Unit - V Passage of time and Culture (Zeitablauf & Kultur):

Talk about wishes, Express wishes, Give Suggestions, Understand a conversation, Plan something together, To ask others something, Understand a text, Exchange information, Talk about proverbs, write a story. Understand information about other cultures, Discuss about behavior, Express intentions, Use the appropriate salutation, Understand tips in a text, Talk about forms of addressing others, Give more information, Discuss about clichés and write about them. All units will include elements for reading, writing, speaking and listening. Grammatik: Konjunctiv II (Wishes, Suggestions), Verbs with prepositions, W- questions with prepositions, Relative sentences in Akkusativ, Subordinate clauses with damit and Um...Zu.

TEXT BOOK:

1. Stefanie Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk Deutsch als Fremdsprache A1-ursbuch,

Arbeitsbuch", Goyal Publishers, Delhi, 2015.

REFERENCES:

- 1. Rosa-Maria Dallapiazza, Eduard von Jan, Till Schonherr, "Tangram 2 (German)", Goyal Publishers, Delhi, 2011.
- 2. https://www.dw.com/en/learn-german Deutsche Welle, Geramany's International Broadcaster

9

9

Total: 45

	E OUTCOMES: Detion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	leverage learning in Workplace, understanding reports and make presentation.	Remembering (K1)
CO2	reciprocate to different situations, make appointment and understand texts.	Understanding (K2)
CO3	handle relationships and respond appropriately to exchange information	Understanding (K2)
CO4	familiarize to various channels of entertainment	Understanding (K2)
CO5	know about various cultural aspects, usage of proverbs and cliches.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	1	3		3		
CO2								1	1	3		3		
CO3								1	1	3		3		
CO4								1	1	3		3		
CO5								1	1	3		3		
1 – Slight, 2	– Mode	erate. 3	– Subs	stantial	. BT- B	loom's	Taxon	omv						

ıy igni, e, .

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	75	25					100					
CAT2	25	75					100					
CAT3	25	75					100					
ESE	25	75					100					

20GEO08 - JAPANESE LANGUAGE LEVEL 2

(Offered by Department of Electronics and Communication Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Japanese Language Level 1	4/5/6/8	HS	4	0	0	4

Preamble	The basis level of Japanese which provides understanding of Hirpanes. Katelyans and 110 Kanij	
Freamble	The basic level of Japanese which provides understanding of Hiragana, Katakana and 110 Kanjis provides the ability to understand basic conversations and also enables one to request other person also understand Casual form	
Unit - I	Introduction to groups of verbs:	12
	erb groups-te form-Give and ask permission to do an action-Present continuous form-Restrict other p an action-nouns-Basic Questions	erson
Unit - II	Introduction to Casual Form:	12
	ictionary form-ta form-Polite style and Casual style differences-Conversation in plain style-Place of υ yle and Casual style	isage
Unit - III	Express opinions and thoughts:	12
	n to new particle-Express someone one's thought-Convey the message of one person to anothe f something is right -Noun modifications	r-Ask
Unit - IV	Introduction to If clause and remaining Kanjis:	12
	ara form-Express gratitude for an action done by other person-Hypothetical situation-Particles to u otion verbs-50 Kanjis	ise in
Unit - V	Introduction to giving and receiving with te form and "when, even if" usages:	12

Providing to and getting from differences - Understanding of situations and framing sentences using when and even if..etc.

Total: 60

TEXT BOOK:

1. "MINNA NO NIHONGO–Japanese for Everyone", 2nd Edition, Goyal Publishers & Distributors Pvt. Ltd., New Delhi, 2017.

- 1. Margherita Pezzopane, "Try N5", 2nd Edition, Tankobon Softcover, Japan, 2017.
- 2. Sayaka Kurashina, "Japanese Word Speedmaster", 2nd Edition, Tankobon Softcover, Japan, 2018.

	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	differentiate groups of verbs and its forms	Remembering (K1)					
CO2	understand Polite form and Casual form of Japanese	Understanding (K2)					
CO3	comprehend personal communication and express greetings	Understanding (K2)					
CO4	understand the Kanjis in Japanese Script and If clause	Understanding (K2)					
CO5	comprehend concept of "even if", "when" and job-related information	Understanding (K2)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		
CO2								1	2	3		3		
CO3								1	2	3		3		
CO4								1	2	3		3		
CO5								1	2	3		3		
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ļ	1 – Slight, 2	2 – Moderate, 3	3 – Substantial,	, BT- Bloom's	laxonomy	

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	75	25					100					
CAT2	25	75					100					
CAT3	25	75					100					
ESE	25	75					100					

20GEO09 - JAPANESE LANGUAGE LEVEL 3

(Offered by Department of Electronics and Communication Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Japanese Language Level 2	4/5/6/8	HS	3	0	0	3

Preamble The intermediate level of Japanese which provides understanding of all forms ofverbs, adverbs, conjunctions, etc. which includes 150 Kanji's and provides the ability to comprehend conversations encountered in daily life

Unit - I Introduction to Potential verbs:

Causes and Reasons-Favouring Expressions-Expressing a State-Potential Verb Sentences-Simultaneous actions-Verb Groups-te Form-Customary Actions-Nouns-Basic Questions and Kanji's.

Unit - II Introduction to Transitive and Intransitive verbs:

Consequence of verbs- Embarrassment about Facts- Consequence of Verbs with an Intentions-Affirmative Sentences- Conjunctions-Basic Questions and kanji's.

Unit - III Introduction to Volitional forms:

Expressions of Speakers Intention-Expressing Suggestion or Advice-Usage of Adverbs and Quantifiers-Basic Questions and kanji's.

Unit - IV Introduction to Imperative and Prohibitive verbs:

Commanding person- Interrogatives-Expressions of Third Person-Actions and its Occurrence - Possibilities of an Action-Changing of States Basic Questions and Kanji's.

Unit - V Introduction to Conditional form and Passive verbs:

Description of Requirement and Speaker's Judgement, HabitualActions, Directions and suggestions-Passive forms of Verbs-Basic Questions and Kanji's.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. "MINNA NO NIHONGO–Japanese for Everyone", 2nd Edition, Goyal Publishers & Distributors Pvt. Ltd., New Delhi, 2017.

REFERENCES:

1. Margherita Pezzopane, "Try N5", 2nd Edition, Tankobon Softcover, Japan, 2017.

2. Sayaka Kurashina, "Japanese Word Speedmaster", 2nd Edition, Tankobon Softcover, Japan, 2018.

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)			
CO1	read and understand BasicVocabularies.	Remembering (K1)			
CO2	understand Conversations used in daily life.	Understanding (K2)			
CO3	comprehend personal communication and express greetings.	Understanding (K2)			
CO4	understand the Kanji's in Japanese Script.	Understanding (K2)			
CO5	CO5 comprehend Coherent conversations in everyday situations.				

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		
CO2								1	2	3		3		
CO3								1	2	3		3		
CO4								1	2	3		3		
CO5								1	2	3		3		
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	BT-B	loom's	Taxon	omy						

1 –	Slight, 2 –	Moderate, 3	– Substantial,	R I - RIOOI	n's lax	onomy

		ASSESSMENT	PATTERN -	THEORY			ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %											
CAT1	75	25					100											
CAT2	25	75					100											
CAT3	25	75					100											
ESE	25	75					100											

20GEO10 - JAPANESE LANGUAGE LEVEL 4

(Offered by Department of Electronics and Communication Engineering)

Programm Branch	ne &	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit		
Prerequis	ites	Japanese Language Level 3	4/5/6/8	HS	3	0	0	3		
Preamble	Relatio	ntermediate level of Japanese provides unde onships which also includes 150 Kanji's and als g the people.	•	•				•		
Unit - I	Introd	Introduction to Reasoning:								
Causes aı Kanji's.	nd Sequ	uences-Causes and Effects-Interrogative Patter	rns-Adjectiv	/e as a Nou	ın -Ba	asic Q	uestic	ns and		
rtariji o.										
Unit - II	Introd	luction to Exchanging of things:						9		
Unit - II Expressior	ns for Gi	luction to Exchanging of things: iving and Receiving of Things-Polite Expression Questions and kanji's.	of Request	t-Indicating a	Purpo	ose of	Actior			
Unit - II Expressior	ns for Gi s-Basic (iving and Receiving of Things-Polite Expression	of Request	t-Indicating a	Purpc	ose of	Actior	is-Basic		
Unit - II Expressior Quantifiers Unit - III	ns for Gi Basic (Introd Pattern	iving and Receiving of Things-Polite Expression Questions and kanji's. Iuction to States of an Action: to Indicate Appearance-Degree of Action and S						is-Basic		
Unit - II Expressior Quantifiers Unit - III Sentence	ns for Gi Basic (Introd Pattern stions a	iving and Receiving of Things-Polite Expression Questions and kanji's. Iuction to States of an Action: to Indicate Appearance-Degree of Action and S						s-Basic 9 nation ·		
Unit - II Expression Quantifiers Unit - III Sentence Basic Ques Unit - IV Causative	hs for Gi Basic (Introd Pattern stions au Introd Forms c	iving and Receiving of Things-Polite Expression Questions and kanji's. Iuction to States of an Action: to Indicate Appearance-Degree of Action and S nd kanji's.	tate-Adject	ives as Adve	rbs- C	convey	inforr	9 mation - 9		
Unit - II Expression Quantifiers Unit - III Sentence Basic Ques Unit - IV Causative	ns for Gi Basic (Introd Pattern stions an Introd Forms c sic Que	iving and Receiving of Things-Polite Expression Questions and kanji's. Iuction to States of an Action: to Indicate Appearance-Degree of Action and S nd kanji's. Iuction to Causative Verbs: of Verbs-Asking Opportunity to do something-Hyp	tate-Adject	ives as Adve	rbs- C	convey	inforr	s-Basic 9 nation - 9		

TEXT BOOK:

1. "MINNA NO NIHONGO–Japanese for Everyone", 2nd Edition, Goyal Publishers & Distributors Pvt. Ltd., New Delhi, 2017.

REFERENCES:

1. Margherita Pezzopane, "Try N5", 2nd Edition, Tankobon Softcover, Japan, 2017.

2. Sayaka Kurashina, "Japanese Word Speedmaster", 2nd Edition, Tankobon Softcover, Japan, 2018.

	E OUTCOMES: oletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	read and Understand Relationship of a Person.	Remembering (K1)
CO2	understand Conversations Used in Everyday Activities.	Understanding (K2)
CO3	comprehend Contents at Near Natural Speed.	Understanding (K2)
CO4	understand the Kanji's in Japanese Script.	Understanding (K2)
CO5	comprehend Orally Presented Materials.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		
CO2								1	2	3		3		
CO3								1	2	3		3		
CO4								1	2	3		3		
CO5								1	2	3		3		
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	75	25					100
CAT2	25	75					100
CAT3	25	75					100
ESE	25	75					100

20GEO11 - NCC Studies(Army Wing) – I (Offered by Department of Electrical and Electronics Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	5/6	OE	3	0	2	4

Preamble This course is designed especially for NCC Cadets. This course will help develop character, camaraderie, discipline, secular outlook, the spirit of adventure, sportsman spirit and ideals of selfless service amongst cadets by working in teams, learning military subjects including weapon training.

Unit - I NCC Organisation and National Integration:

NCC Organisation – History of NCC- NCC Organisation- NCC Training- NCC Uniform – Promotion of NCC cadets – Aim and advantages of NCC Training- NCC badges of Rank- Honours and Awards – Incentives for NCC cadets by central and state govt. National Integration- Unity in diversity- contribution of youth in nation building- national integration council- Images and Slogans on National Integration.

Unit - II Basic physical Training and Drill:

Basic physical Training – various exercises for fitness(with Demonstration)-Food – Hygiene and Cleanliness. Drill-Words of commands- position and commands- sizing and forming- saluting- marching- turning on the march and wheeling- saluting on the march- side pace, pace forward and to the rear- marking time- Drill with arms- ceremonial drill- guard mounting.(WITH DEMONSTRATION)

Unit - III Weapon Training:

Main Parts of a Rifle- Characteristics of 5.56mm INSAS rifle- Characteristics of .22 rifle- loading and unloading – position and holding- safety precautions – range procedure- MPI and Elevation- Group and Snap shooting-Long/Short range firing(WITH PRACTICE SESSION) - Characteristics of 7.62mm SLR- LMG- carbine machine gun.

Unit - IV Social Awareness and Community Development:

Aims of Social service-Various Means and ways of social services- family planning – HIV and AIDS- Cancer its causes and preventive measures- NGO and their activities- Drug trafficking- Rural development programmes - MGNREGA-SGSY-JGSY-NSAP-PMGSY-Terrorism and counter terrorism- Corruption – female foeticide -dowry – child abuse-RTI Act- RTE Act- Protection of children from sexual offences act- civic sense and responsibility

Unit - V Specialized Subject (ARMY):

Basic structure of Armed Forces- Military History – War heroes- battles of Indo-Pak war- Param Vir Chakra- Career in the Defence forces- Service tests and interviews-Fieldcraft and Battlecraft-Basics of Map reading including practical.

TEXT BOOK:

1. "National Cadet Corps- A Concise handbook of NCC Cadets", Ramesh Publishing House, New Delhi, 2014.

REFERENCES:

1. "Cadets Handbook – Common Subjects SD/SW", published by DG NCC, New Delhi.

2. "Cadets Handbook- Specialized Subjects SD/SW", published by DG NCC, New Delhi.

3. "NCC OTA Precise", published by DG NCC, New Delhi.

9

9

9

9

9

Lecture :45. Practical:30. Total:75

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	display sense of patriotism, secular values and shall be transformed into motivated youth who will contribute towards nation building through national unity and social cohesion.	Applying (K3)
CO2	demonstrate Health Exercises, the sense of discipline, improve bearing, smartness, turnout, develop the quality of immediate and implicit obedience of orders	Applying (K3)
CO3	basic knowledge of weapons and their use and handling.	Applying (K3)
CO4	understanding about social evils and shall inculcate sense of whistle blowing against such evils and ways to eradicate such evils	Applying (K3)
CO5	acquaint, expose & provide knowledge about Army/Navy/ Air force and to acquire information about expansion of Armed Forces, service subjects and important battles.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1						3	3	3	3	3				
CO2					3									
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2	· Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	-	-	-	-	-	-
CAT2	-	-	-	-	-	-	-
CAT3	-	-	-	-	-	-	-
ESE	India which inclu	and award of ma des all K1 to K6 k 00 marks. It will be	nowledge lev	els. The maxi			

20GEO12 - NCC STUDIES (AIR WING) – I (Offered by Department of Information Technology)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5/6	OE	3	0	2	4

Preamble	This course is designed especially for NCC Cadets. This course will help develop character ,
	camaraderie, discipline, secular outlook, the spirit of adventure, sportsman spirit and ideals of selfless service amongst cadets by working in teams, honing qualities such as self-discipline, self-confidence, self-reliance and dignity of labour in the cadets.

Unit – I NCC Organization and National Integration:

NCC Organization – History of NCC- NCC Organization- NCC Training- NCC Uniform – Promotion of NCC cadets – Aim and advantages of NCC Training- NCC badges of Rank- Honors' and Awards – Incentives for NCC cadets by central and state govt. History and Organization of IAF-Indo-Pak War-1971-Operation Safed Sagar. National Integration- Unity in diversity- contribution of youth in nation building- national integration council- Images and Slogans on National Integration.

Unit – II Drill and Weapon Training:

Drill- Words of commands- position and commands- sizing and forming- saluting- marching- turning on the march and wheeling- saluting on the march- side pace, pace forward and to the rear- marking time- Drill with arms- ceremonial drill- guard mounting.(WITH DEMONSTRATION). Main Parts of a Rifle- Characteristics of .22 rifle- loading and unloading – position and holding- safety precautions – range procedure- MPI and Elevation- Group and Snap shooting- Long/Short range firing (WITH PRACTICE SESSION).

Unit – III Principles of Flight:

Laws of motion-Forces acting on aircraft–Bernoulli's theorem-Stalling-Primary control surfaces – secondary control surfaces-Aircraft recognition.

Unit - IV Aero Engines:

Introduction of Aero engine-Types of engine-piston engine-jet engines-Turboprop engines-Basic Flight Instruments-Modern trends.

Unit – V Aero Modeling:

History of aero modeling-Materials used in Aero-modeling-Types of Aero-models – Static Models-Gliders-Control line models-Radio Control Models-Building and Flying of Aero-models.

TEXT BOOK:

Lecture :45, Practical30, Total:75

9

9

9

9

9

1 "National Cadet Corps- A Concise handbook of NCC Cadets" by Ramesh Publishing House, New Delhi, 2014.

- 1"Cadets Handbook Common Subjects SD/SW" by DG NCC, New Delhi.2"Cadets Handbook Specialised Subjects SD/SW" by DG NCC, New Delhi.
- 3 "NCC OTA Precise" by DGNCC, New Delhi.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	display sense of patriotism, secular values and shall be transformed into motivated youth who will carry out nation building through national unity and social cohesion.	Applying (K3)
CO2	demonstrate the sense of discipline with smartness and have basic knowledge of weapons and their use and handling	Applying (K3)
CO3	illustrate various forces and moments acting on aircraft	Applying (K3)
CO4	outline the concepts of aircraft engine and rocket propulsion	Applying (K3)
CO5	design, build and fly chuck gliders/model airplanes and display static models.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1						3	3	3	3	3				
CO2					3									
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	g Creating (K6) % - -	Total %
CAT1	-	-	-	-	-	-	-
CAT2	-	-	-	-	-	-	-
CAT3	-	-	-	-	-	-	-
ESE	India which inclu	and award of ma des all K1 to K6 k 00 marks. It will be	nowledge lev	els. The maxi			

20GEO13 - FRENCH LANGUAGE LEVEL 1

Programm Branch	ne &	All Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Fundamentals of French Language	5/6/7/8	HS	3	1	0	4
Preamble	culture introdu practic	ourse provides a foundation of the French langue and lifestyle of France and other French-speak uce him/herself and acquire basic everyday vocab sing the same as per the learning process, one of and to basic communications.	ing nation ulary. By f	s. The stude following the	nt will structu	be lea ured ci	arning urricul	how to lum and
Unit - I	Introd	uction:						12
French ar fem),Saluta		nch culture, alphabets, pronunciation, accents numbers.	, rules,	and terms	for p	ronunc	ciation	(mas-
Unit - II	Daily	Life:						12
Subject Pr	onoun, I	Francophonie's, adjectives – colors, week, months	, seasons.					
Unit - III	Article	es and Verbs:						12
Articles - Ir	ndefinite	, definite, partitive, and contracted, (examples), int	roductions	s to verbs, 1 st	group	of ver	b	
Unit - IV	In the	City:						12
2 nd group of with the ex		irregular verbs (avoir, etre, faire) present yourns)	rself & neg	ative senten	ces. (fa	aire an	d Jou	er verb
Unit - V	Food	and Culture:						12
· ·		position of places (country, cities and etc), Imperat (recent future)	ive mode,	invitations, c	ulture	– food	(wine) ,

Total:60

TEXT BOOK:

1. A1 – saison

1.	Apprenons les francais – 0 and 1
2.	Grammaire – langue et de civilization francaises – Mauger G
3.	.Les idees – 0 and 1

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the grammatical structure of the language and introduce self to others.	Remembering (K1)
CO2	understand basic verbs and appropriate vocabulary.	Understanding (K2)
CO3	ask for directions and arrange for transportation, etc, as needed.	Understanding (K2)
CO4	understand the food habits of France and ask for appointments	Understanding (K2)
CO5	learn to socialize in French-speaking countries	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Slight, 2	– Mode	erate. 3	– Subs	stantial	BT-B	loom's	Taxono	omv						

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	75	25					100							
CAT2	25	75					100							
CAT3	25	75					100							
ESE	25	75					100							

20GEO14 - FRENCH LANGUAGE LEVEL 2

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Fundamentals of French Language	5/6/7/8	HS	3	1	0	4

 Preamble
 This course is designed to assist students in developing vocabulary in accordance with the Common European Framework of Reference for Languages at the A2 level. This course will aid in the integration of basic grammar structures as well as the acquisition of vocabulary necessary to comprehend and respond in everyday circumstances. The learner will be able to develop a thorough comprehension of French grammar and confidently express themselves in everyday circumstances.

 Unit - I
 French and You:
 12

Habits, Strengths & Weakness, Recommendations, Sentiments, Motivations, about favorite films and Types of screens in the movie world, Verbs (Regulars and irregulars), Reflexive Verbs, Prepositions

Unit - II Eat and Repeat:

Favorite foods, Recopies, Types of meals, Describing House and Kitchen, Presentation of the recipe, Comparatives, Possessive pronouns, Present continuous tense, Simple conditional form

Unit - III Vacation:

Invitations, presentation, Greetings, Goodbyes, Activities on vacation, past experiences, Describing favorite place, Recommendations on various tours, Past perfect, Past imperfect tense

Unit - IV Likes and Views:

Favorite persons & things, Giving advice, Experience, Moods, Illness, Discomforts, Symptoms, Roleplay (Doctor & Patient, Guide & Tourist, Pharmacist & Patient), Past perfect, Past indefinite, Imperative

Unit - V Then and Now:

Habits, customs, circumstances of the past and present, Debates on past and present situations and feelings. Past imperfect tense, Past perfect and Present comparatives.

TEXTBOOK:

1. A2 – Saison

REFERENCES:

1.	Apprenons les francais – 0 and 1
2.	Grammaire – langue et de civilization francaises – Mauger G
3.	.Les idees – 0 and 1

12

12

12

12

Total:60

	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the French language in deep and its usage	Remembering (K1)
CO2	preparation of their Favorite recipes, Know the Objects used in Kitchen and house.	Understanding (K2)
CO3	converse about their vacation, their Favorite Destination	Understanding (K2)
CO4	understand complex verbs and be able to communicate about their past experiences	Understanding (K2)
CO5	know the difference between Past and Present and Compare them.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Slight 2	– Mode	arata 3		stantial	BT- B	loom's	Tayon	-mv						

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	75	25					100						
CAT2	25	75					100						
CAT3	25	75					100						
ESE	25	75					100						

20GEO15 - FRENCH LANGUAGE LEVEL 3

Programm Branch	e&	All Engineering courses	Sem.	Category	L	т	Р	Credit			
Prerequisi	tes	Fundamentals of French Language	5/6/7/8	HS	3	0	0	3			
Preamble	improv gives y all of t	burse gives knowledge regarding a variety of pers ring vocabulary and speaking abilities to reply to you the ability to articulate yourself and arrange a he essential grammatical structures needed to re gives you an idea of how Natives communicate.	and seel	k information	in the everan	ose se ce, on	ttings. e can	. It also master			
Unit - I	Start Over:										
		s, Discuss a day in life, work, problems in the vetical situations, Imperfect and future tense.	vorld, Pre	dictions abo	ut the	future	(actio	ons and			
Unit - II	Prohib	bitions and More:						9			
		ations, Habits to change, social customs, Use of t ife, Debate on books vs movies, usage of connecto					of Mo	vie and			
Unit - III	Let's b	be Creative:						9			
		escribing the problem, talk about desires and Ne Create an Advertisement, Give Instructions, Impera									
Unit - IV	Travel	and Communication:						9			
		Types of tourism and communication, Send mess and Guide, Tourists and Travel agents), Past Plus				e on tl	ne tele	ephone,			
Unit - V	Let's 1	Falk:						9			
		rests, Sentiments, Feelings, Sensations, Manias e ives, Exclamatory phrases, subjunctives.	etc. Certai	n suggestion	s to m	ake a	bettei	r future,			

Total:45

TEXT BOOK:

1. B1 – Saison

1. Apprenons les francais – 0 and 1	
2. Grammaire – langue et de civilization francaises – Mauger G	
3. Les idees – 0 and 1	

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	learn on Future tense.	Remembering (K1)
CO2	understand Permissions and Prohibitions.	Understanding (K2)
CO3	know about Letter writing, Creating Ads, Expressing Desires, and Instructing Others.	Understanding (K2)
CO4	understand rules for travel and Enhancing communications.	Understanding (K2)
CO5	express the feelings and emotions using advanced grammar	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Sliaht, 2	– Mode	erate. 3	– Subs	stantial	BT-B	loom's	Taxon	omv						

1 – Slight, 2 – Moderate, 3 – Substantial, B1- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	75	25					100				
CAT2	25	75					100				
CAT3	25	75					100				
ESE	25	75					100				

20GEO16 - SPANISH LANGUAGE LEVEL 1

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Fundamentals of Spanish Language	5/6/7/8	HS	3	1	0	4

Preamble	This course provides a foundation of the Spanish language as well as an understanding of the Spanish
	culture and lifestyle of Spain and other Spanish-speaking nations. The student will be learning how to
	introduce him/herself and acquire basic everyday vocabulary. By following the structured curriculum and
	practicing the same as per the learning process, one can comprehend the structure of sentences and
	respond to basic communications.

Unit - I Greetings and Good byes (Los Saludos y Despidirse):

Greetings,Self-Introduction, Formal and Informal ways of introducing oneself and others, Alphabets& Numbers, Countries and Languages Spoken, Parts of Grammar – Noun, Personal Pronoun, Describe surroundings and its vocabulary

Unit - II Vida Cotidiana (Daily Life):

Time of the day, Days of the week, Months of the year, Seasons, Verb (To be, To Have), Adverbs, Likes and Dislikes, Personality and physical description, simple sentences

Unit - III Friends and Family (Amigos y La Familia):

Vocabulary of family, Animals, Professions, Parts of the body, Opinions on family cultures, Articles – Definite and Indefinite, Hobbies, Regular and Irregular verbs.

Unit - IV In the City (En la Cuidad):

Buildings in the city, Name of the places, asking for directions, Helping each other, Description of house and its components, Modes of Transport, Grammar - Possessive articles, prepositions

Unit - V Food and Culture(La comida y cultura):

Food (types and varieties), shopping, ordering at a restaurant, inviting to parties, Roleplay (as diner and customer, salesman and customer...etc.) Past tense (all three tenses-Past Participle, Indefinite past and past imperfect- (to be and to have)

Total:60

12

12

12

12

12

TEXT BOOK:

1. Chicos Chicas Libro de Alumno nivel 1, Ma Angeles Palomino , edelsa, GRUPO DIDASCALIA, S.A., plaza cuidad de salta, 3-28043 MADRID(ESPANA).

REFERENCES:

1. <u>https://nuevadelhi.cervantes.es/en/spanish_courses/students/spanish_general_courses/spanish_courses_level_a1.htm</u>

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the grammatical structure of the language and introduce self to others.	Remembering (K1)
CO2	understand basic verbs and appropriate vocabulary.	Understanding (K2)
CO3	ask for directions and arrange for transportation, etc, as needed.	Understanding (K2)
CO4	understand the food habits of Spain and Latin countries and ask for appointments	Understanding (K2)
CO5	learn to socialize in Spanish speaking countries	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy						

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	75	25					100				
CAT2	25	75					100				
CAT3	25	75					100				
ESE	25	75					100				

20GEO17 - SPANISH LANGUAGE LEVEL 2

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fundamentals of Spanish Language	5/6/7/8	HS	3	1	0	4

Preamble This course aims to help the Learner to acquire the vocabulary as per the framework of Spanish language A2 level competence. This course will help to assimilate the basic grammar structures and gain vocabulary to understand and reciprocate in daily life situations on a broader sense. A thorough learner will be able to gain a comprehensive understanding of the Spanish grammar and confidently articulate in day today situations.

Unit - I Spanish and You (El Español y tú):

Habits, Strengths & Weakness, Recommendations, Sentiments, Motivations, About favorite films and Types of screens in the movie world, Verbs(Regulars and irregulars), Reflexive Verbs, Prepositions

Unit - II Eat and Repeat (Comer y repetir):

Favorite foods, Recipies, Types of meals, Describing House and Kitchen, Presentation of recipe, Comparatives, Possessive pronouns, Present continuous tense, Simple conditional form

Unit - III Its Vacation Time (Tiempo de vacaciones):

Invitations, presentation, Greetings, Goodbyes, Activities on vacation, past experiences, Describing favorite place, Recommendations on various tours, Past perfect, Past imperfect tense, Usage of Todavia or No

Unit - IV Likes and Views (Gustasyvistas):

Favorite persons & things, Giving advices, Experience, Moods, Illness, Discomforts, Symptoms, Roleplay (Doctor & Patient, Guide & Tourist, Pharmacist & Patient), Past perfect, Past indefinite, Imperative

Unit - V Then and Now(Antes y Ahora):

Habits, customs, circumstances of the past and present, Debates on past and present situations and feelings. Past imperfect tense, Past perfect and Present comparatives.

TEXT BOOK:

. AULA INTERNACIONAL 2 (A2), Jaime Corpas, Agusin Garmendia, Nuria Sanchez, Carmen Soriano Goyal Publishers and Distributors Pvt LTD, 86, UB Jawahar Nagar, Kamla Nagar, Delhi-110007.

REFERENCES:

1. <u>https://nuevadelhi.cervantes.es/en/spanish_courses/students/spanish_general_courses/spanish_courses_level_a1.htm</u>

12

12

12

12

12

Total:60

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the Spanish language in deep and its usage	Remembering (K1)
CO2	preparation of their Favorite recipes, Know the Objects used in Kitchen and house.	Understanding (K2)
CO3	converse about their vacation, their Favorite Destination	Understanding (K2)
CO4	understand complex verbs and be able to communicate about their past experiences	Understanding (K2)
CO5	know the difference between Past and Present and Comparing them.	Understanding (K2)

				N	lappin	g of CO	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Slight, 2	 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy 													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	75	25					100					
CAT2	25	75					100					
CAT3	25	75					100					
ESE	25	75					100					

20GEO18 - SPANISH LANGUAGE LEVEL 3

Programme & Branch	All Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Fundamentals of Spanish Language	5/6/7/8	HS	3	0	0	3

Preamble This course provides enriching information about various everyday situations in personal and professional life and enhances the vocabulary and speaking ability to respond to and also seek information in those situations. It also equips one to express opinions and negotiate appointments. With diligent learning one can capture all basic grammatical structure to answer confidently in everyday situations. It almost gives a basic idea on how Natives speak.

Unit - I Start Over(Volver a Empezar):

Use of periphrases, Discuss a day in life, work, problems in the world, Predictions about future (actions and situations), Hypothetical situations, Imperfect and future tense.

Unit - II Prohibitions and More(Prohibiciones y mas):

Prohibitions, Obligations, Habits to change, social customs, Use of subjunctive, Describe synopsis of Movie and its relation to real life, Debate on books vs movies, usage of connectors, Object Direct and Indirect.

Unit - III Let's be Creative (Seamos creatives):

Write a letter by describing the problem, talk about desires and Necessities, propose solutions, Recommendations and Suggestions, Create an Advertisement, Give Instructions, Imperative negative, Use of Object Direct and Indirect.

Unit - IV Travel and Communication (Viajar y comunicar):

Talk about Tours, Types of tourism and communication, Send messages, petitions, Talk to people on telephone, Role play(Tourists and Guide, Tourists and Travel agents), Past Pluscumperfect, All Past tenses.

Unit - V Let's Talk(Hablemos):

Expression of Interests, Sentiments, Feelings, Sensations, Manias etc. Certain suggestions to make a better future, use of superlatives, Exclamatory phrases, subjunctive.

TEXT BOOK:

AULA INTERNACIONAL 3 (B1) [Paperback] Jaime Corpas, Agusin Garmendia, Nuria Sanchez, Carmen Soriano Goyal Publishers and Distributors Pvt LTD, 86, UB Jawahar Nagar, Kamla Nagar, Delhi-110007.

REFERENCES:

1. <u>https://nuevadelhi.cervantes.es/en/spanish_courses/students/spanish_general_courses/spanish_courses_level_a1.htm</u>

9

9

9

9

9

Total:45

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	learn on Future tense.	Remembering (K1)
CO2	understand about Permissions and Prohibitions.	Understanding (K2)
CO3	know about Letter writing, Creating Ads, Expressing Desires and Instructing Others.	Understanding (K2)
CO4	understand rules for travel and Enhance communications.	Understanding (K2)
CO5	express the feelings and emotions using advanced grammar	Understanding (K2)

				N	lappin	g of C	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1								1	2	3		3		2
CO2								1	2	3		3		2
CO3								1	2	3		3		2
CO4								1	2	3		3		2
CO5								1	2	3		3		2
1 – Slight, 2	 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy 													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	75	25					100					
CAT2	25	75					100					
CAT3	25	75					100					
ESE	25	75					100					

20GEO19 - ENTREPRENEURSHIP DEVELOPMENT

(Offered by Department of Mechatronics Engineering)

Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Economics and Management for Engineers	6	EC	3	0	0	3

Preamble The purpose of this course to create entrepreneurial awareness among engineering students.

Unit - I Entrepreneurship Concepts:

Entrepreneurship & Entrepreneur- Role in Economic Development - Factors affecting Entrepreneurship- Creativity and Innovation - Entrepreneurship vs Intrapreneurship- Entrepreneurial Motivation factors – Types of Entrepreneurship & Entrepreneurs - Characteristics of Entrepreneurs - Entrepreneurship Development in India

Unit - II Entrepreneurial Ventures and opportunity assessment:

New venture creation – Bootstrapping, Minipreneurship, Start-ups, Acquiring, Franchising & Social venturing - Venture development stages - Models of market opportunity- Opportunity assessment: Critical Factors In Opportunity Assessment, Idea vs Opportunity, Evaluation process, Global opportunities for entrepreneurs.

Unit - III	Business Plan:	9
Designing	Business Model- Business Model Canvas- Objectives of a Business Plan - Business Planning Process	; -

Designing Business Model- Business Model Canvas- Objectives of a Business Plan - Business Planning Process – Structure of a Business Plan – Technical, Marketing, Financial Feasibility assessment - Competitive analysis -Common errors in Business Plan formulation - Presentation of the Business Plan: The 'Pitch'- case studies

Unit - IV Financing and accounting:

Forms of entrepreneurial capital – Sources of Financial capital: debt financing- Commercial banks and other sources, equity financing: Initial Public offering (IPO), Private placement - Venture capitalists - Angel investors-New forms of financing: Impact investors, Micro-financing, Peer-to-Peer Lending, Crowd funding - Natural capital. Preparing Financial Budget, Break even analysis, Taxation-Direct and indirect taxes, Insolvency and Bankruptcy.

Unit - V Small Business Management:

Definition of Small Scale Industries: Strengths and Weaknesses, Sickness in Small Enterprises: Symptoms -Causes and remedies- Indian Startup Ecosystem – Institutions supporting small business enterprises, Business Incubators – Government Policy for Small Scale Enterprises - Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger, FDI and Sub-Contracting

Total:45

9

9

9

9

TEXT BOOK:

1. Donald F. Kuratko,"Entrepreneurship: Theory, Process, Practice", 11th Edition, Cengage Learning, Boston, 2020. **REFERENCES:**

- 1. Robert D. Hisrich, Michael P. Peters & Dean A. Shepherd, Sabyasachi Sinha "Entrepreneurship", 11th Edition, McGraw Hill, Noida, 2020.
- 2. Charantimath Poornima .M, "Entrepreneurship Development and Small Business Enterprises", 3rd Edition, Pearson Education, Noida, 2018.
- 3. Gordon E & Natarajan K, "Entrepreneurship Development", 6th Edition, Himalaya Publishing House, Mumbai, 2017.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the importance of entrepreneurship and demonstrate the traits of an entrepreneur	Applying (K3)
CO2	identify suitable entrepreneurial ventures and business opportunity	Applying (K3)
CO3	assess the components of business plan	Analyzing (K4)
CO4	appraise the sources of finance and interpret accounting statements	Applying (K3)
CO5	interpret the causes of sickness of small scale enterprises and its remedies	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	1	1		3	2		1
CO2	1	2	2	2		2	2	1	1		3	2		2
CO3	2	2	2	2	2	2	2	2	2	2	3	2		1
CO4	1	1	2	1		2	1	1	1	2	3	2		1
CO5	1	1	2	1		2	1	1	1	2	3	2		1
1 – Slight, 2	 Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy 													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	30	30	20			100					
CAT3	30	30	40				100					
ESE	20	30	40	10			100					

20MAO01 - MATHEMATICAL FOUNDATIONS FOR MACHINE LEARNING

(Common to all Engineering and Technology Branches)

Programme & Branch	All Engineering and Technology branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

 Preamble
 To impart the basic knowledge in linear algebra, decomposition of matrices, continuous optimization, linear regression and support vector machines which provide the foundations for machine learning and deep learning.

 Unit - I
 Vector Spaces:
 9+3

Definition – Subspaces – Linear dependence and independence – Basis and dimension – Row space, Column space and Null Space – Rank and nullity.

Unit - II Linear Transformations:

Introduction - Kernel and range - Matrices of linear transformations - Change of basis - Rank and nullity.

Unit - III Inner Product Spaces:

Norms – Inner products – Length and Distance – Angle and Orthogonality – Orthonormal Basis – Gram-Schmidt Process – QR-Decomposition – Orthogonal Projection – Rotations.

Unit - IV Matrix Decomposition and Continuous Optimization:

Matrix Decomposition: Cholesky decomposition – Singular Value Decomposition. Continuous Optimization: Introduction – Unconstrained Optimization – Gradient Descent method – Constrained Optimization – Lagrange Multipliers method – Convex Optimization.

Unit - V Linear regression and Support Vector Machines:

Linear Regression: Parameter Estimation – Maximum Likelihood estimation – Bayesian linear regression. Support Vector Machines: Introduction – Linear and Non-linear Support vector machine – Margin and support vectors – Hard and Soft margins in Support vector machines – Kernels – Primal support vector machine – Dual support vector machine.

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

TEXT BOOK:

- 1. Howard Anton and Chris Rorres, "Elementary Linear Algebra", 11th Edition, John Wiley & Sons, New Delhi, 2014 for Units I, II & III.
- 2. M. P. Deisenroth, A. A. Faisal, and C. S. Ong, "Mathematics for Machine Learning", 1st Edition Cambridge University Press, 2019 for Units IV & V.

- 1. David C. Lay, Steven R. Lay, Judith McDonald, "Linear Algebra and its Applications", 5th Edition, Pearson Education, New Delhi, 2016.
- 2. EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine Learning series)", 4th Edition, MIT Press, USA, 2020.
- 3. R. O. Duda, E. Hart, and D.G. Stork, "Pattern classification", 2nd Edition, John Wiley & Sons, 2012.

	-	OUTCO etion of	DMES: the cou	ırse, the	e studer	nts will I	be able	to						BT Mapp ghest L		
CO1	unde	erstand	the co	ncepts	of vecto	r space	es.						Understanding (K2)			
CO2	appl	y the c	oncepts	s of line	ar mapp	oings in	machir	ne learr	ning.				A	oplying	(K3)	
CO3												atrix by	Understanding (K2)			
CO4			knowled and clas				of matri	ices ar	nd optir	nizatior	techni	ques in	A	oplying	(K3)	
CO5	desc	cribe th	e conce	epts of p	barame	ter estir	nation a	and sup	port ve	ctor ma	chine.		Unde	erstandii	ng (K2)	
						Mappir	ng of C	Os with	h POs a	and PS	Os					
COs/ s	-	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO)1	3	1													
CO)2	3	1													
CO)3	3	2													
CO)4	4 3 3 1 1 1														
СО	CO5 3 2 2 1															
1 – SI	light,	2 – Mo	derate,	3 – Su	bstantia	al, BT- E	Bloom's	Taxon	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	50	40				100							
CAT2	10	20	70				100							
CAT3	10	20	70				100							
ESE	5	25	70				100							

20MAO02 - GRAPH THEORY AND ITS APPLICATIONS

(Common to all Engineering and Technology branches)

Programme & Branch	All Engineering and Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

Preamble	To develop rigorous logical thinking and analytical skills by graph theoretic concepts which helps for solving real time engineering problems in networks, computer architecture, compiling techniques, model
	checking, artificial intelligence, software engineering, expert systems, software/hardware correctness problem.

Unit - I Graphs:

Introduction – Definition – Types of graphs – Degree of vertex – Walk, path and cycle – Isomorphism – Connected graph – Hamiltonian graph – Euler graph – Digraph – Representations of graphs: Adjacency matrix – Incidence matrix.

Unit - II Trees:

Introduction – Properties of trees – Pendant vertices in a tree – Distances and centers in a tree – Rooted and binary trees – Spanning tree – Construction of spanning tree: BFS algorithm – DFS algorithm – Finding all spanning trees of a graph – Fundamental circuits.

Unit - III Graph Coloring:

Introduction – Properties of trees – Pendant vertices in a tree – Distances and centers in a tree – Rooted and binary trees – Spanning tree – Construction of spanning tree: BFS algorithm – DFS algorithm – Finding all spanning trees of a graph – Fundamental circuits.

Unit - IV Network Flows and Applications:

Flows and cuts in networks - Max-flow Min-cut Theorem – Transport networks –Residual capacity and Residual network – Ford-Fulkerson Algorithm – Edmonds-Karp Algorithm – Maximal Flow Applications: Multiple sources and sinks – Maximum Bipartite matching.

Unit - V Graph Theoretic Algorithms:

Shortest paths – Shortest path algorithms: Dijkstra's algorithm – Warshall's algorithm – The Chinese Postman Problem – Fleury's Algorithm – Travelling salesman problem – Minimum Spanning tree – Minimal spanning tree algorithms: Prim's algorithm – Krushkal's algorithm – Optimal assignment – Kuhn and Munkres algorithm.

TEXT BOOK:

- 1. NarsinghDeo, "Graph Theory with Applications to Engineering and Computer Science", 1st Edition, Dover Publications, New York, 2016, for Units I, II & III.
- S. Saha Ray, "Graph Theory with Algorithms and Its Applications in Applied Science and Technology", 1st Edition, Springer, London, 2013, for Units IV & V.

REFERENCES:

1.	. Douglas B West, "Introduction to Graph Theory", 2 nd Edition, Pearson Education, New Delhi, 2002.
2	Jonathan L. Gross and Jay Yellen, "Graph Theory and its Applications", 2 nd Edition, CRC Press, New York, 2006.

 J.A.Bondy and U.S.R. Murty ,Graph Theory and Applications , 5th Edition, Elsevier Science Publishing Co., Inc., New York,1982.

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

9+3

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)				
CO1	understand basic graph theoretic concepts.	Understanding (K2)				
CO2	CO2 intrepret the concepts the concepts of tress and its types.					
CO3	compute the Chromatic partition, Chromatic polynomial and Matching of a given graph.	Applying (K3)				
CO4	identify the maximal flow in network by means of algorithms.	Applying (K3)				
CO5	apply various graph theoretic algorithms to communication and network problems	Applying (K3)				

	Mapping of COs with POs and PSOs														
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS0														PSO2	
CO1	3	2	1												
CO2	3	1													
CO3	3	1													
CO4	3	2	1												
CO5	3	2	1												
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy							

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %												
CAT1	10	50	40				100						
CAT2	10	30	60				100						
CAT3	10	20	70				100						
ESE	10	35	55				100						

20MAO03 - DATA ANALYTICS USING R PROGRAMMING

(Common to all Engineering and Technology Branches)

Programme & Branch	All Engineering and Technology branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble To impart the basic knowledge in R and develop skills to apply the knowledge of R programming to statistical measures, data handling, probability, testing of hypothesis and design of experiments.

Unit - I Introduction to R:

Overview of R programming – Need for R – Installing R – Environment setup with R Studio – Packages: Installing packages - Running and manipulating packages - Basic objects: Vectors - Matrix - Array - Lists - Factors - Data frames.

Unit - II **R Programming Structures and Functions:**

Basic expressions: Arithmetic expressions - Control Statements: if and if-else statements --- switch statement ---Loops: for loop – while loop – Function: Creating a function – calling a function – Default value for function arguments - Logical functions - Math functions - Statistical functions - Apply-family functions - Getting started with strings -Formatting data and time.

Unit - III **Descriptive Statistics:**

Summary command – Summarizing samples – cumulative statistics – summary statistics for data frames – summary tables - Linear Modeling: Simple linear regression - Multiple regression - Curvilinear regression - Plotting linear models and curve fitting.

Unit - IV Working with data:

Reading and writing data: Text-format in a file - Excel worksheets - Native data files - built-in datasets. Visualizing data: Scatter plots - line plots - bar charts - pie charts - Cleveland dot charts - Histogram and density plots - Boxwhisker plots.

Unit - V Probability Distributions, Testing of hypothesis and ANOVA:

Probability Distributions: Binomial Distribution – Poisson Distribution – Normal Distribution. Testing of Hypothesis and ANOVA: Student's t-test – Non-Parametric tests: Wilcoxon U-test – Paired t and U-tests – Correlation and covariance – Tests for association – Analysis of variance: One-way ANOVA – Two-way ANOVA.

Total: 45

9

9

9

9

TEXT BOOK:

- 1. Kun Ren, "Learning R Programming", 1st Edition, Packt Publishing Ltd, UK, 2016, for Units I, II.
- 2. Mark Gardener, "Beginning R-The Statistical Programming Language",1st Edition, John Wiley & Sons Inc., USA, 2012 for Units III, IV & V.

- 1. Seema Acharya, "Data Analytics using R", 1st Edition, McGraw Hill Education, Chennai, 2018.
- 2. Norman Matloff, "The Art of R Programming", 1st Edition, No Starch Press, San Francisco, 2011.
- 3. Paul Teetor, "R Cookbook", 1st Edition, O'Reilly Media, USA, 2011.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)					
CO1	understand the basics of fundamentals of R.	Understanding (K2)					
CO2	CO2 understand the concepts of decision, looping structures and functions.						
CO3	apply R programming to descriptive statistics.	Applying (K3)					
CO4	apply the libraries for data manipulation and data visualization in R.	Applying (K3)					
CO5	use R studio to identify the probability and test statistical hypothesis.	Applying (K3)					

	Mapping of COs with POs and PSOs														
COs/POs P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS0															
CO1	3	1	1												
CO2	CO2 3 1 1 2														
CO3	3	2	2	2	2										
CO4	3	3	2	3	2										
CO5	3	2	2	3	2										
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy							

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	50				100
CAT2	10	20	70				100
CAT3	10	20	70				100
ESE	10	20	70				100

20MAO04 - NUMBER THEORY AND CRYPTOGRAPHY

(Common to all Engineering and Technology branches)

Programme & Branch	All Engineering and Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble	To provide the skills for applying various number theoretic algorithms, congruences, primality tests cryptography and network security and impart knowledge of basic cryptographic techniques.	s in
Unit - I	Divisibility Theory and Canonical Decompositions:	9
	gorithm- Base-b representations – number patterns – Prime and composite numbers – Fibonacci a bers – Fermat numbers – GCD – Euclidean Algorithm – Fundamental theorem of Arithmetic – LCM.	and
Unit - II	Theory of Congruences:	9
	cepts – Properties of congruences – Linear congruences – Solution of congruences – Fermat's Li Euler's theorem – Chinese remainder theorem.	ittle
Unit - III	Number Theoretic Functions:	9
	n – Functions τ and σ – Mobius function – Greatest integer function – Euer's Phi function – Euler's theory is of Euler's function – Applications to Cryptography.	em
Unit - IV	Primality testing and Factorization:	9
	esting: Fermat's pseudo primality test – Solvay-Strassen test – Miller-Rabin test – Fibonacci test – Luc Jer factorization: Trial division – Pollard's Rho method – Quadratic sieve method.	cas
Unit - V	Classical Cryptographic Techniques:	9
	n – Substitution techniques – Transposition techniques – Encryption and decryption – Symmetric a c key cryptography – Steganography.	and

Total: 45

TEXT BOOK:

- 1. Thomas Koshy, "Elementary Number Theory with Applications", 2nd Edition, Academic Press, Elsevier, USA, 2007, for Units I,II,III.
- 2. William Stallings, "Cryptography and Network Security: Principles and Practice", 7th Edition, Pearson Education, New Delhi, 2019, for Units IV,V.

- 1. Ivan Niven, Herbert S. Zukerman, Hugh L. Montgomery, "An Introduction to the Theory of Numbers", Reprint Edition, John Wiley & Sons, New Delhi, 2008.
- 2. Bernard Menezes, "Cryptography and Network Security", Cengage Learning India, 1st Edition, New Delhi, 2010.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand the concepts of divisibility and canonical decompositions	Understanding (K2)
CO2	obtain the knowledge in theory of congruences and solution of linear congruences.	Understanding (K2)
CO3	use different number theoretic function suitably in cryptography.	Applying (K3)
CO4	apply Primality test and factorisation algorithms to network security problems.	Applying (K3)
CO5	apply the suitable cryptographic techniques to handle real time security issues.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2												
CO2	3	1												
CO3	3	1												
CO4	3	2	1		2									
CO5	3	2	1		2									
1 – Slight, 2	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	10	20	70				100
CAT3	10	20	70				100
ESE	10	20	70				100

20MAO05 - ADVANCED LINEAR ALGEBRA

(Common to all Engineering and Technology branches)

Programme & Branch	All Engineering and Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Ū	nit - I	Linear Equations:		9
		real time engineering problems and impart knowledge of vector spaces.		
P		To provide the skills for solving linear equations, decomposition of matrices and linear transformation	ons i	n

System of linear equations – Row reduction and echelon forms – Vector equations – Matrix equations – Solution sets of linear systems – Applications of Linear systems: Matrix operations – inverse of a matrix, Matrix factorization – Applications to computer graphics.

Unit - II Vector Spaces:

Definition – Subspaces – Linear independence – Basis and dimension – Row space, Column space and Null Space – Rank and nullity.

Unit - III Inner Product Spaces:

Inner products – Angle and Orthogonality in inner product spaces – Orthonormal Bases – Gram-Schmidt Process – QR-Decomposition – Orthogonal Projection – Least square technique.

Unit - IV Linear Transformations:

General linear transformation – Kernel and range – Matrices of linear transformations – Change of basis – Rank and nullity.

Unit - V Quadratic form and Matrix Decomposition:

Quadratic forms – Quadratic surfaces – Hermitian, Unitary and Normal matrices – LU decomposition – Singular value decomposition.

Total: 45

9

9

9

9

TEXT BOOK:

1. Howard Anton and Chris Rorres, "Elementary Linear Algebra", 11th Edition, John Wiley & Sons, New Delhi, 2014.

REFERENCES:

1. David C. Lay, Steven R. Lay, Judith McDonald, "Linear Algebra and its Applications", 5th Edition, Pearson Education, New Delhi, 2016.

2. Gareth Williams, "Linear Algebra with Applications", 9th Edition, Jones & Bartlett Publishers, Canada, 2017.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concepts of matrices and vectors in solving the system of linear equations.	Applying (K3)
CO2	understand the concept of vector spaces.	Understanding (K2)
CO3	apply the concept of inner product spaces in orthogonalization.	Applying (K3)
CO4	apply the concepts of linear transformation to engineering problems	Applying (K3)
CO5	apply the knowledge of quadratic forms and matrix decompositions in practical problems	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	1												
CO3	3	1	1											
CO4	3	2	1											
CO5	3	2	2											
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	70				100
CAT2	10	40	50				100
CAT3	10	20	70				100
ESE	10	30	60				100

20MAO06 - OPTIMIZATION TECHNIQUES

(Common to all Engineering and Technology branches)

Programm Branch	ie &	All Engineering and Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisi	tes	Nil	8	OE	3	0	0	3
Preamble		ovide the skills for solving the real time engined ms and also impart knowledge in project managem					nd no	n-linear
Unit - I	Linear	Programming:						9
	ing mod	rmulation of Linear Programming Problem – els – Standard form of LPP – Graphical Method – S						Linear niques –
Unit - II	Trans	portation and Assignment problems:						9
Degenerad	y – Unb	od – Least Cost Method – Vogel's approximation alanced transportation problem – Maximization trar em: Mathematical model of Assignment problem -	nsportati	on problem.				
Unit - III	Theory	y of Games:						9
		sum game – Pure strategies - Game with mixed c method – Matrix method – Graphical method.	strateg	ies – Rules	of Do	minano	ce – 3	Solution
Unit - IV	Netwo	rk Scheduling:						9
		network Scheduling – Construction of network of events of the technique – Project crashing – Time-cost trade			ath me	ethod -	- Pro	gramme
Unit - V	Non-L	inear Programming:						9
		 –linear programming problem – Constrained optin rained optimization with inequality constraints. 	nization	with equality	constra	aints –	Kuhn	-Tucker

Total: 45

TEXT BOOK:

1. Hamdy A. Taha, "Operations Research: An Introduction", 10th Edition, Dorling Kindersley, Pvt. Ltd, Uttar Pradesh, 2016.

- 1. Sharma J.K, "Operations Research Theory and Applications", 4th Edition, Macmillan Publishers India Ltd, New Delhi, 2009.
- 2. Gupta P.K. and Hira D.S., "Operations Research: An Introduction", 6th Edition, S.Chand and Co. Ltd., New Delhi, 2008.
- 3. KantiSwarup, Gupta P.K. and Man Mohan, "Operation Research", 14th Edition, Sultan Chand & Sons, New Delhi, 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve linear programming problems.	Applying (K3)
CO2	apply transportation algorithms in engineering problems	Applying (K3)
CO3	use assignment and game theory concepts in practical situations	Applying (K3)
CO4	handle the problems of Project Management using CPM and PERT	Applying (K3)
CO5	solve various types of Non-linear Programming problems	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	1	1											
CO3	3	1												
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	20	70				100					
CAT2	10	20	70				100					
CAT3	10	20	70				100					
ESE	10	20	70				100					

20PHO01 - THIN FILM TECHNOLOGY

(Common to all Engineering and Technology branches)

Programm Branch	ne &	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequis	ites	Nil	4	OE	3	1	0	4
Preamble		purse aims to impart the essential knowledge on dep n various engineering fields, and also provides motiva				id app	licatio	n of thin
Unit - I	Theori	ies and models of thin film growth:						9+3
model - Th	e atomis	ories of thin film nucleation: Impingement, Adsorption stic models - Structural consequences of thin film nu fects during growth.						•
Unit - II	Vacuu	ım technology:						9+3
Cryogenic	pump,	ing of vacuum pumps: Roots vacuum pump, Rotary p lon pump, Ti-sublimation pump - Measurement of old cathode and hot cathode ionization gauges - Pre	of Pres	sure: Bayet-	Albert	gaug	e, Pir	• • •
Unit - III	Depos	ition of thin films - Physical methods:						9+3
	– Magn	on – Electron beam evaporation – Pulsed laser de etron sputtering – Reactive sputtering - Molecular b uttering.						
Unit - IV	Depos	sition of thin films – Chemical methods:						9+3
		eposition – Sol-gel method - Chemical bath deposit oless deposition - Spray Pyrolysis - Spin coating.	ion - H	lydro thermal	methe	ods –	Electr	oplating
Unit - V	Chara	cterization and Applications of thin films:						9+3
Microscope	e, X-ray	K-ray diffraction, Energy dispersive X-ray analysis, A Photoemission Spectroscopy, UV-vis spectroscop	by and	Four probe	resist	ivity –	- Ăpp	lications

(qualitative): Thin film solar cells, Thin film gas sensors, Thin films for information storage and Optical coatings.

Lecture: 45, Tutorial: 15, Total: 60

TEXT BOOK:

- 1. Maissel L.I. and Glang R, Hand book of Thin Film Technology, Reprint, McGraw Hill Inc., New York, 1970 for Units I, II, III & IV.
- 2 Sam Zhang, Lin Li and Ashok Kumar, Materials Characterization Techniques, 1st edition, CRC Press, Boca Raton, 2008, for Unit V.

1.	Ohring M, Material Science of Thin Films, 2nd Edition, Academic Press, New Jersey, 2001
----	---

- 2. Goswami A, Thin Film Fundamentals, Reprint, New Age International (P) Ltd, New Delhi, 2003
- 3. Chopra K. L, Thin Film Phenomena, Illustrated, McGraw Hill Inc., New York, 1969

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Utilize the appropriate theory and models to comprehend the thin film growth process.	Applying (K3)
CO2	Apply the principle of vacuum pump to explain select methods to create vacuum and to make use of the principle of vacuum gauge to explain the measurement of vacuum by select methods.	Applying (K3)
CO3	Describe the deposition of thin films by select physical methods using the principle of working of respective methods.	Applying (K3)
CO4	Explain the deposition of thin films by select chemical methods using the principle of working of respective methods.	Applying (K3)
CO5	Make use of select characterization techniques to comprehend the properties of thin films and also to illustrate the various device applications of thin films.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20PHO02- HIGH ENERGY STORAGE DEVICES

(Common to all Engineering and Technology branches)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble This course aims to impart the essential knowledge on the fundamental principles and application areas of proven technologies and materials for energy storage solutions, together with an overview of development trends in this engineering field.

Unit - I Introduction to Energy Storage:

An overview of energy storage systems (qualitative): Thermal Energy Storage, Mechanical Energy Storage, Chemical Energy Storage, Electrical Energy Storage, Electrochemical Energy Storage, Electrostatic Energy Storage, Magnetic Energy Storage and Optical Energy Storage – General criteria of energy storage systems - Conventional batteries: fundamentals and applications - Grid connected and Off grid energy storage systems and requirements.

Unit - II Thermal storage and Mechanical Storage:

Thermal storage: Thermal properties of materials, Principle of operations, Efficiency factors, Large scale and Medium scale operations - Merits and demerits of thermal storage system - Recent development in thermal storage systems. Mechanical Storage: Types of mechanical storage systems, Principle of operations, Emerging advances and technologies in mechanical storage systems - Flywheel.

Unit - III Magnetic storage, Electro-optic and Optical storage:

Magnetic storage: Principle of operation, Emerging challenges and a review on devices and technology. Electro-optic and Optical storage: Principles of operation, Device fabrication, Emerging devices and Upcoming technologies.

Unit - IV Electrochemical Storage:

Materials, Principle of Operation, Positive electrode materials, negative electrode materials, electrolytes. Li-ion batteries: Principle of operation, Battery components, design of Electrodes, Cell and battery fabrications - Building block cells - Battery modules and packs - Li-polymer batteries – Applications - Future developments: Sodium-battery, Magnesium battery, Aluminum battery and Silicon battery.

Unit - V Fuel Cells, Hydrogen storage and Super capacitors:

Fuel Cells: Introduction to fuel cells, PEM (polymer electrolyte membrane), Hydrogen PEM fuel cell, Direct Methanol fuel cell, Alkaline fuel cells and Solid oxide fuel cells. Hydrogen storage systems: Solid state hydrogen storage tanks, Gas phase hydrogen storage tanks, Cryogenic hydrogen storage tanks, and Liguid phase hydrogen storage tanks. Super capacitors: Features of super capacitors, Basic principle of operation, Performance and technologies of super capacitors.

TEXT BOOK:

- 1. Robert A. Huggins, Energy Storage, Springer, 2010, (Unit I V)
- Ehsani, Y. Gao, S. Gay, A. Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles, CRC Press, New 2 York, 2005 (Unit 1- V)

REFERENCES:

1. Yuping Wu, Lithium-Ion Batteries: Fundamentals and Applications(Electrochemical Energy Storage and Conversion), CRC Press, United Kingdom, 2015

2. Trevor M. Letcher, Storing Energy: with Special Reference to Renewable Energy Sources, Elsevier, 2016

3. D. Linden and T. S. Reddy, Handbook of Batteries, McGraw Hill, Newyork, 2002

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

- 9+3

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Utilize the appropriate concepts and models to comprehend the basics of energy storage systems.	Applying (K3)
CO2	Apply the principle of thermal and mechanical storage systems to explain the working and the recent advancements in thermal and mechanical storage systems.	Applying (K3)
CO3	Ultilize the principle of operation of magnetic storage systems, electro-optic and optical storage systems to illustrate the respective device fabrication techniques.	Applying (K3)
CO4	Explain the principle of operation of electrochemical storage device and materials used, and to elucidate the construction and working of various types of high energy storage batteries.	Applying (K3)
CO5	Make use of various techniques to construct different types of fuel cells and to explain the advanced techniques involved in hydrogen storage systems and also to explain the principle and working of super capacitors.	Applying (K3)

				Ν	Mappin	g of C	Os witl	n POs	and PS	Os				
COs/Pos	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20PH003 - STRUCTURAL AND OPTICAL CHARACTERIZATION OF MATERIALS (Common to all Engineering and Technology branches)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble This course aims to impart the essential knowledge on the characterization of materials using X-ray diffraction, Raman spectroscopy, UV-visible spectroscopy, Electron microscopy and Scanning tunneling microscopy and their application in various engineering fields, and also provides motivation towards innovations.

Unit - I Introduction to Characterization Techniques and X-Ray Diffraction:

Importance of materials characterization - Classification of characterization techniques - Crystalline materials - Reciprocal lattice - Theory of X-ray diffraction - Powder and Single crystal X-ray diffraction: Instrumentation (qualitative), XRD pattern, Systematic procedure for structure determination (qualitative), Crystallite size determination, Strain calculation - Applications of X ray diffraction measurements.

Unit - II Electron Microscopy:

Need of electron microscopy - Electron specimen interaction: Emission of secondary electrons, Backscattered electrons, Characteristic X-rays, Transmitted electrons, Specimen interaction volume - Resolution - Scanning electron microscope and Transmission electron microscope: Schematic diagram, Short details of each component and working – Field emission scanning electron microscope – Different types of filaments - Wavelength dispersive x-ray analysis – Three parameter equation for quantitative composition analysis.

Unit - III Scanning Tunneling Microscopy:

Introduction to quantum mechanical tunneling - Basic principles of scanning tunneling microscopy - Two modes of scanning - Interpreting scanning tunneling microscopic images -Applications of scanning tunneling microscopy.

Unit - IV Raman Spectroscopy:

Introduction – Pure rotational Raman spectra – Vibrational Raman spectra – Polarization of light and Raman effect – Structure determination – Instrumentation – Near-Infra-Red FT Raman Spectroscopy.

Unit - V Ultra Violet &Visible Spectroscopy:

Regions of UV-Visible radiation - Colour and light absorption - The chromophore concept - Beer's and Lambert's laws – Theory of electronic transition - Frank Condon principle – Instrumentation and Working of UV vis spectrometer - Applications of UV visible spectroscopy.

TEXT BOOK:

Total: 45

g

9

9

9

9

- 1. Cullity B. D. and Stock S. R, Elements of X-ray diffraction, 3rd Edition, Pearson Education, India, 2003 (Unit I)
- 2 Banwell C. N, McCash E. M, Choudhury H. K, Fundamentals of Molecular Spectroscopy, 5th Edition, Tata McGraw-Hill Publ., New Delhi, 2013 (Unit II-V)

- 1. Holt D. B. and Joy D. C, SEM micro characterization of semiconductors, 1st Edition, Academic Press, New Delhi, 1989
- 2. Willard H. H., Merritt L. L., John A Dean, and Settle Jr. F. A, Instrumental methods of Analysis 7th Edition, Wadsworth Publishing Company, United States, 1988
- 3. Elton N. Kaufman, Characterization of Materials (Volume1&2), 2nd, Wiley-Interscience, New Jersey, 2012

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Apply the concept of X-ray diffraction to determine the crystal structure and related structural parameters of materials.	Applying (K3)
CO2	Determine the micro-structural parameters of materials and to perform surface analysis of materials using the concept of matter waves and electron microscopy.	Applying (K3)
CO3	Utilize the concept and phenomenon of quantum mechanical tunneling to interpret the surface image recorded at atomic level using scanning tunneling microscopy.	Applying (K3)
CO4	Make use of the concept of Raman effect and Raman spectroscopy to determine the crystal structure and related structural parameters of materials.	Applying (K3)
CO5	Apply the theory of UV-Vis spectroscopy to comprehend the working of UV-Vis spectrophotometer.	Applying (K3)

				Ν	Mappin	g of C	Os witl	h POs	and PS	SOs				
COs/Pos	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
I – Slight, 2	– Mode	erate, 3	– Sub	stantial	, BT- B	loom's	Taxon	omy						

ASSESSMENT PATTERN - THEORY												
Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
20	40	40				100						
25	35	40				100						
30	30	40				100						
20	40	40				100						
2	(K1) % 20 25 30	(K1) % (K2) % 20 40 25 35 30 30	(K1) % (K2) % (K3) % 20 40 40 25 35 40 30 30 40	(K1) % (K2) % (K3) % (K4) % 20 40 40 25 35 40 30 30 40	(K1) % (K2) % (K3) % (K4) % (K5) % 20 40 40 40 25 35 40 40 30 30 40 40	(K1) % (K2) % (K3) % (K4) % (K5) % (K6) % 20 40 40 </td						

20CYO01 - INSTRUMENTAL METHODS OF ANALYSIS

(Common to all Engineering and Technology branches)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	OE	3	1	0	4

Preamble Instrumental methods of analysis aim to prepare the students to have all-encompassing knowledge of spectral methods in order to identify the molecules and reaction mechanism for the process to enhance application towards the industries.

Unit - I Absorption and Emission Spectroscopy:

Basic concepts of Absorption and Emission Spectroscopy – representation of spectra – basic elements of practical spectroscopy – signal to noise ratio - techniques for signal to noise enhancement – resolving power – Fourier transform spectroscopy – evaluation of results – basic principles, instrumentation and applications of Atomic Absorption, Atomic Fluorescence and Atomic Emission Spectroscopy.

Unit - II IR, Raman, and NMR Spectroscopy:

Infrared spectroscopy – correlation of IR Spectra with molecular structure, instrumentation, samplings technique and quantitative analysis. Raman Spectroscopy – Classical and Quantum theory instrumentation, Structural analysis and quantitative analysis. Nuclear magnetic resonance spectroscopy – basic principles – pulsed Fourier transform NMR spectrometer – elucidation of NMR spectra and quantitative analysis.

Unit - III Surface Studies:

Surface Study – X-Ray Emission Spectroscopy (XES), X- Ray Photo Electron Spectroscopy (XPS) - Auger Emission Spectroscopy (AES) - Transmission Electron Microscopy (TEM) - Scanning Electron Microscopy (SEM) - Surface Tunneling Microscopy (STEM) - Atomic Force Microscopy (AFM).

Unit - IV Mass spectroscopy:

Mass spectroscopy – Ionization methods in mass spectroscopy – mass analyzer – ion collection systems - correlation of molecular spectra with molecular structure. Instrumentation design and application of Fourier transform mass spectroscopy (FT-MS) and Ion microprobe mass analyzer (IMMA).

Unit - V Thermal analysis:

Thermal analysis: principles and instrumentations and applications of thermogravimetry (TGA), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), evolved gas detection, thermo mechanical analysis and Thermometric titration.

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

9+3

TEXT BOOK:

1. Chatwal. G. R., Anand, Sham K., "Instrumental Methods of Chemical Analysis" 5th Edition, Himalaya Publishing House, 2019.

- 1. B.K. Sharma, Instrumental Method of Chemical Analysis, Krishna Prakashan Media (P) Ltd. 2019.
- 2. Willard,H.H, Merritt,L.L, Dean,J.A, and Settle, F.A, "Instrumental methods of analysis" CBS Publishers & Distributors, 7 Ed, 2004.
- 3. Kaur. H, "Instrumental Methods of Chemical Analysis", XII Edition, Pragati prakashan, Meerat, 2018.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the basics of spectroscopy to understand the instrumentation of various spectral techniques	Understanding (K2)
CO2	apply the IR, Raman and NMR for quantitative analysis of the sample.	Applying (K3)
CO3	apply the various techniques for the better understanding of surface morphology	Applying (K3)
CO4	explain the principle, instrumentation of mass spectroscopy for the analysis of organic sample	Understanding (K2)
CO5	illustrate the thermal analysis for the identification of thermal stability of the compounds	Understanding (K2)

				ľ	Mappin	g of C	Os witl	h POs a	and PS	Os				
COs/Pos	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1												
CO5	3	1												
1 – Slight, 2	– Mode	erate, 3	– Sub	stantial	l, BT- B	loom's	Taxon	omy						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	25	35	40				100
ESE	25	35	40				100

20CYO02 - CORROSION SCIENCE AND ENGINEERING

(Common to all Engineering and Technology branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble Corrosion science and engineering aims to equip the students to have a wide-range knowledge of corrosion and prevention methods in order to meet the industrial needs.

Unit – I Corrosion and its Units

Localized corrosion: electro chemical mechanism Vs. chemical mechanism - emf Series and Galvanic series – Galvanic Corrosion – Area effect in anodic and cathodic metal coatings – prediction using emf Series and Galvanic series - pilling Bedworth's ratio and it consequences (Problems) – units corrosion rate – mdd (milligrams per square decimeter per day), mmpy (Millie miles per year) and mpy (Mils per year) – Importance of corrosion prevention in various industries: direct and indirect effects of corrosion

Unit - II Thermodynamics of corrosion

Electrode Potentials, Electrical Double Layer, Gouy-Chapman Model, Stern Model, Bockris – Devanathan-Müller Model - Free energy and oxidation potential criterion of corrosion (Problems) - Basis of Pourbaix Diagrams - Pourbaix diagrams of Water, Magnesium, Aluminium and Iron – Their and limitations–Methods of Determining Corrosion Rates - Weight Loss Method, Weight Gain Method and Chemical Analysis of Solution.

Unit - III Types of Corrosion

Introduction - (i) Crevice - differential aeration corrosion, (ii) pitting – mechanism, factors (iii) intergrannular- chromium depletion theory, weld decay and knife line attack, (iv) stress - SCC mechanism, and fatique- Cavitation damage – Fretting damage, (v) stray current corrosion - causes and its control.

Unit - IV Kinetics of Corrosion

Electrochemical Polarization – Evan's diagram – Activation polarization – Concentration polarization - Mixed potential theory(Wagner and Traud) – application of mixed potential theory – effect of Metal in acid solution – Cathodic protection of iron in acid solution – effect of cathodic reaction – effect of cathodic area – Passivity – Flade potential – Theories of Passivity - Adsorption theory – Oxide film theory – Film sequence theory.

Unit – V Prevention of Corrosion

Inhibitors – types of inhibitors, chemisorption of inhibitors, effect of concentration, effect of molecular structure, V.P. inhibitors – Prevention of corrosion at the design stage and in service conditions – control of catastrophic oxidation and Hydrogen disease – Langelier saturation Index and its uses - Corrosion prevention by surface coatings – Phosphating and its uses -Principles and procedures of cathodic protection: Sacrificial anodes and external cathodic current impression

TEXT BOOK:

Lecture: 45, Tutorial: 15, Total: 60

1. E. McCafferty, Introduction to Corrosion Science, 2nd Edition, Springer, 2017.

REFERENCES:

 R. Winston, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, Revie 4th Edition, Wiley publisher, 2008.

 Fontanna, "Corrosion Engineering", (Materials Science and Metallurgy series), McGraw Hill international Ed., 2005.

9+3 .

9+3

9+3

9+3

9+3

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
	illustrate the mechanism, expression of rate of corrosion and importance of corrosion studies to familiarize for industrial needs.	Understanding (K2)
	demonstrate the thermodynamics and kinetics of different models of corrosion with respect to the environment	Applying (K3)
CO3	organize the various types of corrosion to understand the corrosion problems	Applying (K3)
CO4	utilize the theories corrosion to interpret with the real time applications	Applying (K3)
CO5	summarize the corrosion prevention methods to avoid corrosion related issues	Understanding (K2)

				Ν	<i>l</i> lappin	g of C	Os witł	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	1												
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxon	omy						

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	35	40				100						
CAT2	25	35	40				100						
CAT3	25	35	40				100						
ESE	25	35	40				100						

20CYO03 - CHEMISTRY OF COSMETICS IN DAILY LIFE

(Common to all Engineering and Technology branches)

Programme& Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble This course aims to provide knowledge for engineering students on chemistry of cosmetics.

Unit 1 Formulation of Cosmetic Product

Introduction - basic sciences of cleansing – Surfactant and adsorption, Surfactant Micelles, Surfactants and Cleansing, Surfactants and Foam (foam formation, stability, drainage, Rupture and Collapse and defoaming) - Polymers in Cosmetics - Polymer Solubility and Compatibility, polymer conformation - Basics of Dispersions - Electrical Charges Associated With Surfaces and Barriers – Basics of emulsion (stability, Ostwald Ripening, Prevention of Creaming and Sedimentation).

Unit 2 Structuring Materials for cosmetics

Introduction - Water/Hydrophilic Base Materials, Oleaginous/Hydrophobic Base Materials and Amphiphilic Substances - Adding Functions and Effects - Materials That Add or Improve Functional Value, Emotional Value and Materials for Quality Control - Precautions on Cosmetic Ingredients - Future Challenges in Cosmetics Material Development.

Unit 3 Polymers in Cosmetic Products

Polymers that modify surfaces - Film-forming polymers in cosmetics and personal care products - Hair-conditioning polymers - Polymers for the treatment of skin - Polymers as controlled release matrices - Dendritic polymers - Polymeric antimicrobials and bacteriostats.

Unit 4 Powders and Fragrance in Cosmetics

Inorganic Pigments – extender pigment, coloured pigment, white pigment, pearlescent Pigments – organic pigments extender pigment, coloured pigment.

Fragrance – Introduction – natural products – aroma chemicals - fragrance creation and duplication - fragrance applications - encapsulation and controlled release – malodor - natural, green, organic, and sustainable fragrances.

Unit 5 Preparation of Cosmetics

Brief introduction of the following cosmetic preparation and a detailed study on their quality control: shampoo, tooth paste, skin powder, skin creams, hair creams, nail polish, after shave lotion, bath and toiletries, lipstick and hair dyes, perfumes, depilatories.

Lecture: 45, Tutorial: 15, Total: 60

9+3

9+3

9+3

9+3

9+3

	Kazutami Sakamoto, Robert Y. Lochhead, Howard I. Maibach, Yuji Yamashita, Cosmetic Science an Technology: Theoretical Principles and Applications, Elsevier, 2017, for Units- I, II, III, IV, V.	nd
2.	Gaurav Kumar Sharma, JayeshGadiya, MeenakshiDhanawat A text book of cosmetic formulation, 2018, for Ur V.	nit

REFERENCES:

TEXT BOOK:

1.	R.K. Nema, K.S. Rathore , B.K. Dubey, Textbook of Cosmetics, CBS Publishers and Distributors, 2017.
	Bruno Burlando, Elisa Bottini-Massa, LuisellaVerotta, Laura Cornara, Herbal Principles in Cosmetics: Properties and Mechanisms of Action, CRC Press, 2010.

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the formulation of cosmetics products	Understanding (K2)
CO2	identify the structuring materials form cosmetics	Applying (K3)
CO3	interpret the polymers in cosmetics	Understanding (K2)
CO4	develop knowledge about Powders and Fragrance in Cosmetics	Applying (K3)
CO5	apply the preparation methodology of cosmetics to explain the preparation and quality control of different cosmetic products used in day to day life.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1											
CO3	3	1												
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	35	40				100					
CAT2	25	35	40				100					
CAT3	25	35	40				100					
ESE	25	35	40				100					

١

20CYO04 - CHEMISTRY OF NUTRITION FOR WOMEN HEALTH

(Common to all Engineering and Technology branches)

Programme& Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4

Preamble	This course aims to provide knowledge for engineering students on components of health and fitness and role of nutrition for women health.	the
Unit - I	Nutrition	9+3
effects of c Lipids, Pro	Inctions, sources and concept of energy balance, Functions, Recommended Dietary Allowances, dietary sources, leficiency and/ or excess consumption on health of the following nutrients: • Carbohydrates and dietary fibre, teins, Fat soluble vitamins-A, D,E and K, Water soluble vitamins – Thiamin, Riboflavin, Niacin, Pyridoxine, Fola 2 and Vitamin C, Minerals – Calcium, Iron, Zinc and Iodine	
Unit - II	Role of women in national development	9+3
	family and community: Demographic changes menarche, marriage, fertility, morbidity, mortality, life expectancy ging, widowhood. Women in society: Women's role, their resources, and contribution to family, and effect of status.	y,
Unit - III	Women and health	9+3
	attern and reproductive health- Menopause – Hypothyroid- PCOD-Diabetes - Policies and programs for promot nd child nutrition and health - Concept of small family - Methods of family planning - Merits and demerits.	ing
Unit - IV	Nutrition during Lactation and for Infants	9+3
requirement	and psychology of lactation, hormonal control, composition of colostrums and breast milk, nutrition the of a nursing mother, advantages of breast feeding, food and nutritional requirements for infants, weaning tary foods for infants and immunization.	
Unit - V	Physical fitness and nutrition	9+3
CV disorde exercise re	e of physical fitness and nutrition in the prevention and management of weight control, obesity, diabetes mellite ers, bone health and cancer - Nutrition and exercise regimes for pre and postnatal fitness - Nutritional and gimes for management of obesity - Critical review of various dietary regimes for weight and fat reduction. of weight cycling.	us,
	Lecture:45.Tutorial:15. Total: 60	

Lecture:45,Tutorial:15, Total: 60

TEXT BOOK:

Srilakshmi, B., Nutrition Science, New Age International (P) Ltd., New Delhi, 2017 for Units- I, IV, V.
 Arpita Verma, Women's Health and Nutrition: Role of State and Voluntary Organizations, Rawat Publishers, 2017, for Units II, III, IV.

1.	Shubhangini A Joshi, Nutrition and Dietetics, TataMacGraw Hill, 2010.									
2.	Rujuta Diwekar, Women and The Weight Loss Tamasha, Westland Itd, 2010.									
3.	Swaminathan, M., Advanced Textbook on Food and Nutrition, Vol. 1, Second Edition, Bangalore Printing and Publishing Co. Ltd., Bangalore, 2012.									

COU	RSE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	Make use of the knowledge of dietary sources in day to day life	Applying (K3)
CO2	Interpret the various role of women in society	Understanding (K2)
CO3	Explain the disease pattern and policies towards women health	Understanding (K2)
CO4	Develop knowledge about nutrition during lactation and for infants	Applying (K3)
CO5	Utilize the knowledge of physical fitness and nutrition towards achieving a good health	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1 3 2 1														
CO2	3	1												
CO3	3	1												
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	35	40				100					
CAT2	25	35	40				100					
CAT3	25	35	40				100					
ESE	25	35	40				100					

20CYO05 - CHEMISTRY CONCEPTS FOR COMPETITIVE EXAMINATIONS (Common to all Engineering and Technology branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble This course aims to refresh the knowledge of chemistry required for competitive examinations and equip the students with a capacity to solve the problems in chemistry while participating various competitive examinations including TNFUSRC-FORESTER (paper-II: General science-chemistry), UPSC-IAS (prelims: General science-chemistry), GATE (thermodynamics concept for chemical & mechanical engineering).

Unit – I Periodic Classification of Elements:

Mendeleev's periodic table-Law and classification of elements- Modern periodic law-Modern periodic table and its characteristics - Periodic properties – important aspects of s, p & d block elements -Reactivity series and Uses - Alloys-Uses of Alloys- Properties of nano metals and oxides.

Unit – II Chemical Equations and Bonding:

Chemical Equations: Types of ions and radicals- oxidation and reduction-redox reactions - Balancing ionic equations.

Chemical Bonding: Octet rule -Types of Chemical bond -Formation of Ionic and Covalent bond- Common Properties of ionic and covalent compounds- Differences between Ionic and covalent Compounds-Coordinate covalent bond-Coordination compounds – nomenclature and isomerism. Application in analytical chemistry.

Unit – III Acids, Bases, Salts and Metallurgy:

Acid- base theory – Bronsted- Lowry theory- conjugate acid-base- Lewis concept- HSAB- applications- pH scale-Importance of pH in everyday life-Salts-Classification of salts-Uses of salts.

Metallurgy: Introduction-Terminologies in metallurgy-Differences between Minerals and Ores-Occurrence of metals-Metallurgy of Aluminum, Copper and Iron.

Unit – IV Carbon and its Compounds:

Introduction-Compounds of carbon-Modern definition of organic chemistry- Bonding in carbon and its compounds-Allotropy-Physical nature of carbon and its compounds-Chemical properties of carbon compounds-Homologous Series-Hydrocarbons and their Types- Functional groups- Classification of organic compounds based on functional group-Ethanol-Ethanoic acid.

Unit – V Thermodynamics:

Introduction- Some important terms in thermodynamics-thermodynamic system, process, properties and energy- First law of thermodynamics: Mathematical expression and interpretation- Applications of First law of thermodynamics-Molar heat capacity-Reversible isothermal expansion/compression of an ideal gas-Adiabatic expansion of an ideal gas-Isobaric and Isochoric Processes in Ideal Gases- Second laws of thermodynamics: Entropy- Entropy change for isolated system (system and surroundings)- Entropy change for system only (Ideal Gas)- Entropy change for mixing of ideal gases-Entropy of physical changes- Entropy of chemical changes-Maxwell Relations.

TEXT BOOK:

Total: 45

9

9

9

9

9

- 1. Steven S. Zumdahl, Susan A. Zumdahl and Donald J. DeCoste, "Chemistry", 10th Edition, Cengage Learning, 2018, for Units-I, II, III, IV.
- 2. Wiley editorial board. "Wiley Engineering Chemistry". 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019, for Units- I, II, III, V.

REFERENCES:

1. B.R. Puri, L.R. Sharma, Principles of Inorganic Chemistry, 33rd Edition, Vishal Publishing Co., 2020.

2. Paula Bruise, "Organic Chemistry", 6th Edition, 8th Edition, Pearson Education, 2020.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concept of periodic classification of elements to explain the periodic properties and reactivity series of s, p & d block elements.	Applying (K3)
CO2	utilize the concepts of chemical equation and bonding to solve the problems in balancing ionic equation and differentiate ionic and covalent compounds.	Applying (K3)
CO3	apply the concept of acid, base, salts and metallurgy to explain HSAB concepts, Importance of pH in everyday life, classification of salts and metallurgy of AI, Cu & Fe.	Applying (K3)
CO4	make use of the concept of carbon its compounds to explain bonding and classification of carbon compounds.	Applying (K3)
CO5	utilize the important terms and concepts of thermodynamics to explain the first law and second law of thermodynamics with examples.	Applying (K3)

				ľ	Mappin	g of C	Os wit	h POs	and PS	SOs				
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2	– Mode	erate, 3	- Sub	stantial	, BT- B	Bloom's	Taxon	omy						

		ASSESSMENT PA	TTERN - THE	ORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	25	35	40				100
ESE	25	35	40				100

20CYO06 - WASTE AND HAZARDOUS WASTE MANAGEMENT

(Common to all Engineering and Technology branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

Preamble Waste and Hazardous waste management aims to equip the students to have a wide-range of knowledge on waste management.

Unit - I SOLID WASTE MANAGEMENT

Solid wastes: definition, sources, types, composition of solid waste- Solid waste management system: collection, separation, processing and transformation of solid waste – combustion, aerobic composting, vermicomposting, pyrolysis, landfill-classification, types, methods and control of leachate in landfills. Recycling of material found in municipal solid waste- recycling of paper and cardboard, recycling of plastics, recycling of glass.

Unit - II HAZARDOUS WASTE MANAGEMENT

Hazardous wastes: definition, nature and sources of hazardous waste, classification and characteristics of hazardous waste-chemical class of hazardous waste, segregation of waste-generation, treatment and disposal-waste reduction, waste minimization-recycling-chemical treatment: acid base neutralization, chemical precipitation, oxidation/reduction, hydrolysis, electrolysis, chemical extraction and leaching, ion exchange, photolytic reaction-thermal treatment methods: incineration – biodegradation of hazardous waste: aerobic, anaerobic, reductive dehalogenations-land treatment and composting.

Unit - III E- WASTE & BIOMEDICAL WASTE MANAGEMENT

E-Waste Management: Definition, sources, classification, collection, segregation, treatment and disposal.

Biomedical Waste Management : Introduction-definition –components of biomedical waste-waste generation – waste identification and waste control-waste storage-labeling and color coding-handling and transportation-waste treatment and disposal- autoclave, hydroclave , microwave treatments- chemical disinfection – sanitary and secure landfill.

Unit - IV POLLUTION FROM MAJOR INDUSTRIES AND MANAGEMENT

Introduction- sources and characteristics - waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Sugar, Petroleum refinery, fertilizer, dairy industries.

Unit - V SOLID WASTE MANAGEMENT LEGISLATION

Solid waste management plan - Solid Waste (Management and Handling) Rules - Biomedical Waste (Management and Handling) Rules- Plastic Waste Management Rules - E-Waste Management Rules - Hazardous and Other Wastes (Management and Transboundary Movement) Rules - Construction and Demolition Waste Management Rules..

TEXT BOOK:

Total: 45

9

g

9

9

9

George Tchobanoglous, Hillary Theisen, Samuel a Vigil, Integrated solid waste management (Engineering principle and management issues) McGraw hill Education (India) Pvt. Ltd., 2015, for Unit-I, II, V.
 SC Bhatia, Handbook of Industrial pollution and control (Volume-1), CBS publisher and distributers, New delhi, 2002 for Units - II, III, IV & V.

- 1. Manual on Municipal Solid waste management, Central public Health and Environmental Engineering Organization (CPHEEO), Govt. of India, May 2000.
- 2. Michael D. LaGrega, Phillip L. Buckingham, Jeffrey C. Evans, Hazardous waste management, MEDTEC, 2015.
- 3. Majeti Narasimha Vara Prasad, Meththika Vithanage, Anwesha Borthakur, "Handbook of Electronic Waste Management: International Best Practices and Case Studies" 1st Edition, Butterworth-Heinemann, 2019.

	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the technical points that are required to set up a solid waste management system.	Applying (K3)
CO2	select the various disposal methods of hazardous wastes like radioactive wastes	Understanding (K2)
CO3	organize the appropriate method for managing e-waste and biomedical waste	Applying (K3)
CO4	identify to plan minimization of industrial wastes	Applying (K3)
CO5	relate the legal legislation to solid waste management.	Understanding (K2)

				N	lappin	g of CO	Os with	n POs a	and PS	Os				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1			3							
CO2	2	1					3							
CO3	3	2	1	1			3							
CO4	3	2	1	1			3							
CO5	2	1					3							
1 – Slight, 2	– Mode	erate, 3	– Subs	stantial	, BT- B	loom's	Taxono	omy						

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	35	40				100							
CAT2	25	35	40				100							
CAT3	25	35	40				100							
ESE	25	35	40				100							

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE-638060

(AUTONOMOUS)

BOARD OF CHEMICAL ENGINEERING

DEGREE & PROGRAMME: B.Tech – Chemical Engineering

HONOURS DEGREE TITLE: Petroleum and Petrochemical Engineering

The following courses are identified to earn additional 18 credits to get an Honours degree with specialization in **Petroleum and Petrochemical Engineering**

S.No	Course Code	Course Title	Credits	Prerequisites	Semester
1.	20CHJ01	Testing and Analysis of Petroleum Products	4	Nil	5
2.	20CHH01	Petroleum Production and Artificial Lift Systems	3	Nil	5
3.	20CHJ02	Petroleum Refinery Modeling and Simulation	4	Nil	6
4.	20CHH02	Petroleum Reservoir and Natural Gas Engineering	4	Nil	6
5.	20CHH03	Petrochemical Technology	3	Nil	7
		TOTAL	18		

Progra Branc	amme & h	B.Tech - Chemical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerec	quisites	Nil	5/6/7	HN	3	0	2	4
Pream	blo	This course discusses various testing and analyt	ical techniques for pot	roloum produ	oto			
Unit –		Introduction:	ical techniques for per	roleum produ	cis			9
Petrole	eum and its p hysical Analy	products –Classes of feedstock and products, Key ses, Chromatography, Spectroscopy, Molecular w						Chemical
Unit –		Crude Oil Testing:						9
		g, Preliminary Evaluation – Gravity, Sulfur, Salt ization factor. Comprehensive analysis	Content, Water and	Sediments, V	'isco	sity,	Pour	Point, LH
Unit –		Sampling techniques:						9
		Types of sampling, Volumetric Measurement, Vali g techniques, storage and test methods.	dation, Assay and Sp	ecifications. C	Sas (Samp	oling -	- Types of
Unit –	IV	Testing of Petro-products I:						9
Naphtl require	ha and Solve ements, Octa	ents – Introduction, key properties, Test Methods, ne rating, additives, Test Methods, Aviation and Ma	Storage. Gasoline – arine fuel – Test metho	Introduction,	Key	prop	erties	s, Volatility
Unit –	v	Testing of Petro-products II:						9
Black								
LIST (ENTS / EXERCISES:						
	-	ENTS / EXERCISES: STM Distillation process for the given oil						
1.	Perform AS							
1.	Perform AS Determine	STM Distillation process for the given oil						
1. 2.	Perform AS Determine Determine	STM Distillation process for the given oil Octane number and Cetane number of fuels						
1. 2. 3.	Perform AS Determine Determine Determine	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel						
1. 2. 3. 4.	Perform AS Determine Determine Determine Identify flas	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel						
1. 2. 3. 4. 5. 6.	Perform AS Determine Determine Identify flas Determine	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel						
1. 2. 3. 4. 5. 6. 7.	Perform AS Determine Determine Identify flas Determine Identify clo	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant						
1. 2. 3. 4. 5. 6. 7. 8.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant						
1. 2. 3. 4. 5. 6. 7. 8. 9.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel						
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va Measure ca Conduct co	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel arbon residue for liquid fuel						
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va Measure ca Conduct co	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel arbon residue for liquid fuel prosion test for liquid fuel and lubricant						
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va Measure ca Conduct co	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel arbon residue for liquid fuel prosion test for liquid fuel and lubricant		Lecture:4	5, P	ractio	cal:30), Total:75
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va Measure ca Conduct co	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel arbon residue for liquid fuel prosion test for liquid fuel and lubricant		Lecture:4	5, P	ractio	cal:30), Total:75
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Perform AS Determine Determine Identify flas Determine Identify clo Measure va Measure va Conduct cc Identify dro Conduct m BOOK:	STM Distillation process for the given oil Octane number and Cetane number of fuels smoke point of given liquid fuel calorific value of liquid fuel sh and fire points of petrol and diesel viscosity for the given fuel and lubricant ud and pour point for liquid fuel and lubricant apor pressure for gasoline fuel arbon residue for liquid fuel prosion test for liquid fuel and lubricant	CBS Publishers, 6 th E		5, P	ractio	cal:30), Total:75

	_			SOFTWA		Fest Met	nods for	the Ar	nalysis	of Petro	leum P	roducts and	Lubrica	nts", AST	M, USA
1.	2000).							-						
2.	ASTI	M Com	mittee D	2,"Signific	ance o	f Tests fo	or Petrol	eum Pro	oducts	", ASTM,	USA, 1	977.			
	SE OU		-	se, the st	udents	will be a	able to						(BT Mapı Highest L	
CO1	-	erstand		dation as				iques a	nd key	properti	es of pe	etroleum	-	derstandi	-
CO2	Perfo	orm var	ious star	ndard test	s on cr	ude oil								Applying	(K3)
CO3	Discu	uss var	ious sam	pling tech	nniques	s for gas a	and liqui	d hydro	carbor	าร			Ur	Iderstandi	ng (K2)
CO4	Perfo	orm var	ious test	ing proce	dures c	on naphth	a, gasol	line and	laviatio	on fuels				Applying	(K3)
CO5	Perfo	orm var	ious star	ndard test	s on Ke	erosene,	diesel, L	ubricati	ing oil a	and othe	r petrol	eum products		Applying	
CO6				lation of o			mine oc	tane nu	umber,	cetane	number	, smoke poin		Applying (lanipulatir	
C07				fire point pressure o			our poi	nt of p	etroleu	m produ	ict and	measure the		Applying (Ianipulatir	. ,
CO8				the carb es of grea		due, corr	osive na	ature of	liquid	fuel/ lubr	ricant ai	nd identify the		Applying (Ianipulatir	
						Mappin	g of CO	s with	POs ai	nd PSOs	5				
COs/	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	01	3	3	2	1	1				1	1			3	2
CO)2	3	3	2	1	1				1	1			3	2
CO)3	3	3	2	1	1				1	1			3	2
CO)4	3	3	2	1	1				1	1			3	2
CO)5	3	3	2	1	1				1	1			3	2
CO	-	3	3	2	1	1				1	1			3	2
CO		3	3	2	1	1				1	1			3	2
CO 1 – Sli		3 - Mode	3 rate. 3 –	2 Substant	1 ial. BT-	1 Bloom's	Taxono	mv		1	1			3	2
	0		,		,			,		THEORY	,				
	st / Blo Catego		Re	memberi (K1) %	ng	Understa (K2)	anding	Apply (K3)	ying	Analyzi (K4) %	ing	Evaluating (K5) %		reating (K6) %	Tota %
	CAT1			20		80		(13)	75	(1,1,1)		(1.0) /0			100
	CAT2			10		60		30)						100
				10		60		30							100
	CAT	,		10					-						

		20000	/I - FEIRU		ICTION AND ART		I JIJIEIVIJ				
Program Branch	nme &	B.Tech - Ch	emical Engi	ineering		Sem.	Category	L	т	Ρ	Credit
Prerequ	isites	Nil				5/6/7	HN	3	0	0	3
Preamble	е	This course	discusses th	e fundamentals	of Petroleum produ	uction and i	ts air lift syste	ems			
Unit – I		Petroleum	production s	systems and w	ellbore flow:						9
sanding,	liquid load	ding, Inflow perf	ormance rela	ationships, mult	ng, Wellbore flow f	fundamenta	Ils, density a	nd v	iscos	ity co	1
Unit – II		Introduction			·				,		9
					ems. Sucker rod p esign calculations.						
Unit – III		Progressive	cavity pum	nps system:							9
		pumps system er requirement,			uipment, stage calc	ulations, vi	scosity effect	, elas	stome	eric ar	nd metalli
Unit – IV	1	Electric sub	mersible pu	umps:							9
					alculation, NPSH, Fons, design calcula		e curves. ESI	Ps: D)esigi	n of si	urface an
	ice equipii	ient, protector, i	motor, cable,	, stage calculation							
		· • · ·		surface pumpi	ng systems:						9
subsurfa Unit – V Gas lift s	system, va	Gas lift, Hyd	draulic and sequen	surface pumpinates uni	n g systems: t, plunger lift, desig unit for Jet pump, S					o func	•
subsurfa Unit – V Gas lift s	system, va	Gas lift, Hyd	draulic and sequen	surface pumpinates uni	t, plunger lift, desig					o func	•
subsurfa Unit – V Gas lift s hydraulic	system, va c engine pi	Gas lift, Hyd	draulic and sequen	surface pumpinates uni	t, plunger lift, desig					o func	lamental
subsurfa Unit – V Gas lift s hydraulic TEXT B(system, va c engine pr OOK:	Gas lift, Hyd Ilves, valve ope ump, design cal	draulic and sening sequen culations, Su	surface pumpin nce, surface uni urface pumping	t, plunger lift, desig	Surface con	npressor for g	as lif	t.	o func	amental
subsurfa Unit – V Gas lift s hydraulic TEXT B(1.	system, va c engine pr DOK: B. Guo, W	Gas lift, Hyd Ilves, valve ope ump, design cal	draulic and sening sequen culations, Su	surface pumpin ace, surface uni urface pumping r, "Petroleum P	t, plunger lift, desig unit for Jet pump, S	Surface con g", Elsevier	, 2007, for Ur	as lif	t.	o func	lamental
subsurfa Unit – V Gas lift s hydraulic TEXT BC 1.	system, va c engine pr OOK: B. Guo, W Kermit Brc	Gas lift, Hyd Ilves, valve ope ump, design cal	draulic and sening sequen culations, Su	surface pumpin ace, surface uni urface pumping r, "Petroleum P	t, plunger lift, desig unit for Jet pump, S	Surface con g", Elsevier	, 2007, for Ur	as lif	t.	o func	lamental

		UTCOM		se, the st	udent	s will be a	able to							BT Mapp Highest L	
CO1	Und	lerstand	the Petr	oleum pro	oductic	on systems	s and we	ellbore f	low ch	aracteris	stics		Und	derstanding	g (K2)
CO2	Disc	cuss var	ious tecł	nniques fo	or oil pu	umping an	nd lift sys	stems fr	om res	servoirs			Und	derstanding	g (K2)
CO3	Disc	cuss the	aspects	of Progre	essive	cavity pun	nps syst	em					Und	derstanding	g (K2)
CO4	Understand Electric submersible pumps and its power requirement and design calculations Understanding (K2) Discuss the pumping using Gas lift, Hydraulic and surface pumping systems and its design Understanding (K2)														
CO5		cuss the sideration		g using G	as lift,	Hydraulic	and sur	face pu	mping	systems	and its o	design	Und	derstandinę	g (K2)
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	3	2	2	1								3	3
CO	2	3	2	2	1	2								3	3
CO	3	3	2	2	1	2								3	3
CO	4	3	2	2	1	2								3	3
CO	5	3	2	2	1	2								3	3
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEORY	1				
	st / Bl Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		80									100
	CAT	2		20		80									100
	CAT	3		20		80									100
	ESE			20		80		1							100

20CHJ02 - PETROLEUM REFINERY MODELING AND SIMULATION

isites e	Nil	5/6/7					
e	Nil 5/		HN	3	0	2	4
	This course discusses the modeling and simulation of pe	etroleum refine	ry operations				
	Introduction:						9
	modynamic Properties of Petroleum Fractions - C generation, Property requirements for refinery process mo						
	Modeling of Crude Distillation Units: nit – Model Development, Overall Column Efficiency and Unit – Data requirements, Feedstock representation, Mode			hm,	Mode	el Dev	9 /elopment
Descriptior Basic FCC	Modeling of Cracking I: – FCC, Riser-Regenerator Complex, Downstream Frac model, Side-stripper, Absorber, Sensitivity analysis of var	tionation, Kine	tic Models, D	ata	requi	remei	9 nts, Mode
/	Modeling of Cracking II:						9
tion of Mod	eling of Catalyst Regenerator – Kinetic Models and Netw	vorks, Unit Le	vel Models, C	atal	ytic F	eform	her Mode
	Modeling of Miscellaneous Operations:						9
g Tools, Exa	mple Cases.						
Interconver	Distillation Curves and Extrapolate an Incomplete Distilla	tion Curve					
Calculate N	eABP of a Given Assay						
Construct, r	un, analyze and manipulate an Atmospheric Crude Colum	nn simulation					
Calculate th	e reflux ratio and the distillate rate under the specified cor	nditions using I	HYSYS optimi	zatio	on too	bl	
Build a Moc	el and Construct a basic Fluid Catalytic Cracking unit						
Construct a	n NGL Plant consisting of three column: De-Methanizer, D	De-Ethanizer, a	nd De-Propar	nizer	•		
Build a Moo	el and Construct a basic Continuous catalytic regeneratio	n unit					
Build a Dow	Instream Fractionation System						
Simulate Hy	drofluoric Acid Alkylation Process						
-	· · ·			em			
Model a ref	rigerated gas plant to calculate duty rejected and adsorbed	d from the syst	em				
	Basic FCC on of Mode cess – Mod a – Feed C Coking Rea Tools, Exa EXPERIME nterconvert Calculate M Construct, r Calculate th Build a Mod Construct a Build a Mod Build a Mod Build a Dow Simulate Hy Simulate a I Dptimize the	Description – FCC, Riser-Regenerator Complex, Downstream Frac Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of var Modeling of Cracking II: on of Modeling of Catalyst Regenerator – Kinetic Models and Networks cess – Modelling Tools, MP and HP HCR Models. Modeling of Miscellaneous Operations: a – Feed Components, Alkylation Kinetics, Simulation of HF Alkylati Coking Reactions, Simulation of Delayed Coking Process. Refinery M Tools, Example Cases. EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distilla Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Colum Calculate the reflux ratio and the distillate rate under the specified con Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, D Build a Model and Construct a basic Continuous catalytic regeneratio Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Simulate a Delayed Coking Process Dytimize the oil stabilization and calculate the total liquid product and	Description – FCC, Riser-Regenerator Complex, Downstream Fractionation, Kine Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of variables. Modeling of Cracking II: on of Modeling of Catalyst Regenerator – Kinetic Models and Networks, Unit Lev- cess – Modelling Tools, MP and HP HCR Models. Modeling of Miscellaneous Operations: – Feed Components, Alkylation Kinetics, Simulation of HF Alkylation Process. C Coking Reactions, Simulation of Delayed Coking Process. Refinery Wide Simulation Tools, Example Cases. EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distillation Curve Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Column simulation Calculate the reflux ratio and the distillate rate under the specified conditions using H Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, De-Ethanizer, a Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Diffusion and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the oil stabilization and calculate the total liquid product and total gas product Determine the product and total gas product Determine the pro	Description – FCC, Riser-Regenerator Complex, Downstream Fractionation, Kinetic Models, D Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of variables. Modeling of Cracking II: on of Modeling of Cracking II: on of Modeling of Miscellaneous Operations: Modeling of Miscellaneous Operations: n – Feed Components, Alkylation Kinetics, Simulation of HF Alkylation Process. Coking – Feed Coking Reactions, Simulation of Delayed Coking Process. Refinery Wide Simulation – Introduct Tools, Example Cases. EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distillation Curve Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Column simulation Calculate the reflux ratio and the distillate rate under the specified conditions using HYSYS optimi Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, De-Ethanizer, and De-Propar Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Simulate a Delayed Coking Process Deptimize the oil stabilization and calculate the total liquid product and total gas product of the system Model a refrigerated gas plant to calculate duty rejected and adsorbed from the system	Description – FCC, Riser-Regenerator Complex, Downstream Fractionation, Kinetic Models, Data Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of variables. Modeling of Cracking II: on of Modeling of Cracking II: Modeling of Miscellaneous Operations: A dodeling of Miscellaneous Operations: A – Feed Components, Alkylation Kinetics, Simulation of HF Alkylation Process. Coking – Feed Cha Coking Reactions, Simulation of Delayed Coking Process. Refinery Wide Simulation – Introduction of Tools, Example Cases. EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distillation Curve Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Column simulation Calculate the reflux ratio and the distillate rate under the specified conditions using HYSYS optimization Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, De-Ethanizer, and De-Propanizer Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Simulate a Delayed Coking Process Deptimize the oil stabilization and calculate the total liquid product and total gas product of the system Model a refrigerated gas plant to calculate duty rejected and adsorbed from the system	Description – FCC, Riser-Regenerator Complex, Downstream Fractionation, Kinetic Models, Data requi Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of variables. Modeling of Cracking II: on of Modeling of Cracking II: Modeling of Miscellaneous Operations: – Feed Components, Alkylation Kinetics, Simulation of HF Alkylation Process. Coking – Feed Character Soking Reactions, Simulation of Delayed Coking Process. Refinery Wide Simulation – Introduction of Inter Tools, Example Cases. EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distillation Curve Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Column simulation Calculate the reflux ratio and the distillate rate under the specified conditions using HYSYS optimization to Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, De-Ethanizer, and De-Propanizer Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Bimulate a Delayed Coking Process Deptimize the oil stabilization and calculate the total liquid product and total gas product of the system Model a refrigerated gas plant to calculate duty rejected and adsorbed from the system	Description – FCC, Riser-Regenerator Complex, Downstream Fractionation, Kinetic Models, Data requirement Basic FCC model, Side-stripper, Absorber, Sensitivity analysis of variables. Modeling of Cracking II: on of Modeling of Cracking II: Modeling for Catalyst Regenerator – Kinetic Models and Networks, Unit Level Models, Catalytic Reform ress – Modeling for Miscellaneous Operations: – Feed Components, Alkylation Kinetics, Simulation of HF Alkylation Process. Coking – Feed Characterization Experiments, Alkylation Kinetics, Simulation of HF Alkylation Process. Coking – Feed Characterization (Modeling Cases.) EXPERIMENTS / EXERCISES: Interconvert Distillation Curves and Extrapolate an Incomplete Distillation Curve Calculate MeABP of a Given Assay Construct, run, analyze and manipulate an Atmospheric Crude Column simulation Calculate the reflux ratio and the distillate rate under the specified conditions using HYSYS optimization tool Build a Model and Construct a basic Fluid Catalytic Cracking unit Construct an NGL Plant consisting of three column: De-Methanizer, De-Ethanizer, and De-Propanizer Build a Model and Construct a basic Continuous catalytic regeneration unit Build a Downstream Fractionation System Simulate Hydrofluoric Acid Alkylation Process Simulate a Delayed Coking Process Detimize the oil stabilization and calculate the total liquid product and total gas product of the system

TEXT	воок	:													
1.				F. and Pas VCH, US/			troleum	Refiner	y Proc	ess Mod	eling: In	tegrated O	otimizatio	n Tools an	d
REFE	RENCI	ES/ MA	NUAL /	SOFTWA	RE:										
1.		a Hayd , 2019.	•	mical Proc	cess D	Design and	l Simula	ition – A	spen	Plus and	Aspen H	lysys Appli	cations",	AICHE – \	Viley,
2.	Labo	oratory	Manual												
COUR			-	so tho st	udont	s will be a	abla ta							BT Mapp Highest L	
CO1	Com	prehen	nd the imp	portance o		berties and		odynami	ic pacł	ages for	simulati	on of		nderstandi	-
CO2														(K3)	
CO3	Discuss the aspects of downstream fractionation and dovelop models for ECC. Side stripper and													(K3)	
CO4			netic mod	lels for cat	alyst i	regenerato	or and H	ICR uni	t					Applying	(K3)
CO5	Unde studi		l the auxi	liary proce	esses	in refinery	and de	velop b	asic m	odels wit	h the he	lp of case		Applying	(K3)
CO6	Simu	ulate Cr	rude Oil [Distillation	Units	and allied	l operati	ions usi	ng Asp	oen HYS	YS			Applying (/lanipulatin	
C07	Simu	ulate Cr	racking &	Regener	ator u	nit and do	wnstrea	m fracti	onatio	n using A	Aspen H`	YSYS		Applying (/anipulatin	
CO8	Simu	ulate all	kylation,	coking, sta	abiliza	ition and r	efrigerat	tion sys	tems ι	using Asp	en HYS	YS		Applying (/anipulatin	K3)/
														in a second	9(0-)
			[I	1	Mappin	g of CO	s with	POs a	nd PSO	S	I	1	1	T
COs/F	POs	P01	PO2	PO3	PO4	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO		3	3	2	2	3				1	1			3	2
CO		3	3	2	2	3				1	1			3	2
CO: CO		3	3	2	2	3				1	1			3	2
CO		3	3	2	2	3				1	1			3	2
CO		3	3	2	2	3				1	1			3	2
CO.		3	3	2	2	3				1	1			3	2
CO	8	3	3	2	2	3				1	1			3	2
1 – Slig	ght, 2 ·	– Mode	erate, 3 –	Substanti	al, BT	- Bloom's	Taxono	omy							
						ASSES	SMENT	PATTE	RN –	THEOR	(
	st / Blo Catego		Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) ^c	•	Evaluating (K5) %		creating (K6) %	Total %
	CAT	1				50		50)						100
	CAT					50		50)						100
	CAT					50		50	-						100
+ 651	ESE			0.0		50		50)						100
* ±3%	may b	e varie	d (CAT 1	,2,3 – 50 i	marks	& ESE –	100 ma	rks)							

Programme & Branch	B.Tech. – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5/6/7	HN	3	1	0	4
Preamble	This course discusses the fundamentals in petrol		ural gas engi	neer	ing		I.
	Petroleum Reserves and Basic Reservoir Eng rves: Origin and Composition, Petroleum Geology- raps, Reservoir Drive Mechanisms, Phase Diagram,	- Reservoir Depositio					
Unit – II	Conventional Petroleum Production System:						9+3
Equation for rad	troleum Production System, Fundamental of Oil and C ial flow of Oil and Gas in Reservoir, Inflow Perforr d Gas Reservoirs- Volumetric basis.						
Unit – III	Oil and Gas Well Testing Methods and Enhand	ced Oil Recovery:					9+3
	Testing Methods, Predicting Reservoir Performance,						
(EOR)- Thermal Hydrates, Coal b Unit – IV	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering:	n, Unconventional Na Iterials.	tural Gas Pro	duc	tion:	Shale	Gas, Ga
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma	n, Unconventional Na iterials. n, Properties of Natu Il testing, TPR Curve,	tural Gas Pro ral Gas: Pha Single Phase	oduct se E	tion: Behav	Shale	Gas, Ga 9+3 Well inflov
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completior tionship (IPR), Skin factor, Productivity Index, Gas we nce: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans	n, Unconventional Na aterials. n, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation:	itural Gas Pro ral Gas: Pha Single Phase sis.	se E &ar	tion: Behav mp; N	Shale ⁄ior, V ⁄lulti P	Gas, Ga 9+3 Well inflow Phase flow 9+3
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatio	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran	n, Unconventional Na aterials. n, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of	itural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas,	se E e &ar Verti	tion: Behav mp; N ical, sign	Shale vior, V Aulti P Horizo of De	e Gas, Ga 9+3 Well inflow Phase flow 9+3 ontal; Two ehydratior
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran	n, Unconventional Na aterials. n, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of	tural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe	se E e &ar Verti Des line I	tion: Behav mp; M ical, sign Desig	Shale /ior, V /lulti P Horize of De jn, Flo	e Gas, Ga 9+3 Well inflow Phase flow 9+3 ontal; Two ehydration
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran	n, Unconventional Na aterials. n, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of	tural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe	se E e &ar Verti Des line I	tion: Behav mp; M ical, sign Desig	Shale /ior, V /lulti P Horize of De jn, Flo	e Gas, Ga 9+3 Well inflow Phase flow Phase flow 9+3 ontal; Two ehydration ow throug
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces pipeline, issues a TEXT BOOK:	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran	n, Unconventional Naterials. h, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of I sportation and Measu	Itural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe Lecture:	verti Des line I 45 , 1	tion: Behav mp; M ical, sign Desig	Shale /ior, V /lulti P Horizc of De jn, Flo rial:15	e Gas, Ga 9+3 Well inflow Phase flow Phase flow Phase flow 9+3 ontal; Two shydration ow throug 5, Total:6
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces pipeline, issues a TEXT BOOK: 1. R.E Terr	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran and solutions.	n, Unconventional Naterials. h, Properties of Natu II testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of I sportation and Measu ervoir Engineering", P	Itural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe Lecture: rentice Hall 1	oduci se E e &ar Verti Des line I 45, [−] 991,	tion: Behav mp; N ical, sign Desig Tutor	Shale vior, V Aulti P Horizo of De gn, Flo rial:15	e Gas, Ga 9+3 Well inflow Phase flow Phase flow 9+3 ontal; Two ehydration ow throug 5, Total:6
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces pipeline, issues a TEXT BOOK: 1. R.E Terr	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran and solutions.	n, Unconventional Naterials. h, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of I sportation and Measu ervoir Engineering", P	Itural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe Lecture: rentice Hall 1	oduci se E e &ar Verti Des line I 45, [−] 991,	tion: Behav mp; N ical, sign Desig Tutor	Shale vior, V Aulti P Horizo of De gn, Flo rial:15	e Gas, Ga 9+3 Well inflow Phase flow Phase flow 9+3 ontal; Two ehydration ow throug 5, Total:6
(EOR)- Thermal Hydrates, Coal b Unit – IV Introduction, Gas performance rela Choke Performan Unit – V Natural Gas Pro Phase Separatic Sweeting Proces pipeline, issues a TEXT BOOK: 1. R.E Terr 2. B. Guo a REFERENCES:	and Non-Thermal, Introduction to Reservoir Simulatio ed Methane, Oil Shale, Pyrolysis of Carbonaceous Ma Introduction to Natural Gas Engineering: s Production: Upstream, Reservoir- Well Completion tionship (IPR), Skin factor, Productivity Index, Gas we nee: CPR Curve, Sonic and Subsonic Flow, Well Deliv Natural Gas production, processing and trans duction: Downstream, Surface Facilities, Principle of on, Three Phase Separation, Natural Gas Processi ses, Compressor design and energy calculation, Tran and solutions.	n, Unconventional Naterials. n, Properties of Natu Il testing, TPR Curve, erability: Nodal Analys portation: Separator, Design of ing: Dehydration of I sportation and Measu ervoir Engineering", P k", Gulf Publishing Co	Itural Gas Pro ral Gas: Pha Single Phase sis. f Separator: Natural Gas, rement, Pipe Lecture: rentice Hall 1	oduci se E e &ar Verti Des line I 45, ⁻ 991,	tion: Behav mp; N ical, sign Desig Tutor	Shale vior, V Aulti P Horizo of De gn, Flo rial:15	e Gas, Ga 9+3 Well inflow Phase flow Phase flow 9+3 ontal; Two ehydration ow throug 5, Total:6

		UTCOM ion of t		se, the st	udent	s will be a	able to						(BT Mapp Highest L			
CO1	Und	erstand	the fou	ndations o	f petro	leum form	nation ar	nd basic	c of res	ervoir er	ngineer	ing	Und	lerstanding	g (K2)		
CO2	Con	nprehen	id variou	is convent	ional p	etroleum	product	ion syst	em				Und	Understanding (K2)			
CO3	Арр	Appreciate the supremacy of oil and gas well testing methods and enhanced oil recovery Under													g (K2)		
CO4	Und	Understand the fundamental aspects of natural gas engineering Understanding (K2)															
CO5	Discuss the aspects of natural gas production, processing and transportation												Unc	lerstanding	g (K2)		
						Mappin	g of CO	s with	POs a	nd PSOs	6						
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010) PO11	PO12	PSO1	PSO2		
CO	1	3	3	2	2	1								3	3		
CO	2	3	2	2	1	2								3	3		
CO	3	3	2	2	1	2								3	3		
CO	4	3	2	2	1	2								3	3		
CO	5	3	2	2	1	2								3	3		
1 – Slig	ght, 2	– Mode	rate, 3 -	- Substant	ial, BT	- Bloom's	Taxono	my							•		
						ASSES	SMENT	PATTE	ERN - '	THEORY	,						
Test / Bloom's Remembering Category* (K1) %				ng	Understanding (K2) %		Apply (K3)	-	Analyzing (K4) %		Evaluating (K5) %		Creating (K6) %				

Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	20	80					100
* 00/ 1		0 EOE 400					

20CHH03 - PETROCHEMICAL TECHNOLOGY

Programme & Branch	B.Tech - Chemical Engineering	Sem.	Category	L	т	Ρ	Credit					
Prerequisites	Nil	5/6/7	HN	3	0	0	3					
Preamble	This course discusses the production of various petro	chemical product	S									
Unit – I	Introduction:						9					
	dustry – Structure of petrochemical complexes, Feedstoc etergents, Petroleum Base Intermediates	ks, Petrochemica	al end produc	rts –	Poly	mers,	Synthetic					
Unit – II	Processing of Olefins and Aromatics:						9					
	Defins – Steam Cracking Technology, Demethanizer, romatics – Catalytic Reforming, extraction and separa											
	Hydrocarbon Derivatives I:						9					
Processing of Me	Hydrocarbon Derivatives I: ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl			Pro	ducti	on of	•					
Processing of Me	ethane - Steam reforming for Syn Gas production, Fisch			Pro	ducti	on of	•					
Processing of Me Ethylene Derivativ Unit – IV Propylene Deriva	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl	Chloride and Viny	yl Acetate.				Methanol					
Processing of Me Ethylene Derivativ Unit – IV Propylene Deriva	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl (Hydrocarbon Derivatives II: atives – Propylene recovery, Dehydrogenation, Propyle	Chloride and Viny	yl Acetate.				Methanol					
Processing of Me Ethylene Derivativ Unit – IV Propylene Deriva Butadiene, Isobut Unit – V	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl (Hydrocarbon Derivatives II: atives – Propylene recovery, Dehydrogenation, Propyle tylene, Chloroprene, Isoprene, Cyclopentadiene processes BTX Derivatives: ugy of Ethyl benzene and styrene, Pthalic Anhydride, LAB	Chloride and Ving me Oxide, IPA,	yl Acetate. Acrylonitrile	proc	esse	s. C4	Methanol 9 & C5 - 9					
Processing of Me Ethylene Derivativ Unit – IV Propylene Deriva Butadiene, Isobut Unit – V Process technolo	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl (Hydrocarbon Derivatives II: atives – Propylene recovery, Dehydrogenation, Propyle tylene, Chloroprene, Isoprene, Cyclopentadiene processes BTX Derivatives: ugy of Ethyl benzene and styrene, Pthalic Anhydride, LAB	Chloride and Ving me Oxide, IPA,	yl Acetate. Acrylonitrile	proc	esse	s. C4	Methanol 9 & C5 - 9					
Processing of Me Ethylene Derivativ Unit – IV Propylene Deriva Butadiene, Isobut Unit – V Process technolo	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl (Hydrocarbon Derivatives II: atives – Propylene recovery, Dehydrogenation, Propyle tylene, Chloroprene, Isoprene, Cyclopentadiene processes BTX Derivatives: ugy of Ethyl benzene and styrene, Pthalic Anhydride, LAB	Chloride and Ving me Oxide, IPA,	yl Acetate. Acrylonitrile	proc	esse	s. C4	Methanol 9 & C5 - 9 nd Aniline					
Processing of Me Ethylene Derivati Unit – IV Propylene Deriva Butadiene, Isobut Unit – V Process technolo Hydroquinone an TEXT BOOK:	ethane – Steam reforming for Syn Gas production, Fisch ves – Production of Ethylene oxide, Ethylene glycol, Vinyl (Hydrocarbon Derivatives II: atives – Propylene recovery, Dehydrogenation, Propyle tylene, Chloroprene, Isoprene, Cyclopentadiene processes BTX Derivatives: ugy of Ethyl benzene and styrene, Pthalic Anhydride, LAB	Chloride and Ving ne Oxide, IPA, 3. 8, Phenol, Maleic	yl Acetate. Acrylonitrile	proc	esse	s. C4	Methanol 9 & C5 - 9 nd Aniline					
Processing of Me Ethylene Derivati Unit – IV Propylene Deriva Butadiene, Isobut Unit – V Process technolo Hydroquinone an TEXT BOOK:	 Attack and the second state of th	Chloride and Ving ne Oxide, IPA, 3. 8, Phenol, Maleic	yl Acetate. Acrylonitrile	proc	esse	s. C4	Methanol 9 & C5 - 9 nd Aniline					

		UTCOM												ВТ Мар			
On co	mplet	tion of t	he cours	se, the st	udents	will be a	able to						(Highest L	.evel)		
CO1	Und	lerstand	the struc	cture of p	etrochen	nical ind	ustry ar	nd impoi	rtance c	f petroc	chemical	products	Understanding (K2)				
CO2	Con	nprehen	d the pro	cessing	of olefins	and are	omatics						Understanding (K2)				
CO3	Disc	Discuss various processes involved in treatment of methane and ethylene derivatives Underst												erstanding	g (K2)		
CO4	Und	Understand the production of propylene, C4 and C5 derivatives Understanding (K2)															
CO5	Exp	lain the	productio	on of mult	iple proc	ducts fro	m BTX	derivati	ves				Und	erstanding	g (K2)		
						Mappin	g of CC	s with	POs an	d PSO:	5						
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	1	3	2	2										3	2		
CO	2	3	2	2										3	2		
CO	3	3	2	2										3	2		
CO	4	3	2	2										3	2		
CO	5	3	2	2										3	2		
1 – Sli	ght, 2	- Mode	rate, 3 –	Substant	ial, BT- I	Bloom's	Taxono	my									
						ASSES	SMENT		RN - T		,						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	20	80					100
* ±3% may be varied (CAT 1,2,3 – 50 mark	s & ESE – 100 mar	ks)	·			