KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE - 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI - 2020

(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted during 2020 - 2021 and onwards)

BACHELOR OF ENGINEERING DEGREE IN MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

SI.No.	CONTENTS						
_1	VISION AND MISSION OF THE INSTITUTE	2					
2	QUALITY POLICY	2					
3	VISION AND MISSION OF THE DEPARTMENT	2					
4	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	2					
5	PROGRAM OUTCOMES (POs)	3					
6	PROGRAM SPECIFIC OUTCOMES (PSOs)	4					
7	REGULATIONS 2020	5					
8	CURRICULUM BREAKDOWN STRUCTURE	21					
9	CATEGORISATION OF COURSES	21					
10	SCHEDULING OF COURSES	29					
11	MAPPING OF COURSES WITH PROGRAM OUTCOMES	31					
12	CURRICULUM OF BE – MECHATRONICS ENGINEERING	40					
13	DETAILED SYLLABUS	44					

KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

INSTITUTE VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

INSTITUTE MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF MECHANICAL ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Mechanical Engineering for the Nation and beyond.

MISSION

Department of Mechanical Engineering is committed to:

- MS1: Establish itself as an excellent academic centre through expert pedagogical methods and modern laboratories to produce world class mechanical engineers.
- MS2: Disseminate knowledge through seminar, conferences and continuing education programs.
- MS3: Make tie-ups with industries, research centres and renowned institutions to synergize the benefit.
- MS4: Contribute towards the upliftment of the society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Mechanical Engineering will

- PEO1: Practice Mechanical Engineering in the general stems of design, manufacture, service and allied engineering sectors.
- PEO2: Habituate continuous learning and carryout research and development in science, engineering and technology that support career growth.
- PEO3: Exhibit ethical code of conduct in a professional manner to solve real-time multidisciplinary engineering problems.
- PEO4: Demonstrate managerial and leadership capabilities that support economic development of firms as well as society.

MS\PEO	PEO1	PEO2	PEO3	PEO4
MS1	3	3	3	3
MS2	2	3	2	1
MS3	2	3	2	2
MS4	1	1	2	3

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Graduates of Mechanical Engineering will:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates of Mechanical Engineering will:						
PSO1	Modern tool usage: use the techniques, skills and modern engineering tools necessary for engineering					
	practice.					
PSO2	Domain Knowledge: work professionally in thermal, manufacturing and mechanical system areas					
	including the design and realization of such systems with the use of computational tools.					

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
PEO1	3	3	3	2	2	2	2	1	1	2	2	2	2	3
PEO2	3	3	3	3	3	3	2	1	1	2	2	2	3	3
PEO3	3	3	3	2	2	1	2	3	1	2	1	2	2	2
PEO4	2	1	2	1	2	3	1	2	2	2	3	2	2	2

MAPPING OF PEOs WITH POs AND PSOs

1 -Slight, 2 -Moderate, 3 -Substantial

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638060

(Autonomous)

REGULATIONS 2020

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

BACHELOR OF ENGINEERING (BE) / BACHELOR OF TECHNOLOGY (BTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into BE/BTech Degree programmes from the academic year 2020 – 2021 onwards.

1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Bachelor of Engineering (BE) / Bachelor of Technology (BTech) Degree programme
- iv. "Branch" means specialization or discipline of BE/BTech Degree programme, like Civil Engineering, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Mathematics, Physics etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch					
	Civil Engineering					
	Mechanical Engineering					
	Electronics and Communication Engineering					
	Computer Science and Engineering					
BE	Electrical and Electronics Engineering					
	Electronics and Instrumentation Engineering					
	Mechatronics Engineering					
	Automobile Engineering					
	Computer Science and Design					
	Chemical Engineering					
	Information Technology					
BTech	Food Technology					
	Artificial Intelligence and Data Science					
	Artificial Intelligence and Machine Learning					

3. ADMISSION REQUIREMENTS

3.1 First Semester Admission

The candidates seeking admission to the first semester of the eight semester BE / BTech Degree Programme:

Should have passed the Higher Secondary Examination (10 + 2) in the academic stream with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III subjects of the study conducted by the Government of Tamil Nadu or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

They should also satisfy other eligibility conditions as prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

3.2 Lateral Entry Admission

The candidates who hold a Diploma in Engineering / Technology awarded by the State Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of BE / BTech in relevant branches of study.

(OR)

The candidates who hold a BSc degree (10+2+3 stream) with mathematics as one of the subjects at the BSc level from a recognised University are eligible to apply for Lateral entry admission to the third semester of BE / BTech. Such candidates shall undergo two additional Engineering course(s) in the third and fourth semesters as prescribed by the College.

They should satisfy other eligibility conditions prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The BE / BTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester, professional skills training/industrial training, project work, internship, etc. that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO), Programme Specific Outcomes (PSO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Humanities and Social Sciences (HS) including Management Courses
- ii. Basic Science (BS) Courses
- iii. Engineering Science (ES) Courses
- iv. Professional Core (PC) Courses
- v. Professional Elective (PE) Courses
- vi. Open Elective (OE) Courses
- vii. Employability Enhancement Courses (EC) like Project work, Professional Skills Training, Industrial Training, Comprehensive Test & Viva, Entrepreneurships/Start ups and Internship in Industry or elsewhere
- viii. Audit Courses (AC)
- ix. Mandatory Courses (MC) like Student Induction Program and Environmental Science.
- x. Honours Degree Courses (HC)

4.2 Credit Assignment and Honours Degree

4.2.1. Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1
2 Project Work Periods	1
40 Training / Internship Periods	1

The minimum number of credits to complete the BE/BTech programme is 169.

4.2.2. Honours Degree

If a candidate earns 18 to 20 additional credits in an emerging area, then he/she can be awarded with Honours degree mentioning that emerging area as his/her specialization. The respective board of studies shall recommend the specializations for honours degree and appropriate additional courses to be studied by the candidate which shall get approval from Academic Council of the institution. A candidate shall have not less than 8.0 CGPA and no history of arrears during the entire programme to opt for the honours degree.

Various specializations for various branches recommended by the respective boards of studies are given below:

SNo	Specializations for Honours degree in emerging areas	To be offered as Honours, Only for the following branches mentioned against the specialization
1.	Construction Technology	BE – Civil Engineering
2.	Smart Cities	BE – Civil Engineering
3.	Smart Manufacturing *	BE – Mechanical Engineering
4.	Computational Product Design *	BE – Mechanical Engineering
5.	Intelligent Autonomous Systems *	BE – Mechatronics Engineering
6.	E-Mobility *	BE – Automobile Engineering
7.	Artificial Intelligence and Machine Learning	BE – Electronics and Communication Engineering
8.	System on Chip Design *	BE – Electronics and Communication Engineering
9.	Electric Vehicles	BE – Electrical and Electronics Engineering
10.	Microgrid Technologies	BE – Electrical and Electronics Engineering
11.	Intelligent Sensors Technology *	BE – Electronics and Instrumentation Engineering
12.	Smart Industrial Automation *	BE – Electronics and Instrumentation Engineering
13.	Data Science	BE – Computer Science and Engineering
14.	Cyber Security	BE – Computer Science and Engineering
15.	Data Science	BTech – Information Technology
16.	Cyber Security	BTech – Information Technology
17.	Petroleum and Petrochemical Engineering *	BTech – Chemical Engineering
18.	Waste Technology *	BTech – Chemical Engineering
19.	Food Processing and Management *	BTech – Food Technology
20.	Virtual and Augumented Reality	BE- Computer Science and Design
21.	Data Science	BE- Computer Science and Design
22.	Internet of Things (IoT)	BTech – Artificial Intelligence and Data Science
23.	Blockchain	BTech – Artificial Intelligence and Data Science
24.	Internet of Things (IoT)	BTech – Artificial Intelligence and Machine Learning
25.	Blockchain	BTech – Artificial Intelligence and Machine Learning

*Title by KEC

The courses specified under Honours degree in the emerging area may include theory, theory cum practical, practical, project work, etc. under the particular specialization. A candidate can choose and study these specified courses from fourth semester onwards and he/she shall successfully complete the courses within the stipulated time vide clause 5. Total number of credits earned in each semester may vary from candidate to candidate based on the courses chosen. The registration, assessment & evaluation pattern and classification of grades of these courses shall be the same as that of the courses in the

regular curriculum of the programme of the candidate vide clause 6, clause 7 and clause 15 respectively. A candidate can earn Honours degree in only one specialization during the entire duration of the programme.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like project work, internship, professional skills training/industrial training, comprehensive test & viva, internship and entrepreneurships/start ups during the programme to gain/exhibit the knowledge/skills.

4.3.1 Professional Skills Training/ Industrial Training/Entrepreneurships/Start Ups A candidate may be offered with appropriate training courses imparting programming skills, communication skills, problem solving skills, aptitude skills etc. It is offered in two phases as phase-I in fifth semester and phase-II in sixth semester including vacation periods and each phase can carry two credits.

(or)

A candidate may be allowed to go for training at research organizations or industries for a required number of hours in sixth semester vacation period. Such candidate can earn two credits for this training course in place of Professional Skills Training Phase-II in sixth semester. He/She shall attend Professional Skills Training Phase-I in fifth semester and can earn two credits.

(or)

A candidate may be allowed to set up a start up and working part-time for the start ups by applying his/her innovations and can become a student entrepreneur during BE/BTech programme. Candidates can set up their start up from fifth semester onwards either inside or outside of the college. Such student entrepreneurs may earn a maximum of 2 credits per semester for two semesters each in place of either Professional Skills Training-I / II or Industrial Training-I/ II respectively. The area in which the candidate wants to initiate a start up may be interdisciplinary or multidisciplinary. The progress of the startup shall be evaluated by a panel of members constituted by the Principal through periodic reviews.

4.3.2 Comprehensive Test & Viva

The overall knowledge of the candidate in various courses he/she studied shall be evaluated by (i) conducting comprehensive tests with multiple choice questions generally with pattern similar to GATE and/or (ii) viva-voce examination conducted by a panel of experts assigned by the Head of the department. The members can examine the knowledge of the candidate by asking questions from various domains and the marks will be assigned based on their answers. This course shall carry two credits.

4.3.3 Internships

The curriculum enables a candidate to go for full time project through internship during a part of seventh semester and/or entire final semester and can earn credits vide clause 7.6 and clause 7.11.

A candidate is permitted to go for full time projects through internship in seventh semester with the following condition: The candidate shall complete a part of the seventh semester courses with a total credit of about 50% of the total credits of seventh semester including Project Work-I Phase-II in the first two months from the commencement of the seventh semester under fast track mode. The balance credits required to complete the seventh semester shall be earned by the candidate

through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

A candidate is permitted to go for full time projects through internship during eighth semester. Such candidate shall earn the minimum number of credits required to complete eighth semester other than project through either approved Value Added Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.4 Value Added Courses / Online Courses / Self Study Courses

The candidates may optionally undergo Value Added Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 Value Added Courses:** Value Added courses each with One / Two credits shall be offered by the college with the prior approval from the respective Board of Studies. A candidate can earn a maximum of six credits through value added courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty following due approval procedure. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance.
- **4.4.5** A candidate can earn a maximum of 30 credits through all value added courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the first to eighth semesters the candidates have the option of registering for additional elective/Honours courses or dropping of already registered additional elective/Honours courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.

- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the BE / BTech Degree programme in 8 consecutive semesters/4 Years (6 semesters/3 Years for lateral entry candidate), but in any case not more than 14 semesters/7 Years (12 semesters/6 Years for lateral entry candidate).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.

Kongu Engineering College, Perundurai, Erode - 638060, India

6.4 A candidate shall register for the chosen courses as well as arrear courses (if any vide clause 6.2 and 6.3) from the list of courses specified under Honours degree.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The BE/BTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Project Work, Professional Skills Training / Industrial Training, Internship and Entrepreneurships/ Start ups. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks
1.	Theory / Practical	50	50
2.	Theory cum Practical	The distribution of based on the credit theory and practical	f marks shall be decided it weightage assigned to l components.
3.	Professional Skills Training / / Comprehensive Test & Viva / Entrepreneurships / Start ups / Project Work - I / Industrial Training / Mandatory Course	100	
4.	Project Work-II Phase-I / Project Work-II Phase-II / Internships	50	50
5.	Value Added Course	The distribution of marks shall be	
6.	All other Courses	decided based on the credit weightage assigned	

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, internships and entrepreneurships/start ups shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 50 marks and the end semester examination shall be for 50 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

Sl. No.	Туре	Max. Marks	Remarks
	Test - I	30	
1.	Test - II	30	Average of best two
	Test - III	30	
2.	Tutorial	15	Should be of Open Book/Objective Type. Average of best 4 (or more, depending on the nature of the course, as may be approved by Principal)
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	50	Rounded off to the one decimal place

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for a duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

7.5.1 The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.

7.6 Project Work-II Phase-I / Project Work-II Phase-II

- **7.6.1** Project work shall be assigned to a single candidate or to a group of candidates not exceeding 4 candidates in a group. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work-II (both Phase-I and Phase-II) and the Viva-Voce Examination shall be distributed as below:

		End Semester Examination (Max. 50 Marks)							
Zeroth	Zeroth Review I (Max 20 Marks) (Max. 30 Marks))	Report Evaluation (Max. 20 Marks)	Viva - V (Max. 30)	Voce Marks)			
Rv. Com	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2
0	0	10	10	15	15	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. The candidate(s) must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester.
- 7.6.5 If a candidate fails to secure 50% of the continuous assessment marks in the

project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.

- **7.6.6** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.7** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.6.
- **7.6.8** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Project Work-I Phase-I / Industrial Training

The evaluation method shall be same as that of the Project Work-II as per clause 7.6 excluding 7.6.3, 7.6.5, 7.6.6 and 7.6.7. The marks distribution is given below:

Continuous Assessment (Max. 100 Marks)									
						Review III (Max. 50 Marks)			
Zeroth Review		Review I (Max 20 Marks)		Review II (Max 30 Marks)		Report Evaluation (Max. 20 Marks)	Viva – Voce (Max. 30 Marks)		
Review Commi ttee	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Review Committee	Guide	Review Committee	
0	0	10	10	15	15	20	10	20	

If a candidate fails to secure 50 % of the continuous assessment marks in this course, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted.

7.8 Professional Skills Training

Phase-I training shall be conducted for minimum of 80 hours in 4^{th} semester vacation and during 5^{th} semester. Phase-II training shall be conducted for minimum of 80 hours in 5^{th} semester vacation and during 6^{th} semester. The evaluation procedure shall be approved by Principal.

7.9 Comprehensive Test and Viva

A candidate can earn 2 credits by successfully completing this course. The evaluation procedures shall be approved by the Principal.

7.10 Entrepreneurships/ Start ups

A start up/business model may be started by a candidate individually or by a group of maximum of three candidates during the programme vide clause 4.3.1. The head of the department concerned shall assign a faculty member as a mentor for each start up.

A review committee shall be formed by the Principal for reviewing the progress of the Start ups / Business models, innovativeness, etc. The review committee can recommend the appropriate grades for academic performance for the candidate(s) involved in the start ups. This course shall carry a maximum of two credits in fifth semester and two credits in sixth semester respectively and shall be evaluated through continuous assessments for a maximum of 100 marks vide clause 7.1. A report about the start ups is to be submitted to the review committee for evaluation for each start up and the marks will be given to Controller of Examinations after getting approval from Principal.

7.11 Projects through Internships

Each candidate shall submit a brief report about the project through internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work-II as per clause 7.6.

7.12 Value Added Course

Minimum of two assessments shall be conducted during the value added course duration by the offering department concerned.

7.13 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.14 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.15 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit

course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SF (Satisfactory). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

7.16 Mandatory Course

A candidate shall attend and complete the induction training program of duration three weeks at the beginning of the first semester. It is mandatory for all candidates who have joined in various branches of all BE/BTech programmes. No credits shall be given for such courses and shall be evaluated through continuous assessment tests only vide clause 7.1 for a maximum of 100 marks each. Since these courses have no grade points assigned, these courses will not be counted for the purpose of GPA and CGPA calculations.

7.17 Yoga and Values for Holistic Development (YVHD) and Universal Human Values (UHV)

Courses such as YVHD and UHV shall be offered to all candidates of all BE/BTech programmes. These courses shall carry a maximum of 100 marks each and shall be evaluated through continuous assessment tests only vide clause 7.1. The candidate(s) can earn 2 credits for UHV and 1 credit for YVHD by successfully completing these courses. Two continuous assessment tests will be conducted and the average marks will be taken for the calculation of grades.

8. REQUIREMENTS FOR COMPLETION OF A SEMESTER

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.

8.1.2 A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.

A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to his/her entrepreneurships/ start ups activities, but has secured not less than 60 % in the current semester can be permitted to appear for the current semester examinations with the recommendation of review committee and approval from the Principal.

- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.
- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.
- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.

- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

15. AWARD OF LETTER GRADES

Range of % of Total Marks	Letter Grade	Grade Point
91 to 100	O (Outstanding)	10
81 to 90	A+ (Excellent)	9
71 to 80	A (Very Good)	8
61 to 70	B+ (Good)	7
50 to 60	B (Average)	6
Less than 50	RA (Reappear)	0
Satisfactory	SF	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

 $GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum \sum (course credits) \times (grade points)] \text{ for all courses in the specific semester}}$

 Σ (course credits) for all courses in the specific semester

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

CGPA= $\sum [(\text{course credits}) \times (\text{grade points})]$ for all courses in all the semesters so far

 \sum (course credits) for all courses in all the semesters so far

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the BE / BTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- **17.1.2** A candidate who joins from other institutions on transfer and who gets readmitted and has to move from one regulations to another regulations and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all eight semesters (six semesters for lateral entry candidates) within ten consecutive semesters (eight consecutive semesters for lateral entry candidates) excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.00

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

17.5 Honours Degree:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have earned the BE/BTech degree with Honours (vide clause 16 and clause 4.2.2):

- Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 8.00

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its BE / BTech programme.

CURRICULUM BREAKDOWN STRUCTURE

Summary of Credit Distribution

Category				Sem	ester				Total number of credits	Curricu of to credits	lum Content (% tal number of of the program)	
	I	II	Ш	IV	v	VI	VII	VIII				
HS	4	3		3			3		13		7.7	
BS	11	11	4	4					30	17.8		
ES	4	4	8	4					20	11.8		
PC	4	3	12	9	12	12	4		56	33.1		
PE					3		12	3	18	10.7		
OE				4	4	3		3	14		8.3	
EC					2	6	6	4	18		10.7	
Semester wise Total	23	21	24	24	21	21	25	10	169		100.00	
					Categor	y					Abbreviation	
Lecture hours pe	r week										L	
Tutorial hours pe	r week										Т	
Practical, Project	work, Inte	ernship, l	Professio	nal Skill	Training,	Industria	l Training	g hours p	er week		Р	
Credits									С			

	CATEGORISATION OF COURSES										
HU	HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT(HS)										
S. No.	Course Code	Course Name	L	т	Ρ	с	Sem				
1.	20EGT11	English Language Skills	3	0	0	3	I				
2.	20VEC11	Yoga and Values for Holistic Development	1	0	1	1	I				
3.	20EGT21	Advanced Communication Skills	3	0	0	3	П				
4.	20EGL31	English for Workplace Communication Laboratory	0	0	2	1	IV				
5.	20GET31	Universal Human Values	2	0	0	2	IV				
6.	6. 20GET71 Engineering Economics and 3 0 0 3 VII										
	Total Credits to be earned 13										

		BASIC SCIENCE (BS)					
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20MAC11	Matrices and Differential Equations	3	1*	2*	4	I
2.	20PHT11	Applied Physics	3	0	0	3	I
3.	20CYT11	Applied Chemistry	3	0	0	3	I
4.	20PHL11	Physical Sciences Laboratory I	0	0	2	1	I
5.	20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	11
6.	20PHT21	Materials Science	3	0	0	3	П
7.	20CYT22	Chemistry for Mechanical Systems	3	0	0	3	П
8.	20PHL21	Physical Sciences Laboratory II	0	0	2	1	П
9.	20MAT31	Probability and Partial Differential Equations	3	1	0	4	111
10.	20MAT41	Statistics and Numerical Methods	3	1	0	4	IV
	Tota	I Credits to be earned				30	
		ENGINEERING SCIENCE (ES)					
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20MEC11	Engineering Drawing	2	0	2	3	Ι
2.	20MEL11	Engineering Practices Laboratory	0	0	2	1	Ι
3.	20MET22	Basics of Electrical and Electronics Engineering	3	0	0	3	II
4.	20MEL21	Electrical and Electronics Engineering Laboratory	0	0	2	1	II
5.	20CSC31	Programming in C	3	0	2	4	III
6.	20MEC31	Fluid Mechanics and Hydraulic Machines	3	0	2	4	111
7.	20CSC41	Python Programming	3	0	2	4	IV
	Tota				20		

	PROFESSIONAL CORE (PC)									
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem	Domain/ Stream*		
1.	20MET11	Engineering Mechanics	3	1	0	4	Ι	Design		
2.	20MET21	Manufacturing Technology	3	0	0	3	=	Mfg		
3.	20MET31	Engineering Thermodynamics	3	0	0	3	≡	Thermal		
4.	20MEC32	Engineering Materials and Metallurgy	3	0	2	4	Ш	Mfg		
5.	20MET32	Material Removal Processes	3	0	0	3	=	Mfg		
6.	20MEL31	Production Technology Laboratory	0	0	2	1	=	Mfg		
7.	20MEL32	Machine Drawing Laboratory	0	0	2	1	111	Design		
8.	20MET41	Strength of Materials	3	1	0	4	IV	Design		
9.	20MET42	Thermal Engineering	3	0	0	3	IV	Thermal		
10.	20MEL41	Material Property Testing Laboratory	0	0	2	1	IV	Design		
11.	20MEL42	Thermal Engineering and Renewable Energy Laboratory	0	0	2	1	IV	Thermal		
12.	20MET51	Kinematics of Machinery	3	0	0	3	V	Design		
13.	20MET52	Heat and Mass Transfer	3	0	0	3	V	Thermal		
14.	20MET53	Metrology and Measurements	3	0	0	3	V	Mfg		
15.	20MEL51	Heat Transfer Laboratory	0	0	2	1	V	Thermal		
16.	20MEL52	Computer Aided Drawing Laboratory	0	0	2	1	V	Design		
17.	20MEL53	Metrology and Measurements and Automobile Engineering Laboratory	0	0	2	1	V	Mfg		
18.	20MET61	Dynamics of Machinery	3	0	0	3	VI	Design		
19.	20MET62	Finite Element Analysis	3	0	0	3	VI	Design		
20.	20MET63	Design of Machine Elements	3	0	0	3	VI	Design		
21.	20MEL61	Dynamics Laboratory	0	0	2	1	VI	Design		
22.	20MEL62	Simulation and Analysis Laboratory	0	0	2	1	VI	Design		
23.	20MEL63	CAD/CAM Laboratory	0	0	2	1	VI	Design		
24.	20MEC71	Mechatronics and IoT	3	0	2	4	VII	Design		
	Total Credits to be earned					56				

Γ

S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem	Domain/ Stream			
		Elective – I									
1.	20MEE01	Fluid Power System	3	0	0	3	V	Design			
2.	20MEE02	CAD/CAM/CIM	3	0	0	3	V	Design			
3.	20MEE03	Automobile Engineering	3	0	0	3	V	Thermal			
4.	20MEE04	Climate Change and New Energy Technology	3	0	0	3	V	Thermal			
5.	20MEE05	Unconventional Machining Processes	3	0	0	3	V	Mfg.			
6.	20MEE06	Design for Manufacture and Assembly	3	0	0	3	V	Mfg.			
7.	20MEE07	Operations Research	3	0	0	3	V	Ind. Engg.			
8.	20MEE08	Production Planning and Control	3	0	0	3	V	Ind. Engg.			
		Elective – II									
9.	20MEE09	Design of Transmission Systems	3	0	0	3	VII	Design			
10.	20MEE10	Vibration and Noise Control	3	0	0	3	VII	Design			
11.	20MEE11	Production Tool Design	3	0	0	3	VII	Mfg.			
12.	20MEE12	Manufacturing Information System	3	0	0	3	VII	Mfg.			
13.	20MEE13	Gas Dynamics and Jet Propulsion	3	0	0	3	VII	Thermal			
14.	20MEE14	Refrigeration and Air Conditioning	3	0	0	3	VII	Thermal			
15.	20MEE15	Supply Chain Management	3	0	0	3	VII	Ind. Engg.			
16.	20MEE16	Lean Six Sigma	3	0	0	3	VII	Ind. Engg.			
		Elective – III									
17	20GEE01	Fundamentals of Research	3	0	0	3	VII	General			
18.	20MEE17	Piping Design	3	0	0	3	VII	Design			
19.	20MEE18	Design of Jigs, Fixtures and Press Tools	3	0	0	3	VII	Design			
20.	20MEE19	Fuels and Combustion Technology	3	0	0	3	VII	Thermal			
21.	20MEE20	Computational Fluid Dynamics	3	0	0	3	VII	Thermal			
22.	20MEE21	CNC Technology	3	0	0	3	VII	Mfg.			
23.	20MEE22	Precision Engineering	3	0	0	3	VII	Mfg.			
24.	20MEE23	Total Quality Management	3	0	0	3	VII	Ind. Engg.			
25.	20MEE24	Project Management	3	0	0	3	VII	Ind. Engg.			

		Elective – IV						
26.	20MEE25	Mechanics of Composite Materials	3	0	0	3	VII	Design
27.	20MEE26	Advanced Mechanics of Materials	3	0	0	3	VII	Design
28.	20MEE27	Turbomachines	3	0	0	3	VII	Thermal
29.	20MEE28	Design of Heat Exchangers	3	0	0	3	VII	Thermal
30.	20MEE29	Additive Manufacturing	3	0	0	3	VII	Mfg.
31.	20MEE30	Welding Technology	3	0	0	3	VII	Mfg.
32.	20MEE31	Quality Control and Reliability Engineering	3	0	0	3	VII	Ind. Engg.
33.	20MEE32	Industrial Engineering	3	0	0	3	VII	Ind. Engg.
		Elective – V						
34.	20MEE33	Introduction to Aircraft Systems	3	0	0	3	VII	Design
35.	20MEE34	Industrial Tribology	3	0	0	3	VII	Design
36.	20MEE35	Instrumentation in Thermal Engineering	3	0	0	3	VII	Thermal
37.	20MEE36	Energy Auditing and Management	3	0	0	3	VII	Thermal
38.	20MEE37	Modelling and Analysis of Manufacturing Systems	3	0	0	3	VII	Mfg.
39.	20MEE38	Micro Electro Mechanical Systems	3	0	0	3	VII	Mfg.
40.	20MEE39	Maintenance Engineering	3	0	0	3	VII	Ind. Engg.
41.	20MEE40	Industrial Safety Engineering	3	0	0	3	VII	Ind. Engg.
42.	20MEE41	Hybrid Vehicle Technology	3	0	0	3	VII	General
		Elective – VI						
43.	20MEE42	Introduction to Aircraft Structures	3	0	0	3	VIII	Design
44.	20MEE43	Principles of Farm Machineries	3	0	0	3	VIII	Design
45.	20MEE44	Power Plant Engineering	3	0	0	3	VIII	Thermal
46.	20MEE45	Energy Conservation in HVAC System	3	0	0	3	VIII	Thermal
47.	20MEE46	Nanotechnology for Mechanical Engineers	3	0	0	3	VIII	Mfg.
48.	20MEE47	Non Destructive Evaluation Techniques	3	0	0	3	VIII	Mfg.
49.	20MEE48	Industrial Marketing	3	0	0	3	VIII	Ind. Engg.
	Т	otal Credits to be earned				18		

	EMPLOYABILITY ENHANCEMENT COURSES (EC)										
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem				
1.	20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I	0	0	0	2	V				
2.	20GEL61/ 20GEl61	Professional Skills Training II / Industrial Training II	0	0	0	2	VI				
3.	20GEP61	Project Work I	0	0	4	2	VI				
4.	20MEP61	Comprehensive Test / Viva	0	0	0	2	VII				
5.	20MEP71	Project Work II Phase I	0	0	12	6	VII				
6.	20MEP81	Project Work II Phase II	0	0	8	4	VIII				
	Total Credits to be earned										

* Domain/Stream Abbreviations: Mfg – Manufacturing, Ind. Engg. – Industrial Engineering, GE – General Engineering

OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)

(Common to all departments except offering department)

S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	20MEO01	Renewable Energy Sources	3	0	2	4	IV
2.	20MEO02	Design of Experiments	3	0	2	4	V
3.	20MEO03	Fundamentals of Ergonomics	3	0	0	3	VI
4.	20MEO04	Principles of Management and Industrial Psychology	3	0	0	3	VI
5.	20MEO05	Safety Measures for Engineers	3	0	0	3	VIII
6.	20MEO06	Energy Conservation in Thermal Equipment's	3	0	0	3	VIII

OPEN ELECTIVE COURSES OFFERED BY OTHER DEPARTMENTS (OE)

S.No.	Course Code	Course Title	L	Т	Ρ	С	Offering Dept.
		SEMESTER - IV					
1	20CEO01	Remote Sensing and its Applications	3	0	2	4	CIVIL
2	20MEO01	Renewable Energy Sources	3	0	2	4	MECH
3	20AUO01	Automotive Engineering	3	0	2	4	AUTO
4	20ECO01	Wearable Technology	3	1	0	4	ECE
5	20ECO02	Basics of Electronics in Automation Appliances	3	1	0	4	ECE
6	20ECO03	Principles of Quantum Computing	3	0	2	4	ECE
7	20EEO01	Solar and Wind Energy Systems	3	1	0	4	EEE
8	20EEO02	Electrical Wiring and Lighting	3	1	0	4	EEE

9	20EEO03	Electrical Safety	3	1	0	4	EEE
10	20EIO01	Digital Image Processing and Its Applications	3	1	0	4	EIE
11	20CSO01	Fundamentals of Databases	3	0	2	4	CSE
12	20CSO02	Python Programming and Frameworks	3	0	2	4	CSE
13	20ITO01	Artificial Intelligence	3	1	0	4	IT
14	20ITO02	Web Technologies	3	1	0	4	IT
15	20ITO03	Introduction to Operating Systems	3	1	0	4	IT
16	20ITO04	Programming in Python	3	1	0	4	IT
17	20CHO01	Drugs and Pharmaceuticals Technology	3	1	0	4	CHEM
18	20CHO02	Process Automation	3	1	0	4	CHEM
19	20FTO01	Baking Technology	3	0	2	4	FT
20	20FTO02	Food Processing Technology	3	1	0	4	FT
21	20CDO01	Fundamentals of User Experience Design	3	1	0	4	CSD
22	20ADO01	Data Warehousing and Data Mining	3	0	2	4	AIDS
23	20ALO01	Business Intelligence	3	1	0	4	AIML
24	20PHO01	Thin Film Technology	3	1	0	4	PHY
25	20CYO01	Instrumental Methods of Analysis	3	1	0	4	CHEMIS
		SEMESTER - V					
26	20CEO02	Disaster Management	3	1	0	4	CIVIL
27	20MEO02	Design of Experiments	3	0	2	4	MECH
28	20AUO02	Automotive Electronics	3	0	2	4	AUTO
29	20ECO04	PCB Design and Fabrication	3	0	2	4	ECE
30	20EEO04	Energy Conservation and Management	3	1	0	4	EEE
31	20EIO02	Industrial Automation	3	1	0	4	EIE
32	20EIO03	Measurements and Instrumentation	3	1	0	4	EIE
33	20CSO03	Computational Science for Engineers	3	1	0	4	CSE
34	20CSO04	Formal Languages and Automata	3	1	0	4	CSE
35	20ITO05	Data Science	3	1	0	4	IT
36	20ITO06	Advanced Java Programming	3	1	0	4	IT
37	20CHO03	Renewable Bioenergy Resources	3	1	0	4	CHEM
38	20CHO04	Intelligent Controllers	3	1	0	4	CHEM
39	20FTO03	Processing of Milk and Milk Products	3	0	2	4	FT
40	20FTO04	Processing of Fruits and Vegetables	3	0	2	4	FT
41	20CDO02	Fundamentals of User Interactive Design	3	0	2	4	CSD
42	20ADO02	Computer Vision	3	0	2	4	AIDS
43	20ALO02	Data Exploration and Visualization Techniques	3	0	2	4	AIML

44	20PHO02	High Energy Storage Devices	3	0	0	3	PHY
45	20CYO02	Corrosion Science and Engineering	3	1	0	4	CHEMIS
46	20CYO03	Chemistry of Cosmetics in Daily Life	3	1	0	4	CHEMIS
47	20CYO04	Chemistry of Nutrition for Women Health	3	1	0	4	CHEMIS
48	20MAO01	Mathematical Foundations for Machine Learning	3	1	0	4	MATHS
49	20MAO02	Graph Theory and its Applications	3	1	0	4	MATHS
		SEMESTER - VI					
50	20CEO03	Introduction to Smart Cities	3	0	0	3	CIVIL
51	20CEO04	Environmental Health and Safety	3	0	0	3	CIVIL
52	20MEO03	Fundamentals of Ergonomics	3	0	0	3	MECH
53	20MEO04	Principles of Management and Industrial Psychology	3	0	0	3	MECH
54	20AUO03	Vehicle Maintenance	3	0	0	3	AUTO
55	20ECO05	Electronic Hardware and Troubleshooting	2	0	2	3	ECE
56	20ECO06	Bioinspired Computing Technologies	2	0	2	3	ECE
57	20EEO05	Micro Grid and Smart Grid	3	0	0	3	EEE
58	20EEO06	E-Waste Management	3	0	0	3	EEE
59	20EIO04	Biomedical Instrumentation and Applications	3	0	0	3	EIE
60	20EIO05	PLC Programming and Its Applications	3	0	0	3	EIE
61	20EIO06	Instrumentation for Industry 4.0	3	0	0	3	EIE
62	20CSO05	Java Programming	2	0	2	3	CSE
63	20CSO06	Web Engineering	2	0	2	3	CSE
64	20CSO07	Nature Inspired Optimization Techniques	3	0	0	3	CSE
65	20ITO07	Bio Natural Language Processing	3	0	0	3	IT
66	20ITO08	Disaster Management for Information Technology	3	0	0	3	IT
67	20CHO05	Food as Medicine	3	0	0	3	CHEM
68	20CHO06	Organic Farming	3	0	0	3	CHEM
69	20FTO05	Principles of Food Safety	3	0	0	3	FT
70	20FTO06	Fundamentals of Food Packaging and Storage	3	0	0	3	FT
71	20CDO03	Introduction to Mobile Game Design	3	0	0	3	CSD
72	20ADO03	Neural Networks and Deep Learning	3	0	0	3	AIDS
73	20ALO03	Industrial Machine Learning	3	0	0	3	AIML
74	20PHO03	Structural and Optical Characterization of Materials	3	0	0	3	PHY
75	20CYO05	Chemistry Concepts for Competitive Examinations	3	0	0	3	CHEMIS
76	20CYO06	Waste and Hazardous Waste Management	3	0	0	3	CHEMIS
77	20MAO03	Data Analytics using R Programming	3	0	2	4	MATHS
78	20MAO04	Number Theory and Cryptography	3	1	0	4	MATHS
		SEMESTER - VIII					

79	20CEO05	Infrastructure Planning and Management	3	0	0	3	CIVIL
80	20CEO06	Environmental Laws and Policy	3	0	0	3	CIVIL
81	20MEO05	Safety Measures for Engineers	3	0	0	3	MECH
82	20MEO06	Energy Conservation in Thermal Equipments	3	0	0	3	MECH
83	20AUO04	Public Transport Management	3	0	0	3	AUTO
84	20AUO05	Autonomous Vehicles	3	0	0	3	AUTO
85	20ECO07	Optical Engineering	3	0	0	3	ECE
86	20EEO07	Electric Vehicle	3	0	0	3	EEE
87	20EIO07	Graphical Programming using Virtual Instrumentation	3	0	0	3	EIE
88	20EIO08	Testing of Materials	3	0	0	3	EIE
89	20CSO08	Fundamentals of Internet of Things	3	0	0	3	CSE
90	20CSO09	Machine Translation	3	0	0	3	CSE
91	20CSO10	Fundamentals of Blockchain	3	0	0	3	CSE
92	20ITO09	Modern Application Development	3	0	0	3	IT
93	20ITO10	Object Oriented System Development using UML	3	0	0	3	IT
94	20ITO11	Reinforcement Learning	3	0	0	3	IT
95	20CHO07	Cosmetics and Personal Health Care Products	3	0	0	3	CHEM
96	20CHO08	Brewing and Alcohol Technology	3	0	0	3	CHEM
97	20FTO07	Food Ingredients	3	0	0	3	FT
98	20FTO08	Food and Nutrition	3	0	0	3	FT
99	20CDO04	Introduction to Graphics Design	3	0	0	3	CSD
100	20ADO04	Business Analytics	3	0	0	3	AIDS
101	20ALO04	Machine Learning for Smart Cities	3	0	0	3	AIML
102	20MAO05	Advanced Linear Algebra	3	0	0	3	MATHS
103	20MAO06	Optimization Techniques	3	0	0	3	MATHS

KEC R2020: SCHEDULING OF COURSES - B.E. (Mechanical Engineering) Total Credits: 169

Course1 Course₂ Course3 Course4 Course5 Course6 Course7 Course8 Course9 Course10 Credits E 20EGT11 20MAC11 20PHT11 20CYT11 20MEC11 20MET11 20PHL11 20MEL11 20VEC11 20MNT11 English Matrices and Applied Applied Engineering Engineering Physical Engineering Yoga and Values Induction 23 LanguageSkills Differential Physics Chemistry Drawing (2-Mechanics Sciences Practices for Holistic Training (3-0-0-3)Equations (3-0-0-3)(3-0-0-3) 0-2-3) (3-1-0-4)Laboratory I Laboratory Development Program (3-1*-2*-4)(0-0-2-1) (0-0-2-1) (1-0-1-1)20EGT21 20MAC21 20PHT21 20CYT22 20MET22 20MET21 20PHL21 20MEL21 Advanced Multivariable Materials Chemistry for Manufacturing **Physical Sciences** Electrical and Basics of Communication Calculus and Science Mechanical Electrical and Technology Laboratory II Electronics п (0-0-2-1)Skills (3-0-0-3) Complex (3-0-0-3) Systems Electronics (3-0-0-3) 21 Engineering (3-0-0-3)Analysis Engineering Laboratory (0- $(3-1^{*}-2^{*}-4)$ (2-0-2-3)0-2-1) 20MEL31 20MEL31 20MNT31 20MAT31 20CSC31 20MEC31 20MET31 20MEC32 20MET32 Probability and Programming Fluid Mechanics Engineering Engineering Material Production Machine Drawing Environmental Partial Thermodynamics Materials Ш in C and Hydraulic Removal Technology Laboratory Science Differential (3-0-2-4) Machines (3-0-0-3) (0-0-2-1)24 and Processes Laboratory (2-0-0-0)(3-0-2-4)(3-0-0-3)Equations Metallurgy (0-0-2-1)(3-1-0-4)(3-0-2-4)20MAT41 20CSC41 20MET41 20MET42 Open 20MEL41 20MEL42 20EGL31 20GET31 Thermal Universal Statistics and Python Strength of Thermal Elective I Material English for Workplace **HumanValues** IV Numerical Programming Materials (3-Engineering (3-1/0-0/2-4)PropertyTesting Engineering and (2-0-0-2)Methods (3-0-2-4 1-0-4) (3-0-0-3) Laboratory Renewable Communication (3-1-0-4) (0-0-2-1)Energy Laboratory 24 (0-0-2-1) Laboratory (0-0-2-1)20MET51 20MET52 20MET53 Professional Open 20MEL51 20MEL52 20MEL53 20GEL51/ 20GEI51 Kinematics of Heat and Mass Metrology and Elective I (3-Elective II Heat **Computer Aided** Metrology and V Machinerv (3-Transfer Measurements 0-0-3) (3-1/0-0/2-4)Transfer Drawing Measurements and Professional (3-0-0-3)0-0-3) (3-0-0-3)Laboratory Laboratory Automobile Skills Training I / 21 (0-0-2-1)Engineering (0-0-2-1) Industrial Laboratory Training I (0-0-2-1) (0-0-0-2)20MET61 20MET62 20MEL61 20MEL62 20MEL63 20GEL61/ 20GEP61 20MEP61 20MET63 Open Dynamics of **Finite Element** Design of Elective III Dynamics Simulation and CAD/CAM 20GEI61 Comprehensive Project Machinery (3-0-Analysis Machine (3-0-0-3) Laboratory Analysis Laboratory Professional Skills Test /Viva Work I VI (3-0-0-3)Elements(3-Laboratory (0-Training II / (0-0-0-2)(0-0-4-2)0-3) (0-0-2-1)(0-0-2-1)Industrial TrainingII 0-0-3) 0-2-1) 21 (0-0-0-2)20GETT71 20MEC71 Professional Professional Professional Professional 20MEP71 Mechatronics Elective II Elective III Elective IV Elective V Project Work II Engineering and IoT (3-0-0-3)(3-0-0-3) (3-0-0-3) Phase I 22 VII Economics and (3-0-0-3)(3-0-2-4) (0-0-12-6) Management (3-0-0-3)**Open Elective IV** 20MEP81 Professional Elective VI Project Work II (3-0-0-3)(3-0-0-3) VIII Phase II 13 (0-0-8-4)

MAPPING OF COURSES WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
1	20EGT11	English Language Skills						✓			~	✓	✓	~		
1	20MAC11	Matrices and Differential Equations	~	~	~	~	~									
1	20PHT11	Applied Physics	~	~	~											
1	20CYT11	Applied Chemistry	~	~	~	~										
1	20MEC11	Engineering Drawing	~	~	~	~						~	~	~	~	~
1	20MET11	Engineering Mechanics	~	~	~	~								~		✓
1	20PHL11	Physical Sciences Laboratory I				~										
1	20MEL11	Engineering Practices Laboratory	~		~	~	~	~			~	~		~		
1	20VEC11	Yoga and Values for Holistic Development						~		~	~			~		
1	20MNT11	Induction Training Program														
2	20EGT21	Advanced Communication Skills						~			~	~	~	~		
2	20MAC21	Multivariable Calculus and Complex Analysis	~	~	~		~									
2	20PHT21	Materials Science	~	~	~											
2	20CYT22	Chemistry for Mechanical Systems	~	~	~	~										
2	20MET21	Manufacturing Technology (2020-2021)	~	~				~					~		~	~
2	20MET22	Basics of Electrical and Electronics Engineering	~	~	~	~									~	~
2	20PHL21	Physical Sciences Laboratory II			~											
2	20MEL21	Electrical and Electronics Engineering Laboratory	~	~	~	~	~								~	~
3	20MAT31	Probability and Partial Differential Equations	~	~	~											
3	20CSC31	Programming in C(2020-2021)	~	~	~	~	~					~				
3	20MEC31	Fluid Mechanics and Hydraulic Machines	~	~	~	~	~				~	~		~	~	~
3	20MEC32	Engineering Materials and Metallurgy	~	~		~	~		~		~	~		~	~	~
3	20MET31	Engineering Thermodynamics	~	~	~				~			✓		~		✓

Kongu Engineering College, Perundurai, Erode - 638060, India

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
3	20MET32	Material Removal Processes	~	~	~	~								~		✓
3	20MEL31	Production Technology Laboratory	~	~		~					~	~		~	~	~
3	20MEL32	Machine Drawing Laboratory	~		~							~		~	✓	✓
3	20MNT31	Environmental Science	~	~	~				~							
4	20MAT41	Statistics and Numerical Methods	~	~	~	~										
4	20CSC41	Python Programming (2020-2021)	~	~	~	~										
4	20MET41	Strength of Materials	~	~	~									~		~
4	20MET42	Thermal Engineering	~	~	~											~
4	20MEL41	Material Property Testing Laboratory	~	~		~	~				✓	~			~	~
4	20MEL42	Thermal Engineering and Renewable Energy Laboratory	~	~	~		~				~	~			~	~
4	20EGL31	English for Workplace Communication Laboratory									~	~		~		
4	20GET31	Universal Human Values						~	~	~	✓	~				
5	20MET51	Kinematics of Machinery	~	~	~	~	~								~	✓
5	20MET52	Heat and Mass Transfer	\checkmark	~			~		~			\checkmark		~	\checkmark	✓
5	20MET53	Metrology and Measurements	\checkmark	~	~	~	~							~	~	✓
5	20MEL51	Heat Transfer Laboratory	\checkmark	~	~	~	~				~	\checkmark		~	~	✓
5	20MEL52	Computer Aided Drawing Laboratory	~	~	~	~	~					~		~	~	✓
5	20MEL53	Metrology and Measurements and Automobile Engineering Laboratory	~				~				~				~	~
5	20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I *	~	~				~	~		~	~	~	~		
6	20MET61	Dynamics of Machinery	~	~	~	~										~
6	20MET62	Finite Element Analysis	~	~	~	~	~								~	~
6	20MET63	Design of Machine Elements	~	~	~	~										✓
6	20MEL61	Dynamics Laboratory	✓	~	~	~										✓
6	20MEL62	Simulation and Analysis Laboratory	\checkmark	✓	~	~	~					\checkmark		~	~	✓
Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
------	---------------------	---	-----	-----	-----	-----	-----	-----	-----	--------------	-----	--------------	----------	----------	------	------
6	20MEL63	CAD/CAM Laboratory	~	~	~	~	~					✓			~	~
6	20GEL61/ 20GEl61	Professional Skills Training II / Industrial Training II *	~	~				~	~		~	~	~	~		
6	20GEP61	Comprehensive Test / Viva														
6	20MEP61	Project Work I	~	~	~	~	~	~	~	\checkmark	~	\checkmark	✓	~	✓	✓
7	20GET71	Engineering Economics and Management	~	~	~			~	~	~	~	~	~	~	~	✓
7	20MEC71	Mechatronics and IoT	~		~		~					~			~	
7	20MEP71	Project Work II Phase I	~	~			~	~	~	~	~	~	~	~	~	~
8	20MEP81	Project Work II Phase II	~	~	~	~	~	~	~	~	✓	~	~	~	~	~

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		Professional Elective Courses														
5	20MEE01	Fluid Power System	~	~	~											
5	20MEE02	CAD/CAM/CIM	~	~	~	~	~					~		~	~	✓
5	20MEE03	Automobile Engineering	~	✓				~								✓
5	20MEE04	Climate Change and New Energy Technology	~	~			~	~	~					~	~	✓
5	20MEE05	Unconventional Machining Processes	~	~			~	~				✓		~	✓	✓
5	20MEE06	Design for Manufacture and Assembly	~	~	~	~	~							~	✓	✓
5	20MEE07	Operations Research	~	~	~	~	~						~		~	~
5	20MEE08	Production Planning and Control	~	~	~	~										✓
7	20MEE09	Design of Transmission Systems	~	~	~											✓
7	20MEE10	Vibration and Noise Control	~	~	~			~				~				✓
7	20MEE11	Production Tool Design	~	~	~											~
7	20MEE12	Manufacturing Information System	~				~								~	✓
7	20MEE13	Gas Dynamics and Jet Propulsion	~	~	~											\checkmark
7	20MEE14	Refrigeration and Air Conditioning	~	~				~	~							~
7	20MEE15	Supply Chain Management	~	~	~		~					~			~	✓

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

							r	r			r					
7	20MEE16	Lean Six Sigma	✓	✓		~	✓				✓			✓	\checkmark	\checkmark
7	20GEE01	Fundamentals of Research	~	~	~	~	~			~		✓		✓	\checkmark	\checkmark
7	20MEE17	Piping Design	~	~	~	~										\checkmark
7	20MEE18	Design of Jigs, Fixtures and Press Tools	✓	✓	~	~										\checkmark
7	20MEE19	Fuels and Combustion Technology	~	~				~								\checkmark
7	20MEE20	Computational Fluid Dynamics	~	~	~		~							✓	✓	~
7	20MEE21	CNC Technology	~	~	~							~				~
7	20MEE22	Precision Engineering	~	~	~							~		~		~
7	20MEE23	Total Quality Management	~	~	~	~	~	~	~	~	~	~	~	~	~	~
7	20MEE24	Project Management	~	~			~			~			~		~	~
7	20MEE25	Mechanics of Composite Materials	~	~	~	✓									~	✓
7	20MEE26	Advanced Mechanics of Materials	~	~		✓										✓
7	20MEE27	Turbomachines	~	~	~											✓
7	20MEE28	Design of Heat Exchangers	~	~	~											✓
7	20MEE29	Additive Manufacturing	~	~	~	✓	~						~	~	~	✓
7	20MEE30	Welding Technology	~	~	~	~	~								~	✓
7	20MEE31	Quality Control and Reliability Engineering	~	~	~	✓	~								~	✓
7	20MEE32	Industrial Engineering	~	~	~	~	~						~		~	✓
7	20MEE33	Introduction to Aircraft Systems	~	~	~				~			~		~		✓
7	20MEE34	Industrial Tribology	~	~	~	~										
7	20MEE35	Instrumentation in Thermal Engineering	~	~			~							~	~	✓
7	20MEE36	Energy Auditing and Management	~	~	~		~	~	~	✓		~	~		~	✓
7	20MEE37	Modelling and Analysis of Manufacturing Systems	~		~										~	~
7	20MEE38	Micro Electro Mechanical Systems	~												~	
7	20MEE39	Maintenance Engineering	✓	~			~	~						~	✓	✓
7	20MEE40	Industrial Safety Engineering	~	~	~											✓
7	20MEE41	Hybrid Vehicle Technology	~	~					~							✓
8	20MEE42	Introduction to Aircraft Structures	~		~				~			~		~		\checkmark

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

8	20MEE43	Principles of Farm Machineries	~												~
8	20MEE44	Power Plant Engineering	~	~	~			~	~			~	~		✓
8	20MEE45	Energy Conservation in HVAC System	~	~	~		~	~	~					~	✓
8	20MEE46	Nanotechnology for Mechanical Engineers	~	~	~	~	✓	~						~	✓
8	20MEE47	Non Destructive Evaluation Techniques	~	~			✓				✓		✓	~	✓
8	20MEE48	Industrial Marketing	~	~				~	~	~	\checkmark				~

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		OPEN ELECTIVE														
4	20CEO01	Remote Sensing and its Applications	~	~	~	✓		~			✓			~		
4	20MEO01	Renewable Energy Sources	~	✓		✓			✓		✓	✓			✓	✓
4	20AUO01	Automotive Engineering	✓	✓	✓		~				✓	✓				
4	20ECO01	Wearable Technology	~	~	✓	~		~		~				~		
4	20ECO02	Basics of Electronics in Automation Appliances	~	~	~	~		~	~	~			~	~		
4	20ECO03	Principles of Quantum Computing	\checkmark	~	✓	\checkmark	~				~	✓		✓		
4	20EEO01	Solar and Wind Energy Systems	~	~	~				~							
4	20EEO02	Electrical Wiring and Lighting	✓	✓	✓	✓	✓									
4	20EEO03	Electrical Safety	~	~	✓											
4	20EIO01	Digital Image Processing and Its Applications	~	~	~	~	~									
4	20CSO01	Fundamentals of Databases	~	~	✓	✓	~									
4	20CSO02	Python Programming and Frameworks														
4	20ITO01	Artificial Intelligence	✓	✓	✓	✓										
4	20ITO02	Web Technologies	~	~	~											
4	20ITO03	Introduction to Operating Systems	~	~	~	~										
4	20ITO04	Programming in Python			✓		~							~		
4	20CHO01	Drugs and Pharmaceuticals Technology	~	✓	✓	✓	~									
4	20CHO02	Process Automation	~	✓	✓		~									

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
4	20FTO01	Baking Technology	✓	~	✓	✓	✓	✓			✓	✓	✓	✓		
4	20FTO02	Food Processing Technology	✓	✓	✓	✓								✓		
4	20CDO01	Fundamentals of User Experience Design	✓	✓	✓	✓					✓	✓	✓			
4	20ADO01	Data Warehousing and Data Mining	~	~	~											
4	20ALO01	Business Intelligence	✓	~	✓											
4	20PHO01	Thin Film Technology	~	~	✓											
4	20CYO01	Instrumental Methods of Analysis	✓	~	✓	~										
5	20CEO02	Disaster Management	✓	~	✓			✓	✓					✓		
5	20MEO02	Design of Experiments	✓	~	✓	✓	✓						✓			
5	20AUO02	Automotive Electronics	✓	~	✓	✓	✓				✓	✓		✓		
5	20ECO04	PCB Design and Fabrication	~	~	~		~			~	~	✓		✓		
5	20EEO04	Energy Conservation and Management	~	~	✓		~									
5	20EIO02	Industrial Automation	~	~	✓	~	~									
5	20EIO03	Measurements and Instrumentation	✓	~	✓	✓	✓									
5	20CSO03	Computational Science for Engineers	~	✓	✓											
5	20CSO04	Formal Languages and Automata	~	✓	✓											
5	20ITO05	Data Science	~	✓	✓	~										
5	20ITO06	Advanced Java Programming	\checkmark	\checkmark	✓											
5	20CHO03	Renewable Bioenergy Resources	~	~	~	✓			✓							
5	20CHO04	Intelligent Controllers	~		~	✓		\checkmark								
5	20FTO03	Processing of Milk and Milk Products	\checkmark	\checkmark	✓		\checkmark	\checkmark		✓	\checkmark	\checkmark		\checkmark		
5	20FTO04	Processing of Fruits and Vegetables	~	~	~		~	~		~	\checkmark	~		~		
5	20CDO02	Fundamentals of User Interactive Design	\checkmark	\checkmark	\checkmark											
5	20ADO02	Computer Vision	\checkmark	\checkmark	\checkmark	~	\checkmark									
5	20ALO02	Data Exploration and Visualization Techniques	~	~	~	~	~									
5	20PHO02	High Energy Storage Devices	✓	~	✓											

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
5	20CYO02	Corrosion Science and Engineering	✓	~	✓	✓										
5	20CYO03	Chemistry of Cosmetics in Daily Life	✓	~	✓											
5	20CYO04	Chemistry of Nutrition for Women Health	✓	✓	✓											
5	20MAO01	Mathematical Foundations for Machine Learning	✓	~		~	~									
5	20MAO02	Graph Theory and its Applications	\checkmark	~	\checkmark											
6	20CEO03	Introduction to Smart Cities	✓	~	✓											
6	20CEO04	Environmental Health and Safety	~	✓	✓	✓										
6	20MEO03	Fundamentals of Ergonomics	~	✓	✓	✓	✓	~	~					✓		
6	20MEO04	Principles of Management and Industrial Psychology						~		~	~	~	~			
6	20AUO03	Vehicle Maintenance	~	~	✓	~								✓		
6	20ECO05	Electronic Hardware and Troubleshooting	~	~	✓	✓	~	~								
6	20ECO06	Bioinspired Computing Technologies	~	~	✓		✓				~					
6	20EEO05	Micro Grid and Smart Grid	~	~	✓	~										
6	20EEO06	E-Waste Management	~	~	~	~										
6	20EIO04	Biomedical Instrumentation and Applications	~	~	~	~	~	~								
6	20EIO05	PLC Programming and Its Applications	\checkmark	~	\checkmark	~	~									
6	20EIO06	Instrumentation for Industry 4.0	\checkmark	~	\checkmark	~	~									
6	20CSO05	Java Programming	\checkmark	~	\checkmark	~	~									
6	20CSO06	Web Engineering	\checkmark	~	\checkmark	\checkmark	\checkmark									
6	20CSO07	Nature Inspired Optimization Techniques	\checkmark	~	\checkmark											
6	20ITO07	Bio Natural Language Processing	~	~	✓	✓										
6	20ITO08	Disaster Management for Information Technology	~	~	~	~										
6	20CHO05	Food as Medicine	\checkmark	✓	✓	\checkmark		~						~		
6	20CHO06	Organic Farming	~		✓			✓	✓	✓	\checkmark		✓	✓		
6	20FTO05	Principles of Food Safety	~	~	~		~	~	~	~				~		

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
6	20FTO06	Fundamentals of Food Packaging and Storage	~	~	~		~	~		~				~		
6	20CDO03	Introduction to Mobile Game Design	~	~	✓											
6	20ADO03	Neural Networks and Deep Learning	✓	~	✓											
6	20ALO03	Industrial Machine Learning	✓	~	✓											
6	20PHO03	Structural and Optical Characterization of Materials	~	~	~											
6	20CYO05	Chemistry Concepts for Competitive Examinations	~	~	~											
6	20CYO06	Waste and Hazardous Waste Management	~	~	✓	✓			~							
6	20MAO03	Data Analytics using R Programming	~	~	✓	✓	~									
6	20MAO04	Number Theory and Cryptography	~	~	✓		~									
8	20CEO05	Infrastructure Planning and Management	~	✓	✓											
8	20CEO06	Environmental Laws and Policy	~	✓	✓	✓										
8	20MEO05	Safety Measures for Engineers	✓			✓		✓	✓	✓						
8	20MEO06	Energy Conservation in Thermal Equipments	~	~												
8	20AUO04	Public Transport Management	~	~				✓	~	✓	~	✓	✓	✓		
8	20AUO05	Autonomous Vehicles	~	~	✓											
8	20ECO07	Optical Engineering	~	~	✓	~		~		✓	✓			~		
8	20EEO07	Electric Vehicle	~	~	✓	✓										
8	20EIO07	Graphical Programming using Virtual Instrumentation	~	~	~	~	~									
8	20EIO08	Testing of Materials	~	~	✓	✓	~									
8	20CSO08	Fundamentals of Internet of Things	~	~	✓		~									
8	20CSO09	Machine Translation	~	✓	✓											
8	20CSO10	Fundamentals of Blockchain	~	~	~											
8	20ITO09	Modern Application Development	~	~	~	✓										
8	20ITO10	Object Oriented System Development using UML	~	~	✓	~										
8	20ITO11	Reinforcement Learning	~	~	~	~										

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
8	20CHO07	Cosmetics and Personal Health Care Products	~		~			~		~				~		
8	20CHO08	Brewing and Alcohol Technology	✓	✓												
8	20FTO07	Food Ingredients	~	✓	✓			✓						~		
8	20FTO08	Food and Nutrition	~	~	~			~						~		
8	20CDO04	Introduction to Graphics Design	~	~	~											
8	20ADO04	Business Analytics	~	~	~											
8	20ALO04	Machine Learning for Smart Cities	✓	✓	✓											
8	20MAO05	Advanced Linear Algebra	~	~	~											
8	20MAO06	Optimization Techniques	✓	~	✓											
		GENERAL OPEN ELECTIVE														
4,5,6, 8	20GEO01	German Language Level 1								✓	~	~		~		
4,5,6, 8	20GEO02	Japanese Language Level 1								~	~	~		~		
5	20GEO03	Design Thinking for Engineers	✓	~	~											
6	20GEO04	Innovation and Business Model Development	~	~	~	~	~	~	~	~	~	~	~	~		
4,5,6, 8	20GEO05	German Language Level 2								~	~	~		✓		
Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
4,5,6, 8	20GEO06	German Language Level 3								~	~	~		~		
4,5,6, 8	20GEO07	German Language Level 4								~	~	~		~		
4,5,6, 8	20GEO08	Japanese Language Level 2								~	~	~		~		
4,5,6, 8	20GEO09	Japanese Language Level 3								~	~	~		~		
4,5,6, 8	20GEO10	Japanese Language Level 4								~	~	~		~		
4,5,6, 8	20GEO11	NCC Studies (Army Wing) - I	~	~	~	~	~	~	~	~	~	~				
4,5,6, 8	20GEO12	NCC Studies (Air Wing) - I	~	~	~	~	~	~	~	~	~	~				
4,5,6, 8	20GEO13	French Language Level 1								✓	~	~				

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

4,5,6, 8	20GEO14	French Language Level 2								~	~	~		~	
4,5,6, 8	20GEO15	French Language Level 3								~	~	~		~	
4,5,6, 8	20GEO16	Spanish Language Level 1								~	~	~		~	
4,5,6, 8	20GEO17	Spanish Language Level 2								~	~	~		~	
4,5,6, 8	20GEO18	Spanish Language Level 3								~	~	~		~	
6	20GEO19	Entrepreneurship Development	~	\checkmark	\checkmark	~	~	\checkmark	~	~	~	\checkmark	~	~	

B.E. DEGREE IN	N MECHANICAL ENGINEERING CURRICULUM UNDER REGU	JLATIONS 2020
	(For the candidates admitted in the academic year 2020-21)	

SEMESTER -	1								
Course	Course Title		Hours Week		Credit	Maxi	imum N	larks	Cate
Code		L	т	Ρ		CA	ESE	Total	gory
Theory/Theo	ry with Practical								
20EGT11	English Language Skills	3	0	0	3	50	50	100	HS
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS
20PHT11	Applied Physics	3	0	0	3	50	50	100	BS
20CYT11	Applied Chemistry	3	0	0	3	50	50	100	BS
20MEC11	Engineering Drawing	2	0	2	3	50	50	100	ES
20MET11	Engineering Mechanics	3	1	0	4	50	50	100	PC
Practical /En	nployability Enhancement								
20PHL11	Physical Sciences Laboratory I	0	0	2	1	50	50	100	BS
20MEL11	Engineering Practices Laboratory	0	0	2	1	50	50	100	ES
20VEC11	Yoga and Values for Holistic Development	1	0	1	1	100	0	100	HS
20MNT11	Student Induction Program	-	-	-	0	100	0	100	MC
	Total Credi	ts to	be ear	ned	23				

*Alternate weeks

SEMESTER -	- 11								
Course	Course Title		Hours Weel	6/ K	Credit	Max	ximum M	larks	Cate
Code		L	Т	Ρ		CA	ESE	Total	gory
Theory/Theory	ry with Practical								
20EGT21	Advanced Communication Skills	3	0	0	3	50	50	100	HS
20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	50	50	100	BS
20PHT21	Materials Science	3	0	0	3	50	50	100	BS
20CYT22	Chemistry for Mechanical Systems	3	0	0	3	50	50	100	BS
20MET22	Basics of Electrical and Electronics Engineering	3	0	0	3	50	50	100	ES
20MET21	Manufacturing Technology	3	0	0	3	50	50	100	PC
Practical / En	nployability Enhancement								
20PHL21	Physical Sciences Laboratory II	0	0	2	1	50	50	100	BS
20MEL21	Electrical and Electronics Engineering Laboratory	0	0	2	1	50	50	100	ES
	Total Credits to be earned				21				

*Alternate weeks

B.E. DEGREE IN	MECHANICAL ENGINEERING	CURRICULUM UNDER RE	GULATIONS 2020
	(For the candidates admitted in	the academic year 2020-2	<mark>1)</mark>

SEMESTER -	SEMESTER – III										
Course	Course	Hou	ırs / V	Veek	Credit	Max	cimum M	larks	Cate		
Code	Title	L	Т	Ρ	oreun	CA	ESE	Total	gory		
Theory/Theo	ry with Practical										
20MAT31	Probability and Partial Differential Equations	3	1	0	4	50	50	100	BS		
20CSC31	Programming in C	3	0	2	4	50	50	100	ES		
20MEC31	Fluid Mechanics and Hydraulic Machines	3	0	2	4	50	50	100	ES		
20MET31	Engineering Thermodynamics	3	0	0	3	50	50	100	PC		
20MEC32	Engineering Materials and Metallurgy	3	0	2	4	50	50	100	PC		
20MET32	Material Removal Processes	3	0	0	3	50	50	100	PC		
Practical / Er	nployability Enhancement										
20MEL31	Production Technology Laboratory	0	0	2	1	50	50	100	PC		
20MEL32	Machine Drawing Laboratory	0	0	2	1	50	50	100	PC		
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC		
	Total Credits to be earned										

SEMESTER - IV	

Course Code	Cours e Title	Hou	rs / We	ek	Cred	Ma	ximum M	arks	Cate
0000		L	Т	Р		CA	ESE	Total	90.9
Theory/Theo	ry with Practical								
20MAT41	Statistics and Numerical Methods	3	1	0	4	50	50	100	BS
20CSC41	Python Programming	3	0	2	4	50	50	100	ES
20MET41	Strength of Materials	3	1	0	4	50	50	100	PC
20MET42	Thermal Engineering	3	0	0	3	50	50	100	PC
	Open Elective - I	3	1/0	0/2	4	50	50	100	OE
Practical / Em	ployability Enhancement								
20MEL41	Material Property Testing Laboratory	0	0	2	1	50	50	100	PC
20MEL42	Thermal Engineering and Renewable Energy Laboratory	0	0	2	1	50	50	100	PC
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	50	50	100	HS
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS
	Total Credits to be earned								

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted in the academic year 2020-21)

SEMESTER – V Hours / Week **Maximum Marks** Course **Course Title** Credit Cate Code gory L т Ρ CA ESE Total Theory/Theory with Practical 20MET51 **Kinematics of Machinery** 3 100 PC 0 0 3 50 50 20MET52 Heat and Mass Transfer 3 0 3 PC 0 50 50 100 20MET53 Metrology and Measurements 3 0 0 3 50 50 100 PC **Professional Elective I** 3 0 0 3 50 50 100 ΡE **Open Elective - II** 3 1/0 0/2 4 50 50 100 OE **Practical / Employability Enhancement** 20MEL51 Heat Transfer Laboratory 0 0 2 1 50 100 PC 50 20MEL52 Computer Aided Drawing Laboratory 0 2 PC 0 1 50 50 100 Metrology and Measurements and Automobile 0 2 100 PC 20MEL53 0 1 50 50 Engineering Laboratory Professional Skills Training I / 20GEL51/ 2 100 100 0 EC ---------20GEI51 Industrial Training I * Total Credits to be earned 21

SEMESTER -	·VI								
Course Code	Course Title	Ηοι	Hours / Week Credit Maximum Mark		ESE Total 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100		Cate		
		L	Т	Р		CA	ESE	Total	90.9
Theory/Theory	ry with Practical								
20MET61	Dynamics of Machinery	3	0	0	3	50	50	100	PC
20MET62	Finite Element Analysis	3	0	0	3	50	50	100	PC
20MET63	Design of Machine Elements	3	0	0	3	50	50	100	PC
	Open Elective - III	3	0	0	3	50	50	100	OE
Practical / En	nployability Enhancement								
20MEL61	Dynamics Laboratory	0	0	2	1	50	50	100	PC
20MEL62	Simulation and Analysis Laboratory	0	0	2	1	50	50	100	PC
20MEL63	CAD/CAM Laboratory	0	0	2	1	50	50	100	PC
20GEL61/ 20GEI61	Professional Skills Training II / Industrial Training II *				2	100	0	100	EC
20GEP61	Comprehensive Test and Viva				2	100	0	100	EC
20MEP61	Project Work I	0	0	4	2	100	0	100	EC
	Total Credits to be earned								

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted in the academic year 2020-21)

SEMESTER	SEMESTER – VII									
Course	Course Title	Ηοι	ırs / W	eek	Credit	Maxi	mum N	larks	Cate	
Code		L	Т	Р		CA	ESE	Total	gory	
	Theory/Theory with Practical									
20GET71	Engineering Economics and Management	3	0	0	3	50	50	100	HS	
20MEC71	Mechatronics and IoT	3	0	2	4	50	50	100	PC	
	Professional Elective II	3	0	0	3	50	50	100	PE	
	Professional Elective III	3	0	0	3	50	50	100	PE	
	Professional Elective IV	3	0	0	3	50	50	100	PE	
	Professional Elective V	3	0	0	3	50	50	100	PE	
Practical / I	Employability Enhancement									
20MEP71	Project Work II Phase I	0	0	12	6	50	50	100	EC	
	Total Credits to be earned									

SEMESTER	SEMESTER – VIII										
Course Code	Course Title	Ηοι	ırs / W	eek	Credit	Махі	imum N	/larks	Cate gory		
		L	Т	Ρ		CA	ESE	Total			
Theory/The	eory with Practical										
	Open Elective IV	3	0	0	3	50	50	100	OE		
	Professional Elective VI	3	0	0	3	50	50	100	PE		
Practical /	Employability Enhancement										
20MEP81	Project Work II Phase II	0	0	8	4	50	50	100	EC		
	Total Credits to be earned				10						

Total Credits: 169

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (with the inclusion of Amendment No.2022.18.07) (For the candidates admitted in the academic year 2021-22)

SEMESTER -	EMESTER – I											
Course	Course Title		Hours Week	5/ K	Credit	Max	imum N	larks	Cate			
Code		L	т	Р		CA	ESE	Total	gory			
	Theory/Theory with Practical											
20EGT11	English Language Skills	3	0	0	3	40	60	100	HS			
20MAC11	Matrices and Differential Equations	3	1*	2*	4	50	50	100	BS			
20PHT11	Applied Physics	3	0	0	3	40	60	100	BS			
20CYT11	Applied Chemistry	3	0	0	3	40	60	100	BS			
20MEC11	Engineering Drawing	2	0	2	3	40	60	100	ES			
20MET11	Engineering Mechanics	3	1	0	4	40	60	100	PC			
	Practical											
20PHL11	Physical Sciences Laboratory I	0	0	2	1	60	40	100	BS			
20MEL11	Engineering Practices Laboratory	0	0	2	1	60	40	100	ES			
20VEC11	Yoga and Values for Holistic Development	1	0	1	1	100	0	100	HS			
20MNT11	Student Induction Program	-	-	-	0	100	0	100	MC			
Total Credits to			be ear	ned	23							

*Alternate weeks

SEMESTER -	SEMESTER – II										
Course	Course Title		Hours Weel	s/ <	Credit	Max	Maximum Marks				
Code		L	Т	Ρ		CA	ESE	Total	gory		
Theory/Theo	ry with Practical										
20EGT21	Advanced Communication Skills	3	0	0	3	40	60	100	HS		
20MAC21	Multivariable Calculus and Complex Analysis	3	1*	2*	4	50	50	100	BS		
20PHT21	Materials Science	3	0	0	3	40	60	100	BS		
20CYT22	Chemistry for Mechanical Systems	3	0	0	3	40	60	100	BS		
20MET22	Basics of Electrical and Electronics Engineering	3	0	0	3	40	60	100	ES		
20CSC31	Programming in C	3	0	2	4	50	50	100	ES		
Practical											
20PHL21	Physical Sciences Laboratory II	0	0	2	1	60	40	100	BS		
20MEL21	Electrical and Electronics Engineering Laboratory	0	0	2	1	60	40	100	ES		
	Total Cred				22						

*Alternate weeks

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted in the academic year 2021-22)

SEMESTER -	SEMESTER – III										
Course	Course	Ηοι	ırs / V	Veek	Credit	Max	kimum M	larks	Cate		
Code	Title	L	Т	Ρ	oreun	CA	ESE	Total	gory		
Theory/Theo	ry with Practical										
20MAT31	Probability and Partial Differential Equations	3	1	0	4	40	60	100	BS		
20CSC33	Fundamentals of Data Structures	3	0	2	4	50	50	100	ES		
20MEC31	Fluid Mechanics and Hydraulic Machines	3	0	2	4	50	50	100	ES		
20MET31	Engineering Thermodynamics	3	0	0	3	40	60	100	PC		
20MET21	Manufacturing Technology	3	0	0	3	40	60	100	PC		
20MET32	Material Removal Processes	3	0	0	3	40	60	100	PC		
Practical / Er	nployability Enhancement										
20MEL31	Production Technology Laboratory	0	0	2	1	60	40	100	PC		
20MEL32	Machine Drawing Laboratory	0	0	2	1	60	40	100	PC		
20MNT31	Environmental Science	2	0	0	0	100	0	100	MC		
	Total Credits to be earned										

SEMESTER	– IV								
Course	Course	Но	urs / \	Veek	Credit	Ma	Maximum Marks		
Code	The second secon	L	Т	Ρ		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
20MAT41	Statistics and Numerical Methods	3	1	0	4	40	60	100	BS
20MEC32	Engineering Materials and Metallurgy	3	0	2	4	50	50	100	PC
20MET41	Strength of Materials	3	1	0	4	40	60	100	PC
20MET42	Thermal Engineering	3	0	0	3	40	60	100	PC
	Open Elective - I	3	1/0	0/2	4	40/ 50	60/ 50	100	OE
Practical / Er	mployability Enhancement								
20MEL41	Material Property Testing Laboratory	0	0	2	1	60	40	100	PC
20MEL42	Thermal Engineering and Renewable Energy Laboratory	0	0	2	1	60	40	100	PC
20EGL31	English for Workplace Communication Laboratory	0	0	2	1	60	40	100	HS
20GEL51/ 20GEI51	Professional Skills Training I / Industrial Training I *				2	100	0	100	EC
	Total Credits to be earned								

*80 hours of training

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted in the academic year 2021-22)

SEMESTER - V

SEMESTER -	- V								
Course	Course Title	Ηοι	urs / W	eek	Credit	Max	imum I	Cate	
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ry with Practical								
20MET51	Kinematics of Machinery	3	0	0	3	40	60	100	PC
20MET52	Heat and Mass Transfer	3	0	0	3	40	60	100	PC
20MET53	Metrology and Measurements	3	0	0	3	40	60	100	PC
	Professional Elective I	3	0	0	3	40	60	100	PE
	Open Elective - II	3	1/0	0/2	4	40/ 50	60/ 50	100	OE
Practical / En	nployability Enhancement								
20MEL51	Heat Transfer Laboratory	0	0	2	1	60	40	100	PC
20MEL52	Computer Aided Drawing Laboratory	0	0	2	1	60	40	100	PC
20MEL53	Metrology and Measurements and Automobile Engineering Laboratory	0	0	2	1	60	40	100	PC
20GEL61/ Professional Skills Training II / 20GEI61 Industrial Training II *					2	100	0	100	EC
	Total Credits to be earned								

*80 hours of training

SEMESTER -	VI									
Course	Course Title	Ηοι	ırs / W	eek	Credit	Махі	mum N	Cate		
oouc		L	Т	Р		CA	ESE	Total	gory	
Theory/Theor	y with Practical									
20MET61	Dynamics of Machinery	3	0	0	3	40	60	100	PC	
20MET62	Finite Element Analysis	3	0	0	3	40	60	100	PC	
20MET63	Design of Machine Elements	3	0	0	3	40	60	100	PC	
	Open Elective - III	3	0	0	3	40	60	100	OE	
Practical / En	nployability Enhancement									
20MEL61	Dynamics Laboratory	0	0	2	1	60	40	100	PC	
20MEL62	Simulation and Analysis Laboratory	0	0	2	1	60	40	100	PC	
20MEL63	CAD/CAM Laboratory	0	0	2	1	60	40	100	PC	
20GET31	Universal Human Values	2	0	0	2	100	0	100	HS	
20GEP61	Comprehensive Test and Viva				2	100	0	100	EC	
20MEP61	Project Work I	0	0	4	2	100	0	100	EC	
	Total Cre	dits to	o be ea	rned	21					

٦

B.E. DEGREE IN MECHANICAL ENGINEERING CURRICULUM UNDER REGULATIONS 2020 (For the candidates admitted in the academic year 2021-22)

SEMESTER - VII Hours / Week **Maximum Marks** Course **Course Title** Credit Cate Code gory L Т Ρ CA ESE Total **Theory/Theory with Practical** 20GET71 3 40 **Engineering Economics and Management** 0 0 3 60 100 HS 20MEC71 Mechatronics and IoT 3 0 2 4 50 50 100 PC Professional Elective II 3 0 0 3 40 60 100 ΡE Professional Elective III 3 0 0 3 40 60 100 ΡE 3 0 Professional Elective IV 0 3 40 60 100 ΡE Professional Elective V 3 0 0 3 40 100 ΡE 60 Practical / Employability Enhancement 20MEP71 Project Work II Phase I 0 12 6 100 EC 0 50 50 Total Credits to be earned 25

SEMESTER	R – VIII								
Course	Course Title	Ηοι	ırs / W	eek	Credit	Maxi	imum N	Cate	
Code		L	т	Р		CA	ESE	Total	gory
Theory/The	ory with Practical								
	Open Elective IV	3	0	0	3	40	60	OE	
	Professional Elective VI	3	0	0	3	40	60	100	PE
Practical /	Employability Enhancement								
20MEP81	Project Work II Phase II	0	0	8	4	50	50	100	EC
	Total Credits to be earned								

Total Credits: 169

S. No.	Course Code	Course Name	L	т	Ρ	С	Domain/ Stream
		Semester -5					
		Elective – I					
1.	20MEE01	Fluid Power System	3	0	0	3	Design
2.	20MEE02	CAD/CAM/CIM	3	0	0	3	Design
3.	20MEE03	Automobile Engineering	3	0	0	3	Thermal
4.	20MEE04	Climate Change and New Energy Technology	3	0	0	3	Thermal
5.	20MEE05	Unconventional Machining Processes	3	0	0	3	Mfg.
6.	20MEE06	Design for Manufacture and Assembly	3	0	0	3	Mfg.
7.	20MEE07	Operations Research	3	0	0	3	Ind. Engg.
8.	20MEE08	Production Planning and Control	3	0	0	3	Ind. Engg.
		Semester -7					
		Elective – II					
9.	20MEE09	Design of Transmission Systems	3	0	0	3	Design
10.	20MEE10	Vibration and Noise Control	3	0	0	3	Design
11.	20MEE11	Production Tool Design	3	0	0	3	Mfg.
12.	20MEE12	Manufacturing Information System	3	0	0	3	Mfg.
13.	20MEE13	Gas Dynamics and Jet Propulsion	3	0	0	3	Thermal
14.	20MEE14	Refrigeration and Air Conditioning	3	0	0	3	Thermal
15.	20MEE15	Supply Chain Management	3	0	0	3	Ind. Engg.
16.	20MEE16	Lean Six Sigma	3	0	0	3	Ind. Engg.
		Elective – III					
17.	20GEE01	Fundamentals of Research	3	0	0	3	General
18.	20MEE17	Piping Design	3	0	0	3	Design
19.	20MEE18	Design of Jigs, Fixtures and Press Tools	3	0	0	3	Design
20.	20MEE19	Fuels and Combustion Technology	3	0	0	3	Thermal
21.	20MEE20	Computational Fluid Dynamics	3	0	0	3	Thermal
22.	20MEE21	CNC Technology	3	0	0	3	Mfg.
23.	20MEE22	Precision Engineering	3	0	0	3	Mfg.

LIST OF PROFESSIONAL ELECTIVE (PE)

24.	20MEE23	Total Quality Management	3	0	0	3	Ind. Engg.
25.	20MEE24	Project Management	3	0	0	3	Ind. Engg.
		Elective – IV					
26.	20MEE25	Mechanics of Composite Materials	3	0	0	3	Design
27.	20MEE26	Advanced Mechanics of Materials	3	0	0	3	Design
28.	20MEE27	Turbomachines	3	0	0	3	Thermal
29.	20MEE28	Design of Heat Exchangers	3	0	0	3	Thermal
30.	20MEE29	Additive Manufacturing	3	0	0	3	Mfg.
31.	20MEE30	Welding Technology	3	0	0	3	Mfg.
32.	20MEE31	Quality Control and Reliability Engineering	3	0	0	3	Ind. Engg.
33.	20MEE32	Industrial Engineering	3	0	0	3	Ind. Engg.
		Elective – V					
34.	20MEE33	Introduction to Aircraft Systems	3	0	0	3	Design
35.	20MEE34	Industrial Tribology	3	0	0	3	Design
36.	20MEE35	Instrumentation in Thermal Engineering	3	0	0	3	Thermal
37.	20MEE36	Energy Auditing and Management	3	0	0	3	Thermal
38.	20MEE37	Modeling and Analysis of Manufacturing Systems	3	0	0	3	Mfg.
39.	20MEE38	Micro Electro Mechanical Systems	3	0	0	3	Mfg.
40.	20MEE39	Maintenance Engineering	3	0	0	3	Ind. Engg.
41.	20MEE40	Industrial Safety Engineering	3	0	0	3	Ind. Engg.
42.	20MEE41	Hybrid Vehicle Technology	3	0	0	3	General
		Semester - 8					
		Elective – VI					
43.	20MEE42	Introduction to Aircraft Structures	3	0	0	3	Design
44.	20MEE43	Principles of Farm Machineries	3	0	0	3	Design
45.	20MEE44	Power Plant Engineering	3	0	0	3	Thermal
46.	20MEE45	Energy Conservation in HVAC System	3	0	0	3	Thermal
47.	20MEE46	Nanotechnology for Mechanical Engineers	3	0	0	3	Mfg.
48.	20MEE47	Non Destructive Evaluation Techniques	3	0	0	3	Mfg.
49.	20MEE48	Industrial Marketing	3	0	0	3	Ind. Engg.

	OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)											
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem					
1.	20MEO01	Renewable Energy Sources	3	0	2	4	IV					
2.	20MEO02	Design of Experiments	3	0	2	4	V					
3.	20MEO03	Fundamentals of Ergonomics	3	0	0	3	VI					
4.	20MEO04	Principles of Management and Industrial Psychology	3	0	0	3	VI					
5.	20MEO05	Safety Measures for Engineers	3	0	0	3	VIII					
6.	20MEO06	Energy Conservation in Thermal Equipments	3	0	0	3	VIII					

20EGT11 ENGLISH LANGUAGE SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	HS	3	0	0	3

 Preamble
 This course is designed to impart required levels of fluency in using the English Language at A2/B1 Level in the Common European Framework (CEFR).

 Unit - I
 Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – I
 9

 Listening - Talking about past experiences - listening to descriptions - Speaking - Exchanging personal information - Talking about cities and transportation - Reading - Life and achievements of a famous personality - Global transport systems - Writing - Childhood experiences - Process Description – Grammar & Vocabulary – Past tense – Expressions of quantity – Indirect questions.

Unit - II Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – II

Listening - Information about hotels and accommodation - Recipes and food items - Speaking - Life style changes and making comparisons - Talking about food - Reading - Habit formation and changing habits - International cuisine - Writing - Personal email - emails about food and recipes – Grammar & Vocabulary – Evaluations and Comparisons with adjectives – Simple past and presentperfect tenses.

Unit - III Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – III

Listening - Information about travel - descriptions / conversations about family life - Speaking - Vacations and Holidays - Requests, complaints and offering explanations - Reading - Tourist places and travel experiences - Group behaviour and politeness - Writing - Personal letter about travelling - Writing guidelines and checklists – Grammar & Vocabulary – Future tense – Modals – Two-part verbs.

Unit - IV Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – IV

Listening - Descriptions about festivals - Presentations on technology - Speaking - About technology - festivals, special events and traditions - Reading - Sports, hobbies and past time - About different cultures - Writing - Product Description - Writing web content — Grammar & Vocabulary — Infinitives and Gerunds for uses and purposes — Imperatives for giving suggestions — Relative clauses oftime.

Unit - V Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – V

Listening - Talking about changes - Job preferences - Speaking - Comparing different periods or phases in life – Changes that happen -Skills and abilities, Personality Development - Employability Skills – Reading - Reading about life experiences - Emotions and feelings – Job preferences – Jobs and Personality – Writing - Writing about one's past, present and future – Researching job options – Choosing the right job – Grammar & Vocabulary – Time contrasts – Conditional sentences with "if clauses" – Gerunds – short responses.

Total: 45

9

9

9

9

TEXT BOOK:

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 2", 4th Edition, Cambridge University Press, New York, 2017.

REFERENCES:

1.	Sanjay Kumar and Pushp Lata, "Communication Skills", 2 nd Edition, Oxford University Press, New Delhi, 2015.
2.	Pamela Hartmann and Brenda Wegmann, "New Interactions English Language Learning and Assessment Platform (Level Intro - Level IV)", McGraw Hill India, 2020.

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use language effectively and accurately acquiring vocabulary from real-life context	Applying (K3)
CO2	listen/view and comprehend different spoken discourses / excerpts in different accents	Applying (K3)
CO3	read different genres of texts adopting various reading strategies	Analyzing (K4)
CO4	write cohesively, coherently and flawlessly avoiding grammatical errors, using a wide range of vocabulary, organizing their ideas logically on a topic	Creating (K6)
CO5	speak clearly, confidently, comprehensibly and communicate with others using appropriate communicative strategies	Creating (K6)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1						2			2	3	2	2		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		1		
CO5									2	3		2		
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1		16	30	37		17	100						
CAT2		17	30	37		16	100						
CAT3		13	33	37		17	100						
ESE		7	21	37		35	100						

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20MAC11 - MATRICES AND DIFFERENTIAL EQUATIONS

(Common to All Engineering and Technology Branches)

Programme Branch	&	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisite	es	Nil	1	BS	3	1*	2*	4
Preamble	To provi equatior	de the skills to the students for solving different real time parts.	problem	s by applying n	natrices	and dif	ferentia	I

Introduction -	- Characteristic equation – Eigen values and Eigen vectors of a real matrix – Properties of Eigen values and Eigen v	/ectors
(without proo	f) – Cayley - Hamilton theorem (Statement and applications only) – Orthogonal matrices – Orthogonal transforma	tion of
asymmetric i	matrix to diagonal form – Quadratic form – Nature of Quadratic forms - Reduction of quadratic form to canonica	al form
byorthogona	Il transformation.	

Unit - II Ordinary Differential Equations:

Matrices:

Introduction – Solutions of First order differential equations: Exact differential equations – Leibnitz's Linear Equation – Bernoulli'sequation – Clairaut's equation.

Unit - III Ordinary Differential Equations of Higher Order:

Linear differential equations of second and higher order with constant coefficients - Particular Integrals for the types: e^{ax} – cosax / sinax

xⁿ - e^{ax}xⁿ, e^{ax}sinbx and e^{ax}cosbx - xⁿsinax and xⁿcosax - Differential Equations with variable coefficients: Euler-Cauchy's equation

Legendre's equation.

Unit - I

Unit - IV Applications of Ordinary Differential Equations:

Method of variation of parameters — Simultaneous first order linear equations with constant coefficients — Applications of differential equations: Simple harmonic motion – Electric circuits (Differential equations and associated conditions need to be given).

Unit - V Laplace Transform & Inverse Laplace Transform:

Laplace Transform: Conditions for existence – Transform of elementary functions – Basic properties – Derivatives and integrals of transforms – Transforms of derivatives and integrals – Transform of unit step function – Transform of periodic functions. Inverse Laplace transform: Inverse Laplace transform of elementary functions – Partial fraction method – Convolution theorem (Statement

only) - Solution of linear ODE of second order with constant coefficients.

List of Exercises / Experiments:

1.	Introduction to MATLAB
2.	Computation of eigen values and eigen vectors
3.	Plotting and visualizing single variable functions
4.	Solving first and second order ordinary differential equations
5.	Solution of Simultaneous first order ODEs
6.	Solving second order ODE by variation of parameters
7.	Determining Laplace and inverse Laplace transform of basic functions
8.	Solution of Second order ODE by employing Laplace transforms

*Alternate week

TEXT BOOK:

Lecture: 45, Tutorial and Practical:15, Total:60

9

9

9

9

9

1.	Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1 st Edition, McGraw Hill Education, New Delhi, 2016.										
REI	REFERENCES:										
1.	Kreyszig E., "Advanced Engineering Mathematics", 10 th Edition, John Wiley Sons, 2011.										
2.	Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014, S.Chand and Co., New Delhi.										
3.	Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics — I", 2 nd Edition, Pearson IndiaEducation, New Delhi, 2018.										
4.	MATLAB Manual.										

COUR On co	BT Mapped (Highest Level)	
CO1	solve engineering problems which needs matrix computations.	Applying (K3)
CO2	identify the appropriate method for solving first order ordinary differential equations.	Applying (K3)
CO3	solve higher order linear differential equations with constant and variable coefficients.	Applying (K3)
CO4	apply the concept of ordinary differential equations for modeling and finding solutions to engineering problems.	Applying (K3)
CO5	apply Laplace Transform to find solutions of Linear Ordinary Differential Equations	Applying (K3)
CO6	know the basics of MATLAB and computing eigen values and eigen vectors of real matrix by MATLAB.	Understanding (K2), Manipulation (S2)
C07	solve ordinary differential equations with constant and variable coefficients and simultaneous first order ordinary differential equations using MATLAB.	Applying (K3), Manipulation (S2)
CO8	compute Laplace and inverse Laplace Transform of basic functions and solve Second Order ODE by using Laplace Transform with MATLAB.	Applying (K3), Manipulation (S2)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1										
CO2	3	3	2	1										
CO3	3	3	2	1										
CO4	3	3	2											
CO5	3	3	2	1										
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 –	Moderat	te. 3 – S	Substant	tial. BT-	Bloom's	s Taxon	omv							

ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	20	70				100							
CAT2	10	20	70				100							
CAT3	10	20	70				100							
ESE	10	20	70				100							

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20PHT11 - APPLIED PHYSICS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3

Unit - I	Propagation of Flastic Wayes:	9
	aforementioned concepts and their applications in engineering and provides motivation towards innovations	
	optics, quantum physics, crystal structure and crystal defects. It also describes the physical phenomena related t	o the
Preamble	This course aims to impart the essential concepts of propagation of elastic waves, acoustics, ultrasonics, laser and	l fiber

Unit - I Propagation of Elastic Waves:

Oscillatory Motion: Introduction to simple harmonic motion - Damping velocity - Damping coefficient - Differential equation of simple harmonic motion - Velocity and acceleration - Restoring force - Vibration of a spring and mass system - Frequency response - Phase response - Resonance - Wave motion: Definition of a plane progressive wave - Attenuation of waves - Differential equation of a plane progressive wave - Phase velocity - Phase and phase difference - Solution of the differential equation of a plane progressive wave.

9

9

9

9

Total: 45

Unit - II Acoustics and Ultrasonics:

Acoustics: Introduction - Reverberation and reverberation time - Growth and decay of sound - Sabine's formula for reverberation time -Determination of sound absorption coefficient – Design of an auditorium: Factors affecting acoustics of buildings and the remedies. Ultrasonics: Introduction – Properties of ultrasonic waves – Generation of ultrasonic waves: Magnetostrictive generator and Piezoelectric generator - Determination of velocity of ultrasonics in a liquid: Acoustic grating - Industrial application: Non-destructive

testing - Other applications of ultrasonic waves (qualitative).

Unit - III Laser and Fiber Optics:

Laser and Applications: Introduction — Interaction of light with matter - Three quantum process: Stimulated absorption, spontaneous emission and stimulated emission - Population inversion - Einstein's coefficients and their relations - Pumping methods - Nd:YAG laser - CO2 laser - Holography. Fiber Optics and Applications: Introduction - Numerical aperture and acceptance angle - Classification of optical fibers based on refractive index, modes and materials - Fiber optics communication system (qualitative) - Fiber optic sensors: Temperature and displacement sensors.

Unit - IV **Quantum Physics:**

Introduction - Blackbody radiation - Planck's quantum hypothesis - Compton scattering (qualitative) - de Broglie's hypothesis Properties of matter waves - Application of Heisenberg uncertainty principle - Schrodinger's time independent and time dependent wave equations - Physical significance of wave function - The free particle - Potential energy step - Infinite potential well (one dimensional).

Unit - V **Crystal Physics:**

Introduction - Classification of solids - Space lattice - Crystal structure - Unit cell - Bravais lattice - Single and polycrystalline materials Lattice planes - Miller indices - Indices of crystal direction - Interplanar spacing in cubic system - Hexagonal close packed crystal structure and c/a ratio - Symmetry -Symmetry elements in cubic crystal - Crystal imperfections: line, surface and volume imperfections - Features of crystal imperfections (qualitative).

TEXT BOOK:

Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics", 11th Edition, S. Chand & Company Pvt. Ltd., New Delhi, 2019.

REFERENCES:

1.	Purnima Khare and Swarup A.,"Engineering Physics: Fundamentals and Modern Applications", 1 st Edition, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2009.
2.	Gaur R.K. and Gupta S.L., "Engineering Physics", 8 th Edition, Dhanpat Rai and Sons, New Delhi, 2009.
3.	Tamilarasan K. and Prabu K., "Engineering Physics – I", 3rd Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

COUF On co	BT Mapped (Highest Level)	
CO1	make use of the concepts of oscillatory and wave motion to comprehend the phenomena related to the propagation of elastic waves.	Applying (K3)
CO2	apply the concepts of growth and decay of sound energy in a hall to compute Sabine's formula to recognize the requirements of acoustically good buildings, and to describe the production of ultrasonic wave, working of acoustic grating & non-destructive testing using ultrasonic waves.	Applying (K3)
CO3	apply the concepts of stimulated emission to explain the working and the applications of laser in engineering and technology, and to apply the principle of propagation of light through optical fiber to compute acceptance angle and numerical aperture to comprehend the loss in optical fiber, fiber optic communication system and working of fiber optic sensors.	Applying (K3)
CO4	use the concepts of quantum mechanics to describe the behavior of electrons in a metal by solving Schrodinger's wave equation for particle motion in infinite potential well.	Applying (K3)
CO5	utilize the concepts of the seven crystal systems to obtain interplanar spacing in cubic lattice and c/a ratio of HCP crystal structure, and to comprehend symmetry elements, reciprocal lattice and the types of crystal imperfections and their impacts.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	1											
CO3	3	2	1											
CO4	3	2	1											
CO5	3	2	1											
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	35	45				100							
CAT3	25	35	40				100							
ESE	20	40	40				100							

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20CYT11 - APPLIED CHEMISTRY

(Common to All Engineering and Technology Branches)

Prerequisites Nil Preamble Applied Chemistry course explores the basic principles and advancer technology. It aims to impart the fundamentals of chemistry towards in societal applications. Unit - I Water Technology: Introduction - sources of water - impurities in water - types of water - hardness of vunits of hardness – estimation of hardness of water by EDTA method — determinatic in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittler Internal treatment process - carbonate and calgon conditioning ii) External treatment water for municipal water supply (Removal of suspended particles and disinfection metallications – electrochemical cells - applications of electrochemical series - reference selective electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - advastrong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - chelectrochemical corrosion - galvanic corrosion, concentration cell corrosior and microbiological corrosion - galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) metallio	1 ments innova water- on of a ement, methods rence	BS of chemistry tions in science expression o alkalinity - disa priming and f od -deminerali s, Break-point	in the fi ce and t f hardne advantag oaming zation p of chlori	0 ield of e echnolo ess (sim ges of us - softer rocess ii ination).	0 nginee gy and ple pro	3 ring and also for 9 blems) -							
Preamble Applied Chemistry course explores the basic principles and advancer technology. It aims to impart the fundamentals of chemistry towards in societal applications. Unit - I Water Technology: Introduction - sources of water - impurities in water - types of water - hardness of vunits of hardness - estimation of hardness of water by EDTA method — determinatic in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittler Internal treatment process - carbonate and calgon conditioning ii) External treatment water for municipal water supply (Removal of suspended particles and disinfection metalline electrochemical cells - applications of electrochemical series - reference electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - advastrong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - chelectrochemical corrosion - galvanic corrosion, concentration cell corrosior and microbiological corrosion - galvanic series - factors influencing rate of corrosior material selection, anodicprotection, corrosion inhibitors, protective coatings - i) metallio control:	water- on of a ement, t methods rence	of chemistry tions in science expression o alkalinity - disa priming and f od -deminerali s, Break-point	in the fi be and t f hardne advantag oaming zation p of chlori	ield of e echnolo ess (sim ges of us - softer rocess ii ination).	ple pro	ring and also for blems) -							
Preamble Applied Chemistry course explores the basic principles and advancer technology. It aims to impart the fundamentals of chemistry towards in societal applications. Unit - I Water Technology: Introduction - sources of water - impurities in water - types of water - hardness of vunits of hardness –estimation of hardness of water by EDTA method — determination in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittler Internal treatment process - carbonate and calgon conditioning ii) External treatment water for municipal water supply (Removal of suspended particles and disinfection method — electrochemical cells - applications of electrochemical series - reference selective electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - advastrong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - chelectrochemical corrosion - galvanic corrosion, concentration cell corrosior and microbiological corrosion - galvanic series - factors influencing rate of corrosion material selection, anodicprotection, corrosion inhibitors, protective coating - i) metalic	water- on of a ement, t methods rence	of chemistry tions in science • expression o alkalinity - disa priming and f od -deminerali s, Break-point	in the fi ce and t f hardne advantag oaming zation p of chlori	ess (sim ess (sim ges of us - softer rocess ii ination).	ple pro	ring and also for blems) -							
Unit - I Water Technology: Introduction - sources of water - impurities in water - types of water - hardness of w units of hardness -estimation of hardness of water by EDTA method — determination in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittler Internal treatment process - carbonate and calgon conditioning ii) External treatment water for municipal water supply (Removal of suspended particles and disinfection me Unit - II Electrochemistry: Introduction — electrochemical cells - applications of electrochemical series - refer selective electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - adva strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - ch electrochemical corrosion -types - galvanic corrosion, concentration cell corrosior and microbiological corrosion- galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta	water- on of a ment, t method	expression o alkalinity - disa priming and f od -deminerali s, Break-point	f hardne advantag oaming zation p of chlori	ess (sim ges of us - softer rocess ii ination).	ple pro	blems) -							
Introduction - sources of water - impurities in water - types of water - hardness of v units of hardness –estimation of hardness of water by EDTA method — determination in Industries - boiler troubles - scale and sludge, boiler corrosion, caustic embrittler Internal treatment process - carbonate and calgon conditioning ii) External treatment water for municipal water supply (Removal of suspended particles and disinfection me Unit - II Electrochemistry: Introduction — electrochemical cells - applications of electrochemical series - refer selective electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - adva strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - ch electrochemical corrosion -types - galvanic corrosion, concentration cell corrosior and microbiological corrosion - galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta	water- on of a ment, t methoda tethoda rence	expression o alkalinity - disa priming and f od -deminerali s, Break-point	f hardne advantag oaming zation p of chlori	ess (sim ges of us - softer rocess ii ination).	ple pro	blems) -							
Unit - II Electrochemistry: Introduction — electrochemical cells - applications of electrochemical series - reference selective electrode - glass electrode - concentration cells - electrode and elect applications- potentiometric titrations - acid-base, redox, precipitation titrations - advastrong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - ch electrochemical corrosion - types - galvanic corrosion, concentration cell corrosior and microbiological corrosion- galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta	rence			/	ii) Trea	water: i) tment of							
Introduction — electrochemical cells - applications of electrochemical series - referselective electrode - glass electrode - concentration cells - electrode and electapplications-potentiometric titrations - acid-base, redox, precipitation titrations - advastrong base, weak acid vs strong base, mixture of weak and strong acid vs strong base Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - chelectrochemical corrosion -types - galvanic corrosion, concentration cell corrosion and microbiological corrosion-galvanic series - factors influencing rate of corrosion material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta	rence					9							
Unit - III Corrosion and its Control: Introduction — causes and effects of corrosion - types of corrosion - ch electrochemical corrosion –types - galvanic corrosion, concentration cell corrosior and microbiological corrosion- galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta- illy non-metallic coating - anodizing iii) organic coating - pointe - constituents and the	antag se- ac	Introduction — electrochemical cells - applications of electrochemical series - reference electrode - standard calomel electrode - ion selective electrode - glass electrode - concentration cells - electrode and electrolyte concentration cells (simple problems) - applications- potentiometric titrations - acid-base, redox, precipitation titrations - advantages- conductometric titrations - strong acid vs strong base, weak acid vs strong base, mixture of weak and strong acid vs strong base- advantages of conductometric titrations.											
Introduction — causes and effects of corrosion - types of corrosion - ch electrochemical corrosion –types - galvanic corrosion, concentration cell corrosior and microbiological corrosion- galvanic series - factors influencing rate of corros material selection, anodicprotection, corrosion inhibitors, protective coatings - i) meta						9							
in non-metallic coating . anouzing in) organic coating . paints — constituents and th	hemic on – ot osion tallic c heir fu	al corrosion her types of c – corrosion c oatings : hot d Inctions.	 Pilli orrosior ontrol r ipping (t 	ing Beo n -stress methods tinning a	d-worth s, inter s - des ind galv	ו rule - granular ign and vanizing)							
Unit - IV Fuels and Combustion:						9							
Introduction — classification of fuels - characteristics of a good fuel - combustion - Dulong's formula (simple problems) - Flue gas analysis by Orsat's method - ignition explosive range - solid fuels - coal and its varieties — proximate and ultimate Otto- Hoffman byproduct method - liquid fuel - refining of petroleum — manufacture of s process - knocking - octane number — cetane number - gaseous fuel - water gas	- calor n temp e anal synthe s.	ific values — g perature - spor ysis — signific etic petrol - hy	gross ar ntaneous cance – /drogen	nd net ca s ignition – metal nation of	alorific n temp llurgica ⁻ coal -	values - erature - I coke - Bergius							
Unit - V Polymers:						9							
Introduction — terminology - classification - polymerization - types of polymerization solution, suspension and emulsion polymerisation - plastics- difference betwee compounding of plastics- plastic moulding methods - compression, injection, extrusio polymers: preparation, properties and applications of PVC, PAN, polyurethane, poly applications.	n (defi een th	nition only)- p nermoplastics l blow mouldin s –biodegrada	olymeris and th g metho ble poly	sation te iermoset ods - ind vmers-cla	chniqu tting p lustrial assifica	es- bulk, lastics - ation and							
ТЕХТ ВООК:	yester				I	fotal: 45							

REFERENCES:

- 1. Palanisamy P.N., Manikandan P., Geetha A.& Manjula Rani K., "Applied Chemistry", 6th Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2019.
- 2. Payal B. Joshi, Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.
- 3. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF On co	COURSE OUTCOMES: On completion of the course, the students will be able to						
CO1	apply the suitable water softening methods to avoid boiler troubles.	Applying (K3)					
CO2	apply the principle of electrochemistry for various applications.	Applying (K3)					
CO3	make use of corrosion control methods to solve corrosion related problems.	Applying (K3)					
CO4	illustrate the quality of fuels from its characteristics.	Understanding (K2)					
CO5	explain the types of polymers, plastics and fabrication methods.	Understanding (K2)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1												
CO5	CO5 3 1													
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	35	40				100						
CAT2	25	35	40				100						
CAT3	25	35	40				100						
ESE	25	35	40				100						

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20MEC11 - ENGINEERING DRAWING

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE(Civil, Mech, MTS, Auto) &BTech(Chem, FT)	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	ES	2	0	2	3

Preamble To impart knowledge on orthographic, isometric projections, sectional views and development of surfaces by solving different application oriented problems.

Unit - I General Principles of Orthographic Projection:

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning - Projections of Points, Lines and Planes - General principles of orthographic projection - First angle projection - Layout of views - Projection of points located in all quadrant and straight lines located in the first quadrant - Determination of true lengths and true inclinations and location of traces - Projection of polygonal surface and circular lamina inclined to both reference planes.

Unit - II Projections of Solid:

Projections of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

Unit - III Sectioning of Solids:

Sectioning of solids - prisms, pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other - Obtaining true shape of section.

Unit - IV Development of Surfaces:

Development of lateral surfaces of simple solids like prisms, pyramids, cylinders and cones – development of simple truncated solidsinvolving prisms, pyramids, cylinders and cones.

Unit - V Isometric Projection and Introduction to AutoCAD:

Principles of isometric projection - Isometric scale - Isometric projections of simple and truncated solids like prisms, pyramids, cylinders and cones - Conversion of isometric projection into orthographic projection - Introduction to AutoCAD.

Lecture:30, Practical:30, Total:60

9

9

9

9

9

TEXT BOOK:

1. Venugopal K. and Prabhu Raja V., "Engineering Graphics", 15th Edition, New Age International Pvt. Ltd., New Delhi, 2018. **REFERENCES:**

1. Basant Agrawal, Agrawal C.M., "Engineering Drawing", 2nd Edition, McGraw Hill Education, 2019.

2. Gopalakrishnana K.R. "Engineering Drawing", Volume. I & II, Subhas Publications, Bengaluru, 2014.

3. Parthasarathy N.S., Vela Murali. "Engineering Drawing", 1st Edition, Oxford University Press, 2015.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret international standards of drawings and sketch the projections of points, lines and planes.	Understanding (K2)
CO2	draw the projections of 3D primitive objects like prisms, pyramids, cylinders and cones.	Applying (K3)
CO3	construct the various sectional views of solids like prisms, pyramids, cylinders and cones.	Applying (K3)
CO4	develop the lateral surfaces of simple and truncated solids.	Applying (K3)
CO5	sketch the isometric projections of simple and truncated solids and convert isometric drawing in to orthographic projection.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2								3	2	2	2	3
CO2	3	2	1	1						3	2	3	2	3
CO3	3	2	1	1						3	2	3	2	3
CO4	3	2	1	1						3	2	3	2	3
CO5	CO5 3 2 1 1 3 2 3 2 3 2 3													
1 – Slight, 2 –	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	40	40				100				
CAT2	20	40	40				100				
CAT3	20	40	40				100				
ESE	25	35	40				100				

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20MET11 - ENGINEERING MECHANICS

Programme & Branch	BE – Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	1	PC	3	1	0	4

Preamble	This course provides introduction to the basic concepts of forces, inertia, centroid and moments of area along with effects on motion. It introduces the phenomenon of friction and its effects. It familiarizes students to cognitive learn applied mechanics and develops problem-solving skills in both theoretical and engineering oriented problems.	h their ning in							
Unit - I	Statics of Particles:	9+3							
Introduction – Resolutior representation	-Laws of Mechanics – Parallelogram and Triangular Law of forces – Principle of Transmissibility – Coplanar F and Composition of force -Free body diagram–Equilibrium of a particle in plane – Forces in space - Ve on forces–Equilibrium of a particle in space.	orces ctorial							
Unit - II	Statics of Rigid Bodies:	9+3							
Moments: Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar component of moments – Varignon's theorem– Equivalent systems of forces – Single equivalent force. Types of supports and heir reactions – Requirements of stable equilibrium – Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in hree dimensions.Trusses: Method of joints- Method of sections. Principle of virtual work.									
Unit - III	Properties of Surfaces and Solids:	9+3							
Determination Hollow section theorem - Te Inertia of pla	on of Areas and Volumes — First moment of area and Centroid of sections — T section- I section- Angle se on from primary simpler sections — Second moment of plane areas — Parallel axis theorem and Perpendicula section - I section- Angle section- Hollow section — Polar moment of Inertia — Product of Inertia- Principal Mom ne	ection- ir axis ent of							
Unit - IV	Friction and Rectilinear motion of particles:	9+3							
Friction: Sur friction. Rect motion — Pr	face Friction – Laws of dry friction – Sliding friction – Static and Kinetic friction– Ladder friction – Wedge friction ilinear motion of particles: Displacement- velocity and acceleration and their relationship – Relative motion- Curv rojectile motion.	– Belt rilinear							
Unit - V	Dynamics of Particles and Kinematics of Rigid body:	9+3							
Dynamics of	Particles: Newton's law, Work - Energy and Impulse - Momentum equations of particles - Impact of elastic be	odies.							

Kinematics of Rigid body: Translation - Rotation about a fixed axis–General plane motion. Kinetics of rigid body.

TEXT BOOK:

1. Dubey N.H., "Engineering Mechanics: Statics and Dynamics", 1st Edition, McGraw Hill Education, New Delhi, 2016. **REFERENCES:**

 Beer Ferdinand P., Russel Johnston Jr., David F. Mazure, Philip J. Cornwell, Sanjeev Sanghi, "Vector Mechanics for Engineers: Statics and Dynamics", 12th Edition, McGraw Hill Education, Chennai, 2019.

Lecture:45, Tutorial:15, Total:60

2. Hibbeler R.C., "Engineering Mechanics", 14th Edition, Pearson Education, New Delhi, 2017.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	represent the forces in vector components (both 2D and 3D) and apply equilibrium conditions	Applying (K3)
CO2	calculate the moment produced by various force systems and conclude the static equilibrium equations for rigid body system	Analyzing (K4)
CO3	compute the centroid, centre of gravity and moment of inertia of geometrical shapes and solids respectively	Applying (K3)
CO4	manipulate the effect of dry friction and its applications	Applying (K3)
CO5	apply the different principles to study the motion of a body and analyse their constitutive equations	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1								1		3
CO2	3	2	1	1								1		3
CO3	3	2	1	1								1		3
CO4	3	2	1	1								1		3
CO5	3	2	1	1								1		3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	20	50	20			100						
CAT2	10	20	50	20			100						
CAT3	10	20	50	20			100						
ESE	10	20	50	20			100						

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20PHL11 - PHYSICAL SCIENCES LABORATORY I

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	1	BS	0	0	2	1

Preamble	This course aims to impart hands on training in the determination of the physical parameters such as Young's modulus,
	rigidity modulus, frequency of vibration, velocity of ultrasonic waves, compressibility of water, wavelength of laser,
	acceptance angle and the numerical aperture of an optical fiber, and to develop the skills in handling different basic
	instruments and also aims to impart the basic concepts of volumetric, conductometric and pH meter experiments and
	thereby, to improve the analytical capability.

List of	Exercises / Experiments:
1.	Determination of the Young's modulus of the material of a given beam using uniform bending method.
2.	Determination of the rigidity modulus of the material of a given wire using torsional pendulum.
3.	Determination of frequency of electrically vibrating rod by forming standing waves using Melde's apparatus.
4.	Determination of the velocity of ultrasonic waves in a liquid and the compressibility of a liquid using ultrasonic interferometer.
5.	Determination of (i) the wavelength of a semiconductor laser and (ii) the acceptance angle and the numerical aperture of a given optical fiber.
6.	Estimation of total, temporary and permanent hardness of water by EDTA method.
7.	Estimation of Ca ²⁺ and Mg ²⁺ hardness separately by EDTA method.
8.	Estimation of alkalinity of the given water sample.
9.	Conductometric titration -Mixture of acids.
10.	Estimation of hydrochloric acid using pH meter.
	Total: 30

REFERENCES:

1. Tamilarasan K. and Prabu K.,"Physics Laboratory Manual', 1st Edition, SCM Publishers, Erode, 2020.

 Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2020.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine the Young's modulus of a material using the concepts of elasticity and bending moment of a beam and to determine the rigidity modulus of a wire using the concepts of twisting couple and to compute the frequency of electrically vibrating rod using the concept of standing waves formed in fixed vibrating string.	Applying (K3), Precision (S3)
CO2	determine the wavelength of a semiconductor laser beam using the concept of diffraction of light, and to compute the acceptance angle and the numerical aperture of an optical fiber using the concepts of total internal reflection and divergence of light in air and estimate the amount of hardness for the given water sample by EDTA method, and the amount of alkalinity for the given water sample.	Applying (K3), Precision (S3)
CO3	demonstrate the conductivity meter and pH meter to estimate the amount of the given solution.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS6												PSO2	
CO1				3										
CO2				3										
CO3	CO3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

П

20MEL11 - ENGINEERING PRACTICES LABORATORY

(Common to Civil, Mechanical, Mechatronics, Automobile Engineering, Chemical & Food Technology Branches)

Programme & Branch	BE (Civil, Mech, MTS, Auto) & BTech (Chem, FT)	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	ES	0	0	2	1

Preamble This course is designed to provide a hands-on experience in basic of mechanical and electrical engineering practices.

List of Exercises / Experiments:

	PART A – MECHANICAL ENGINEERING
1.	To prepare square or rectangular shaped MS plates using power tools for cutting, polishing and shaping to the required dimensions.
2.	To carryout drilling, tapping and assembly on the given MS plates.
3.	To carryout thread forming on a GI/PVC pipes and prepare water leak proof water line from overhead tank.
4.	To prepare a wood or plywood box/tray/any innovative models using modern power tools like cutting machine, router, jigsaw, power screw driver etc.
5.	Welding practice through arc welding / simulator
	PART B – ELECTRICAL AND ELECTRONICS ENGINEERING
1.	Safety Aspects of Electrical Engineering, Electrical Symbols, Components Identification, Fuse selection and installation, Circuit Breakers selection
2.	Wiring circuit for fluorescent lamp and Stair case wiring
3.	Measurement of Earth resistance
4.	Soldering of Simple Circuits and trouble shooting
5.	Implementation of half wave and full wave Rectifier using diodes

Total: 30

REFERENCES /MANUAL / SOFTWARE:

1. Engineering Practices Laboratory Manual.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	plan the sequence of operations for effective completion of the planned models/ innovative articles	Creating (K6), Precision (S3)
CO2	identify and use appropriate modern power tools and complete the exercises/models accurately	Applying (K3), Precision (S3)
CO3	select fuses and Circuit breakers	Understanding (K2), Manipulation (S2)
CO4	perform house wiring and realize the importance of earthing	Applying (K3), Manipulation (S2)
CO5	trouble shoot the electrical and electronic circuits	Applying (K3), Manipulation (S2)

					Марр	ing of C	Os with	n POs ai	nd PSO	S				
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS												PSO2		
CO1	2		3	3	2	1			3	3		3		
CO2	2		3	3	2				3	3		3		
CO3	3		3	3	1				2	2		3		
CO4	3		3	3	1				2	3		3		
CO5	3		3	3	1				2	2		3		
1 – Slight, 2 –	Modera	te, 3 – S	Substan	tial, BT-	Bloom's	s Taxon	omy							

20VEC11 - YOGA AND VALUES FOR HOLISTIC DEVELOPMENT

Programme & Branch		All BE/BTech Branches	Sem.	Category	L	т	Р	Credit					
Prerequisites		Nil	1	HS	1	0	1	1					
Preamble Pro you	vidin thful	g Value Education to improve the Students' character - unde ness - Measure and method in five aspects of life	rstandir	ng yogic life and	d physic	al healt	h - mai	ntaining					
Unit - I Phy	vsica	I Health:						2					
Manavalakalai (S Empowerment. S exercises - Kapa Yogasanas: Prar Astanga Namask Pranamasana. Pr	imp laba nama ara ana	Yoga: Introduction - Education as a means for youth empo ified Physical Exercises: Need and Objectives of Simplif thi, Makarasana Part I, Makarasana Part II, Body Massay asana - Hastha Uttanasana - Pada Hasthasana - Aswa Sar Bhujangasana - Atha Muktha Savasana - Aswa Sanjalana yama: Naddi suddi - Clearance Practice - Benefits.	owermei fied Phy ge, Acu njalana a Asana	nt - Greatness ysical Exercise u pressure, Re Asana - Thuvij a - Pada Hasth	of Edu - Hand laxatior batha a basana	cation - d, Leg, n exerci sva Sai - Hasth	Yoga f Breath ses - njalana a Uttar	or youth ing, Eye Benefits. asana - nasana -					
Unit - II Life	Life Force:												
Natural calamities Bio-Magnetism - - Transformation Controlling undue	of for Pas	I climatic changes) - Unnatural reasons (Food habits, Thoug ical body - Sexual vital fluid - Life force - Bio-Magnetism - Mi bod into seven components - Importance of sexual vital flu sion. Kayakalpa practice: Aswini Mudra - Ojas breath - Ben	ghts, De nd. Mai uid - M	easure and m Kaya Kalpa.	phy of nfulnes ethod in	Kaya k s: Post n five a	alpa: E poning spects	on in the second					
Unit - III Me	ntal	Health:						2					
Mental Frequen Meditation explar blessing (Auto suggestion)	cies atior - Fa	: Beta, Apha, Theta and Delta wave - Agna Meditation ex – benefits. Thuriya Meditation: Thuriya Meditation explan mily blessing - Blessing the others - World blessing - Divine p	xplanat ation – protectic	ion - benefits. benefits. Bene on.	Shant fits of	i medit Blessin	ation: g: Self	Shanthi					
Unit - IV Val	ues:							2					
Human Values: —Forgiveness - violence — Service. Patriotis TimeManageme	Self Purit sm –	control - Self confidence - Honesty Contentment - Humilit y (Body, Dress, Environment) - Physical purity - Mental pu - Equality. Respect for parents and elders - care and pr	y — Mc urity - S rotection	odesty - Tolera piritual purity. n - Respect fo	nce - A Social or teach	djustm Values ner. Pu	ent - S : Non nctualit	acrifice y -					
Unit - V Mo	ality	v (Virtues):						2					
Importance of In passion - Inferior Chastity - Equal Receptivity - Ada	tros ty ai ity - otabi	pection: I - Mine (Ego, Possessiveness). Six Evil Temperan ad superiority Complex — Vengeance. Maneuvering of Six Pardon (Forgiveness). Five essential Qualities acquired ity - Creativity (Improved Memory Power).	nents - Temper throug	Greed - Anger aments: Conte h Meditation:	- Miser ntment Perspic	liness - - Tolera acity -	Immora ance - Magna	al sexual Charity - nimity -					
TEXT BOOK:				Lect	ure:10,	Practic	al:10, ⁻	Fotal:20					

REFERENCES:

1. Thathuvagnani Vethathiri Maharishi, "Yoga for Modern Age", Vethathiri Publications, 2019.

2. Thathuvagnani Vethathiri Maharishi, "Simplified Physical Exercises", Vethathiri Publications, 2019.

3. Neelam Sharma, "Holistic Education and Yoga", Shipra Publications, 2017.

4. Dr. Joseph Murphy, "The Power of Your Subconscious Mind", Pushpak Publication, 2019.

COUF On co	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	understand the importance of physical health and practice simplified physical yoga exercise.	Applying (K3)				
CO2	understand the importance of Kayakalpa exercise to enrich Bio-Magnetism and practice it.	Applying (K3)				
CO3	understand the significance of meditation and do meditation to get sound mind.	Applying (K3)				
CO4	understand the human and social values to provide service to society.	Applying (K3)				
CO5	understand the evil temperaments and five essential qualities acquired through meditation	Applying (K3)				

	Mapping of COs with POs and PSOs											
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02											
CO1						3		2	1		1	
CO2						3		2			1	
CO3						3		3			1	
CO4						3		2	1		1	
CO5	CO5 3 3 1 1											
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy											

		ASSESS	MENT PATTER	RN			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	NA						
CAT2	NA						
CAT3			100				100
ESE	NA						

20EGT21 ADVANCED COMMUNICATION SKILLS

(Common to all Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	20EGT11 – English Language Skills	2	HS	3	0	0	3

Preamble This course is designed to impart required levels of fluency in using the English Language at B1Level in the Common European Framework (CEFR). Unit - I Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase –VI 9 Listening - Job and career related descriptions and conversations - requests of different kinds and the responses - Speaking Career choices and professional skills – making requests and responding to requests – Reading – Using texts about jobs and careers - about different societies and cultural differences - Writing - Resumes, CVs and job oriented advertisements - business and careerrelated emails - Grammar & Vocabulary - Gerunds and elements of comparison - requests and indirect requests. Unit - II Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VII 9 Listening - Expository and narrative descriptions - information about different cultures, nations and societies. Speaking Narratingand describing – talking about other countries and other cultures – Reading – Using texts about media and information technology –living abroad and experiencing different cultures – Writing – Blog writing – brochures and tourist pamphlets – Grammar & Vocabulary - The past tense forms - noun phrases and relative clauses. Unit - III Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – VIII 9 Listening – Consumerism – product description – complaints and redressal – environmental issues – ecology – saving the planet Speaking – Talking about problems, issues, complaints – solutions and redressal – talking about environmental issues -Reading – Using texts on segregating wastes – recycling and reusing – texts on environmental issues – Writing – Online reviews, articles and writing web content - Grammar & Vocabulary - Phrases and sentences used for describing problems passives - prepositions and infinitives. Unit - IV Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – IX 9 Listening - Education, learning and the choice of courses - various services needed in daily life - selfimprovement for success in life - Speaking - Discussions about educational and career oriented issues - talking about everyday services – giving advice and self improvement – **Reading** – Reading about learning strategies and learning styles – using texts about personality development - Writing - Writing about hobbies - pastime and individual skills - writing short articles on everyday life and personality development – Grammar & Vocabulary – Using of "would" and certain gerund forms – use of modals, verbs, gerunds, negative questions and infinitives. Unit - V Listening, Speaking, Reading, Writing and Grammar & Vocabulary. Activity Based Learning – Phase – X 9 Listening - Historical narratives - biographies and learning about the future - important life events, milestones and happenings of the past – Speaking – Talking about the past, present and the future – talking about important events in life – Reading – Texts about new technologies and future science - using texts about social organization, culture and social practices - Writing Biographical sketches - historical events - famous personalities, stages of life and getting along with people - Grammar & Vocabulary - Future tense forms

time clauses and certain "if clauses".

Total: 45

TEXT BOOK:

1. Jack C. Richards, Jonathan Hull, and Susan Proctor, "Interchange - Student's Book 3", 4th Edition, Cambridge University Press, New York, 2017.

REFERENCES:

1.	Sanjay Kumar and Pushp Lata, "Communication Skills: A Workbook based on AICTE Syllabus", Oxford University Press, 2018.
----	---

2. Board of Editors, "Skills Annexe: Functional English for Success", Orient BlackSwan, Hyderabad, 2013.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	use functional grammar for improving communication skills	Applying (K3)
CO2	listen and comprehend different spoken excerpts critically and infer Unspoken and implied meanings.	Applying (K3)
CO3	read different genres of texts, infer implied meanings and critically analyze and evaluate them for ideas as well as for method of presentation.	Analyzing (K4)
CO4	write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.	Creating (K6)
CO5	speak effectively, to express opinions clearly, initiate and sustain a discussion and also negotiate using appropriate communicative strategies.	Creating (K6)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			1	3	1	1		
CO2									2	3		1		
CO3						1				3	1	1		
CO4										3		2		
CO5	CO5 2 3 2 .													
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMEN	Γ PATTERN - Τ	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		13	30	33	-	17	100
CAT2		13	33	37	-	17	100
CAT3		20	30	33	-	17	100
ESE		6	40	36	-	18	100

20MAC21 - MULTIVARIABLE CALCULUS AND COMPLEX ANALYSIS

(Common to All Engineering and Technology Branches)

Programme & Branch	All BE/BTech branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	BS	3	1*	2*	4

Preamble	To impart the knowledge of partial derivatives, evaluation of real and complex integrals, vector calculus and analy functions to the students for solving the problems related to various engineering disciplines.	tic
Unit - I	Functions of Several Variables:	9
Functions of and minima	two or more variables – Partial derivatives – Total differential – Taylor's series for functions of two variables – Max – Constrained maxima and minima – Lagrange's multiplier method	kima
Unit - II	Multiple Integrals:	9
Double integ	gration in cartesian coordinates – Change of order of integration – Application: Area between two curves –Tripl n cartesian coordinates –Volume as triple integrals	e
Unit - III	Vector Calculus:	9
Directional of and Irrotatio and evaluat	derivative – Gradient of a scalar point function – Divergence of a vector point function – Curl of a vector – Sole nal vectors – Green's, Stoke's and Gauss divergence theorems (without proof) – Verification of the above the ion of integrals using them.	noidal orems
Unit - IV	Analytic Functions:	9
Functions of equations (S – Conforma	a complex variable – Analytic functions – Necessary and sufficient conditions (excluding proof) – Cauchy–Ri tatement only) – Properties of analytic function (Statement only) – Harmonic function – Constructionof analytic fu I mapping: w = z + a, az, 1/z – Bilinear transformation.	emann

Unit - V Complex Integration:

Introduction – Cauchy's theorem (without proof) – Cauchy's integral formula – Taylor's and Laurent series – Singularities – Classification – Cauchy's residue theorem (without proof) – Applications: Evaluation of definite integrals involving sineand cosine functions over the circular contour.

List of Exercises / Experiments:

1.	Finding ordinary and partial derivatives
2.	Computing extremes of a single variable function
3.	Evaluating double and triple integrals
4.	Finding the area between two curves
5.	Computing gradient, divergence and curl of point functions
6.	Applying Milne-Thomson method for constructing analytic function
7.	Determination of Mobius transformation for the given set of points
8.	Finding poles and residues of an analytic function

*Alternate week

TEXT BOOK:

Lecture: 45, Tutorial and Practical:15, Total:60

Pearson

9

1.	Ravish R. Singh, Mukul Bhatt "Engineering Mathematics", 1 st Edition, McGraw Hill Education, New Delhi, 2016.
RE	FERENCES:
1.	Kreyszig E., "Advanced Engineering Mathematics", 10 th Edition, John Wiley Sons, 2011.
2.	Dass H K, "Higher Engineering Mathematics", 3 rd Revised Edition, S.Chand and Co., New Delhi, 2014.
3.	Duraisamy C., Vengataasalam S., Arun Prakash K. and Suresh M., "Engineering Mathematics – I", 2 nd Edition,

- IndiaEducation, New Delhi, 2018.
- 4. MATLAB Manual.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF	RSE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	compute extremal values which arise in function of several variables.	Applying (K3)
CO2	solve Problems involving Double and Triple integrals.	Understanding (K2)
CO3	apply the concept of vectors in engineering problems.	Applying (K3)
CO4	identify, construct and apply analytic functions in electrostatics and fluid flow problems.	Applying (K3)
CO5	evaluate complex integrals which are extensively applied in engineering.	Applying (K3)
CO6	compute maxima and minima of a single variable function, gradient, curl and divergence of a vector function using MATLAB.	Understanding (K2), Manipulation (S2)
C07	evaluate Double, Triple integrals and determine area between two curves using MATLAB	Applying (K3), Manipulation (S2)
CO8	construct analytic function, find bilinear transformation and compute poles and residues using MATLAB.	Applying (K3), Manipulation (S2)

					Мар	ping of	f COs v	with POs	and P	SOs				
COs/POs	P01	PO2	2 PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO'	10 PO11	PO12	PSO1	PSO2
CO1	3	3												
CO2	3	3	2											
CO3	3	3												
CO4	3	3												
CO5 3 3 2														
CO6					3									
CO7					3									
CO8					3									
1 – Slight, 2 –	Moder	ate, 3	- Substar	ntial,	BT- Bloon	3T- Bloom's Taxonomy								
					ASS	SESSM	ENT P	ATTERN	- THE	ORY				
Test / Bloom's Remembering Category* (K1) %					Understa	nding (%	K2)	Applying (K3) %	j Ana (ł	alyzing (4) %	Evaluating %	(K5)	Creating (K6) %	Total %
CAT1			10		2	0		70						100
CAT2			10		2	0		70						100
CAT3			10		20			70						100
ESE	ESE 10				2	0		70						100

20PHT21 - MATERIALS SCIENCE

(Common to Civil Engineering & Mechanical Engineering Branches)

Programme & Branch	BE-Civil Engineering & BE- Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Physics	2	BS	3	0	0	3

Preamble This course aims to impart the knowledge on the physics of conductors, semiconductors, magnetic materials, superconductors, dielectrics, smart and nano materials. It also describes the select characterization techniques and the applications of aforementioned materials in Civil and Mechanical Engineering and provides motivation towards innovations.

Unit - I Conducting Materials:

Conductors - Classical free electron theory of metals - Electrical conductivity - Thermal conductivity - Wiedemann-Franz law - Lorentz number - Draw backs of classical free electron theory - Quantum free electron theory - Quantum statistics: Fermi distribution function and Effect of temperature on Fermi function and Fermi energy - Density of energy states - Carrier concentration in metals.

Unit - II Semiconducting Materials:

Intrinsic semiconductor: Intrinsic carrier concentration, Fermi level in intrinsic semiconductor, Variation of intrinsic conductivity with temperature and Determination of band gap - Extrinsic semiconductors: Carrier concentration in N-type and P-type semiconductors, Fermi level in extrinsic semiconductors, Variation of Fermi level with temperature and impurity concentration - Homojunction laser: Construction and working - Hall effect: Theory and experimental determination of Hall coefficient and Applications.

Unit - III Magnetic, Superconducting and Dielectric Materials:

Magnetic Materials: Introduction - Domain theory of ferromagnetism - Hysteresis loss - Soft and hard magnetic materials - Application of magnetic materials: Transformer core - Superconductors: Properties of superconductors - Type I and Type II superconductors - Application of superconductors: Magnetic levitation - Dielectric materials: Dielectric constant — Types of polarization (qualitative) - Dielectric loss — Dielectric breakdown — Applications of dielectric materials.

Unit - IV Smart and Nano Materials:

Smart Materials: Metallic glasses: Preparation by melt spinning, properties and applications - Shape memory alloys: Characteristics and applications. Nanomaterials: Properties of nanomaterials — Quantum confinement: Zero dimensional, one dimensional and two dimensional nanostructures - Production techniques: Electron beam lithography, Nano imprint lithography, Nano pen lithography, Physical vapor deposition methods and sol-gel method - Applications of nano materials.

Unit - V Materials Characterization:

Importance of materials characterization - X-ray diffraction (qualitative) - X-ray photoelectron spectroscopy - Scanning electron microscopes and Energy dispersive X-ray analysis: principle, construction and working - Transmission electron microscope: principle, construction and working - Raman spectroscopy (qualitative) - Thermal analysis: Thermo gravimetric analysis — Differential scanning calorimetry.

TEXT BOOKS:

Total:45

9

9

9

9

9

- Avadhanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Textbook of Engineering Physics",11th Edition, S.Chand & Company Pvt. Ltd., New Delhi, 2019 for Unit I — Unit IV.
- 2. Sam Zhang, Lin Li and Ashok Kumar, "Materials Characterization Techniques", 1st Edition, CRC Press, Boca Raton, 2008, for Unit V.

REFERENCES:

Pillai S.O. and Sivakami Pillai, "Rudiments of Materials Science", 3rd Edition, New Age International Publishers, New Delhi, 2012.
 Charles Kittel, "Introduction to Solid State Physics", 8th Edition, John Wiley & Sons, New Jersey, 2004.
 Tamilarasan K. and Prabu K., "Materials Science", 1st Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2019.

Γ

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concepts of classical and quantum free electron theory of metals to compute the electrical conductivity, thermal conductivity and carrier concentration in metals.	Applying (K3)
CO2	use the concepts of density of states to compute the carrier concentration, electrical conductivity and band gap of intrinsic semiconductor and to compute the carrier concentration of extrinsic semiconductors and to explain the working of semiconductor laser, Hall effect and its applications.	Applying (K3)
CO3	apply the domain theory of ferromagnetism to explain hysteresis, to apply the concept of formation copper pair to comprehend the properties and applications of superconductors, and to apply the concept of electric dipole moment and electric polarization to comprehend the select polarization mechanisms in dielectrics and to describe the related phenomenon.	Applying (K3)
CO4	utilize appropriate methods to prepare select smart materials (metallic glasses and shape memory alloys) and nano-materials, and to comprehend their properties and applications.	Applying (K3)
CO5	apply the concepts of X-ray diffraction, matter waves, Raman effect and thermograph to describe the principle and working of select material characterization techniques.	Applying (K3)

	Mapping	of	COs	with	POs	and	PSOs
--	---------	----	-----	------	-----	-----	-------------

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	CO2 3 2 1 <													
CO3	3	2	1											
CO4	3	2	1											
CO5 3 2 1 <														
1 – Slight, 2 –	I – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	35	45				100					
CAT3	30	30	40				100					
ESE	20	40	40				100					

20CYT22 - CHEMISTRY FOR MECHANICAL SYSTEMS

Programme & Branch	BE - Mechanical Engineeing, BE - Mechatronics Engineering & BE - Automobile Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Applied Chemistry	2	BS	3	0	0	3

Preamble This course aims to provide knowledge for mechanical, mechatronics and automobile engineering students on the requirements and properties of few important materials and create awareness among the present generation about the various energy sources. 9

Unit - I **Chemistry of Materials :**

Lubricants - functions - requirements - classification with examples - properties : viscosity, viscosity index, flash and fire point, cloud and pour point, oiliness, aniline point and carbon residue - Explosives — requirements - classification - manufacture of important explosives (TNT, GTN and RDX) - Rocket propellants - properties and classification - Refractory bricks - criteria of a good refractory material - classification — properties: refractoriness, RUL, porosity, thermal spalling, thermal conductivity and dimension stability - general method of manufacturing of refractories- Insulators - classification with examples: thermal insulators and electrical insulators - characteristics of insulating materials.

Unit - II **Energy storing Devices:**

Batteries -Introduction – Cells – Batteries – discharging and charging of battery - characteristics of battery -Types of Batteries -Primary batteries – silver button cell- Secondary battery – Ni-Cd battery. Fuel Cells: Importance and classification of fuel cells description, principle, components, applications and environmental aspects of fuel cells; alkaline fuel cells, phosphoric acid, molten carbonate and direct methanol fuel cells.

9

9

9

9

Total: 45

Unit - III **Analytical Techniques:**

Introduction - Beer Lambert's law - principle, instrumentation and applications of UV-Vis Spectroscopy, Colorimetry, Infra Red Spectroscopy, Flame Photometry, Atomic Absorption Spectroscopy.

Unit - IV **Renewable Energy Resources:**

Introduction — global energy consumption scenario- types of energy resources - nuclear energy - nuclear power reactor breederreactors - applications and disadvantages of nuclear energy - design, working, advantages and disadvantages of solar energy,

hydropower, wind energy, geothermal energy, tidal and wave power, ocean thermal energy - biomass and biofuels - hydrogen as an alternate fuel - hydrogen production - advantages, disadvantages and applications - nanotechnology for energy sector.

Unit - V **Industrial Metal Finishing:**

Introduction — technological importance of metal finishing- methods of metal finishing - manufacturing of electronic component-PCB fabrication- essential of metal finishing: polarization, decomposition potential and overpotential - surface preparation - Electroplating process - effect of plating variables on the nature of electrodeposit - electroplating of chromium and silver. Electroless plating electroless copper plating on printed circuit board - electroless nickel plating process -Distinction between electroplating and electroless plating- advantages of electroless plating.

TEXT BOOK:

1. Wiley Editorial Board, "Wiley Engineering Chemistry", 2nd Edition, Wiley India Pvt. Ltd, New Delhi, Reprint 2019. **REFERENCES:** Palanisamy P.N., Manikandan P., Geetha A., Manjula Rani K. & Kowshalya V.N., "Environmental Science", Revised Edition, 1.

Pearson Education, New Delhi, 2019.

2. Palanna O., "Engineering Chemistry", McGraw Hill Education, New Delhi, 2017.

3. Payal B.Joshi & Shashank Deep, "Engineering Chemistry", Oxford University Press, New Delhi, 2019.

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the knowledge of lubricants, refractories and insulators in mechanical systems.	Understanding (K2)
CO2	use the concepts of batteries, fuel cells and their applications in various fields.	Applying (K3)
CO3	apply the principle of various analytical techniques for specific applications	Applying (K3)
CO4	explain the role of renewable energy resources to attain sustainability	Understanding (K2)
CO5	employ the concept of coating techniques in industrial metal finishing	Applying (K3)

					Марр	ing of C	Os with	n POs ai	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1					3							
CO5	3	2	1	1										
1 – Slight, 2 –	Modera	te. 3 – S	Substan	tial. BT-	Bloom's	s Taxon	omv							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	35	40				100						
CAT2	25	35	40				100						
CAT3	25	35	40				100						
ESE	25	35	40				100						

20MET21 - MANUFACTURING TECHNOLOGY

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisite	S	Applied Physics	2/3	PC	3	0	0	3	
Preamble	To prov	ide the basic concepts and techniques of metal casting person and overview of manufacturing processes.	process	es, deformatio	n proce	sses, s	pecial	welding	
Unit - I	Metal-C	asting Processes:						9	
Introduction – Classification – Types of casting processes – Pattern: Types – Material – Allowances – Molding Sand: Preparation forsand casting – Properties – Cores: Types – Applications – Heating – Pouring – Cooling – Solidification of pure metals and alloys – Directional solidification – Design: Runner – Riser – Gate.									
Unit - II	Special	Casting Processes:						9	
Expendable Plasticmold Squeeze casting – Slu	Expendable mold casting processes: Shell molding – Vacuum molding – Expanded polystyrene process – Investment casting – Plasticmold casting – Ceramic mold casting – Permanent mold casting: Die casting – Centrifugal casting – Continuous casting – Squeeze casting – Slush casting – Defects in casting								
Unit - III	Welding	p Processes:						9	
Introduction - beamwelding Diffusion welding – Ex	– Fusion g – Elect plosive v	welding processes: Arc welding – Gas welding – Resistance ro slag welding – Thermit welding – Solid state welding p velding – Friction welding – Ultrasonic welding – Soldering a	e spot v rocesse und Bra:	velding – Elect es: Friction stir zing.	ron bea weldin	m weld g – For	ing – La ge wel	aser ding –	
Unit - IV	Metal F	orming Processes:						9	
Bulk deforma rolling – Shar – Upsetting – Swaging – extrusion –D Shearing – E – Punching – Curling	ation proc be rolling Radial f Drawing p Blanking - Slotting	cesses – Hot working and cold working processes –Rolling – Ring rolling – Tube piercing – Skewrolling – Forging proc orging – Roll forging – Extrusion process – Types: Direct rocess – Types: Wire drawing – Deep drawing – Rod drawi J – Perforating – Notching – Trimming – Shaving – Bending Embossing	proces cess – T extrusio ng – Tu g opera	s – Types: Trar ypes: Open di on – Indirect ex be drawing – S tions: Flanging	nsverse e forgin Atrusion Sheet m g – Hen	rolling g – Clos – Hydr letal op nming –	– Threa sed die rostatic erations - Seami	ad forging s: ing –	
linit - V	Powder	Metalluray and Plastic Processing:							
Introduction powdermetal Extrusion – Injection m	– Produ Ilurgy – F olding –	ction of metallic powders – Processing methods – Com Product of powder metallurgy – Plastic forming: Properties of Compression molding – Transfer molding – Extrusion blow	paction f plastic molding	methods – D s – Additives ir g – Rotational n	esign o plastic nolding	conside s – Pla – Therr	ration i stic ma moformi	n terials – ing	
	<u> </u>	<u> </u>					Т	otal:45	

1. Rao P.N. "Manufacturing Technology- Foundry, Forming and Welding", Volume 1, 4th Edition, McGraw Hill Education (India) Private Limited, New Delhi, 2013.

REFERENCES:

1.	SeropeKalpakjian, S	teven R. S	Schmid.	"Manufacturing	Engineering and	Technology",	6 th Edition,	Pearson	Education	Limited,	New
	Delhi, 2013.										

2. Kaushish J.P. "Manufacturing Processes", 2nd Edition, Prentice Hall of India Learning Private Limited, New Delhi, 2013.

3. Sharma P.C. "Manufacturing Technology-I", 5th Edition, S.Chand and Company Private Limited, New Delhi, 2010.

4. Hajra Choudhury S.K., Hajra choudhury A.K., Nirjhar roy "Elements of Workshop Technology - Vol. I", 14th Edition, Media Promoters & Publishers Private Limited, Mumbai, 2008.

COUF	ISE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	explain the principle involved in metal-casting processes	Remembering (K1)
CO2	describe the principle and processes involved in special casting process	Understanding (K2)
CO3	demonstrate the principle involved in various welding techniques	Understanding (K2)
CO4	illustrate the mechanism of different kinds of metal forming processes	Applying (K3)
CO5	explain the concept of powder metallurgy and processes related to plastic forming	Understanding (K2)

					Марр	oing of (COs wit	h POs a	nd PSO	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1				2					1			3
CO2	3	1				2					1		2	3
CO3	3	1				2					1		3	3
CO4	3	1				2					1			3
CO5	3					2					1		3	3
1 Clight 2	Moderat	02 0	ubotopt		Ploom'o	Toyon								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	60	20				100
ESE	10	70	20				100

20MET22 - BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Ρ	Credit	
Prerequisites	Nil	2	ES	3	0	0	3	

Preamble	This course is aimed to introduce the fundamental concepts and principles in Electrical and Electronics						
Unit - I	Introduction:	9					
Electric Poten Electrical Safe fundamentals	tial, Current, Power and Energy -Renewable and Non Renewable sources of Energy-Structure of Electric Power Sy ety Aspects as per IE rules. Electric Circuits : Solving simple DC Circuits using KVL and KCL- Single phase AC - Power, Power factor – solving simple AC circuits – 3 phase AC circuits (qualitative analysis).	stem - circuit					
Unit - II	DC Motors and Transformers:	9					
DC Motors: F speedcontrol emf equation	C Motors: Principle of Operation- types – back emf – torque equation - speed torque characteristics – losses and efficiency – peedcontrol of DC motor – Applications. Transformers: Single phase Transformers – Construction and working principle – Types, mf equation						
Unit - III	AC Motors and Industrial Applications:	9					
AC Motors: 3 – Single pha Industrial App machine tool	C Motors: 3 phase Induction Motor -construction- Principle of operation - types - torque equation - speed torque characteristics - Single phase Induction Motor - Principle of operation- types. Synchronous Motors - construction - Principle of Operation. ndustrial Applications: Motor Selection - factors to be considered - power rating - types of Duty - selection of motors for nachine tool applications, centrifugal pumps						
Unit - IV	Electronic Devices and Circuits:	9					
Electronic D emitting diode	Electronic Devices: Construction, principle of operation, types and Characteristics: PN junction diode, -zener diode - BJT- Light emitting diode - Applications, Electronic Circuits: (Qualitative analysis only) Half wave and full wave rectifier, capacitive filter, zener						

voltage regulator, UPS and SMPS (Block Diagram approach).

Unit - V Digital Electronics and Linear Integrated Circuits:

Digital Electronics: Logic gates, Half adder, full adder, Full subtractor, Flip flops and Asynchronous Binary Ripple Counter. **Linear Integrated Circuits:** Operational amplifiers, Ideal op-amp characteristics, Inverting and Non-inverting amplifier (Qualitative analysis), op-amp applications.

Total: 45

9

TEXT BOOK:

1. Muthusubramanian R., Salivahanan S., "Basic Electrical and Electronics Engineering", 1st Edition, Tata McGraw Hill Publishers, 2009, for Units I,II,IV,V.

2. Dubey G.K., "Fundamentals of Electrical Drives", 2nd Edition, Narosa Publishing House, New Delhi, 2010, for Unit III.

REFERENCES:

 Jegathesan V., Vinoth Kumar K. and Saravanakumar R., "Basic Electrical and Electronics Engineering", 1st Edition, Wiley India, 2011.

2. Mehta.V.K and Rohit Mehta, "Principles of Electrical Engineering and Electronics", S.Chand & Co. Limited, New Delhi, 2006.

COUF On co	RSE OUTCOMES: ompletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the basic concept of electrical systems and solve simple DC and AC circuits	Applying (K3)
CO2	interpret the construction and operation of DC motors and transformers	Understanding (K2)
CO3	discuss the operation, types and characteristics of AC motors and its selection factors for industries.	Understanding (K2)
CO4	explain the construction and operation of basic electronic devices and circuits	Understanding (K2)
CO5	describe the basic concepts and operation of adder, subtractors, flip flops and operational amplifiers.	Understanding (K2)

					Марр	ing of C	Os with	n POs ai	nd PSO	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	2	1	1									2	3
CO2	3	1											1	2
CO3	3	1											1	2
CO4	3	1											1	2
CO5	3	1											1	2
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy						

		ASSESSMEN	FPATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50	20				100
CAT2	40	60					100
CAT3	40	60					100
ESE	30	50	20				100

20PHL21 - PHYSICAL SCIENCES LABORATORY II

Programme & Branch	BE - Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	BS	0	0	2	1

1	Preamble	This course aims to impart hands on training in the determination of physical parameters such as specific resistance,
		t and gap, thermal conductivity, thickness of a thin film and particle size and to develop the skills in handling different
		tasic instruments. Also, this course aims to impart the significance of Cl ⁻ , Cr ⁶⁺ , DO, Cu ²⁺ and Polymeric material in
		rnechanical systems and thereby, to improve the analytical capability.

List of Exercises / Experiments:

1.	Determination of the specific resistance of a conductor using Carey Foster's Bridge.
2.	Determination of the band gap of a semiconductor using post office box.
3.	Determination of the thermal conductivity of a dielectric material using Lee's disc arrangement.
4.	Determination of the thickness of a nano crystalline thin film using Air-wedge arrangement.
5.	Determination of the particle size of given powder using a Laser.
6.	Estimation of chloride ion in the given water sample using Argentometric method.
7.	Estimation of chromium (Cr ⁶⁺) in wastewater sample.
8.	Determination of dissolved oxygen in the given wastewater sample.
9.	Estimation of molecular weight of the polymer using viscometer.
10.	Estimation of copper in the given solution by lodometric method.

REFERENCES:

1. Tamilarasan K. and Prabu K., "Physics Laboratory Manual", 1st Edition, SCM Publishers, Erode, 2020.

2. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Kalaikathir Publishers, Coimbatore, 2020.

COUF On co	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	determine the specific resistance of conducting materials and the band gap of semiconducting materials using the concept of electrical conductivity and determine the thermal conductivity of dielectrics using the concept of heat conduction through materials.	Applying (K3), Precision (S3)
CO2	determine the thickness of nano-crystalline thin films using the concept of interference of light, and to determine the particle size of powder material using the concept of diffraction of light. Demonstrate the viscometer to estimate the molecular weight of the polymer and to determine the amount of chloride and copper in the given solution.	Applying (K3), Precision (S3)
CO3	estimate the amount of chromium and DO in the given wastewater.	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1			3											
CO2			3											
CO3			3											
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

Total: 30

20MEL21 - ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2	ES	0	0	2	1
Preamble							

List of Exercises / Experiments:

1.	Resistor color coding and verification of Ohm's Law and Kirchhoff's Laws
2.	Computation of Current in a Loop using Mesh analysis
3.	Speed control of DC shunt motor
4.	Load test on single phase transformer
5.	Load test on three phase induction motor
6.	Speed control of Three phase induction motor using PWM inverter
7.	Characteristics of BJT
8.	Implementation of Half wave and Full wave Rectifier with simple Capacitor Filter
9.	Verification of logic gates
10.	Op-amp based Inverting and Non-Inverting amplifiers

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	select and apply various laws for the specific electric circuits	Applying (K3), Manipulation (S2)
CO2	perform suitable tests and analyze the performance of rotating machines and transformers	Analyzing (K4), Manipulation (S2)
CO3	interpret the operation and characteristics of electronic devices (BJT, OP-AMP, rectifier and gates)	Analyzing (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									2	3
CO2	2	3	2	2	1								3	2
CO3	3	2	1	1									2	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Total:30

20MAT31 - PROBABILITY AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to AUTO, CIVIL, MECH, MTS, CHEM & FT branches)

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisite	S	Nil	3	BS	3	1	0	4	
Preamble	To prov knowled	ide the skills for solving the real time engineering problem ge in applying probability concepts in their respective fields a	is involv ind expr	ving partial differences functions in	erential n terms	equation of Fouri	ons and er serie	l impart s.	
Unit - I	Randon	n Variables:						9+3	
Introduction to Probability – Definition of random variable – Discrete and Continuous random variables – Probability Mass and Probability density functions – Mathematical expectation and Variance – Moments – Moment generating functions.									
Unit - II	Standar	d Probability Distributions:						9+3	
Discrete Dis Uniformdistr	tributions ibution –	s: Binomial distribution – Poisson distribution – Geometr - Exponential distribution – Normal distribution.	ric distr	ibution – Con	tinuous	Distrib	utions:		
Unit - III	Fourier	Series:						9+3	
Dirichlet's co rangeCosine	onditions e series -	 General Fourier series – Change of interval – Odd and Harmonic analysis. 	even fu	unctions – Half	range	Sine se	eries –	Half	
Unit - IV	Partial I	Differential Equations:						9+3	
Formation of —Solution of	partial d homoge	ifferential equations by elimination of arbitrary constants an neous linear partial differential equations of higher order wi	id arbitr ith cons	ary functions - tant coefficient	- Lagra ts.	nge's li	near eo	luation	
Unit - V	Applica	tions of Partial Differential Equations:						9+3	
Classification of second order quasi linear partial differential equations — Solutions of one dimensional wave equation — Onedimensional heat equation — Steady state solution of two dimensional heat equation (excluding insulated edges).									

Lecture: 45, Tutorial: 15, Total: 60

TEXT BOOK:

Ravish R Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.
 REFERENCES:
 I. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Edition, John Wiley & Sons, Limited, 2019.

2. Veerarajan T., "Transforms and Partial Differential Equations", 3rd Reprint, Tata Mc Graw Hill Education Pvt. Ltd., New Delhi, 2013.

3. Jay L. Devore., "Probability and Statistics for Engineering and the Sciences", 9th Edition, Cengage Learning, USA, 2016.

COUF On co	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	interpret the concept of random variables.	Applying (K3)				
CO2	implement the exact distribution for solving engineering problems.	Applying (K3)				
CO3	express the given function or data in terms of Fourier series.	Applying (K3)				
CO4	formulate and solve higher order partial differential equations	Applying (K3)				
CO5	apply Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.	Applying (K3)				

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1											
CO2	3	3	2											
CO3	3	2												
CO4	3	3	1											
CO5	3	3	2											
1 – Slight 2 –	– Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating Total % Category* (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % CAT1 10 10 80 --100 -CAT2 10 10 80 100 ---CAT3 10 10 80 100 ---ESE 10 20 70 100 ---

20CSC31 - PROGRAMMING IN C (Common to all BE/BTech Engineering & Technology branches except CSE, IT)

Programme & Branch	All BE/BTech Engineering & Technology branches except CSE, IT	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2/3	ES	3	0	2	4

Preamble	The course is designed for use by freshmen students taking their first course in programming. It deals with the techniques needed to practice computational thinking, the art of using computers to solve problems and the ways the computers can be used to solve problems. This course also focuses on developing programming skills using C language.
Unit - I	Introduction to Computer and Problem Solving: 9
Overview technique	of computers : Types, Generations, Characteristics, Basic computer Organization – Problem solving s:Algorithms - Flowcharts – Pseudo codes – Structuring the logic: Sequential, selection and repetitive structure
Unit - II	Introduction to C and Control Statements: 9
The struct Basicdata	ure of a C program – Compiling and executing C program – C Tokens – Character set in C – Keywords – identifiers- Types – Variables – constants – Input/Output statements – operators - decision making and looping statements
Unit - III	Arrays and Functions: 9
Declaring, Introductions: basic data	initializing and accessing arrays – operations on arrays – Two dimensional arrays and their operations. Functions on- Using functions, function declaration and definition – function call – return statement – passing parameters to types and arrays – storage classes – recursive functions
Unit - IV	Strings and Pointers: 9
Strings :Ir characterr arithmetic arguments Unit - V	troduction — operations on strings : finding length, concatenation, comparing and copying — string and nanipulation functions, Arrays of strings. Pointers : declaring pointer variables — pointer expression and passing to function using pointers -pointers and 1D arrays –arrays vs pointers , pointers and strings, User-defined Data Types and File Handling:
User-defir enumerate filepositior	ed data types: Structure: Introduction — nested structures– arrays of structure — structure and functions -unions — ed data type. File Handling : Introduction - opening and closing files — reading and writing data to files -Manipulating indicator : fseek(), ftell() and rewind()

List of Exercises:

1.	Writing algorithms and drawing flowcharts using Raptor Tool for problems involving sequential, Selection and repetition structures
2.	Programs for demonstrating the use of different types of operators like arithmetic, logical, relational and ternary operators
3.	Programs using decision making and repetitive statements
4.	Programs for demonstrating one-dimensional and two-dimensional numeric array
5.	Programs to demonstrate modular programming concepts using functions and strings (Using built-in and user-defined functions)
6.	Programs to illustrate the use of structures and pointers
7.	Programs to implement file operations

TEXT BOOK:

Lecture:45, Practical : 30, Total:75

-		
	1.	Reema Thareja, "Programming in C ", 2 nd Edition, Oxford University Press, New Delhi, 2018.
F	REFE	RENCES:
	1.	Yashavant Kanetkar, "Let us C", 16 th Edition, BPB Publications, 2018.
	2.	Sumitabha Das, "Computer Fundamentals and C Programming", 1 st Edition, McGraw Hill, 2018.
ľ	3.	Balagurusamy E., "Programming in ANSI C", 7 th Edition, McGraw Hill Education, 2017.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	outline the basics of computers and apply problem solving techniques to express the solutionfor the given problem	Applying (K3)
CO2:	identify the appropriate looping and control statements in C and develop applications usingthese statements	Applying (K3)
CO3:	develop simple C programs using the concepts of arrays and modular programming	Applying (K3)
CO4:	apply the concepts of pointers and develop C programs using strings and pointers	Applying (K3)
CO5:	make use of user defined data types and file concept to solve given problems	Applying (K3)
CO6:	demonstrate the execution of flowcharts for the given problem using Raptor	Applying (K3), Precision (S3)
CO7:	demonstrate the application of sequential, selective and repetitive control structures	Applying (K3), Precision (S3)
CO8:	develop solutions to the given problem using derived /user defined data types and functionsand also using file concepts	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1											
CO2	3	2	2											
CO3	3	2	2											
CO4	3	2	2											
CO5	3	2	2											
CO6	3	2	2	2	1					1				
C07	3	2	2	2	1					1				
CO8	3	2	2	2	1					1				
1 – Sligh	t, 2 – Mo	derate, 3	– Substa	antial, B	T- Bloom	ı's Taxo	nomy			·				

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) % (K5) %		Creating (K6) %	Total %						
CAT1	20	30	50				100						
CAT2	10	30	60				100						
CAT3	10	30	60				100						
ESE	20	30	50				100						

		20CSC33- FUNDAMENTALS OF D/	ATA STRU	ICTURES								
	(Cor	nmon to Automobile, Civil, Mechanical, Chemi	ical, Food	Technolog	y Branc	hes)						
Program	ime & Branch	Automobile, Civil, Mechanical, Chemical, Food Technology	Sem.	Categ ory	L	т	Р	Credit				
Prerequi	isites	Programming in C	3	PC	3	0	2	4				
Preamble	eample I his course is indented to introduce the concept of elementary data structures and notion algorithms to novice learner from cross disciplines in Engineering and Technology.											
Unit – I	-I List:											
Data Stru Deletion	- Copying Singly	Linked List - Doubly Linked List- Insertion -De	ementation	n - Linked	List- Sin	igiy Linke	ed List- I	Insertion -				
Unit – II		Stack and Queues:						9				
Stack AD Expression	OT – Array and L on Evaluation - Q	inked List implementation of Stacks - Applica ueue ADT – Array and Linked List implementa	ation: Bala ation of Qu	ncing Pare eues - App	enthesis plications	– Infix t s	o Postfix	 Postfix 				
Unit – III	roliminarioa Din	Trees:	oh Troo Al		(Soorok	Troop	Oporati	9				
– FindMii	n – FindMax – Ins	sertion – Deletion- Expression Tree	ch free Al	JI – binar	y Search	i frees-	Operation	ons . Fina				
Unit – IV	,	Graphs:						9				
Graphs - Shortest	- Definitions – Gr Paths – Dijkstra's	aph Traversals: Breadth First Search – Deptl Algorithm – Minimum Spanning Tree – Prim's	h First Sea s Algorithn	arch - Sho n- Kruskal's	rtest-Pat s Algorit	th Algori hm	thms: Ur	nweighted				
Unit – V		Sorting and Hashing						9				
Sorting -	Preliminaries -	Insertion Sort – Quicksort – Merge sort – F	lashing –	General l	dea – H	lash Fur	nction -	Separate				
Chaining	– Open Address	ing	-									
LIST OF	EXPERIMENTS	/ EXERCISES:										
1.	Implementation	of C programs using pointers										
2.	Implementation	of singly linked list and its operations										
3.	Implementation	of doubly linked list and its operations										
4.	Implementation	of Stack and its operations										
5.	Implementation	of Queue and its operations										
6.	Implementation	of Stack and Queue using Singly Linked List										
7.	Evaluate the Po	ost-fix Expression using Stack ADT										
8.	Implementation	of Binary Search Tree traversals										
9.	Implementation	of Insertion sort and Quick sort										
10.	Implementation	of hash function										
				L	ecture:	45, Prac	tical:30	, Total:75				
TEXT BO	DOK:											
1.	Weiss M. A., "D	bata Structures and Algorithm Analysis in C", 2	nd Edition	, Pearson	Educatio	on Asia, I	New Del	hi, 2016.				
REFERE	NCES/ MANUAL	/ SOFTWARE:										
1.	Horowitz Sahni Hyderabad, 201	, Andreson Freed, "Fundamentals of Data Stru 11.	uctures in (C", 2nd Ed	ition, Un	iversities	Press,					

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

2.	Langsam Y.M., Augenstein J. and Tenenbaum A. M., "Data Structures using C an Education, 2015.	nd C++", 2nd Edition, Pearson
COURSI On com	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply List ADT for solving the given problems	Applying (K3) Precision (S3)
CO2	make use of arrays and linked lists to create Stack and Queue ADTs.	Applying (K3) Precision (S3)
CO3	utilize Tree ADT to develop simple application	Applying (K3) Precision (S3)
CO4	make use of Graph ADT for standard problems	Applying (K3) Precision (S3)
CO5	illustrate the use of standard sorting and Hashing Techniques	Applying (K3) Precision (S3)

	Mapping of COs with POs and PSOs													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	CO5 3 2 1 1													
1 – Slig	ht, 2 – M	loderate,	3 – Subs	stantial, B	T- Bloom	ı's Taxor	iomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Evalua ting (K5) %	Creating (K6) %	Total %											
CAT1	10	60	30				100							
CAT2	5	35	60				100							
ESE 5 35 60 100														
* ±3% may be var	ied (CAT 1 & 2 – 60 ma	rks & ESE – 100 ma	arks)		. <u> </u>									

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

20MEC31 - FLUID MECHANICS AND HYDRAULIC MACHINES

Programme Branch	&	B.E. Mechanical Engineering Sem. Category L T P											
Prerequisite	S	Applied Physics	3	ES	3	0	2	4					
Preamble	This cou	urse provides an introduction to the properties and behavi es dimensional analysis and performance analysis of hydrau	or of flu lic mach	uids under stat nines.	ic and	dynami	c cond	itions. I					
Unit - I	Fluid Properties and Statics: 9												
Fluid Properties: Definition of Fluid - Classifications – Properties – Mass Density - Specific Weight - Specific Gravity – Viscosity – Compressibility - Vapour Pressure - Surface Tension – Capillarity. Fluid Statics: Pascal's Law – Pressure Variation in a Fluid at Rest – Absolute Pressure – Gauge Pressure – Atmospheric Pressure - Vacuum Pressures – Simple Manometer - Differential Manometer –Hydrostatic Forces – Buoyancy – Floatation – Metacenter.													
Unit - II	Fluid Ki	nematics and Dynamics:											
Fluid Kinema Velocity and -Euler's Equa	tics: Cont Accelera ation of M	trol Volume -Types of Fluid Flows – Continuity Equation in Ty tion of Fluid Particle – Velocity Potential Function and Strea lotion along a Streamline – Bernoulli's Equation and Applica	wo and am Fund ations –	Three Dimension ction. Fluid Dy Venturimeter -	ons (Ca namics - Orifice	rtesian (: Mome emeter -	Co-ordi ntum – Pitot t	inates) - · Energy ube.					
Unit - III	Flow th	rough Pipes and Dimensionless Number:											
Flow through (Darcy-Weis Dimensionles) Pipes: bach and ssNumbe	Flow of Viscous Fluid through Circular Pipe — Loss of E d Chezy's formula) — Minor Energy losses — Pipes in ser er: Dimensional analysis, Dimensionless number.	Energy ies - Pi	in Pipes – Lo pes in parallel	ss of E –Boun	inergy dary La	due to ayer Co	Friction oncepts					
Unit - IV	Impact	of Jet and Hydraulic Turbines:											
Impact of Jet: done - Force Exerte Hydraulic Tur -Velocity Tri	Impact of Jet: Impact of Jets – Work done and Force Exerted by a Liquid on Stationary and Moving Flat Vanes – Efficiency - Work done - Force Exerted by a Liquid on Unsymmetrical Moving Curved Vane – Velocity Triangles. Hydraulic Turbines: Classifications – Design - Work done and efficiencies of Pelton Wheel Turbine - Francis turbine - Kaplan turbine												
Unit - V	Hydraul	ic Pumps:											
Definitions of andDouble A	Heads - cting Re	Efficiencies and Work done of a Centrifugal pump – Velocit ciprocating pump – Basic principles of indicator diagram –	ty Trian Cavitat	gles – Working ion – Specific S	princip Speed o	les of S of Pump	ingle a s.	cting					

List of Exercises / Experiments :

5. E	Evaluate the Performance Characteristics of Centrifugal Pump / Reciprocating Pump.	
	enomance rest on reiton rubine / riancis rubine (constant nead method).	
4. F	Parformance Test on Polton Turbing / Francis Turbing (constant head method)	
3. lo	dentify Major / Minor Loss of Energy in Flow through Pipes.	
2. C	Determination of Co-efficient of Discharge using Venturimeter / Orificemeter.	
1. V	/erification of Bernoulli's Law using Bernoulli's apparatus.	

TEXT BOOK:

1. Sukumar Pati. "Fluid Mechanics and Hydraulic Machines". 9th Edition, Mc Graw Hill Education, Chennai, 2017. **REFERENCES:**

1. Hibbeler R.C., "Fluid Mechanics in SI units", 1st Edition, Pearson India Education Services Pvt. Ltd., Noida, 2017.

2. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", 10th Edition, Laxmi Publications, New Delhi, 2018.

3. Laboratory Manual.

COUF	RSE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	outline the fluid flow properties and study the pressure measurement	Understanding (K2)
CO2	solve the problems related to kinematics and dynamics of fluid flow.	Applying (K3)
CO3	calculate the energy losses in flow through pipes.	Applying (K3)
CO4	interpret the work done and efficiencies of various hydraulic turbines.	Applying (K3)
CO5	determine the work done and efficiencies by the various hydraulic pumps.	Applying (K3)
CO6	perform experiments on flow measuring devices	Applying (K3), Manipulation (S2)
C07	identify the loss of head in open and closed flows system	Applying (K3), Manipulation (S2)
CO8	determine and plot the performance characteristics of hydraulic turbines and hydraulic pumps	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1										3		3
CO2	2	2										2		3
CO3	3	3										3		3
CO4	3	3								1		3		3
CO5	3	3								1		3		3
CO6	3	2	2	3	2				3	2		1	2	3
CO7	3	2	2	3	2				3	2		1	2	3
CO8	3	2	2	3	2				3	2		1	2	3
1 – Slight, 2 –	Modera	ate. 3 – 8	Substan	tial. BT-	Bloom	s Taxor	omv							

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	15	35	50				100						
CAT2	15	35	50				100						
CAT3	15	35	50				100						
ESE	10	30	60				100						

20MEC32 - ENGINEERING MATERIALS AND METALLURGY

Programme Branch	&	B.E. Mechanical Engineering	Sem.	Category	L	T P Crossing 0 2 2									
Prerequisite	s	Applied Physics	3/4	PC	3	0	2	4							
		*			0										
Preamble	This co metals, heat trea	urse deals with the physics, structure-property relationship a alloys, polymers, ceramics, bio-materials, composite materia atment process and their influence on the physico-mechanica	and allie Ils and r al prope	d applications nano materials. rties of metals.	of ferro It also	us meta describ	ils, non es the d	-ferrous lifferent							
Unit - I	Ferrou	s Metals:						9							
Classification AlloyFormati Peritectic an Peritectoid Re andApplicatio	n of Engi on - Sub d eactions ons - Fer	neering Materials – Comparison between Metals and Non- ostitutional and Interstitial – Phase Diagrams - Lever Rul - Iron – Iron Carbide Equilibrium Diagram - Classification of rite and Austenite Stabilizers.	-Metals le – Iso Steel a	-Alloys – Solic morphous - E nd Cast Iron –	l Solutic utectic Microsti	ons – P – Eute ructure	rinciple ctoid - - Prope	s of rties							
Unit - II	Ferrou	s and Non-Ferrous Alloys:						9							
Effect of Alloying Elements – Manganese – Silicon – Chromium – Molybdenum – Vanadium - Titanium and Tungsten on TechnicalProperties of Steel - Stainless and Tool Steels – High Strength Low Alloy (HSLA) - Maraging Steels - Aluminium and Alloys – Precipitation Strengthening Treatment - Copper and its Alloys - Magnesium and its Alloys.															
Unit - III	Heat Tr	reatment:						9							
Definition – P Spheroidizing Curves Supe Martempering and Induction	Definition – Purpose of Heat Treatments – Nucleation, grain growth and kinetics - Full Annealing - Stress Relief - Recrystallization Spheroidizing — Normalizing - Quenching - Hardening and Tempering of Steel - Isothermal Transformation Diagrams — Coo Curves Superimposed on Time Temperature Transformation (TTT) Diagram - Critical Cooling Rate (CCR) Austemperin Martempering - Hardenability - Jominy End Quench Test. Case Hardening- Carburizing - Nitriding - Cyaniding - Carbonitriding – Fla and Induction Hardening.														
Unit - IV	Polyme	ers and Ceramics:						9							
Polymers – Properties an methaacrylate imide (PAI) - (PTFE) - Ure and Phenol F Nitride (Si3Na	Types- nd Applic e (PMMA Polyphe a Formalde 4) - Partia	Thermoset and Thermoplastics – Glass Transition and cations of Polyethylene (PE) - Polypropylene (PP) - Polysty .) - Polyethylene terephthalate (PET) - Polycarbonate (PO enylene oxide (PPO) - Polyphenylene sulfide (PPS) - Polye hydes. Engineering Ceramics –Properties and applications ally Stabilized Zirconia (PSZ) and Sialon.	Melting /rene (F C) - Pol ther eth of Alum	Temperature PS) - Polyvinyl yamide (PA) - ler ketone (PE hina (Al2O3) -	of Pol chlorid Polyim EK) - P Silicon	ymers e (PVC) hide (PI oly tetra Carbide	– Struc) - Poly) - Poly a fluro c (SiC)	ctures - methyl vamide- ethylene Silicon							
Unit - V	Stress-	Strain Relationship of Materials and Introduction to New	Materia	als:				9							
Comparative Performance Particulate R Implantable M Materials - Hy	Stress- Plastics einforce /aterials /brid nan	Strain Diagram of Cast iron - Steel - Aluminium - Copper - and Rubber – Hyperelastic - Elastoplastic – Viscoelastic – Ar d Matrices - Biomaterials - General Overview of Compone - Temporary and Permanent Implants - Bio-degradable Mat omaterials.	Brass - hisotropi ents in tl erials -	Al2O3 - Glass ic materials - C he Human Boo Nanomaterials	s - Com omposit ly used - Overv	modity te Mater to Con riew of I	Plastic rials - F struct ⁻ Nanostr	s - High ber and lissue - uctured							
List of Exerc	ises / Ex	periments :													
1. Microstru	ctural An	alysis of Low Carbon and Eutectoid Steel.													
2. Microstru	ctural An	alysis of Grey Cast Iron and Spheroidal Cast Iron.													
3. Microstru	ctural An	alysis of Pure Copper, Aluminum and Magnesium.													
4. Microstru	ctural An	alysis of Pure Copper, Aluminum and Magnesium based Allo	ys.												
5. Microstru	ctural An	alysis of Metal Matrix Composites.													
6. Microscor	oic Fract	ure Surface Analysis of Non-ferrous and Non-metals.													
TEXT BOOK	S:			Lectur	e: 45, P	ractica	l: 30, T	otal: 75							

1. Balasubramaniam R. "Callister's Materials Science and Engineering". 2nd Edition, Wiley India Pvt. Ltd., 2017 for Units I,II,III,IV.

 Sina Ebnesajjad. "Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications", 1st Edition, Elsevier, Amsterdam, Netherlands, 2012 for Unit V.

REFERENCES:

1. Sidney H. Avner. "Introduction to Physical Metallurgy". 2nd Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2017.

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

2. Premamoy Ghosh., "Polymer Science and Technology: Plastics, Rubbers, Blends and Composites". 3rd Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	infer the microstructure - composition and properties of ferrous metals	Understanding (K2)
CO2	interpret the effect of alloying elements on the technical properties of ferrous and non-ferrous metals	Understanding (K2)
CO3	apply the principles of heat-treatment processes	Applying (K3)
CO4	demonstrate the structure-property relationship and allied applications of polymers and ceramics	Applying (K3)
CO5	draw the stress-strain relationship for several classes of materials and interpret the development of new materials	Applying (K3)
CO6	perform microstructural analysis of ferrous and non-ferrous metals.	Analyzing (K4), Precision (S3)
C07	perform microstructural analysis of composite materials	Precision (S3), Analyzing (K4)
CO8	analyse the fracture surface of ferrous and nonferrous metals	Precision (S3), Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1												3
CO2		3		1										3
CO3	1	2		3										3
CO4	3			3										3
CO5	2						2					1		3
CO6	3	2		2	2				2	2			3	3
CO7	3	2		2	2				2	2			3	3
CO8	3	2		2	2				2	2			3	3
1 - Slight, 2 -	- Slight 2 - Moderate 3 - Substantial BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	40	60					100						
CAT2	10	50	40				100						
CAT3	10	50	40				100						
ESE	10	40	50				100						

20MET31 - ENGINEERING THERMODYNAMICS

(Use of Steam Tables and Psychrometric Chart are permitted for the End Semester Examination)

Programme Branch	&	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit				
Prereguisite	S	Nil	3	PC	3	0	0	3				
	-	<u></u>				-		-				
Preamble	This cou In additi	urse aims to transfer the fundamental knowledge on thermod on, this course covers the properties of steam, gases and atr	ynamic nospher	laws and their ic air.	relevan	t practic	al appli	cations.				
Unit - I	Basic (Concepts and First Law of Thermodynamics:						9				
Basic Conce — Open Sys Energy — Enthalpy Thermodyname Equipment	pts: Micr tem - Iso — Worl mics: Lav	roscopic and Macroscopic Approaches - Concept of Contir olated System - Property - State – Path - Process - Quasi- k - Modes of Work - Zeroth Law of Thermodynamics - w - Application to Closed and Open Systems - Steady Flow	nuum - -Static F Concer Energy	Thermodynam Process - Spec ot of Tempera Equation (SFE	ic Syst cific Hea ture au E) with	em — (at Capa nd Hea Refere	Closed cities - t. First nce to	System Internal Law of Thermal				
Equipment.	Second	Low of Thormodynamics						0				
	Second						•	9				
Kelvin–Planc COP – Refrig Concept of E	k Statem gerator - ntropy - I	ent - Clausius Statement - Efficiency - Carnot Cycle - Carnot Heat pump - Reversibility – Irreversibility - Thermodynamic 1 Entropy of Ideal Gas - Principle of Increase of Entropy - Abso	t's Theol Fempera lute Ent	rem - Heat Eng ature Scale - In ropy - Basic Co	jine - R equality oncepts	eversed / of Clau of Avail	Carno usius. E ability.	t Cycle - Intropy -				
Unit - III	I Properties of Pure Substances: 9											
Properties of Phase Rule - Properties of Processes.	Pure Su p-v Diag Steam	bstances -Thermodynamic Properties of Pure Substances in gram - p-T Diagram - T-s Diagram - h-s Diagram - pvT Surfa - Use of Steam Tables and Mollier Chart - Calculations of	Solid Ph aces. St Work [nase - Liquid P eam - Formati Done - Heat T	hase - V on of St ransfer	√apour ∣ team - 1 in Non-	ohase - Thermo Flow a	 Gibbs dynamic nd Flow 				
Unit - IV	Ideal a	nd Real Gases:						9				
Concept of I Compressibil Differentials Kelvin Coeffic	deal and ity - Co - TdS Ec cient.	I Real Gases and its Properties - Equation of State - Ave mpressibility Chart - Dalton's Law of Partial Pressure - juations - Difference and ratio of Heat Capacities - Maxwell	ogadro's Gas M 's Equa	Law - Van d ixtures. Therm tions - Clausiu	er Waa Iodynar s-Clape	ils Equa nic Rela eyron Ec	ation of ations quation	State - - Exact - Joule-				
Unit - V	Psychro	ometry:						9				
Definition - P Processes - S	Properties Sensible	of Atmospheric Air - Calculations of Properties of Air - Vap Heat Exchange Processes - Latent Heat Exchange Processe	oour Mix es - Adia	tures - Psychr batic Mixing - I	ometric Evapora	Chart - ative Co	Psych oling.	rometric				
TEXT BOOK	:						Т	otal: 45				
1. Nag P.K	"Engin	eering Thermodynamics". 6 th Edition, McGraw Hill Education	Pvt. Ltd	., Chennai, 20 ⁷	17.							
REFERENCE	ES:											
1. Claus Bo	orgnakke	, Richard E. Sonntag. "Fundamentals of Thermodynamics". 8	th Editio	n, Wiley, U.S.,	2020.							
2. Yunus A	. Cengel	and Michael A. Boles. "Thermodynamics: An Engineering Ap	proach"	. 9 th Edition, M	cGraw H	Hill Educ	cation F	vt. Ltd.,				

New Delhi, 2019.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	recognize the basic concepts of thermodynamic processes and first law of thermodynamics	Applying (K3)
CO2	solve the problems by applying the second law of thermodynamics	Applying (K3)
CO3	analyze the thermodynamic properties of pure substances using steam table	Analyzing (K4)
CO4	distinguish the behavior of real & ideal gases and derive the thermodynamic relations	Applying (K3)
CO5	apply the psychrometric concepts in various processes	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2										2		3
CO2	3	3										2		3
CO3	3	3	3				1			3		2		3
CO4	3	3	1									2		3
CO5	CO5 3 2 3 1 3 2 3													
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	10	30	60				100						
CAT2	10	30	40	20			100						
CAT3	10	40	50				100						
ESE	10	30	50	10			100						

20MET32 - MATERIAL REMOVAL PROCESSES

Programme Branch	&	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisite	s	Engineering Practices Laboratory, Manufacturing Technology	3	PC	3	0	0	3			
Preamble	This cou working	urse depicts metal cutting principles, machine tools and its principle of various unconventional machining processes.	parts,	components m	aterials	. It also	descr	ibes the			
Unit - I	Theory	of Metal Cutting:						9			
Elements Of Cutting Process - Classification of Cutting Tools – Tool Materials – Nomenclature of Single Point Cutting Tool - Milling Tool - Drilling Tool. Mechanics of Metal Cutting: Chip Formation and its Types - Chip Breakers - Merchant Circle Diagram - Cutting For Calculation – Cutting Fluids – Tool Wear – Tool Life –Taylor's Tool Life Equation - Economics of Metal Machining – Machinability.											
Unit - II	Machin	ing with Single Point Tool:						9			
Lathe Construction - Specification – Types of Lathe - Centre Lathe - Turret - Capstan Lathe – Lathe Accessories & Attachments: ToolHolders - Work Holders - Special Attachments. Lathe Operations: Thread Cutting - Methods of Taper Turning – Machining Time -											
Unit - III	Machin	ing with Multi Edged Tools:						9			
Grinding Mac Selectionof G	rypes of chines: S Grinding Tool Er	Willing Cutters. Broaching Machines: Types - Broach Const pecification of Grinding Wheel - Working Principle - Cylindric Wheel — Finishing Operations.	al Grin	- Types of Ope ding – Dressing	erations g – Trui	- вroa ng- Loa	cning N ading -	vietnods.			
Classification Milling Fixtur andFixtures.	of Jigs a es - Turr	and Fixtures - Locating and Clamping Principles - Locating ning Fixtures – Vice Fixtures – Boring Fixtures - Grinding F	and Cla Fixtures	amping Devices - Broaching F	s - Jig I ïxtures	Bushes - Mater	- Drillir rials fo	ng Jigs - r Jigs			
Unit - V	Uncon	ventional Machining Processes:						9			
Need for Unconventional Machining Process - Classification Based on Nature of Energy – Introduction – Equipment – Materials – Applications - Advantages & Limitations - Effect of Process Parameters of Abrasive Jet Machining (AJM) - Abrasive Water Jet Machining (AWJM) - Ultrasonic Machining (USM) - Electro Chemical Machining (ECM) - Chemical Milling - Electric Discharge Machining (EDM) - Plasma Arc Machining (PAM) – Laser Beam Machining (LBM)											
TEXT BOOK	:						٦	fotal: 45			
1. Kaushish	n J. P., "N	anufacturing Processes", 2 nd Edition, PHI Learning Pvt. Ltd.	, Delhi,	2014.							
REFERENCE	ES:										
1. Paul Dec New Dell	 Paul DeGarmo E., Black J.T. and Ronald A. Kohser. "Materials and Processes in Manufacturing". 11th Edition, John Wiley & Sons New Delhi, 2011. 										

2. Rao P. N., "Manufacturing Technology", Volume - 2, 4th Edition, Tata McGraw Hill, New Delhi, 2018.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the basic concepts of metal cutting and perform cutting force and tool life calculations.	Applying (K3)
CO2	demonstrate the single point cutting tool operations using various lathe machine and calculate machining time.	Applying (K3)
CO3	depict the fundamental concepts of machining with multipoint tools.	Understanding (K2)
CO4	choose appropriate jigs and fixtures for different machining processes.	Applying (K3)
CO5	demonstrate the fundamental principles of material removal in unconventional machining processes.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1								2		3
CO2	2	1	1									2		3
CO3	2	1	1									2		3
CO4	3	2	1	1								2		3
CO5	2	1	1									2		3
1 Slight 2	Clickt 2 Mederate 2 Substantial PT Plaam's Taynamu													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	50	40				100							
CAT2	10	50	40				100							
CAT3	10	50	40				100							
ESE	15	45	40				100							

20MEL31 - PRODUCTION TECHNOLOGY LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit					
Prerequisites	Manufacturing Technology	3	PC	0	0	2	1					
Preamble	The laboratory course provides hands on training for various manufacturing processes											

List of Exercises / Experiments :

1.	Prepare a Mold by using Solid/Split/Loose-piece Patterns and Mold for Hollow Objects with the help of Co.re
2.	Produce Different Weld by Gas Tungsten Arc Welding (GTAW)/ Gas Metal Arc Welding (GMAW) Operations.
3.	Perform Gas Cutting and Produce Different Weld by Gas Welding and Spot Welding Operations.
4.	Make a Square/Rectangular Rod by Hand Forging Operation.
5.	Demonstrate The Injection Molding Operation By Producing Different Plastic Components.
6.	Carryout Knurling and Taper Turning Operations using Centre Lathe.
7.	Execute External Thread Cutting Operation in Centre Lathe.
8.	Obtain a Dovetail/Keyway Shape Using Shaping Machine.
9.	Perform Grinding Operation on the Flat and Cylindrical Work Pieces using Surface and Cylindrical Grinding Machines.
10.	Make a Spur Gear/Keyway/Contour Shape using Milling Machines.
11.	Prepare a Convex Shape In A Flat Metal Work Piece using Slotting Machine.

REFERENCES/MANUAL/SOFTWARE:

Total: 30

Production Technology Laboratory Manual. 1.

2. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjhar Roy, "Elements of Workshop Technology - Vol. I", 14th Edition, Media Promoters & Publishers Private Limited, Mumbai, 2008.

Hajra Choudhury S.K., Nirjhar Roy, "Elements of Workshop Technology-Volume-2", 15th Edition, Media Promoters & Publishers 3. Pvt Ltd, Mumbai, 2010.

COURSE OUTCOMES:

COUR	SE OUTCOMES:	BT Mapped (Highest Level)
CO1	prepare mold for given component	Applying (K3), Precision (S3)
CO2	select suitable welding and forging process for the given material and perform various operations	Applying (K3), Manipulation (S2)
CO3	produce different profiles on given material using lathe, milling, shaping and grinding	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1		1					2	1		2	2	3
CO2	3	1		1					2	1		2	2	3
CO3	3	1		1					2	1		2	2	3
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEL32 - MACHINE DRAWING LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit				
Prerequisites	Engineering Drawing	3	PC	0	0	2	1				
Preamble	This course imparts the knowledge on National and International Standard of drawing and to communicate the necessary technical information required for manufacture and assembly of machine components.										

List of Exercises / Experiments:

1.	Study of GD&T Systems with BIS Standards.
2.	Study of Keys and Pins used in various Machine Elements.
3.	Draw the Conversion of Isometric View to Orthographic View of Simple Machine Components.
4.	Draw Orthographic views of Square and Hexagonal Bolt and Nut.
5.	Draw the Assembled Sectional views of Gib and Cotter Joint.
6.	Draw the Assembled Sectional views of Knuckle Joints.
7.	Draw the Assembled Sectional views of Flange coupling.
8.	Draw the Assembled Sectional views of Stuffing Box.
9.	Draw the Assembled Sectional views of Simple Eccentric.
10.	Draw the Assembled Sectional views of Machine Vice.

REFERENCES/MANUAL/SOFTWARE:

ng House Put Ltd. Guigrat 2016

Total: 30

Bhatt N. D., Panchal V.M., "Machine Drawing", 50th Edition, Charotar Publishing House Pvt. Ltd., Gujarat, 2016.
 Sidheswar N., Kannaiah P., Sastry V.V., "Machine Drawing", 27th Reprint, Tata-McGraw Hill Education, Chennai, 2004.
 Narayana K. L., Kannaiah P., and Reddy K.Venkata "Machine Drawing", 6th Edition, New Age International Publishers limited, New Delhi, 2019.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the basic concepts and BIS conventions of machine drawing	Applying (K3) Manipulation (S2)
CO2	demonstrate and evaluate the projections, sectioning, limits, fits and tolerance	Applying (K3) Manipulation (S2)
CO3	construct assembled sectional views of mechanical components conforming to BIS conventions	Applying (K3) Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3		3							2		2	3	1
CO2	3		3							2		2	3	1
CO3	3		3							2		2	3	1
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MNT31 - ENVIRONMENTAL SCIENCE

Programme Branch	& All BE/BTech Engineering & Technology branches	Sem.	Category	L	т	Р	Credit
Prereguisite	es Nil	3	MC	2	0	0	0
		-		<u> </u>		-	
Preamble	This course provides an approach to understand the various natura & monitoring methods for sustainable life and also to provide kr students on biological sciences.	l resour nowledg	ces, ecosysten je and to crea	n, bio-d ate awa	liversity areness	, pollutio s for en	on contro gineering
Unit - I	Environmental Studies and Natural Resources:						5
Introduction landresourc	to Environmental Science — uses, over-exploitation and conserva es-case studies	ation of	forest, water,	minera	l, food,	energy	and
Unit - II	Ecosystem and Biodiversity:						5
Ecosystems: Food web only). andConserv	concept and components of an ecosystem -structural and functional Biodiversity: Introduction – Classification – Bio geographical class vation of biodiversity - case studies.	feature: sificatio	s – Functional n of India- Val	attribute	es (Foo iodiver	d chain sity – T	and hreats
Unit - III	Environmental Pollution:						5
Environment acidrain, ozo	al Pollution: Definition — causes, effects and control measures of: (a ne layer depletion (b)Water pollution (c) Soil pollution - Role of an ind	a) Air po lividual i	ollution - Clima	te chan f pollutio	ige, glo on - cas	bal wari se studie	ming, es.
Unit - IV	Environmental Monitoring:						5
Sustainability Introduction and control of pol	/ -three pillars of sustainability- factors affecting environmental sustair to EIA - objectives of EIA - environment protection act – air (prevention llution) act.	nability-a on and	approaches for control of pollu	sustair tion) ac	nable de t – wate	evelopm er (prev	ent - ention
Unit - V	Introduction to Biological Science:						5
Functions of Heredity and Cell cycle an	Carbohydrates, lipids, proteins and nucleic acids - Cells and its organ I DNA - organization of DNA in cells - Genes and chromosomes- Ce d molecules that control cell cycle.	nelles - p ell divisi	plasma membra on -Types of c	ane, mi ell divis	tochono sion- mi	dria and tosis &	nucleus- meiosis -
TEXT BOOK	(S :			Tota	ıl: 25		
1. Anubha Ltd., Ne	a Kaushik, and Kaushik C.P., "Environmental Science and Engineering ew Delhi, 2018.	g", 6th I	Multicolour Edit	ion, Ne	w Age	Internat	onal Pvt.
2. Lodish. Press,	H., Berk A., Zipurursky S.L., Matsudaria P., Baltimore D. and Darn 2000.	ell J., "l	Molecular Cell	Biology	/", 4th I	Edition,	Freeman
REFERENC	ES:						
1. Palanis New De	amy P.N., Manikandan P., Geetha A., Manjula Rani K., Kowshalya alhi, Revised Edition 2019.	V.N., '	Environmental	Sciend	æ", Pea	arson E	ducation,

2. Satyanarayan, U., & Chakrapani, U., "Textbook of Biochemistry", 1999 Ed. June 2017

COURS On com	E OUTCOMES: Deletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the various natural resources and role of individual for its conservation	Understanding (K2)
CO2	elaborate the features of ecosystem and biodiversity to find the need for conservation.	Understanding (K2)
CO3	manipulate the sources, effects and control methods of various environmental pollution.	Applying (K3)
CO4	make use of the knowledge of EIA and environmental legislation laws towards sustainability.	Applying (K3)
CO5	explain the functions of carbohydrates, lipids, proteins, nucleic acids, Cells and its organelles	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	1					3							
CO2	2	1					3							
CO3	3	2	1				3							
CO4	3	2	1				3							
CO5	3	1												
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy							

Ľ Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	40	35				100				
CAT2	25	40	35				100				
CAT3	NA						100				
ESE	NA						100				

*±3% may be varied (CAT 1,2 – 50 marks)

20MAT41 - STATISTICS AND NUMERICAL METHODS

(Common to all Engineering and Technology Branches except ECE, CSE and IT)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	4	BS	3	1	0	4

Preamble	amble To impart knowledge in testing of samples, ANOVA and interpolation. Also develop skills to apply numerical algorithms to identify roots of algebraic and transcendental equations and solve linear and ordinary differential equations.							
Unit - I	Testing of Hypothesis:	9+3						
Introduction difference of testing signi goodness of Test of indep	– Critical region and level of significance – Types of Errors – Large sample tests: Z-test for single proportion two sample proportions – Z-test for single mean and difference of means – Small sample tests: Student's t-test ficance of single mean and difference of means – F-test for comparison of variances – Chi-square test: T fit – endence of attributes.	on and est for est of						
Unit - II	Design of Experiments:	9+3						
Introduction Randomized	 Analysis of variance – One way classification: Completely Randomized Design – Two way classification: IBlock Design — Three way classification: Latin Square Design. 							
Unit - III	Solution to Algebraic and Transcendental Equations:	9+3						
Method of fa	alse position – Newton-Raphson method – Solution of linear system of equations – Direct methods: Gauss nethod and Gauss - Jordan method – Iterative methods: Gauss Jacobi and Gauss-Seidel methods.							
Unit - IV	Interpolation, Numerical Differentiation and Integration:	9+3						
Interpolation unequalinter Numerical Di Numericalint	: Interpolation with equal intervals: Newton's forward and backward difference formulae — Interpolation with vals: Lagrange's interpolation formula — Newton's divided difference formula. fferentiation and Integration: Differentiation using Newton's forward, backward and divided difference formulae – egration: Trapezoidal rule — Simpsons 1/3rd rule.							
Unit - V	Numerical Solution of First order Ordinary Differential Equations:	9+3						
Single step r stepmethod	nethods: Taylor series method – Euler method – Modified Euler method – Fourth order Runge-Kutta method – N s: Milne's predictor corrector method — Adam's Bashforth method.	/lulti						

Total: 60

TEXT BOOK:

1. Veerarajan T, Ramachandran T., "Statistics and Numerical Methods", 1st Edition, Tata McGraw Hill Publishing Company, New Delhi, 2018.

REFERENCES:

1.	Walpole R.E., Myers R.H., Myers S.L. and Ye K., "Probability and Statistics for Engineers and Scientists", 9 th Edition, Pearson Education, Asia, 2012.
2.	Jay L. Devore., "Probability and Statistics for Engineering and the Sciences", 9th Edition, Cengage Learning, USA, 2016.
3.	Steven C. Chapra, Raymond P. Canale., "Numerical Methods for Engineers", 7th Edition, McGraw-Hill Education, 2014.

4. Ravish R.Singh, Mukul Bhatt "Engineering Mathematics", 1st Edition, McGraw Hill Education, New Delhi, 2016.

COUF	BT Mapped				
On co	On completion of the course, the students will be able to				
CO1	apply statistical tests for solving engineering problems involving small and large sample tests.	Applying (K3)			
CO2	handle experimental data with the knowledge of ANOVA.	Applying (K3)			
CO3	apply various numerical techniques to solve algebraic and transcendental equations	Applying (K3)			
CO4	compute intermediate values of given data, numerical derivatives and integral values	Applying (K3)			
CO5	obtain the solution of first ordinary differential equations by numerical methods.	Applying (K3)			

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3										
CO2	3	2	1	3										
CO3	3	3	2											
CO4	3	2												
CO5	3	3	1											
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	20	70				100				
CAT2	10	20	70				100				
CAT3	10	20	70				100				
ESE	10	30	60				100				

20CSC41 – PYTHON PROGRAMMING

(Common to all BE/BTech Engineering & Technology branches except CSE, IT)

Programme Branch	&	All BE/BTech Engineering & Technology branches except CSE, IT	Sem.	Category	L	т	Р	Credit			
Prerequisite	S	NIL	3/4	ES	3	0	2	4			
		·				·					
Preamble	This cou function	irse introduces the core python programming. It emphasizes s, classes, objects and numpy	on dev	eloping python	progra	ms with	all dat	a types,			
Unit - I	Introdu	ction:						9			
Introduction: Problem solving strategies – program design tools – Types of errors – Testing and Debugging- Basics: Literals – variablesand identifiers – data types - input operation – comments – reserved words – indentation – Operators and Expressions – Decision Control Statements:Introduction – conditional statement – iterative statements – Nested Loops – break,continue and pass statements – else in loops.											
Unit - II	Lists,Tu	ts,Tuples and Dictionary: 9									
Lists, Tuples and Dictionary: Lists: Access, update, nested, cloning, operations, methods, comprehensions, looping - Tuple: Create, utility, access, update, delete, operations, assignments, returning multiple values, nested tuples, index and count method - Dictionary: Create, access, add and modify, delete, sort, looping, nested, built-in methods — list vs tuple vs dictionary.											
Unit - III	Strings	and Regular Expressions:						9			
Strings and F string methods and Expressions	Regular E d functio -match	expressions:Strings:Concatenation , append, multiply on strings ns – slice operation – functions – operators – comparing n, search, sub, findall and finditer functions – flag options	ngs – In g – iter s.	nmutable – forr ating – string	natting module	operato e – Reg	r – Buil Jular	t-in			
Unit - IV	Functio	ns and Modules:						9			
Functions and Modules: Functions:Introduction - definition – call – variable scope and lifetime – return statement – function arguments – lambda function – documentation strings – programming practices recursive function- Modules:Modules – packages – standardlibrary methods – function redefinition											
Unit - V	Object (Orientation, NumPy and Matplotlib:						9			
Object Orientation, NumPy and Matpiolib: Object Orientation: Class and Objects:Class and objects – class methods and self – constructor – class and object varia –destructor – public and private data member.NumPy :NumPy Arrays – Computation on NumPy Arrays. Matplotlib : Line plots – Scatter Plots											

List of Exercises / Experiments :

1.	Programs using conditional and looping statements
2.	Implementation of list and tuple operations
3.	Implementation of dictionary operations
4.	Perform various string operations
5.	Use regular expressions for validating inputs
6.	Demonstration of different types of functions and parameter passing
7.	Develop programs using classes and objects
8.	Perform computation on Numpy arrays
9.	Draw different types of plots using Matplotlib

TEXT BOOK:

1. Reema Thareja, "Python Programming using Problem Solving Approach", 3rd Edition, Oxford University Press, 2017.

REFERENCES:

1.	Nageswara Rao, "Core Python Programming", 2 nd Edition, DreamTech Press, New Delhi, 2018.
2.	Jake Vander Plas, "Python Data Science Handbook Essential Tools for Working with Data", 1st Edition, O'Reilly Media, , 2016.

Lecture:45, Practical:30, Total:75

B.E – Mechanical Engineering, Regulation, Curriculum and Syllabus – R2020

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF	RSE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	make use of basic python constructs to write simple programs.	Applying (K3)
CO2	apply list, tuple and dictionary to handle variety of data.	Applying (K3)
CO3	apply strings and regular expression for searching in a string.	Applying (K3)
CO4	solve the problems using functions and modules.	Applying (K3)
CO5	understand the class and object and apply inheritance in programming.	Applying (K3)
CO6	implement the basic data types and control statements.	Applying (K3), Manipulation (S2)
C07	demonstrate functions, regular expressions and object oriented concepts.	Applying (K3), Manipulation (S2)
CO8	perform numpy operations and analyse results using matplotlib	Applying (K3), Manipulation (S2)

					Марр	oing of C	COs witl	n POs a	nd PSO	s				
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
CO6	3	2	1	1										
CO7	3	2	1	1										
CO8	3	2	1	1										
1 – Slight, 2 –	Modera	ate, 3 – 8	Substan	tial, BT-	Bloom	s Taxor	nomy							

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	50				100				
CAT2	20	20	60				100				
CAT3	20	20	60				100				
ESE	25	25	50				100				

20MET41 - STRENGTH OF MATERIALS

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Matrices and Differential Equations, Multivariable Calculus and Complex Analysis, Engineering Mechanics	4	PC	3	1	0	4

Unit - I	Deformation of Solids:	9+3	5
	circular shaft and springs.		
	spherical shells, types of beams, bending stresses and deflection of beams. It also imparts design of columns, torsio	n on	
Preamble	The course provides the various properties of materials, deformable bodies, biaxial state of stress, thin cylinders,		1

Stability- Strength- Stiffness- Tensile- Compressive and Shear stresses - Strain - Poisson's ratio — Lateral Strain - Simple andCompound bars – Relation between Elastic Constants – Thermal Stresses. Strain Energy: Uniaxial Loads - Gradually Applied Load -

Suddenly Applied Load and Impact Load.

Unit - II Analysis of State of Stress:

Biaxial State of Stress – Thin Cylinders and Shells – Deformation in Thin Cylinders and Spherical Shells. Biaxial Stresses: Stresses at aPoint on Inclined Planes – Principal Planes and Stresses – Mohr's Circle for Biaxial Stress- Maximum Shear Stress.

9+3

9+3

9+3

9+3

Lecture: 45 - Tutorial: 15, Total: 60

Unit - III Transverse Loading on Beams:

Types - Transverse Loading in Beams - Shear Force and Bending Moment in Beams — Cantilevers - Simply Supported and Overhanging Beams - Point of Contraflexure. Stresses in Beams: Theory of Simple Bending — Analysis of Stress- Load Carrying Capacity.

Unit - IV Deflection of Beams:

Elastic Curve of Neutral Axis of the Beam Under Normal Loads – Evaluation of Beam Deflection and Slope - Double Integration Method and Macaulay's Method. Columns: End Condition – Equivalent Length of Column – Euler's Equation – Slenderness Ratio – Rankine'sFormula for Columns.

Unit - V Torsion on Circular Shafts and Springs:

Torsion – Shear Stress Distribution – Hollow and Solid Circular Section - Torsional Rigidity – Torsional Stiffness -Torsion on Stepped Shaft. Torsion on Springs: Wahl's Correction Factor of Springs Stresses in Helical Springs Under Torsion Loads - Stiffness and Deflection of Springs Under Axial Load.

TEXT BOOK:

1. Rajput R.K. "Strength of Materials". 7th Edition, S.Chand & Co., New Delhi, 2018.

REFERENCES:

1. Rattan S.S. "Strength of Materials". 3rd Edition, Tata McGraw Hill Education Private Ltd., New Delhi, 2016.

Timoshenko S.P. "Elements of Strength of Materials". 10th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2010.
 Amrita Virtual Lab

COUF	RSE OUTCOMES:	BT Mapped		
On co	in completion of the course, the students will be able to			
CO1	calculate the stress, strain and strain energy of simple bars	Applying (K3)		
CO2	analyze the biaxial state of stresses at a point in a body, thin cylinders and spherical shells	Analyzing (K4)		
CO3	construct the shear force and bending moment diagrams and analyze the bending stresses of beams	Analyzing (K4)		
CO4	estimate the slope and the deflection of beams and strengths of the columns	Analyzing (K4)		
CO5	analyze the torsion behavior of shafts and coil springs	Analyzing (K4)		

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3									1		3
CO2	3	3	3									1		3
CO3	3	3	3									1		3
CO4	3	3	3									1		3
CO5	3	3	3									1		3
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy							

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	20	40	20			100				
CAT2	15	15	35	35			100				
CAT3	15	15	35	35			100				
ESE	15	15	35	35			100				

20MET42 – THERMAL ENGINEERING

(Use of Steam Tables and Refrigeration Tables are permitted for the End Semester Examination)

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics	4	PC	3	0	0	3

 Preamble
 This course provides an extensive knowledge on the working of different thermal utilities such as internal combustion engines, boilers, nozzles, turbines, air compressors and refrigeration & air-conditioning systems along with the performance calculations.

 Unit - I
 Internal Combustion Engines:
 9

Classifications – Internal Combustion Engine Components and their Functions - Two Stroke - Four Stroke - Petrol and Diesel Engine -Valve Timing and Port Timing Diagrams — Injection - Ignition - Lubrication and Cooling Systems - Knocking and Detonation -Performance Calculations - Exhaust Gas Analysis - Pollution Control Norms and Methods - Catalytic Converters - EGR and SCR.

Unit - II Gas Power Cycles and Vapour power cycle:

Gas Power Cycles: Otto Cycle - Diesel Cycle - Dual Cycle - Brayton Cycle - Calculation of Mean Effective Pressure and Air Standard Efficiency - Actual and Theoretical p-V Diagrams. Vapour Power Cycle: Rankine Cycle - Reheat - Regeneration.

Unit - III Steam Boilers, Nozzles and Turbines:

Steam Boilers: Classification - Fire Tube and Water Tube Boilers - Mountings and Accessories - High Pressure Boilers – Types – Benson – Lamont – Loeffler - Supercritical Boilers. Steam Nozzles: Flow of Steam through Nozzles – Shapes of Nozzle – Effect of Friction – Critical Pressure Ratio and Supersaturated Flow. Turbines: Impulse and Reaction Principles – Compounding and its Types - Velocity Diagrams for Single Stage Turbines - Governing of Turbines and its Types.

Unit - IV Air Compressor:

Classifications and Working Principle of Reciprocating Air Compressor – Work of Compression with and without Clearance -VariousEfficiencies of Reciprocating Air Compressors - Multistage Air Compressor with Inter Cooling – Work Done on Multistage Air Compressor - Rotary Compressors – Types - Working Principle (Elementary Treatment Only).

Unit - V Refrigeration and Air-Conditioning:

Refrigeration: Working Principle of Vapour Compression Refrigeration System — Super Heating and Sub Cooling -PerformanceCalculations - Working Principle of Vapour Absorption System – NH₃-H₂O and LiBr-H₂O Systems (Elementary treatment only).

Conditioning: Types - Working Principle of Air-Conditioning Systems - Air Handling Unit (AHU) - Concept of RSHF – GSHF – ESHF -Cooling Load Calculations (Basic Problems in Summer and Winter Air-Conditioning).

TEXT BOOK:

Total: 45

9

9

9

9

Air-

1.	. Rajput R.K. "Thermal Engineering". 10th Edition, Laxmi Publications, New Delhi, 2018.								
RE	REFERENCES:								
1.	Sadhu Singh. "Thermal Engineering". 1 st Edition, Pearson Education, Noida, 2018.								
2.	Mahesh M. Rathore. "Thermal Engineering". 1 st Edition, McGraw Hill Publications, New Delhi, 2010.								
3.	Yunus A. Cengel and Michael A. Boles. "Thermodynamics: An Engineering Approach". 9th Edition, McGraw Hill Education Pvt. Ltd.,								
	New Delhi 2019								

COUF On co	BT Mapped (Highest Level)	
CO1	explain the working principle of an internal combustion engine with its subsystems and also estimate the performance	Applying (K3)
CO2	apply the concept of thermodynamic processes in gas and vapour power cycles by using p-v, T-s and h-s diagrams	Applying (K3)
CO3	determine the performance of boilers, nozzles and turbines	Applying (K3)
CO4	calculate the performance of air compressors	Applying (K3)
CO5	apply the concepts of thermodynamics in R&AC systems and perform the cooling load calculations.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 Slight 2	Modera	to 3 5	Substant	ial BT-	Bloom'	Tayon	omv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	40	50				100					
CAT2	10	40	50				100					
CAT3	10	40	50				100					
ESE	10	40	50				100					

20MEL41 - MATERIAL PROPERTY TESTING LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Materials and Metallurgy Strength of Materials	4	PC	0	0	2	1
Preamble	The laboratory course provides the hands on experience ar various materials.	nd deter	mination of ess	sential i	nechar	nical pro	perties of

List of Exercises / Experiments:

1.	Tension Test of Mild Steel and Aluminium Specimens.
2.	Tension Test of Commodity and Industrial Thermoplastic Specimens
3.	Double Shear Test of Mild Steel and Aluminium Specimens.
4.	Torsion Test of Mild Steel Specimen.
5.	Impact Test of Metal Specimen (Izod and Charpy Test).
6.	Impact Test of Commodity and Industrial Thermoplastic Specimens (Izod and Charpy Test).
7.	Deflection Test of Cantilever Beam and Simply Supported Beam (Aluminium, Steel and Wood).
8.	Test on Helical Springs (Open and Closed Coil).
9.	Hardness Test for Ferrous and Non Ferrous Materials.
10.	Flexural Test of Commodity and Industrial Thermoplastic Specimens.

REFERENCES/MANUAL/SOFTWARE:

1. Laboratory Manual.

2. Rajput R.K. "Strength of Materials". 7th Edition, S.Chand & Co., New Delhi, 2018.

COUR	SE OUTCOMES:	BT Mapped
On cor	npletion of the course, the students will be able to	(Highest Level)
CO1	determine the tensile strength of various materials.	Applying (K3), Manipulation (S2)
CO2	evaluate the compressive strength and hardness of various materials.	Applying (K3), Manipulation (S2)
CO3	estimate the torsion and flexural strength of various materials.	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3	3				3	3			3	3
CO2	3	3		3	3				3	3			3	3
CO3	CO3 3													
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy							

20MEL42 - THERMAL ENGINEERING AND RENEWABLE ENERGY LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics	4	PC	0	0	2	1
Preamble	This course provides practical exposure to fuel properties r of internal combustion engines and reciprocating air compl systems.	measure ressor a	ement methods and also testing	, perfo metho	rmance ods of s	e testing olar/wir	i methods nd energy

List of Exercises / Experiments:

	THERMAL ENGINEERING LABORATORY								
1.	Draw a Valve Timing and Port Timing Diagram for Four Stroke and Two Stroke Engines.								
2.	Determination of Flash and Fire Point of given Fuels using Open and Closed Cup Apparatus.								
3.	Determination of Viscosity of given Oils using Redwood and Saybolt Viscometers.								
4.	Performance Test on Single Cylinder Four Stroke Diesel Engines by Mechanical/Hydraulic/Eddy Current/ Electrical Loading.								
5.	Heat Balance Test on Single Cylinder Four Stroke Diesel Engines By Mechanical/Hydraulic/Eddy Current/ Electrical Loading.								
6.	3. Performance Test on Multistage Reciprocating Air Compressor.								
	RENEWABLE ENERGY LABORATORY								
1.	Analyze the Effect of the Variation of Speed, Tip Speed Ratio on the Coefficient of Power of Wind Turbine.								
2.	Determination of the Thermal Energy Gain at the Focal Point of a Concentrating Collector.								
3.	Determination of the Efficiency of Solar (Liquid/Air) Collector.								
4.	Plot the Effect of Variation of Tilt Angle on the PV Module Output.								
5.	Study on Rooftop Solar PV Plant and Weather Monitoring Station.								
6.	Performance Test on Solar Evacuated Tube								

REFERENCES/MANUAL/SOFTWARE:

ŀ	1.	Laboratory Manuals.

- 2. Rajput R.K. "Thermal Engineering". 10th Edition, Laxmi Publications, New Delhi, 2018.
- 3. <u>https://vlab.amrita.edu/index.php?sub=77</u>

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the characteristics of the fuels and test and plot the performance curves on multistage air compressor.	Analyzing (K4), Manipulation (S2)
CO2	examine the performance and heat balance study of various IC engines under different loading conditions	Analyzing (K4), Manipulation (S2)
CO3	determine the performance of Solar Wind energy systems and analyze the data from rooftop solar PV plant	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3		3				3	3			3	3
CO2	3	3	3		3				3	3			3	3
CO3	3	3	3		3				3	3			3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20EGL31 - ENGLISH FOR WORKPLACE COMMUNICATION LABORATORY

(Common to all BE/BTech Engineering and Technology branches)

Prog. & Brai	nch	All BE/BTech Engineering & Technology branches	Sem.	Category	L	L T P Cred							
Prerequisite		Nil	4	HS	0	0	2	1					
		"											
Preamble:	This c theCE	ourse is designed to impart required levels of fluency FR through activities, hands-on training and applicat	in using the E	nglish Languaç	ge at B	1/B2	evel in	1					
Unit -I	Lister	ing:						6					
Techniques f of native spe accents.	or effectiv akers and	e listening and note taking; listening to audio scripts l imitating; improving pronunciation; introduction to th	, podcasts and ie basics of ph	TED talks; liste	ening t dersta	o disc nding	ourse : differe	samples nt					
Unit -II	Readi	ng:						6					
Speed readir vocabulary a	ig skills; r nd word p	eading to gain knowledge; reading newspaper article ower; reading aloud with proper stress and intonatic	es to improve v on; reading to c	vriting; academi draw inferences	ic jouri	nals to	enrich	٦					
Unit -III	Soft S	kills:						6					
Importance c setting;time r	f soft skill nanagem	s at workplace - understanding soft skills through ca ent; team work; telephone etiquette; developing prof	se studies - de essionalism, ir	eveloping positiv nterpersonal ski	/e attit IIs anc	ude; g I work	oal ethics						
Unit -IV	Writin	g:						6					
Introduction t writing; nuan readability; s	o pre-writ ces of aca ructural a	ing, style and mechanics of writing; mind mapping; c ademic writing; writing Statement of Purpose (SOP), and grammatical accuracy.	reating conten editing, revisir	t from an outlin ng and proof rea	e; para ading f	agrapl or cla	n and r rity and	esume 1					
Unit -V	Speak	king:						6					
Verbal and n using prepar	on-verbal ed materi	communication; fluency and spoken English; introdual; mock interviews; dynamics of Group Discussion.	icing oneself a	nd others; mak	ing pre	esenta	itions o	on topics					
List of Exercis	es / Exp	eriments :											
1. Moc	k Intervie	w											
2. Pres	sentation												
3. Rea	ding Alou	d											
4. Gro	up Discus	sion											

5. Soft Skills through Case Studies

Listening Test

REFERENCES/MANUAL/SOFTWARE:

1.	Jeff Butterfield, "Soft Skills for Everyone", 1 st Edition, Cengage Learning, New Delhi, 2011.
2.	Bob Dignen, Steve Flinders and Simon Sweeney, "Professional English for Work and Life, English 365, Student's Book 2", 1 st Edition, Cambridge University Press, New Delhi, 2004.

COURS On com	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	acquire effective listening and reading skills	Understanding (K2), Imitation (S1)
CO2:	acquire and demonstrate appropriate professional skills for the workplace	Applying (K3), Naturalization (S5)
CO3:	speak fluently and write meaningfully in English in the given context	Applying (K3), Articulation (S4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									2	3		2		
CO2									2	3		2		
CO3									3	3		3		
1 – Slight, 2 –	- Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy													

20GET31 - UNIVERSAL HUMAN VALUES (Common to All BE/BTech branches)

Programme & Branch	All BE/BTech Engineeirng & Technology branches		S	е.	•	Categor	L	Т		Р	С	redi
Prerequisites	NIL	\square	3/	י 4 / 4	-	HS	2	0	╞	0	+	2

Preamble	To make the student to know what they really want to be' in their life and profession, understand the n of happiness and prosperity for a human being. Also to facilitate the students to understanding of harmony at levels of human living, and live accordingly	neaning all the
Unit - I	Introduction:	6
Need and I purpose of Understand - Continuous Aspirations	Basic Guidelines of Value Education – Content and Process of Value Education – Self Exploration – self-Exploration – Content and Process of Self exploration – Natural Acceptance – Realization and ing – Basic Human Aspirations s Happiness and Prosperity – Exploring Happiness and Prosperity – Basic Requirement for Fulfillment of Huspiness and Prosperity – Basic Requirement for Fulfillment of Huspiness	ıman
Unit - II	Harmony in the Self and Body:	6
Human Bein in the Self a Harmony in	ig and Body – Understanding Myself as Co–existence of Self (_I') and Body, Needs of the Self and Body, A and Body, Self (_I') as the Conscious Entity, the Body as the Material Entity – Exercise – Body as an Instructive Self (_I) – Understanding Myself – Harmony with Body.	ctivities ument-
Unit - III	Harmony in the Family and Society:	6
Harmony in t Identification	the Family – Justice – Feelings (Values) in Human Relationships – Relationship from Family to Society – ofHuman Goal – Five dimensions of Human Endeavour.	1
Unit - IV	Harmony in Nature and Existence:	6
Order of Na – Conforma activity –E>	ture – Interconnectedness – Understanding the Four order – Innateness – Natural Characteristic – Basic Ad ance – Introduction to Space – Co–existence of units of Space – Limited and unlimited – Active and distence is Co–existence.	tivity No–
Unit - V	Implications of the above Holistic Understanding of Harmony on Professional Ethics:	6
Values in dif – Identificati Issues in Pr	ferent dimensions of Human Living – Definitiveness of Ethical Human Conduct –Implications of Value based I on of Comprehensive Human Goal – Humanistic Education – Universal Human Order – Competence and ofessional Ethics.	iving
1	To	otal: 30
TEXT BOOK		

1. Gaur R.R., Sangal R., Bagaria G.P., —A Foundation Course in Human Values and Professional Ethicsl, 1st Edition, ExcellBooks Pvt. Ltd., New Delhi, 2016.

REFERENCES:

1.	Ivan Illich, —Energy & Equityll, The Trinity Press, USA, 1974.
2.	Schumacher E.F., —Small is Beautiful: a study of economics as if people matteredll, Britain, 1973.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	restate the meaning of happiness and prosperity and do a correct appraisal of the current scenarioin thesociety	Applying (K3)
CO2	distinguish between the Self and the Body, understand the meaning of Harmony in the Self, the Co–existenceof Self and Body	Applying (K3)
CO3	infer the value of harmonious relationship based on trust, respect and other naturally acceptablefeelings inhuman-human relationships and explore their role in ensuring a harmonious society	Applying (K3)
CO4	transform themselves to co-exist with nature by realising interconnectedness and four order of nature	Applying (K3)
CO5	distinguish between ethical and unethical practices, and extend ethical and moral practices for abetterliving	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3	3	3	3	3				
CO2						3	3	3	3	3				
CO3						3	3	3	3	3				
CO4						3	3	3	3	3				
CO5						3	3	3	3	3				
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	7 5					100							
CAT2	25	7 5					100							
CAT3	NA													
ESE	NA													

* \pm 3% may be varied (CAT 1, 2 – 100 marks)

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

20MET51 - KINEMATICS OF MACHINERY

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Drawing, Engineering Mechanics	5	PC	3	0	0	3

 Preamble
 The course provides the analysis of velocity, acceleration and synthesis of various simple mechanisms. It also deals with various cam profile generations and studies on various gears and gear trains.

 Unit - I
 Basics of Mechanisms:
 9

 Classification
 of Mechanisms – Basic Kinematic Concepts and Definitions – Degree of Freedom – Mobility – Kutzbach Criterion – Gruebler'S Criterion – Grashof'S Law – Kinematic Inversions of Four - Bar Chain and Slider Crank Chains – Limit Positions –

Mechanical Advantage – Transmission Angle- Description of Common Mechanisms – Quick Return Mechanisms – IndexingMechanisms - Ratcheting.

Unit - II Kinematics of Mechanisms:

Velocity and Acceleration of Simple Mechanisms by Relative Velocity Method – Velocity Analysis using Instantaneous Centre Method – Klien'S Construction for Slider Crank Mechanism – Coriolis Acceleration Component.

Unit - III Synthesis of Mechanisms:

Synthesis of Mechanism – Classification of Synthesis – Function Generation by Relative Pole Method – Graphical Synthesis of Slider

Crank and Four bar Mechanisms for Two and Three Positions — Analytical Solution for Velocity and Acceleration of Slider CrankMechanism — Introduction to Commercial Software Packages for the Development of Kinematic Models.

Unit - IV Kinematics of CAM:

Cams – Types of Cams And Followers – Displacement – Velocity and Acceleration Curves for Uniform Velocity – Uniform Acceleration

and Retardation – SHM and Cycloidal Curves- Layout of Plate Cam Profile - Reciprocating and Oscillating Followers – Knife - EdgeFollower – Roller and Flat Faced Followers. High Speed Cams: Circular Arc and Tangent Cams – Pressure Angle and Undercutting.

Unit - V Kinematics of Gears:

Theory of Gearing – Gear Nomenclature – Law of Gearing – Tooth Forms – Minimum Number Teeth – Length of Arc of Contact –Velocity and Torque Calculation- Contact Ratio and Interference. Gear Trains: Types –- Parallel Axis and Epicyclic Gear Trains.

TEXT BOOK:

Total: 45

9

9

9

9

1.	Rattan S.S. "Theory of Machines". 5 th Edition, McGraw Hill Publishing Company, Chennai, 2019.							
RE	REFERENCES:							
1.	Shigley J.E., Uicker J.J. "Theory of Machines and Mechanisms". 5 th Edition, Oxford University Press, New Delhi, 2017.							
2.	Bevan Thomas. "Theory of Machines". 3rd Edition, C B S Publishers & Distributors, New Delhi, 2005.							

	BT Mapped (Highest Level)	
	avalain the basic concepts of kinematics and working principle of simple mechanisms	
001		
02	compute the velocity and acceleration of simple mechanisms	Applying (K3)
CO3	synthesize simple mechanisms and understand the basics of computer aided analysis	Analyzing (K4)
CO4	portray the basic concepts of cam follower system and design of plate cam profiles	Applying (K3)
CO5	describe the basic concepts in kinematics of gearing and analyze the various types of gear trains	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01											PSO2			
CO1	3	3	3	3										3
CO2	3	3	3	3										3
CO3	3	3	3	3	1								1	3
CO4	3	3	3	3										3
CO5	3	3	3	3										3
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy							

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	50				100				
CAT2	20	20	30	30			100				
CAT3	25	25	50				100				
ESE	15	20	50	15			100				

20MET52 – HEAT AND MASS TRANSFER

(Use of HMT Data Book and Steam Table are permitted for the End Semester Examination)

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics Thermal Engineering	5	PC	3	0	0	3

Unit - I	Conduction Heat Transfer		9
	associated problems for the graduates of Mechanical Engineering.	ransie	"
Preamble	Heat and Mass Transfer course is designed to impart knowledge on three modes of heat transfer namely cond convection and radiation. This course aims to provide professional experience in solving the heat and mass to	JUCTION	ו, r
Due evelute	Used and Many Transfer second is desired to import brouds does no three modes of head transfer more by south		

Unit - I Conduction Heat Transfer

Fourier's Law of Conduction- Thermal Conductivity - Three Dimensional Heat Conduction Equation in Cartesian Coordinate System -One Dimensional Steady State Heat Conduction through Plane Wall, Cylinder and Sphere - Critical Radius of Insulation -Composite

Wall and Cylinder – Conduction with Internal Heat Generation through Plane Wall, Cylinder and Sphere - Extended Surfaces: Types -Efficiency and Effectiveness of Fins – Transient Heat Conduction: Lumped Heat Analysis and Infinite Solids Approach - Heisler's chart. 9

Unit - II **Convection Heat Transfer**

Newton's Law of Cooling – Convective Heat Transfer Coefficients - Dimensional Analysis using Buckingham π -Theorem -Boundary Layer Profiles of Flow over Flat Plates and Flow through Pipes - Forced Convection – External Flow: Flow over Flat Plates, Cylinders and Spheres, Flow across Bank of Tubes – Internal Flow – Free Convection: Flow over Vertical Plates, Horizontal Plates, Cylinders and Spheres — Heat Transfer in Porous Media.

Unit - III **Radiation Heat Transfer**

Electro Magnetic Spectrum – Thermal Radiation- Concept of Black Body - Basic Laws of Black Body Radiation – Absorptivity, Reflectivity and Transmissivity – Gray Body Radiation – Emissivity – Kirchoff's Law of Radiation – Shape Factor and its Algebra -Radiosity and Irradiation – Electrical Analogy: Two and Three Surfaces Interaction – Radiation Shields – Introduction to Gas Radiation.

Unit - IV Phase Change Heat Transfer and Heat Exchangers

Phase Change Heat Transfer: Boiling – Pool boiling: Nucleate Boiling and Film boiling – Flow Boiling – Condensation: Drop-wise and Film-wise Condensation – Correlations in Boiling and Condensation. Heat Exchangers: Types of Heat Exchangers -Logarithmic Mean Temperature Difference (LMTD) Method – Effectiveness – Number of Transfer Units (NTU) Method – Overall Heat Transfer Coefficient — Fouling Factors — Theory of Compact Heat Exchangers.

Unit - V Mass Transfer and Latest Trends in the field of Heat transfer

Mass Transfer: Mass Transfer: Diffusion Mass Transfer – Fick's Law of Diffusion – Equimolar Counter Diffusion – Convective MassTransfer — Heat and Mass Transfer Analogy.

Latest Trends: Nano Fluids for Heat Transfer – Cooling of Electronic Components – Thermal Management in Electric Vehicles using

IoT – Data study from Infra Red Thermography Images.

TEXT BOOK:

Total: 45

9

9

9

Sachdeva R.C., "Fundamentals of Engineering Heat and Mass Transfer", 5th Edition, New Age International Publishers, New Delhi, 1. 2017.

REFERENCES:

Holman J.P., Souvik Bhattacharyya, "Heat Transfer", 10th Edition, McGraw-Hill Education, India, 2017.

Yunus A. Cengel, Afshin J. Ghajar, "Heat and Mass Transfer: Fundamentals and Applications", 6th Edition, McGraw Hill Education, 2. India, 2020.

COUF On co	BT Mapped (Highest Level)							
CO1	CO1 recognize the basic concepts and define the governing laws related to all modes of heat and mass transfer							
CO2	identify conduction, convection and radiations based problems and interpret the solution	Applying (K3)						
CO3	calculate the heat transfer coefficient involved in boiling and condensation using appropriate correlations	Applying (K3)						
CO4	design the heat exchangers using LMTD and NTU approaches	Applying (K3)						
CO5	solve the simple problems involving mass transfer with necessary correlations	Applying (K3)						

	Mapping of COs with POs and PSOs													
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												PSO2		
CO1	3	3								1		1		3
CO2	3	3								1		1		3
CO3	3	3					2			1		1		3
CO4	3	3					2			1		1		3
CO5	3	2			2		2			1		1	2	3
1 – Slight, 2 –	Modera	te, 3 – S	Substan	tial, BT-	Bloom's	s Taxon	omy							

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	40	40				100					
CAT3	20	40	40				100					
ESE	20	40	40				100					

20MET53 – METROLOGY AND MEASUREMENTS

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Physics	5	PC	3	0	0	3

Unit - I	Basics of Instruments		9
	measurement system.		
	modern day automation requirements/applications. This course offers a platform for the design and implementa-	tion c	¢לנ
	measurement of length, angle, temperature, pressure, flow etc. Knowledge of computer aided inspection help	os th	e
Preamble	This course provides a comprehensive knowledge of sensors and transducers used in engineering field li	ke th	ie

Measurement - Definition and Methods - Generalized Measurement System - Units and Standards- Calibration- Primary- Secondary and Working Standards - National and International Standards - Types of Inputs - Order of Instruments - Static Characteristics -Accuracy - Error - Precision - Sensitivity - Linearity - Reproducibility - Repeatability - Resolution - Threshold - Drift - Stability - Tolerance - Range and Span - Dynamic Characteristics Study - Speed of Response - Response Time - Lag - Fidelity - Dynamic Error - Overshoot - Response of First Order Instrument for Step and Ramp Inputs.

Unit - II Transducers

Introduction to Transducers - Classification - Primary - Secondary and Tertiary - Mechanical - Bellows - Bourdon's Tube - Springs -Proving Rings - Diaphragm - Monometer - Bimetals - Electrical- Resistance - Inductance and Capacitance - Strain Gauges and its Orientation for Measurement - Vibration and Acceleration Measurement - Advantages and Limitation. Measurement of Force — Torque

Power - Temperature and Flow.

Unit - III Gauges, Length and Angle Measurement

Gauges types: Slip Gauges - Limit Gauges - Snap Gauges - Plug Gauges - Thread Gauge - Ring Gauge. Length Measurement: Vernier Caliper - Vernier Height Gauge - Vernier Depth Gauge - Micrometer and its Types - Design Aspects in Fixing Least Count of Vernier and Micrometer. Comparators — Mechanical - Pneumatic - Electrical. Angle Measurement- Protractors - Sine bars - Angle Dekkor

Optical Flats.

Unit - IV Form Measurement

Need of form measurements - Measurement of Screw Thread - External Thread Measurement - Measurement of Minor Diameter-Measurement of Effective Diameter - Pitch Measurement. Measurement of Gears – Pitch Measurement, Profile Measurement, Tooth Thickness Measurement - Gear Alignment Testing. Radius Measurement – Radius of Circle - Radius of Concave Surface. Surface Finish Measurement – Analysis of Surface Finish - Methods of Measuring Surface Finish. Straightness Measurement -Flatness

Measurement - Roundness Measurement.

Unit - V Computer Aided Inspection

Precision Instruments Based on Laser Principles - Laser Interferometer - Application In Linear, Angular Measurements. Coordinate Measuring Machine – Constructional Features - Types and Applications – Video Measuring machine – Machine vision - Digital Devices

- Computer Aided Inspection. Demonstration of Modern Measurement System for Industrial Applications.

Total: 45

9

9

9

9

TEXT BOOK:

 1. Rajput R.K., "Mechanical Measurements and Instrumentation", 2nd Edition, S.K.Kataria & Sons Publishers,
 NewDelhi, 2013.

REFERENCES:

Anand K. Bewoor, Vinay A. Kulkarani, "Metrology and Measurement", 1st Edition, McGraw Hill Publishing Co. Ltd., 2014.
 Alan S. Morries, RezaLangari, "Measurement and Instrumentation Theory and Application", 2nd Edition, Elsevier, London, 2016.

COUR	COURSE OUTCOMES:								
On co	mpletion of the course, the students will be able to	(Hignest Level)							
CO1	interpret the basic concept of measurement system, calibration and characteristics of instruments.	Understanding (K2)							
CO2	choose appropriate transducers for measurement system design.	Applying (K3)							
CO3	illustrate various length and angle measuring instruments.	Understanding (K2)							
CO4	carry out form measurements using various instruments.	Applying (K3)							
CO5	asses the various measurements in industrial applications	Applying (K3)							

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	1	3								2		3
CO2	3	3	1	3								2		3
CO3	3	3	1	3								2		3
CO4	3	3	1	3								2		3
CO5	3	3	1	3	2							2	2	3
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom'	s Taxon	omy							

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	35	35	30				100					
CAT2	25	35	40				100					
CAT3	25	35	40				100					
ESE	30	30	40				100					

20MEL51 - HEAT TRANSFER LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Thermal Engineering	5	PC	0	0	2	1
Preamble	This course provides the practical knowledge on various m and radiation and also helps to understand the experin refrigeration and air-conditioning systems.	nodes o nental r	f heat transfer nethods for de	namely etermin	condu ing the	iction, c perfoi	convection rmance of

List of Exercises / Experiments:

1.	Determination of Thermal Conductivity of the given Insulating Material using the Two Slab Guarded Hot Plate Method.
2.	Experimental Study on Unsteady State Heat Transfer.
3.	Determination of Thermal Conductivity of the Pipe Insulation – Lagged Pipe Apparatus and given Insulating Powder- SphericalApparatus.
4.	Determination of Convective Heat Transfer Co-Efficient for a Vertical Tube in Natural Convection Mode.
5.	Determination of Convective Heat Transfer Co-Efficient for Flow Through inside Tube in Forced Convection Mode.
6.	Determination of the Fin Effectiveness and Efficiency in Free and Forced Convection Heat Transfer Modes.
7.	Determination of Stefan-Boltzmann Constant using Stefan-Boltzmann Apparatus.
8.	Determination of Emissivity of the given Test Specimen at various Temperatures using the Emissivity Measurement Apparatus.
9.	Determination of Heat Transfer Rate and Effectiveness of the given Double Pipe Heat Exchanger.
10.	Determination of Heat Transfer Rate and Effectiveness of the given Shell and Tube Heat Exchanger.
11.	Performance Test on Air Blower.
12.	Performance Test on Vapour Compression Refrigeration Test Rig.
13.	Performance Test on Air-Conditioning Test Rig.
14.	Performance Test on Heat Pipe.

REFERENCES/MANUAL/SOFTWARE:

1.	Heat Transfer Laboratory Manual.
2.	Amrita Virtual Lab – Heat and Thermodynamics Virtual Lab, www.vlab.amrita.edu
3.	D. K Dixit, "Heat and Mass Transfer", 1 st Edition, McGraw Hill Education, India, 2015.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	conduct conduction, convection and radiation related experiments on the test set-up and virtual environment	Analyzing (K4), Precision (S3)
CO2	perform the test on heat exchangers and estimate the overall heat transfer coefficient and effectiveness	Analyzing (K4), Precision (S3)
CO3	execute the performance test on heat pipe, air blower, refrigeration & air-conditioning system	Analyzing (K4), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	2				1	3		2	2	3
CO2	3	2	2	3	2				1	3		2	2	3
CO3	3	2	2	3	2				1	3		2	2	3
1 Clight 2	Clight 2. Mederate 2. Cubatantial DT Discovia Tayanamu													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

20MEL52 - COMPUTER AIDED DRAWING LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Drawing	5	PC	0	0	2	1
Preamble	This course provides the practical knowledge on how to u design and performing basic modeling of components	ise the o	computer aideo	d tools	in draft	ing a c	omponent

List of Exercises / Experiments:

1.	Introduction to Computer Aided Modeling - 2D and 3D Modeling.
2.	Drawing of Simple 2D Sketch using basic Drawing and Editing commands using AutoCAD 2020.
3.	Performing Precise Drawings and Organizing Drawings using layers and Object Types in AutoCAD2020.
4.	Creating Complex Drawing using Advanced commands and blocks using AutoCAD 2020.
5.	Printing a Drawing with Annotations and Dimensions using AutoCAD 2020.
6.	Performing 2D Sketching in Creo 7.0.
7.	Performing Basic 3D Modeling in Creo 7.0 using basic options.
8.	Performing 2D Sketching in Solid works 2018.
9.	Performing Basic 3D Modeling in Solid works 2018 using basic options.
10.	Performing Basic 3D Modeling in CATIA V5/Autodesk Inventor using basic options.
	Total: 30

REFERENCES/MANUAL/SOFTWARE:

1.	Laboratory Manual.	
2.	AutoCAD 2020, CREO 7.0, SOLID WORKS 2018, CATIA V5-6 R2015, Autodesk Inventor.	

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	prepare drafting of component design using AutoCAD 2020 software	Applying (K3) Manipulation (S2)
CO2	perform 2D modeling using advanced modeling software packages	Applying (K3) Manipulation (S2)
CO3	perform basic 3D modeling using advanced modeling software packages	Applying (K3) Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	1	3					2		2	3	3
CO2	3	1	3	1	3					2		2	3	3
CO3	3	1	3	1	3					2		2	3	3
1 – Slight, 2 –	Modera	te, 3 – S	I – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy											

20MEL53 - METROLOGY AND MEASUREMENTS AND AUTOMOBILE ENGINEERING LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit	
Prerequisites	Applied Physics Thermal Engineering	5	PC	0	0	2	1	
Preamble	Example This course provides the practical knowledge/mechanism behind the various measurements like linear, and etc. Hands on experience on dismantling and assembling of various automobile systems and methods of testing as well as emission analysis are also imparted through this course.							

List of Exercises / Experiments:

	METROLOGY & MEASUREMENTS LABORATORY
1.	Calibration of Linear Instrument with Sliding Principle and Measurement of the given Component by using Vernier Caliper, Vernier Height Gauge and Gear Tooth Vernier Caliper.
2.	Calibration of Mechanical and Electrical Comparator and Check the Dimensional Tolerance using Dial Gauge, Bore Gauge and LVDT.
3.	Calibration of Linear Instrument with Bolt and Nut Principle and Measurement of given Component by using Inside Micrometer, Outside Micrometer and Depth Micrometer.
4.	Measurement of Angle of given Component by using Sine bar and Bevel Protractor.
5.	Characteristics of Thermal Measurement of First Order Instrument by using Thermometer.
6.	Calibration of Optical Instrument and Measurement of given Component by using Profile Projector.
7.	A Study/Demonstration Experiment on Flatness and Straightness Checking by using Autocollimator.
8.	A Study/Demonstration Experiment on Measuring Cylinder and Cone Dimensions using Coordinate Measuring Machine.
9.	A Study/Demonstration Experiment on Measuring the Surface Roughness of Materials using Surface Roughness Tester.
	AUTOMOBILE ENGINEERING LABORATORY
1.	Dismantling and Assembly of Single/Multi Cylinder- Petrol/Diesel Engine
2.	Dismantling and Assembly of Clutch, Gear Boxes and Differential Unit
3.	Dismantling and Assembly of Braking Systems and Suspension System
4.	Measurement of Instantaneous Center and Turning Radius of Four Wheeler
5.	Estimation of Calorific Value of Fuels and Emission Test on IC Engines
6.	Study of Performance Test on Static and Dynamic Balancing of Wheel

Total: 30

REFERENCES/MANUAL/SOFTWARE:

1.	Laboratory Manuals
2.	Dr.Kirpal Singh, "Automobile Engineering", 14 th Edition, Volume I&II, Standard Publishers Distributor, New Delhi, 2020.

See.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COURSE		MES:											BT Map	oped		
On comp	letion of	the cou	rse, the	student	s will be	e able to							(Highest Level)			
CO1	calibrate	e the me	easuring) instrun	nents ar	nd meas	sure the	dimens	ion of th	e compor	nents		Applying Manipulati	(K3), on (S2)		
CO2	CO2 determine the characteristics of instruments Applying (K3), Manipulation (S2)															
CO3	disman aspects	itle and of fuels	assemb and ve	le vario hicles	us autor	nobile s	systems	and ma	nage th	e enginee	ering		Applying Manipulati	(K3), on (S2)		
						Mappin	ng of CC	Os with	POs an	d PSOs						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3				3				3				3	3		
CO2	CO2 3											3				
CO3	CO3 3															
1 – Slight	t, 2 – Mo	derate,	3 – Sub	ostantia	I, BT- B	loom's	Taxono	my								

20GEL51 - PROFESSIONAL SKILLS TRAINING I (Common to all BE/ BTech / MSc / MCA /BSc Branches)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	5	EC	0	0	80	2

Preamble	This subi	ect is to	enhance	the emp	olovability	/ skills a	and to	develor	career	com	betencv
			0			0				r	

Unit - I Soft Skills – I

Soft skills and its importance: Pleasure and pains of transition from an academic environment to work environment-Need for change-Fear, stress and competition in the professional world-Importance of positive attitude- Self motivation and continuous knowledge upgradation-Self-confidence. Professional grooming and practices: Basics of corporate culture-Key pillars of business etiquette- Basics of etiquette-Introductions and greetings-Rules of the handshake, earning respect, business manners-Telephone etiquette- Body Language.

20

30

30

Total: 80

Unit - II Quantitative Aptitude & Logical Reasoning - I

Problem solving level I: Number System-LCM &HCF-Divisibility test-Surds and indices-Logarithms- Ratio-proportions and variation-Partnership-Time speed and distance-Data interpretation-data representation. Logical reasoning: Family tree-Deductions-Logical connectives-Binary logic Linear arrangements- Circular and complex arrangement

Unit - III Written Communication & Verbal Aptitude

Writing Skills: Writing strategies and formats – Importance of Résumés – Writing a Cover letter – Writing a fresher's CV / Résumés

– Responding to Job Advertisements – Professional e-mail Writing – Responding to e-mails and business letters – Technical Report writing – Interpretation of Technical Data (Transcoding) – Writing One-page Essays. Verbal Aptitude – Synonyms – Antonyms – Homonyms – One word substitution – Idioms and Phrases – Paired words – Analogies – Spelling test – Cloze test – using suitable verb forms – using appropriate articles and prepositions; Spotting Errors – Sentence Correction and Formation – Grammar Based questions (Transformation : Active-Passive & Direct-Indirect); Rearranging Jumbled Sentences & Jumbled

paragraphs, Identifying Facts, Inferences and Judgements statements.

TEXT BOOK:

Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

1 Bailey Stephen, "Academic Writing: A practical guide for students", Routledge, New York, 2011.

2 Raman, Meenakshi and Sharma, Sangeeta, "Technical Communication - Principles and Practice", 3rd Edition, Oxford University Press, New Delhi, 2015.

COURS On com	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)
CO2	solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)
CO3	apply communication skills effectively to understand and deliver information in various written discourses grammatically with accuracy	Applying (K3), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				3	3		3		3	2		
CO2	3	2				3	3		3		3	2		
CO3		2				3	3		3	3	3	2		
4 Olianha (anata O	Cubata		Disam									

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	50	30				100							
CAT2		50	50				100							
CAT3		50	50				100							
ESE	NA													

20MET61 – DYNAMICS OF MACHINERY

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Mechanics Kinematics of Machinery Strength of Materials	6	PC	3	0	0	3

Preamble This course provides the knowledge on force analysis of various static & dynamic members, balancing of rotating & reciprocating masses in various types of engines. It also emphasis on analyzing the fluctuation in speed of governors, gyroscopic effect on various modes of transport systems, impact of free and forced vibration in various systems. Unit - I **Force Analysis** 9

Static Force Analysis, Free Body Diagrams, Conditions of Two, Three and Four Force Members. Inertia Forces and D'Alembert'S Principle — Inertia Force Analysis in Reciprocating Engines — Crank Shaft Torque. Flywheels — Turning Moment Diagrams and Fluctuation of Energy of Reciprocating Engine Mechanisms, Coefficient of Fluctuation of Energy and Speed, Weight of Flywheel Required.

Unit - II Balancing

Static and Dynamic Balancing – Balancing of Rotating Masses – Balancing a Single Cylinder Engine – Balancing Multi-CylinderEngines — Balancing of Radial Engine — Direct and Reverse Crank Method.

Unit - III Governors and Gyroscope

Types – Centrifugal Governors – Gravity Controlled and Spring Controlled Centrifugal Governors– Characteristics – Effect of Friction – Controlling Force. Gyroscopes – Gyroscopic Couples – Gyroscopic Effects in Automobiles, Ships and Aeroplanes.

Unit - IV **Free Vibration**

Basic Features of Vibratory Systems — Types — Single Degree of Freedom System — Transverse Vibration of Beams Natural Frequency by Energy Method, Dunkerly'S Method - Critical Speed - Damped Free Vibration of Single Degree Freedom System -Types of Damping – Free Vibration with Viscous Damping, Critically Damped System, Under Damped System. Torsional Systems: Natural Frequency of Two and Three Rotor Systems.

Unit - V **Forced Vibration**

Response to Periodic Force – Harmonic Force – Force caused cy Unbalance – Support Motion - Logarithmic Decrement-Magnification Factor — Vibration Isolation and Transmissibility.

TEXT BOOK:

Total: 45

9

9

9

9

1. Rattan S.S., "Theory of Machines", 5th Edition, McGraw Hill Education Publishing Company Ltd., New Delhi, 2019. **REFERENCES:**

Sadhu Singh, "Theory of Machines", 3rd Edition, Pearson Education India, New Delhi, 2012. 1.

Khurmi R.S. and Gupta J.K., "Theory of Machines", 14th Edition, S. Chand & Co. Ltd., New Delhi, 2005. 2.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

200 BB														
COURSE	OUTCO	MES:											BT Map	oped
On compl	etion of t	he cours	se, the st	udents v	vill be at	ole to							(Highest	Level)
CO1	solve an	d apply	the effec	t of statio	c and dy	namic fo	orces act	ing on d	ifferent n	nechanism	S		Applying	J (K3)
CO2	solve an	d plot th	e static a	and dyna	mic bala	ancing of	various	mechan	ical syst	ems			Applyinç	J (K3)
CO3	apply and solve the fluctuation effects in governors and the effects of gyroscopic couple in Applying (K3) automobile, aeroplane and ship applications													
CO4	apply and solve the impact of free vibrations in the design of mechanical systems Applying (K3)													
CO5	apply an	d solve	the impa	act of the	forced	vibration	s in the o	design o	f mechar	nical syste	ms		Applying	J (K3)
					Ма	pping o	f COs w	vith POs	and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3										3
CO2	3	3	3	3										3
CO3	3	3	3	3										3
CO4	3	3	3	3										3
CO5	3 3 3 3 3 3													
1 – Slight	, 2 – Mo	derate, 3	3 – Subs	tantial, E	3T- Bloo	m's Tax	onomy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	30	30				100							
CAT2	30	35	35				100							
CAT3	30	35	35				100							
ESE	30	35	35				100							

20MET62 - FINITE ELEMENT ANALYSIS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Mathematics III Strength of Materials Heat and Mass Transfer	6	PC	3	0	0	3

Preamble This course provides the knowledge on modeling techniques and use of numerical methods for solving a system of governing equations over the given discretized domain with the proper boundary conditions and loads. The course deals with the solving of various engineering problems for structural - thermal aspects and introduces advanced concepts.

Unit - I Fundamental of Finite Element Analysis

Historical Background – Matrix Approach – Coordinates – Numerical Simulation – Gauss Elimination Based Solvers – FEA GeneralProcedure – Basic Element Shapes – Discretization Process – Node Numbering Scheme – Interpolation – Weighted Residual Method – Ritz Techniques – Applications of FEA.

Unit - II One Dimensional Problems and Plane Truss

One Dimensional Finite Element Modeling – Element Types – Linear Elements – Linear Element Shape Function – Finite ElementEquation – Galerkin's Method – Solid Mechanics – Heat Transfer – Fin Pin and Composite Wall – Beam Element. Applications of Plane Truss.

Unit - III Two Dimensional Problems

Introduction to 2-D Finite Element Modeling – Constant Strain Triangular – Finite Element Formulation – Shape Functions – StrainDisplacement and Stress Strain Relationship Matrix – Plane Stress and Plane Strain – Temperature Effects.

Unit - IV Axisymmetric Continuum

Axisymmetric Formulation – Element Stiffness Matrix and Force Vector – Body Forces and Temperature Effects – Stress Calculations – Boundary Conditions – Applications to Cylinders under Internal or External Pressure.

Unit - V Iso-parametric Elements for Two Dimensional Continuum

Natural Co-ordinate Systems – Isoparametric Elements – The Four Node Quadrilateral – Shape Functions – Element Stiffness Matrixand Force Vector – Jacobian Matrix – Stress Calculations – Numerical Integration – Gauss Quadrature. Introduction to Finite Element Analysis Programming.

Total: 45

9

9

9

9

9

TEXT BOOK:

1.	Logan L. Daryl, "A first course in the Finite Element Method", 5th Edition, Cengage Learning India Pvt. Ltd.,	Delhi,2012.									
REF	REFERENCES:										

1. Rao S. S., "The Finite Element Method in Engineering", 5th Edition, Butterworth–Heinemann (An imprint of Elsevier), Elsevier IndiaPvt. Ltd., New Delhi, 2013.

2. Reddy J. N., "An Introduction to the Finite Element Method", International Edition, McGraw Hill, New Delhi, 2005.

COURSE OUTCOMES:BT MappedOn completion of the course, the students will be able to(Highest Level)											oed evel)				
CO1	apply the finite element theory procedures for various applications Applying (K3)														
CO2	analyze 1D structural and thermal problems with the finite element techniques Analyzing (K4)														
CO3	3 analyze the finite element theory of 2D problems Analyzing (K4)														
CO4	analyze the axisymmetric problem Analyzing (K4)														
CO5	apply the concepts of Iso-parametric formulation in 2D problems Applying (K3)														
Mapping of COs with POs and PSOs															
COs	/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
С	01	3	3	3	3	3								3	3
С	02	3	3	3	3	3								3	3
С	O3	3	3	3	3	3								3	3
CO4		3	3	3	3	3								3	3
CO5		3	3	3	3	3								3	3
1 – Sli	ght, 2 –	Moderat	te, 3 – S	ubstant	ial, BT-	Bloom's	s Taxon	omy							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	15	15	50	20			100		
CAT2	15	15	35	35			100		
CAT3	15	15	35	35			100		
ESE	15	15	40	30			100		

20MET63 DESIGN OF MACHINE ELEMENTS

Use of PSG Data book is permitted for the End Semester Examination

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Mechanics Strength of Materials	6	PC	3	0	0	3

Preamble Design of machine elements imparts the design of machine components like brackets, shaft, brakes, clutches, springs, bearing, flywheel and its failure criteria to meet the desired needs. It also explores the design of threaded fasteners and welded joints.

Unit - I Steady Stresses and Variable Stresses in Machine Members

Introduction to the Design Process – Factor influencing Machine Design, Selection of Materials based on Mechanical Properties – Direct Bending and Torsion Stress Equations – Calculation of Principal Stresses for various Load Combinations, Eccentric Loading –Factor of Safety -Theories of Failure – Stress Concentration – Design for Variable Loading – Soderberg, Goodman and Gerber Relations.

Unit - II Design of Shafts and Brakes

Design of Solid and Hollow Shafts based on Strength, Rigidity and Critical Speed – Design of Keys and Key Ways –Types of Brake -Simple and Compound - Internal and External Shoe Brakes – Disc Brakes (Description Only)

Unit - III Design of Fasteners and Welded Joints

Threaded Fasteners – Design of Bolted Joints Including Eccentric Loading – Design of Welded Joints – Axially Loaded Unsymmetrical Welded Joints - Eccentric Load in the Plane of Welds - Welded Joint Subjected to Bending Moment and Twisting Moment. Description on Designing of Riveted Joints.

Unit - IV Design of Springs and Clutches

Design of Helical and Leaf Springs - Theory of Disc and Torsional Springs under Constant Loads and varying loads – Concentric Springs – Description of Belleville Springs – Design of Plate Clutches – Axial Clutches – Cone Clutches – Internal Expanding Rim Clutches.

Unit - V Design of Bearings and Flywheels

Design of Bearings - Preloading, Design of Rolling Contact Bearings - Cubic Mean Load - Design of Journal Bearings - Mckee'S Equation - Calculation of Bearing Dimensions, Design of Flywheels. Solid Disc — Flywheel - Rimmed Flywheel - Stresses in Rimmed Flywheel.

TEXT BOOK:

Total: 45

9

9

9

9

9

1. Bhandari V.B., "Design of Machine Elements", 5th Edition, Tata McGraw-Hill, New Delhi, 2020.

REFERENCES:

1. Shigley J.E. and Mischke C.R., "Mechanical Engineering Design", 11th Edition, McGraw Hill International Education, New York, 2020.

2. Norton R.L., "Design of Machinery", 5th Edition, McGraw Hill, New Delhi, 2011.

COUF On co	COURSE OUTCOMES: On completion of the course, the students will be able to					
CO1	design and specify the shape of the machine components subjected to steady stress and variable stress	Applying (K3)				
CO2	design and selection of the shafts and brakes for different applications	Applying (K3)				
CO3	design and selection of the screw fasteners and welded joints for different applications	Applying (K3)				
CO4	design and selection of the helical, leaf springs and clutches for different applications	Applying (K3)				
CO5	design and select the bearing, prediction of their life and design of flywheels for different applications	Applying (K3)				

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3										3
CO2	3	3	3	3										3
CO3	3	3	3	3										3
CO4	3	3	3	3										3
CO5	3	3	3	3										3
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom'	s Taxon	omy							

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	30	30				100		
CAT2	40	30	30				100		
CAT3	40	30	30				100		
ESE	40	30	30				100		

20MEL61 - DYNAMICS LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit		
Prerequisites	Engineering Mechanics Kinematics of Machinery Dynamics of Machinery	6	PC	0	0	2	1		
Preamble	This course provides the practical knowledge of mechanism behind the various dynamics systems including balancing of masses, governors, cams, gyroscopes, gear trains and speed reducers. It also provides the knowledge on the spring mass vibration systems and compound pendulum.								

List of Exercises / Experiments :

	DYNAMICS LABORATORY								
1.	Determine the Natural Frequency of given Spring using Spring Mass System.								
2.	Draw the Force and Couple Polygon for Static and Dynamic Balancing of Rotating Masses.								
3.	Determine the Characteristics of Governor using Universal Governor Apparatus. (Porter, Proell and Watt Governor set up).								
4.	Determine the Loss of Couple due to Friction using Gyroscopic Couple Apparatus.								
5.	Determine the Efficiency of Worm Gear Box using Speed Reducer Apparatus.								
6.	Generation of Cam Profile with Roller Follower and Knife Edge Follower using Cam Analysis Machine.								
7.	Determine the Radius of Gyration of Compound Pendulum.								
8.	Determine the Radius of Gyration of Bifilar Suspension.								
9.	Determine the Natural and Critical Frequency of given Shaft using Whirling of Shaft Apparatus.								
10.	Determine the Frequency of Transverse Forced Vibration of Cantilever Beam.								
11.	Determine the Damping Ratio of Single Rotor System with Viscous Damping.								
12.	Determine the Natural Frequency of Free - Free Beam.								
13.	Determine the Transmissibility Ratio of given Eccentric Mass in Vibration Table								

Total: 30

REFERENCES/MANUAL/SOFTWARE:

1. L	aboratory Manual.								
2. F	Rattan S. S., "Theory of Machines", 5 th Edition, McGraw Hill, Chennai, 2019.								
COUF	COURSE OUTCOMES: BT Mapped								
On co	On completion of the course, the students will be able to (Highest Level)								
CO1	analyze the characteristics of spring, static and dynamics balancing of masses.	Applying (K3), Manipulation (S2)							

CO2	analyze the characteristic behavior of gear box and governors	Applying (K3), Manipulation (S2)
CO3	solve and evaluate the vibratory systems, forced transmittance and damping ratio	Applying (K3), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3										3
CO2	3	3	3	3										3
CO3	3	3	3	3										3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEL62 - SIMULATION AND ANALYSIS LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Strength of Materials Fluid Mechanics and Hydraulic Machines Heat and Mass Transfer	6	PC	0	0	2	1
Preamble	This course provides the basic knowledge of deriving the l problems in structure, thermal and flow. It also provides the one.	boundar best wa	y conditions of ay of reducing	real tii the con	me prac nplex pr	ctical ei oblems	ngineering s to simple

List of Exercises / Experiments:

1.	Stresses and Deflections of Different Types of Beams With Various Types of Loads.
2.	Deflections of Different Types of Truss With Point Loads.
3.	Application of Plane Stress and Plane Strain Conditions.
4.	Modelling and Analysis of Tapered Structures
5.	Deflection of Tensile and Compressive Springs
6.	Axisymmetric Application.
7.	Heat Conduction and Convection Applications.
8.	Couple Field Analysis (Thermo – Structural Analysis).
9.	Contact Analysis of Two Bodies.
10.	Modal Analysis of Structural Members.
11.	Harmonic Response of Structural Members
12.	Bimetallic Layered Cantilever Plate with Structural Loading.
13.	Flow Through Pipes using Fluent.
14.	Incompressible Fluid Flow Analysis with and Without Obstacles.

Total: 30

REFERENCES/MANUAL/SOFTWARE:

1.	ANSYS Software Manual.
2.	Rao S. S, "The Finite Element Method in Engineering", 5 th Edition, Butterworth-Heinemann Ltd., USA, 2010.
3.	Robert D. Cook, Malkus, Witt & Plesha, "Concepts and Applications of Finite Element Analysis", 4 th Edition, Wiley India Pvt. Ltd., India, 2007.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the boundary conditions and analyze the given problem.	Analyzing (K4), Manipulation (S2)
CO2	perform structural, thermal, and fluid problems in Finite Element Analysis (FEA) and Finite Volume Method (FVM) software packages.	Analyzing (K4), Manipulation (S2)
CO3	validate the various FEA and FVM results based on theoretical or experimental results.	Analyzing (K4), Manipulation (S2)

	Mapping of COs with POs and PSOs													
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1	3	3	3	3	3					3		3	3	3
CO2	3	3	3	3	3					3		3	3	3
CO3	3	3	3	3	3					3		3	3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEL63 - CAD/CAM LABORATORY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	20MEC11 Engineering Drawing Machine Drawing Material Removal Processes.	6	PC	0	0	2	1
Preamble	This course introduces several mechanical components course covers the development and execution of part progr	and the	ir modelling a on CNC machi	nd assines.	embly.	Additio	nally, this

List of Exercises / Experiments :

1.	Practice for (i) Sketching with different Sketching Tools and (ii) Datum Plane, Axis, Point and Coordinate Systems.
2.	3D Part Modeling Options – Protrusion and Cut (extrude, revolve). Exercises: Flange Coupling, Screw Jack.
3.	3D Part Modeling Options - Protrusion and Cut (sweep, blend, helical sweep). Exercises: Machine Vice, Knuckle Joint.
4.	Features Creation with Editing Operations – Move, Pattern, Mirror, Round, Chamfer and Rib. Exercises: Simple Eccentric
5.	Assembly of Machine Components.
6.	Conversion of 3D Solid Model to 2D Drawing – different views, sections, isometric view and dimensioning creations.
7.	Part Program Generation and Machining of given Component using MTAB XLTURN.
8.	Part Program Generation and Machining of given component using MTAB XLMILL.
9.	Part Program Generation and Machining of given component using CNC Turning Centre (JOBBER XL).
10.	Part Program Generation and Machining of given component using CNC Vertical Milling Centre (LMill 55).
11.	Simulation and CNC Code Generation for a given component using MASTERCAM (Lathe) and Interfacing with CNC Turning Centre.
12.	Simulation and CNC Code Generation for a given component using MASTERCAM (Mill) and Interfacing with CNC Machining Centre.

Total: 30

REFERENCES/MANUAL/SOFTWARE:

2. Groover M.P., "Automation, Production System and Computer Integrated Manufacturing", 3rd Edition, Prentice-Hall of India, New Delhi, 2008.

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify the features, operations associated with CAD Parametric Modeling, Assembly and Drafting	Applying (K3), Manipulation (S2)
CO2	apply the advanced feature creation concept of CAD for Modeling, Assembly and Drafting	Applying (K3), Manipulation (S2)
CO3	develop, simulate, analyze, interface, and execute part program using CAM package and CNC production with JOBBER XL and LMill55 machines	Analyzing (K4), Precision (S3)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	3	1	1	3					3			3	3
CO2	3	3	1	1	3					3			3	3
CO3	3	3	1	1	3					3			3	3
1 – Slight, 2 –	I – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20GEL61 PROFESSIONAL SKILLS TRAINING II (Common to all BE/ BTech / MSc/ MCA /BSc Branches)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	6	EC	0	0	80	2

Preamble This subject is to enhance the employability skills and to develop career competency Unit - I Soft Skills – II 20 Group discussions: Advantages of group discussions-Structured GD- Team work: Value of team work in organizations- Definition of a team, why team-Elements of leadership, disadvantages of a team, stages of team formation- Group development activities. Facing an interview: Foundation in core subject- industry orientation / knowledge about the company- professional personality-Communication

skills-Activities before Interview, upon entering interview room, during the interview and at the end Mock interviews.

Unit - II Quantitative Aptitude & Logical Reasoning - II

Problem solving level II: Money related problems-Mixtures-Symbol base problem-Clocks and calendars-Simple-linear-quadratic and polynomial equations-Special, equations-Inequalities-Sequence and series-Set theory-Permutations and combinations-Probability-Statistics-Data sufficiency- Geometry-Trigonometry-Heights and distances-Co-ordinate geometry-Mensuration. Logical reasoning: Conditionality and grouping-Sequencing and scheduling- Selections-Networks:-Codes; Cubes-Venn diagram in logical reasoning-Quant based reasoning-Flaw detection- Puzzles-Cryptarithms.

30

30

Total: 80

Unit - III Reading & Speaking Skills

Reading: Reading comprehension – Effective Reading strategies – Descriptive, Inferential, & Argumentative reading passages – Identifying and locating factual information within a text – global reading/skimming for general understanding – selective comprehension / scanning for specific information – detailed comprehension / intensive reading – understanding the development of an argument – identifying the writer's attitude and opinions – Reading news articles in business magazines, newspapers – Reading notices and book reviews –Interpreting graphic data & Advertisements. Speaking: Mock Interviews –Self-Introduction – Sharing of Real Time Experience; Conversational Practices –Role Play – Short Talks / TED Talks –Extempore; Giving a Presentation on Various Topics – Technical /Non-Technical Topics – Project Review Presentation – Oratory and Effective Public Speaking; Pair Discussion – Group Discussion –The process of Group Discussion – Strategies to be adopted – Skills Assessed – Telephonic Conversations & Skills – Negotiating Skills.

TEXT BOOK:

1 Thorpe, Showick and Edgar Thorpe, "Objective English For Competitive Examination", 6th Edition, Pearson India Education Services Pvt Ltd, 2017.

REFERENCES:

1	Aruna Koneru, "Professional Speaking Skills," Oxford University Press India, 2015.
2	Thorpe, Showick and Edgar Thorpe, "Winning at Interviews," 5 th edition, Pearson Education, India, 2013.
3	Rizvi, Ashraf M, "Effective Technical Communication," 2 nd Edition, McGraw Hill Education India, 2017.

COURS On com	BT Mapped (Highest Level)	
CO1	Develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)
CO2	Solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)
CO3	Apply reading and speaking skills effectively for various academic and professional purposes	Applying (K3), Precision (S3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	0	0	0	3	3	0	3	0	3	2		
CO2	3	2	0	0	0	3	3	0	3	0	3	2		
CO3	0	2	0	0	0	3	3	0	3	3	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2		50	50				100					
CAT3		50	50				100					
ESE												

20MEP61 - PROJECT WORK I

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fundamental knowledge on Design, Manufacturing and Thermal analysis	6	EC	0	0	4	2
Preamble	This course provides hands on experience to deploy the deprototype or new/upgraded product to solve an existing engi	esign, n ineering	nanufacturing the problem as a t	hermal eam.	principle	es to de	evelop a

Total:60

Project Work I

- Perform Adequate Literature Survey and Market Survey Related to Selected Field. ٠
- Define the Problem and Objectives based on the Literature and Market Survey.
- Prepare a Methodology to Accomplish the Objective(s) ٠
- Study the Economic, Technical and Operational feasibility.
- Develop a Conceptual and Detailed Design based on the Engineering Inputs. •
- Develop a Prototype / Product as per the Perceived Design. ٠
- Perform Test Runs and Analyze the Results.
- Present the Fully Developed Prototype / Product. •

COURSE OUTCOMES.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1:	identify, conceptualize and infer the engineering problems that need to be solved based on the literature collections	Understanding (K2)
CO2:	define the problem and prepare a methodology to solve an engineering problem.	Understanding (K2)
CO3:	develop a conceptual and detailed design using modern engineering tools.	Creating (K6)
CO4:	develop and analyze a fully functional mechanism / prototype using engineering principles.	Analyzing (K4)
CO5:	demonstrate the project work in the form of oral presentation, report and technical/patent/paper publications.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3	1	1	1		3	3	2	3	2	1	2		3
CO2	3	3	3	2		3	3	2	3	2	1	1		3
CO3	3	3	3	2	3	3	3	2	3	2	3	2	3	3
CO4	3	3	3	2	3	3	3	2	3	2	3	2	3	3
CO5	3	2			2	3	3	3	3	3	3	3	2	3
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20GET71 – ENGINEERING ECONOMICS AND MANAGEMENT

(Common to All BE/BTech Engineering And Technology Branches except Chemical Engineering)

Programme & Branch	All BE/BTech branches except Chemical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	7	HS	3	0	0	3

 Preamble
 The aim of the course is to create fundamental knowledge on management by introducing concepts like economics, national income, marketing, operations management, accounting principles etc.

 Unit - I
 Micro Economics:
 9

 Economics - Basics Concepts and Principles - Demand and Supply - Law of demand and Supply - Determinants - Market Equilibrium - Circular Flow of Economic activities and Income.
 9

 Unit - II
 Macro Economics, Business Ownership and Management concepts:
 9

National Income and its measurement techniques. Inflation - Causes of Inflation – Controlling Inflation – Business Cycle. Forms of business – Ownership types. Management concepts: Taylor and Fayol's Principles – Functions of Management - Managerial Skills - Levels of Management - Roles of manager.

Unit - III Marketing Management

Marketing - Core Concepts of Marketing - Four P's of Marketing - New product development – Intellectual Property rights (IPR), Product Life Cycle - Pricing Strategies and Decisions.

Unit - IV Operations Management:

Operations Management - Resources - Types of Production system - Site selection, Plant Layout, Steps in Production Planning and Control - Inventory - EOQ Determination.

Unit - V Financial Management:

Accounting Principles – Financial Statements and its uses – Depreciation: Straight Line and Diminishing Balance Method – Break Even Analysis – Capital Budgeting: Significance – Traditional and discounted cash flow methods.

TEXT BOOK:

Total:45

9

9

9

1. Compiled by Department of Management Studies, Kongu Engineering College, "Economics and Management for Engineers", 1st Edition, McGraw Hill Education, Noida, 2013.

REFERENCES:

1. Geetika, Piyali Ghosh and Purba Roy Choudhury, "Managerial Economics", 3rd Edition, McGraw-Hill, New Delhi, 2018.

2. William J. Stevenson, "Operations Management", 14th Edition, McGraw-Hill Education, 2021.

3. William G. Nickels, James M. McHugh, Susan M. McHugh, "Understanding Business", 12th Edition, McGraw-Hill Education, New York, 2019.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify market equilibrium and interpret national income calculations and inflation issues	Applying (K3)
CO2	choose a suitable business ownership for their enterprise and illustrate managerial functions	Applying (K3)
CO3	infer marketing management decisions	Understanding (K2)
CO4	apply appropriate operation management concept in business situations	Applying (K3)
CO5	interpret financial and accounting statements and evaluate new proposals	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2			3		2	2	2	3	2	1	2
CO2		1	2			2	2	2	2	2	3	2	1	2
CO3	1	2	1			2		2	2	2	3	2	2	2
CO4	1	2	1			2		2	2	2	3	2	1	2
CO5	2	2				2		2	2	2	3	2	2	2

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	40	40				100					
CAT2	20	40	40				100					
CAT3	20	40	40				100					
ESE	20	40	40				100					

20MEC71 - MECHATRONICS AND IOT

Program Bran	nme & ch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequ	isites	NIL	7	PC	3	0	2	4			
Preamble	This cou industria	urse provides the importance of sensors, actuators, control s al automation System.	systems	, controllers an	d loT c	ompone	nts inv	olved in			
Unit - I	Automa	tion and Mechanical Measurements						9			
Automation Advanced A Mechanical	comation: Automation in Production System - Principles and Strategies of Automation - Basic Elements of an Automated System /anced Automation Functions - Levels of Automations. chanical Measurements: Measurement of Displacement - Velocity - Force - Strain - Temperature - Pressure – Flow.										
Unit - II	Control	System						9			
Open Loop System – F	and Close	ed Loop Control - Block Diagrams - Transfer Functions - Lag al Integral (PI) and Proportional Integral Derivative (PID) Co	olace Trons	ransforms - Ma rs.	athemat	ical Mo	del of F	Physical			
Unit - III	it - III Microprocessor and Its Interfacing										
Organizatio Evaluating	n of 8085 Arithmetic	 Addressing Modes – Instruction Set – Simple Programs Expressions and String Manipulation Instructions - A/D 	involvir and D//	ng Logical - Bra A Converters.	anch/Ca	all - Sor	ting -				
Unit - IV	Program	nmable Logic Controller						9			
Introduction toLadder Lo	- Archite	cture of PLC – I/O Modules – Distributed I/O Modules – F amming - Math Instructions - Logical Instructions - Timer a	Progran	nming of PLC nter – Selectio	- Conve n of PL(ersion o C.	f Relay	/ Logic			
Unit - V	Introdu	ction to IoT and Machine learning						9			
Defining IoT Difference b	, Charact etween lo	teristics of IoT, Physical design of IoT, Logical design of I T and M2M. Overview of machine learning. IoT applications a	oT, Fur and cas	nctional blocks e studies.	of IoT.	Machir	ie to N	lachine,			
List of Exer	cises / Ex	cperiments :									
1. Te	mperature	Measurement using RTD/Thermistor.									
2. Me	2. Measurement of displacement using LVDT capacitive transducer.										
3. Me	asuremen	t of strain and force.									
4. Dia	phragm b	ased pressure measurement.									
5. Ad	dition and	subtraction of two numbers using microprocessor.									
6. To	6. To interface LED/Buzzer with Arduino/Raspberry Pi and write a Program to turn ON LED for 1 sec after every 2 seconds.										

Lecture:45, Practical:30 Total: 75

TEXT BOOK:

1.	. Bolton W., "Mechatronics: A Multidisciplinary Approach", 4 th Edition, Pearson Education, UK, 2016.
R	EFERENCES:
1.	. Francis H. Raven, "Automatic Control Engineering", 5 th Edition, McGraw-Hill, New Delhi, 2018.
2	 Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach", 1st Edition, Orient Blackswan Pvt. Ltd., New Delhi, 2015.

COUR	COURSE OUTCOMES:												BT Mapped				
On cor	n completion of the course, the students will be able to												(H	lighest Le	vel)		
CO1	identify	the suit	able ser	nsors ba	sed on t	he funct	ional red	quireme	nt in ind	ustrial au	utomation	system	Applying (K3)				
CO2	apply k	nowledg	je about	the diffe	erent for	ms of co	ontrol sy	stem in	real time	interfac	ing		Applying (K3)				
CO3	23 apply the programming and interfacing of 8085 microprocessor for automatic system design												/	Applying (K3)			
CO4	apply t	he opera	itions of	progran	nmable l	logic cor	ntrollers	in auton	nation in	dustries			Applying (K3)				
CO5	presen	t the con	cepts o	f interne	t of thing	gs and n	nachine	learning					Unc	lerstanding	g (K2)		
CO6	16perform the measurements of different physical parameters using I/O devices, sensors and communication modulesApplying (K3), Manipulation (S2)																
C07	CO7write programming for 8085 microprocessors in suitable applicationsApplying (K3), Manipulation (S2)																
CO8 recognize the design and functional blocks of IoT systems Understand (K2), Manipulation (S2)											(K2), (S2)						
						Марр	ing of C	Os with	n POs ai	nd PSOs	5						
COs	/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
С	01	3		3		3								3			
С	02	3		3		3								3			
С	O3	3		3		3								3			
С	04	3		3		3								3			
С	O5	3		3		3								3			
С	O6	3		3		3					3			3			
С	07	3		3		3					3			3			
С	O8	3		3		3					3			3			
1 – Sli	ght, 2 –	Moderat	te, 3 – S	Substant	ial, BT-	Bloom's	Taxon	omy									

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	30	40	30				100						
CAT3	30	40	30				100						
ESE	30	30	40				100						

20MEP71 - PROJECT WORK II PHASE I

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fundamental knowledge on Design, Manufacturing and Thermal analysis	7	EC	0	0	12	6
Preamble	This course provides hands on experience to deploy the de prototype or new/upgraded product to solve an existing eng	sign, ma gineering	anufacturing the g problem as a	ermal pi team.	inciples	to dev	elop a

Total :180

PROJECT WORK II PHASE I

- Development of Knowledge in a Field Related to Mechanical Engineering.
- Perform Adequate Literature Survey Related to Selected Field.
- Perform Market Survey Related to Selected Field.
- Define the Problem based on the Literature and Market Survey.
- Define the Objective(s).
- Study the Economic and Technical feasibility.

COURSE OUTCOMES: **BT Mapped** (Highest Level) On completion of the course, the students will be able to CO1: identify, conceptualize and infer the engineering problems that need to be solved Understanding (K2) CO2: Understanding (K2) identify and refer literature CO3: carryout market survey and relate the features Understanding (K2) CO4: define the problem and its underlying concepts Applying (K3) CO5: derive the objectives, perform the feasibility studies and demonstrate the project work in the Applying (K3) form of oral presentation along with the analysis reports

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1				3	3	2	3	2	3	2		3
CO2	3	3				3	3	2	3	2	1	3		3
CO3	3	3				3	3	2	3	2	1	3		3
CO4	3	3			2	3	3	2	3	2			2	3
CO5	3	2			2	3	3	3	3	3	2	3	2	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEP81 - PROJECT WORK II Phase II

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit	
Prerequisites	Fundamental knowledge on Design, Manufacturing and Thermal analysis	8	EC	0	0	8	4	
Preamble This course provides hands on experience to deploy the design, manufacturing thermal principles to develop a prototype or new/upgraded product to solve an existing engineering problem as a team.								

Total :120

PROJECT WORK II PHASE II

- Develop a Methodology to Accomplish the Objective(s).
- Design and Perform Engineering Tests based on ASTM Standards to Populate Results.
- Analyze the Test Results using Modern Tools/Software.
- Present the Optimized Technology/Process/Product.
- Demonstrate the project work in the form of oral presentation, report and technical/patent/paper publications.

COUR	SE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1:	identify, conceptualize and define the engineering problem that needs to be solved	Applying (K3)
CO2:	write the objectives and prepare a methodology to solve an engineering problem	Applying (K3)
CO3:	design and develop a solution using modern tools	Creating (K6)
CO4:	evaluate the performance of the developed technology/process/product	Evaluating (K5)
CO5:	demonstrate the project work in the form of oral presentation, report and technical/patent/paper publications.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				3	3	2	3	2	1	3		3
CO2	2	3	3	1	1	3	3	3	3		3	3	1	3
CO3	3		3	2	3			1	3	2	3	2	3	3
CO4	2	3	3		3	2	2	3	3	1		3	3	3
CO5					2				3	3		3	2	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

20MEE01 - FLUID POWER SYSTEM

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fluid Mechanics and Hydraulic Machines	5	PE	3	0	0	3

Preamble	This course provides knowledge and skill to generate, control and transmission of power using both hydraulic and pneumatic systems. It offers designing of fluid power circuit for various industrial application, industrial circuits and sealing devices, service & maintenance.									
Unit - I	Fundamentals of Hydraulic System 9									
Basics of Fluid Power System – Advantages and Applications of Fluid Power Systems – Fluid Properties – Pascal's Law and its Application – Losses in Pipes – Valves and Fittings – Fluid Power Symbols – Hydraulic Pumps - Gear – Vane and Piston Pumps – Pump Performance – Characteristics and Selection – Sizing of Pumps.										
Unit - II	Control Components of Hydraulic System 9									
Direction Control Valves - Three Way Valve – Four Way Valve – Check Valve and Shuttle Valve – Actuation Mechanisms in DCV – Pressure Control Valves - Pressure Relief – Pressure Reducing – Counter Balance – Sequencing and Unloading Valves – Flow Control Valves and its Types – Proportional Valves – Servo Valves - Mechanical Type and Electrohydraulic Servo Valves.										
Unit - III	Pneumatic System and Actuators 9									
Pneumatic S Conditioning Valves.	ystem: Properties of Air – Perfect Gas Laws – Compressors - Piston – Screw and Vane Compressor – Fluid Elements - Filter Regulator and Lubricator Unit – Pneumatic Silencers – After Coolers – Air Dryers – Air Control									
Actuators: Lir	near And Rotary Actuators – Types – Cushioning Mechanism in Cylinders – Sizing of Actuators.									
Unit - IV	Fluid Power Circuit Design 9									
Basic Pneur –Cascade Ci Types and A	Basic Pneumatic Circuits – Pneumatic Vacuum Systems – Electrical Components and Electrical Controls for Fluid Power Circuits –Cascade Circuit Design Method (Two / Three Cylinder Circuits) – Introduction to Fluid Logic Devices and Applications – Accumulator – Types and Application Circuits – Pressure Intensifier Circuits – PLC Applications in Fluid Power Circuit.									
Unit - V	Industrial Circuits and Maintenance 9									
ndustrial Circuits: Speed Control Circuits – Regenerative Cylinder Circuits – Pump Unloading Circuit – Double Pump Circuit – Counter Balance Valve Circuit – Hydraulic Cylinder Sequencing Circuit – Automatic Cylinder Reciprocating Circuit – Cylinder										

SynchronizingCircuits – Fail Safe Circuits – Sealing Devices - Types and Materials – Safety Aspects – Installation. Maintenance: Maintenance and Trouble Shooting of Fluid Power Systems.

Total: 45

TEXT BOOK:

1. Esposito Anthony, "Fluid Power with Applications", 7th Edition, Pearson Higher Education, New York, 2015.

REFERENCES:

1. Jegadeesa T, "Hydraulics and Pneumatics", I.K International Publishing House Pvt. Ltd., New Delhi, 2015.

2. Majumdar S. R, "Oil Hydraulic Systems - Principles and Maintenance", 2nd Edition, Tata McGraw-Hill, New Delhi, 2012.

3. Majumdar S. R, "Pneumatic Systems - Principles and Maintenance", 2nd Edition, Tata McGraw-Hill, New Delhi, 2015.

COUR	OURSE OUTCOMES: BT Mapped														
On co	n completion of the course, the students will be able to								(Highest Level)						
CO1	identify fluid power components and their symbols as used in industry and also select suitable Understanding (K2) pump for hydraulic power pack														
CO2	choose appropriate control valves for fluid power applications Applying (K3)														
CO3	select pneumatic components and fluid power actuators for low-cost automation Applying (K3)														
CO4	design	and con	struct a	fluid po	wer circu	uit for re	al time a	applicatio	ons				Ар	plying (K3)
CO5	design, construct, testing, installation, maintenance and troubleshooting of fluid power Analyzing (K4) circuits for engineering applications														
						Марр	ing of C	Os with	n POs ar	nd PSO	S				
COs	/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
С	O1	3	3	3											2
C	O2	3	3	3											2
С	O3	3	3	3											2
С	O4	3	3	3											2
CO5 3 3 3 0							2								
1 – Sli	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	30	50				100
CAT3	10	30	40	20			100
ESE	10	30	50	10			100

20MEE02 - CAD/CAM/CIM

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Engineering Drawing Material Removal Processes	5	PE	3	0	0	3

Preamble	This course impart knowledge on the role of CAD in design process, 2D & 3D transformations and visual realism like shading, coloring and solid modeling. It also describes Computer Numerical Control (CNC) Technology, structural members of CNC machines, Coding of part programming, different process planning approaches and Flexible Manufacturing System (FMS) with recent advancements.									
Unit - I	Computer Aided Design (CAD)	9								
The Design F Algorithms - Coordinate.	The Design Process and Role of CAD - Introduction to Computer Graphics - Output Primitives - Bresenham's Line and Circle Drawing Algorithms - Parametric Equations for Line and Circle - 2D & 3D Transformations - Translation - Scaling - Rotation - Homogeneous Coordinate.									
Unit - II	Visual Realism	9								
Visual Realise Lightness Sat Geometry (CS	'isual Realism: Hidden Line - Surface Algorithms - Shading and Coloring - Red Green Blue (RGB) - Hue Saturation Value (HSV) - Hue ightness Saturation (HLS) - User Coordinate System (UCS) and World Coordinate System (WCS) -Solid Modeling - Constructive Solid Geometry (CSG) and Boundary Representation (B-Rep) Techniques - Parametric Modeling.									
Unit - III	CNC Programming	9								
CNC Techno Members of (Programming Simulation– I Software.	CNC Technology - Classification - Contouring - Interpolators - Open Loop and Closed Loop System - CNC Controller and Structural Vembers of CNC Machines - Function of Ball Screws — Automatic Tool Changer (ATC) - Feedback Devices -Fundamentals of Part Programming - Geometric Codes (G Codes) and - Miscellaneous Codes (M-Codes) - Cutter Location (CL) Data and Tool Path Simulation– Manual Programming - Canned Cycle and Subroutines. Code Generation from 3D Solid Models Using Master CAM									
Unit - IV	Computer Integrated Manufacturing (CIM)	9								
CIM Wheel - Coding – Des CodingSyste	CIM Wheel - Role of Group Technology in CAD/CAM Integration - Artificial Intelligence in CIM - Part Families - Classification and Coding – Design and Classification Information System (D CLASS) and Metal Institute Classification (MI CLASS) and OPITZ CodingSystems.									
Unit - V	Process Planning and FMS	9								
Process Planning: Variant and Generative Approaches — Computer Aided Process Planning (CAPP) and Computer Managed Process Planning (CMPP) Process Planning Systems - Shop Floor Control - Factory Data Collection System - Automatic Identification										

Methods - Bar Code Technology - Automated Data Collection System.

FMS: Components of FMS - Types - FMS Workstation - Material Handling And Storage Systems - FMS Layout - Application andBenefits - Introduction to Rapid Prototyping - Communication Fundamentals - Local Area Networks - Topology.

Total: 45

TEXT BOOKS:

1.	Zeid Ibrahim & Sivasubramanian, "CAD/CAM Theory and Practice", 2nd Edition, Tata McGraw Hill, New Delhi, 2010 for units
	1,11,111
2.	Groover M. P, "Automation, Production System and Computer Integrated Manufacturing", 3 rd Edition, Prentice-Hall of India,New Delhi, 2016 for units IV,V
RE	FERENCES:

1.	Hearn Donald & Baker M. Pauline, "Computer Graphic", 2 nd Edition, Pearson Education, New Delhi, 2004.
2.	Radhakrishnan P & Subramanian S, "CAD/CAM/CIM", 3rd Edition, New Age International Publishers, New Delhi, 2008.
3.	Bedworth David, "Computer Integrated Design and Manufacturing", 1 st Edition, McGraw-Hill, New Delhi, 1991.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR	SE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	demonstrate the modeling algorithms and 2D & 3D transformations.	Applying (K3)
CO2	describe concepts behind visual realism and parametric modeling.	Understanding (K2)
CO3	generate the CNC part programs using G and M codes.	Applying(K3)
CO4	identify the part families and demonstrate different classification and coding systems.	Applying (K3)
CO5	demonstrate the concepts of FMS - CAPP and LAN implementations.	Understanding (K2)

					Марр	ing of C	Os with	n POs ai	nd PSO:	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	2	2						3		1	3	3
CO2	3	3								3		1	3	3
CO3	3	3	2	2	1					3		1	3	3
CO4	3	3			1					3		1	3	3
CO5	3	3	2	2						3		1	3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

20MEE03 - AUTOMOBILE ENGINEERING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Thermal Engineering	5	PE	3	0	0	3

components. In addition, an insight is provided about electric vehicles, pollution norms and safety standards.	•
Preamble This course deals with the structure and construction of automobiles and also, the working principles of funct	
Dreamble This source deals with the structure and construction of outemphiles and also the working principles of fund	ional

Unit - I Vehicle Structure and Engine

Vehicle Structure: Types of Automobiles - Vehicle Construction - Chassis — Types - Frame and Body Types. Engine: Types

Components of Engine – Functions and Materials - Turbo Chargers - Superchargers - Turbo Lag - Introduction to Electronic EngineManagement System.

Unit - II **Fuel Supply Systems and Electrical Systems**

Fuel Supply System: Carburetion and Simple Carburetor - Electronically Controlled Gasoline Fuel Injection System – Monopoint and Multi Point Fuel Injection Systems (MPFI) - Gasoline Direct Injection (GDI) - Fuel Stratified Injection (FSI). Diesel Engine Fuel Supply System – Types - Electronically Controlled Diesel Fuel Injection System – Common Rail Direct Injection (CRDI). Electrical Systems: General Layout of Electrical System – Different Sub Circuits - Lighting System.

Unit – III **Transmission Systems**

Transmission Systems: Clutch – Types and Construction - Gear Boxes – Types - Manual and Automatic - Selector Mechanism -OverDrives – Transfer Box - Fluid Flywheel - Torque Converter – Propeller Shaft – Slip Joint – Universal Joints – Differential Unit -Rear Axle

Hotchkiss Drive - Torque Tube Drive.

Steering, Brakes and Suspension Systems Unit – IV

Steering: Wheels and Tyres – Wheel Alignment Parameters - Types of Front Axle - Steering Geometry and Mechanism - Steering Gear Box and Types – Power Steering. Brakes: Types - Hydraulic and Pneumatic Braking Systems - Construction and Working Antilock Braking System - Single Channel - Dual Channel — Electronic Brake force Distribution (EBD). Suspension Systems: Types — Independent Suspension Systems.

Unit - V **Electric Vehicles, Emission Control and Safety**

Electric Vehicles: Hybrid Vehicles - Electric Vehicles - Solar Powered Vehicles - Fuel Cells - Construction and Operation of Lead Acid Battery - Starting Motor and Drives.

Emission Control: Global Standards - Indian Pollution Norms for Petrol & Diesel Vehicles.

Safety: Safety Measures in Automobiles – Airbag – Passenger Safety – Vehicle Safety.

Total: 45

9

9

9

9

TEXT BOOK:

1. Dr.Kirpal Singh, "Automobile Engineering", 14th Edition, Volume I&II, Standard Publishers Distributor, New Delhi, 2018.

1.	Crouse William H. and Anglin Donald L., "Automotive Mechanism", 10th Edition, Tata McGraw-Hill, New Delhi, 2017.	
2.	Rajput R.K., "A Text book of Automobile Engineering", 2 nd Edition, Laxmi Publication, New Delhi, 2017.	

COUR On cor	COURSE OUTCOMES: On completion of the course, the students will be able to							
CO1	recognize the various automobile components, engine parts and engine management system	Understanding(K2)						
CO2	describe the fuel supply systems and electrical systems in automobiles.	Applying(K3)						
CO3	demonstrate the working of transmission system and its various elements	Applying(K3)						
CO4	illustrate the working of suspension, steering and braking systems.	Applying(K3)						
CO5	comprehend the pollution norms and safety measures and also illustrate the working of electric vehicles.	Applying (K3)						

					Марр	ing of C	COs witl	n POs a	nd PSO	s				
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3				3								3
CO2	3	3				3								3
CO3	3	3				3								3
CO4	3	3				3								3
CO5	3	3				3								3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	50	10				100
CAT2	40	50	10				100
CAT3	40	50	10				100
ESE	40	50	10				100

20MEE04 - CLIMATE CHANGE AND NEW ENERGY TECHNOLOGY

Programm Branch	e &	B.E. Mechanical Engineering	. Mechanical Engineering Sem. Category L					
Prerequisi	rerequisites Thermal Engineering 5 PE 3 0							3
Preamble	This cours technologi	se provides an overview on global and national climate on es for sustainable development are also covered in this court	change se.	e implications. I	n additi	on, the	future	energy
Unit - I	Climate C	hange						9
Preliminary – Green H ofClimate 0	Preliminary Concepts of Climate Change - International Climate Policy - Causes of Climate Change - Enhanced Greenhouse En- – Green House Gases in Atmosphere - Global Warming - Effects of Global Warming - Climate Change Scenario of India - Im of Climate Change on Agriculture — Forest - Water Resources - Monsoon System of India.						Effect Impact	
Unit – II	Energy Tr	ansition						9
Personal Energy Needs - Personal Carbon Dioxide Balance - Carbon Dioxide Sequestration - Combined Heat and Power Systenergy Transition in Heat Sector - Transport Sector - Electricity Sector - Direct and Indirect Emissions in Energy Sector - Net Emissions - Carbon-free Technology.					System - Net-zero			
Unit – III	Renewab	le Enerav System						9

Unit – III Renewable Energy System

Solar Thermal Systems - Domestic Solar Water Heating — Space Heating - Solar PV Systems - Designing Stand-alone Systems - Designing Grid-connected Systems - Renewable Power Plants - Solar Photovoltaic Power Plants - Concentrating Solar Thermal PowerPlants - Grid-connected Wind Turbines - Geothermal Heat and Power Plants - Biomass Heat and Power Plants.

Unit – IV **Battery Technologies**

Introduction to Batteries – Electrochemical Principles and Reactions - Classification - Primary Batteries - Types - Service Time - Voltage Data - Service Life - Ohmic Load Curve - Effect of Operating Temperature on Service Life - Reserve Batteries - Types -Secondary Batteries – Types - Discharge Curves - Terminal Voltages - Plateau Voltage - Lead Acid Batteries – Construction -Application – Battery Performance Evaluation - Factors Affecting Battery Performance - Advanced Batteries for Electric Vehicles.

Unit – V Energy Storage Technology

Demand for Power Systems - Overview of Energy Storage Technologies - Energy Storage Methods - Thermal - Mechanical -Chemical - Electrochemical - Electrical Storage Systems - Efficiency of Energy Storage systems -Thermal Energy Storage(TES) using Phase Change Materials - Energy Conservation with TES - Planning and Implementation of TES - Environmental impact of TESsystems.

TEXT BOOKS:

Total: 45

9

9

1.	Volker V. Quaschning, "Renewable Energy and Climate Change", 2 nd Edition, Wiley Publications, USA, 2019 for units I.II.III.
2	David Linden and Thomas.B.Reddy, "Hand Book of Batteries and Fuel cells", 3 rd Edition, McGraw Hill Book Company, New York, 2002for units IV,V.
RE	FERENCES:
4	C. N. Tweri and M. K. Chasel "Eurodemontale of Deneurokle Energy Courses" 15t Edition. Alpha Colores International Ltd.

1.	G. N. Tiwari and M. K. Ghosal, "Fundamentals of Renewable Energy Sources", 1 st Edition, Alpha Science International Ltd., Oxford, 2007
2.	Ibrahim Dincer and Marc A. Rosen, "Thermal Energy Storage: Systems and Applications", 2 nd Edition, Wiley Publications, USA,

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India See.

	SE OUTCOMES:	BT Mapped (Highest Level)					
CO1	explain the global and Indian climate change scenario	Applying (K3)					
CO2	illustrate the energy transition mechanism in various sectors.	Applying (K3)					
CO3	O3 design renewable energy systems for heat and power.						
CO4	classify the batteries and explain the performance evaluation methods for primary and secondary batteries	Applying (K3)					
CO5	describe the working of various energy storage systems.	Applying (K3)					

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2				3	3					2		3	
CO2	3	2				3	3					2		3	
CO3	3	2				3	3					2		3	
CO4	3	2			2	3	3					2	2	3	
CO5 3 2 2 3 3 2 2 3															
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy								

igi

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	20	30	50				100								
CAT2	20	30	50				100								
CAT3	20	30	50				100								
ESE	20	30	50				100								

20MEE05 - UNCONVENTIONAL MACHINING PROCESSES

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisite	S	Material Removal Processes Production Technology Laboratory	5	PE	3	0	0	3			
Preamble	This co parame	urse covers the fundamentals of various unconventional ma eters on machining performance in diverse applications.	chining	processes as	well as	the infl	uence	of process			
Unit - I Introduction and Mechanical Energy Based Processes											
Unconventional Machining Processes–Needs–Classifications–Process Selection–Limitations–Advantages. Abrasive Jet Machining (AJM) – Water Jet Machining (WJM) – Abrasive Water Jet Machining (AWJM) - Ultrasonic Machining (USM) - Working Principles –Equipment Used — Process Parameters — MRR — Applications.											
Unit - II	Electri	cal Energy Based Processes						9			
Electric Disch Rate - Electro	arge Ma de / Too	achining (EDM) - Working Principle - Equipment's -Process ol – Power and Control Circuits-Tool Wear – Dielectric – Fl	Param Iushing	eters - Surfac – Wire Cut ED	e Finisl M – Ap	n and I oplicati	Materia ons.	l Removal			
Unit - III	Chemi	cal and Electro-Chemical Energy Based Processes						9			
Chemical Mac ProcessParan Electrical Circ	chining (neters – uit-Proc	CHM) and Electro-Chemical Machining (ECM) - Etchants – I Surface Finish and MRR-Applications- Principles of ECM- ess Parameters-Applications.	Maskan [.] Equipm	t - Techniques ents-Surface F	of App Roughn	lying M ess and	askant d MRR	3 - -			
Unit - IV	Therma	al Energy Based Processes						9			
Laser Beam N –Process Pa	Machinir ramete	ng (LBM) - Plasma Arc Machining (PAM) and Electron Bea r - Beam Control Techniques-MRR — Applications.	m Mach	iining (EBM). I	Principl	es – Eo	quipme	nt –Types			
Unit - V	Hybrid	Processes and Advanced Finishing Processes						9			
Electro Chem Principle – A Finishing (MA Applications.	nical Gri pplicatio F) – Ch	nding (ECG) – Electro Chemical De-burring (ECD) – Sha ons – Limitations. Advanced Finishing Processes: Abra emical Mechanical Polishing (CMP) – Working principle –	ped Tul sive Fl Mecha	be Electrolytic ow Machining nism of mater	Machi (AFM ial rem	ning (S) – Ma oval –	STEM) agnetic Surfac	– Working Abrasive e quality –			

Total: 45

TEXT BOOK:

1. Vijay.K. Jain. "Advanced Machining Processes". 1st Edition Allied Publishers Pvt. Ltd., New Delhi, 2015.

REFERENCES:

1. Pandey P.C. and Shan H.S. "Modern Machining Processes". 1st Edition, Tata McGraw-Hill, New Delhi, 2017.

 Kapil Gupta, N.K.Jain and R.F.Laubscher, "Hybrid Machining Process: Perspectives on machining and finishing", Springer International Publishing, 2016.

COURS On corr	SE OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	present the need of non-traditional machining processes, classify them and recognize the role of mechanical energy in non-traditional machining processes.	Applying (K3)
CO2:	apply the knowledge on machining electrically conductive material through electrical energy in non-traditional machining processes.	Applying (K3)
CO3:	demonstrate the concept of machining the hard material using chemical energy and electrochemical energy.	Applying (K3)
CO4:	illustrate various thermal energy based non-traditional machining processes.	Applying (K3)
CO5:	illustrate the hybrid processes and advanced finishing processes used for various types of applications.	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1	3	1			2	1				2		1	2	3	
CO2	3	1			2	1				2		1	2	3	
CO3	3	1			2	1				2		1	2	3	
CO4	3	1			2	1				2		1	2	3	
CO5	CO5 3 1 2 1 2 1 2 3														
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	20	50	30				100								
CAT2	10	50	40				100								
CAT3	10	50	40				100								
ESE	10	50	40				100								

20MEE06 - DESIGN FOR MANUFACTURE AND ASSEMBLY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Manufacturing Technology Engineering Materials and Metallurgy Material Removal Processes	5	PE	3	0	0	3

Preamble This course provides the essential concepts behind manufacturing and assembly orient design. It also provides design guidelines for machining, casting and injection molding to achieve cost effective design. Unit - I **Tolerance Analysis** 9

Geometric Tolerances – Tolerance Analysis – Worst Case Method – Assembly Limits – Design and Manufacturing Datum -Conversion of Design Datum into Manufacturing Datum – Tolerance Stacks – True Position Theory – Zero True Position Tolerance – Process Capability.

Unit - II Materials Selection and Design for Assembly

Principal Materials – Selection of Materials and Processes – Design – Possible Solutions – Evaluation Method. General Design Principles for Manufacturability – General Design Guidelines for Manual Assembly – Assembly Efficiency – Effects of Part Symmetry -Part Thickness and Weight on Handling Time – Types of Manual Assembly Methods – Design for High Speed Automatic Assembly

And Robot Assembly.

Unit - III Design for Machining

Design Features to Facilities Machining - Single Point and Multipoint Cutting Tools - Choice and Shape of Work Material Accuracy and Surface Finish – Design Recommendations for Turning and Milling Operations: Process Description – Suitable Materials. Guidelines for Machining of Rotational and Non-Rotational Components – Reduction of Machined Area – Design for Clampability -

Design for Accessibility.

Unit – IV **Design for Injection Molding and Powder Metal Processing**

Injection Molding Materials – The Molding Cycle – Molding Systems and Molds – Cycle Time and Mold Cost Estimation – Estimation of Optimum Number of Cavities — Design Guidelines for Injection Molding.

Design for Powder Metal Processing: Introduction to Powder Metal Processing — Materials and Manufacturing Cost — DesignGuidelines for Powder Metal Parts.

Unit - V **Design for Sand and Die Casting**

Sand Casting Alloys – Sand Cores – Design Rules for Sand Castings – Identification of Uneconomical Design – Modifying The

Design. Die Casting Alloys – The Die Casting Cycle – Determination of Number of Cavities and Appropriate Machine Size in DieCasting - Design Principles for Die Casting.

Total: 45

g

9

9

9

TEXT BOOK:

1. Boothroyd G, Dewhurst P & Knight W. A., "Product Design for Manufacture and Assembly", 3rd Edition, CRC Press, USA, 2011.

1.	Peck Harry, "Designing for Manufacture", 1 st Edition, Pitman Publications, London, 1983.
2.	Bralla J.G., "Design for Manufacturability Handbook", 2 nd Edition, McGraw Hill Education, New York, 1999.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the dimensions of components and identify the suitable geometrical tolerances for manufacturing oriented design	Analyzing (K4)
CO2	select suitable materials for components and demonstrate the design considerations for assembly in different applications	Applying (K3)
CO3	provide suitable design recommendations for various machining operations	Understanding (K2)
CO4	analyze the design for injection molded components and demonstrate the design recommendations for powder metal processing	Analyzing (K4)
CO5	identify uneconomical design to modify design for sand and die castings	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	1	1							1	1	3	
CO2	3	2	2									1		3	
CO3	2	2	2									1		3	
CO4	3	2	2									1		3	
CO5	3	2	2									1		3	
1 – Sliaht, 2 –	Moderat	te. 3 – S	Substant	ial. BT-	Bloom's	s Taxon	omv								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	20	40	20	20			100								
CAT2	20	40	20	20			100								
CAT3	20	40	40				100								
ESE	20	40	20	20			100								

20MEE07 - OPERATIONS RESEARCH

Programme a Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisites	Matrices and Differential Equations Multivariable Calculus and Complex Analysis Statistics and Numerical Methods	5	PE	3	0	0	3			
Preamble	This course provides an in-depth insight into the concepts, theories a It also emphasis the role of operation research in planning, con successfully used for optimizing the managerial decisions.	and tech trolling a	nniques of Oper and enhancing	ations F perforn	Researc nance v	h. vhich c	ould be			
Unit - I	Linear Models 9									
Introduction - -Graphical So	ntroduction - Phases of OR Study — Formation of Linear Programming Problem (LPP) - Canonical form of LPP - Solutions to LPP Graphical Solution - Simplex Algorithm - Artificial Variables Technique - Big M Method - Two Phase Method.									
Unit - II	Transportation Problems, Assignment Problems and Sequencing Problems 9									
– Vogels App Assignment F Sequencing F Machine Prob	roximation Method (VAM). Optimality Test – Modified Distribution (M Problems: Mathematical Formulation –Hungarian Algorithm. roblems:1 Jobs N Machine, N Jobs 1 Machine, N Jobs 2 Machine, lems.	1ODI) Te N Jobs	echnique. 3 Machine, N 、	Jobs M	Machine	e and 2	Jobs N			
Unit - III	Network Models and Project Management						9			
Network Mode Project Manag Technique(PE	els: Shortest Route - Minimal Spanning Tree - Maximum Flow Models gement: Construction of Networks-Activity and Event Based Diagram (RT) &Critical Path Method (CPM) Problems — Cost Analysis and	s. ıs –Proç Crashir	ram Evaluatior og of Networks.	n and Re	eview					
Unit - IV	Inventory Models						9			
Types of Inve InventoryMod	ntory – Economic Order Quantity (EOQ) - Deterministic Inventory N lels - Multi Item Deterministic Models - Selective Inventory Contro	/lodels - I Techn	Price Break Pi iques.	roblems	s - Stocł	nastic				
Unit - V	Queuing Models and Replacement Models						9			
Queuing Models: Queuing Systems and Structures - Notations - Parameter - Single Server and Multiserver Models - Poisson Input - Exponential Service - Constant Rate Service - Infinite Population. Replacement Models: Replacement of Items Due to Deterioration With and Without Time Value of Money - Individual and Group Replacement Policy										

Total: 45

TEXT BOOK:

1. Gupta P.K. & Hira D.S., "Operations Research", 7th Edition, S. Chand Publishing, New Delhi, 2014.

1.	Taha & Hamdy A., "Operation Research: An Introduction", 10th Edition, Pearson Education, Chennai, 2017.
2.	Hiller Frederick S., Lieberman Gerald J., Bodhibrata Nag & Preetam Basu, "Introduction to Operations Research", 10 th Edition, McGraw-Hill Education, Bengaluru, 2017.
3.	Vohra N.D., "Quantitative Techniques in Management", 5 th Edition, McGraw Hill Education, Noida, 2017.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	formulate and solve linear programming problems	Applying (K3)
CO2	develop solutions to transportation, assignment and sequencing problems	Applying (K3)
CO3	construct networks and analyze optimality for various applications	Analyzing (K4)
CO4	identify inventory models and solve for optimality	Analyzing (K4)
CO5	assess queuing characteristics and compute the optimum replacement period for capital equipments and items that fail suddenly	Analyzing (K4)

					Марр	ing of C	Os with	n POs ar	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3		1						1		1	2
CO2	3	2	3		1						1		1	2
CO3	3	2	3	2	1						1		1	2
CO4	3	2	3	2	1						1		1	2
CO5	3	2	3	2	1						1		1	2
1 – Sliaht. 2 –	Modera	te. 3 – S	Substant	ial. BT-	Bloom's	s Taxon	omv							

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	30	50				100		
CAT2	20	20	30	30			100		
CAT3	20	20	30	30			100		
ESE	10	20	40	30			100		

20MEE08 - PRODUCTION PLANNING AND CONTROL

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisite	s	NIL	5	PE	3	0	0	3
		""		1				
Preamble	This co product	urse offers insight on various functions and decision making ion activities adopted in industry.	process	involved in pla	anning a	and cor	ntrolling	of
Unit - I	Introdu	iction						9
Definition - C Organization -Economics	Definition – Objectives and Functions of Production Planning and Control – Elements of Production Control – Types of Production – Organization of Production Planning and Control Department – Internal Organization of Department – Break Even Analysis –Economics of a New Design – Aesthetic Aspect.							
Unit - II	Foreca	sting, Product Planning and Process Planning						9
Product Planr Process Plan Batch Produc	Forecasting: Demand Forecasting, Forecasting Techniques. Product Planning: Extending The Original Product Information-Value Analysis-Problems in Lack of Product Planning. Process Planning: Pre Requisite Information Needed for Process Planning - Steps in Process Planning - Quantity Determination in Batch Production-Machine Capacity - Balancing.							
Unit - III	Routin	g and Scheduling						9
Routing: Defin – Difference v -Expediting -	nition – with Loa - Contro	Routing Procedure – Route Sheets – Bill of Material – Factor ding - Scheduling Policies – Techniques - Standard Schedul Illing Aspects.	rs Affec ling Met	ting Routing P hods - Aggreg	rocedui ate Pla	re Sche nning -	duling: Chase	Definition Planning
Unit - IV	Dispate	ching						9
Dispatching a the-Technique	activities es for ali	s – Dispatching procedure – Follow up – definition – Reas gning completion times and due dates – Applications of com	son for o	existence of fu	Inction: Anning	s - Mar and cor	nufactu htrol.	ring lead
Unit - V	Invento	ory Control and Trends in PPC						9
Inventory Co Deterministic – safety stock (JIT) and KAN	Inventory Control: Inventory management – functions of inventories – Purpose of holding stock - Effect of demand on inventories- Deterministic models: Always Better Control (ABC) analysis – Inventory Production Quantity – Economic Order Quantity (EOQ) model – safety stock inventory control systems.Trends in PPC: Enterprises Resource Planning (ERP) - Line of Balance (LOB) – Just in Time (JIT) and KANBAN system.							

Total: 45

TEXT BOOK:

1. Jain K.C. & Agarwal L.N, "Production Planning and Control & Industrial Management", 8th Edition, Khanna Publishers,New Delhi, Reprint 2019.

1.	Upendra Kachru, "Production and Operations Management – Text and Cases", 1 st Edition, Excel Books, New Delhi, 2009.
2.	Norman Gaither G. & Frazier., "Operations Management", 9th Edition, Thomson learning, 2002.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the role of Production Planning and control activities in manufacturing and services.	Understanding (K2)
CO2	demonstrate the sequences of process planning operations for various resources	Applying (K3)
CO3	interpret the flow of product in machineries through scheduling	Applying (K3)
CO4	integrate the product lead time and its related parameters using dispatching technique	Applying (K3)
CO5	employ various inventory management techniques and apply in real manufacturing scenario	Applying (K3)

					Марр	ing of C	Os with	n POs ar	nd PSO	S				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3		3											3
CO2	3	1	3	3										3
CO3	3		3	3										3
CO4	3		3	3										3
CO5	3		3	3										3
1 Slight 2	Clight 2. Moderate 2. Substantial DT Bloom's Townson													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	30	40	30				100		
CAT2	20	30	50				100		
CAT3	20	30	50				100		
ESE	20	30	50				100		

20MEE09 - DESIGN OF TRANSMISSION SYSTEMS

(Use of PSG Data book is permitted for the End Semester Examination)

Programme Branch	mme & B.E. & Mechanical Engineering Sem. Category L										
Prerequisites	S	Strength of Materials, Design of Machine Elements	7	PE	3	0	0	3			
Preamble	Preamble This course imparts the knowledge on design of various transmission devices like belt, chain, rope, gear and gear bo which aid in effective working of mechanical systems. Apart from these, this course give detailed view about design of power screws, lead screw and coupling as per standards.										
Unit - I	Design of Belt, Rope and Chain Drives 9										
Design of Be andPulleys –	Design of Belt, Rope and Chain Drives: Classification of Belt Drives – Selection of Flat Belts and Pulleys – Selection of V Belts ndPulleys – Selection of Wire Ropes and Pulleys – Selection of Transmission Chains and Sprockets										
Unit - II	Design	Design of Spur Gears and Helical Gears 9									
Effects – Fati Strength and Design of He ofTeeth – Fo	gue Stre Wear Co lical Gea orces an	ngth – Factor of Safety – Gear Materials – Module and F onsiderations. ars: Parallel Axis Helical Gears – Pressure Angle in the N Id Stresses — Estimating the Size of the Helical Gears	Face Wi lormal a	idth – Power F Ind Transvers	Rating (e Plane	Calculat – Equi	tions Ba valent	ased on Number			
Unit - III	Design	of Bevel Gears and Worm Gears						9			
Design of Be Estimatingthe Design of We Efficiency –E	vel Gear e Dimen orm Gea stimatin	s: Straight Bevel Gear – Terminology – Tooth Forces and sions of Pair of Straight Bevel Gears. ars: Merits and Demerits – Terminology – Thermal Capa og the Size of the Worm Gear Pair	Stress	es – Equivaler 1aterials – Foi	nt Numb rces an	oer of To d Stres	eeth – ses –				
Unit - IV	Design	of Gear Boxes						9			
Design of Ge MeshGear B	Design of Gear Boxes: Geometric Progression – Standard Step Ratio – Ray Diagram – Kinematic Layouts – Design of Sliding MeshGear Box – Constant Mesh Gear Box – Design of Multi Speed Gear Box										
Unit - V	Design	of Power Screws , Lead screw and Coupling						9			
Design of Pov	Design of Power Screws-Lead Screws-Jack Screw . Design of Rigid and Flexible Couplings .										

Total: 45

TEXT BOOK:

1. Prabhu T. J., "Design of Transmission Elements", 5th Edition, New age International publisher, Chennai, 2019.

Γ	1.	Bhandari V. B., "Design of Machine Elements", 4 th Edition, Tata McGraw-Hill, New Delhi, 2016.							
	2.	Shigley J. E. & Mischke C. R., "Mechanical Engineering Design", 11th Edition, McGraw Hill International Education, New York,							
L		2019.							
L	3.	Norton R. L., "Design of Machinery", 6th Edition, McGraw Hill, New Delhi, 2019.							
٤	ST/	STANDARDS:							
۱.4	1 10	C 1460 , Darta 1 to 2 , 1005 Capra Spur and Haliaal Capra Calculation of Load Cappaity							

- 1. IS 4460 : Parts 1 to 3 : 1995 Gears Spur and Helical Gears Calculation of Load Capacity
- 2. IS 7443 : 2002, Methods of Load Rating of Worm Gears
- 3. IS 15151: 2002, Belt Drives Pulleys and V-Ribbed belts for Industrial applications PH, PJ, PK, PI and PM Profiles : Dimensions
- 4. IS 2122: Part 1: 1973, Code of practice for selection, storage, installation and maintenance of belting for power transmission: Part 1 Flat Belt Drives.
- 5. IS 2122: Part 2: 1991, Code of practice for selection, storage, installation and maintenance of belting for power transmission: Part 2 V-Belt Drives.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)					
CO1	CO1 make proper assumptions and perform analysis and select appropriate belt drives and chain drives						
CO2	CO2 find suitable dimensions of spur and helical gear drives for given application						
CO3	design the bevel gear, worm gear for the suitable loading conditions	Analyzing (K4)					
CO4	draw and analyze the speed calculation of different stages in a gear box	Analyzing (K4)					
CO5	design the power screw, lead screw and coupling with necessary specification	Analyzing (K4)					

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 – Sliaht, 2 –	Modera	te. 3 – S	Substant	ial. BT-	Bloom's	s Taxon	omv							

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating Total % Category* (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % CAT1 15 15 30 100 40 40 CAT2 15 15 30 100 CAT3 15 15 40 30 100 ESE 15 15 40 30 100

20MEE10 - VIBRATION AND NOISE CONTROL

Programme& Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Matrices and Differential Equations Multivariable Calculus and Complex Analysis Dynamics of Machinery, Strength of Materials	7	PE	3	0	0	3

Preamble This course imparts the knowledge on natural frequency of vibration system, vibration measuring instruments and sensors, basics source of noise, measurement of sound and its control.

Unit - I Basics of Vibration and One degree of Freedom System

Introduction, Classification of Vibration: Free and Forced Vibration, Undamped and Damped Vibration, Linear and Non-Linear Vibration, Response of Damped and Undamped Systems Under Harmonic Force, Analysis of Single Degree and Two Degree of Freedom Systems, Torsional Vibration, Determination of Natural Frequencies.

Unit - II Two Degree of Freedom System and Vibration Control

Vibration of Two Degree of Freedom System-Semi Definite System-Forced Vibration of Two Degree of Freedom System.-Spring Coupled and Mass Coupled system Vibration Absorber-Vibration Isolation.

Unit - III Vibration Measurement and Analysis

Vibration Measuring Instruments- Types of Exciters- Types of Sensors. Vibration Test- Free and Forced Vibration Tests. Case Studies. Balancing — Single and Double Plane Balancing. Modal Analysis.

Unit - IV Basics of Noise

Introduction, Amplitude, Frequency, Wavelength and Sound Pressure Level, Addition, Subtraction and Averaging Decibel Levels, Noise Dose Level, Legislation, Measurement and Analysis of Noise, Measurement Environment, Equipment, Frequency Analysis, Tracking Analysis, Sound Quality Analysis.

Unit - V Source of Noise and Control

Methods for Control of Engine Noise, Combustion Noise, Mechanical Noise, Predictive Analysis, Palliative Treatments and Enclosures, Automotive Noise Control Principles, Sound in Enclosures, Sound Energy Absorption, Sound Transmission through Barriers.

Total: 45

9

9

9

9

q

TEXT BOOKS:

1.	Singh V.P. "Mechanical Vibrations". 3rd Edition, Dhanpat Rai & Co. Ltd., New Delhi, 2014 for units I,II,III
2.	Pujara Kewal, "Vibrations and Noise for Engineers", 4th Edition, Dhanpat Rai & Sons, New Delhi, 2018 for units I, IV, V

1.	Rao Singiresu S., "Mechanical Vibrations", 6 th Edition, Pearson Education, New Delhi, 2018.
2.	Rao J.S., and Gupth K., "Introductory Course on Theory and Practice of Mechanical Vibrations", 6 th Edition, New Age International Publishers, New Delhi, 1999.
3.	Ramaurthi, V., "Mechanical Vibration Practice and Noise Control", Narosa Book Distributors Pvt Ltd, New Delhi, 2012.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF On co	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)					
CO1	O1 solve and identify the frequency response of single degree of freedom system						
CO2	CO2 solve and design vibration absorber for the two degrees of freedom system						
CO3	apply and understand the vibration measuring instruments and machine signature	Applying (K3)					
CO4	apply the noise related parameters	Applying (K3)					
CO5	identify and analyze the sources of noise and control	Applying (K3)					

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3			1								3
CO2	3	3	3			1								3
CO3	3	2				1				2				3
CO4	3	2				1				2				3
CO5	3	2				1				2				3
4 Olimba O	Madara	+- 2 6	Vubatani		Dloom'	Tavan	0.0001							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	15	15	40	30			100							
CAT2	15	15	55	15			100							
CAT3	20	30	50				100							
ESE	20	30	50				100							

20MEE11 - PRODUCTION TOOL DESIGN

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Material Removal Processes Production Technology Laboratory	7	PE	3	0	0	3

 Preamble
 This course covers the design principles of cutting tool materials, gauges, dies, jigs and fixtures employed for both conventional and numerically controlled machining processes.

 Unit - I
 Introduction to Tooling and Materials
 9

 Introduction – Design Procedure – Drafting and Design Techniques. Tool Making Practices - Introduction of Tool Materials – Properties – Ferrous Tooling Materials – Cast Iron – Mild or Low Carbon Steel – Non Metallic Tooling Materials – Non Ferrous Tooling Materials - Heat Treatment – Factors Affecting Heat Treatment –Heat Treatment and Tool Design.
 9

 Unit - II
 Design of Cutting Tool
 9

General Considerations of Tool Design – Design of Form Tools – Types of Form Tools – Circular form Tools – Profile Design – Geometrical Method – Analytical Method – Flat form Tool Design – Grinding the form Tool – Profile for a Tapered Surface – Tangential Type of form Tool – Design of Milling Cutter – Types of Milling Cutters – Profile Sharpened – form Relieved Milling Cutters – Design of Profile Sharpened Milling Cutters – Design of form Relieved Milling Cutters – Design of Broach – Gear Cutting Tools – Gear form Cutting Tools – Gear Generation Cutting Tools – Design of Gear Cutting Hob – Gear Shaper Tools - Thread Cutting Tools – Thread Rolling Tools – Design of Thread Cutting Taps - Design of Reamer – Reamer Design – Length – Flutes – RakeAngle and Relief Angle – Grinding of Reamer.

Unit - III Design of Drill Jigs and Fixtures

Principles of Location – Locating Methods and Devices – Principles of Clamping – Drill Jigs – Chip Formation in Drilling – General Considerations in the Design of Drill Jigs – Drill Bushings – Methods of Construction – Drill Jigs and Modern Manufacturing. Fixtures and Economics – Types of Fixtures – Vise Fixtures – Milling Fixtures – Boring Fixtures – Broaching Fixtures – Lathe Fixtures – GrindingFixtures

Unit - IV Design of Gauges and Dies

Introduction to Gauges – Fixed Gauges – Gauge Tolerances – The Selection of Material for Gauges – Indicating Gauges – AutomaticGauges – Gauge Design – Design of Limit Gauges - Types of Die Construction – Die-Design Fundamentals – Blanking and Piercing Die Construction – Pilots – Strippers and Pressure Pads- Presswork Materials – Strip Layout – Short-Run Tooling for Piercing –Bending Dies – Forming Dies – Drawing Operations.

Unit - V Design of Fixtures for Numerically Controlled Machine

The Need for Numerical Control – A Basic Explanation of Numeric Control – Numerical Control Systems in use Today – Fixture Design for Numerically Controlled Machine Tools – Cutting Tools for Numerical Control – Tool Holding Methods for Numerical Control – Automatic Tool Changers and Tool Positioners – Tool Presetting – Introduction – General Explanation of the Brown and Sharp Machine – Tooling for Automatic Screw Machines.

TEXT BOOKS:

Total: 45

g

9

9

1. Donaldson Cyrll, LeCain H. George, Goold V.C., "Tool Design", 4th Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2014 for units I,III,IV,V

2. B J Ranganath ,"Metal Cutting and Tool Design",2nd Edition, Vikas Publishing House Pvt., Ltd., New Delhi,2011 for unit II

REFERENCES:

1. E.J.H. Jones,"Production Engineering Jig and Tool Design", 8th Edition, The Butterworth Group, London, 1972

2. Mikell P. Groover, "Fundamentals of Modern Manufacturing", 4th Edition John Wiley & Sons, Singapore, 2004.

3 N K Mehta, Machine Tool Design and Numerical Control, 3rd Edition, ata McGraw-Hill Publishing Company Ltd., New Delhi, 2012

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	implement the concepts and working principles of latest developments in tool design	Applying (K3)
CO2	determine the various design tool materials	Applying (K3)
CO3	summarize the design and development of drilling jigs and fixtures	Applying (K3)
CO4	design the gauges and select the dies for press working	Applying (K3)
CO5	describe the principles of numerically controlled machine tool	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 – Slight, 2 –	Moderat	te, 3 – S	Substan	tial, BT-	Bloom's	s Taxon	omy	·					·	·

Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy Ľ

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %						
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %							
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	15	40	45				100						
ESE	20	40	40				100						

20MEE12 - MANUFACTURING INFORMATION SYSTEM

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit		
Prerequisite	s	Manufacturing Technology Production Technology Laboratory	7	PE	3	0	0	3		
Preamble The course provides the importance of databases and its application in manufacturing systems. In addition it explores on the organization conversant with order policies, data base terminologies, designing and manufacturing considerations.										
Unit - I	Init - I Introduction to Evolution of Order Policies 9									
Introduction — Goals for Manufacturing-Evolution of Order Policies - from Material Requirement Planning (MRP) to ManufacturingResource Planning (MRP II) - Role of Production Organization - Operation Control.										
Unit - II	Databa	se Concepts						9		
Data Modellir Management	ng for Da System	tabase-Records and Files - Abstraction and Data Integratior (DBMS)-Components of DBMS-Advantages and Disadvantage	n - Thre ges of E	e Level Archite DBMS.	ecture fo	or Data I	Base			
Unit - III	Design	ing of Database						9		
Relationship -Concepts-P	Among I Principles	Entities-Entity Relationship (ER) Diagram-Data Models-Rela s-Keys-Relational Operations-Functional Dependency-Norr	ntional - malizati	Network - Hie on-Query lang	rarchica uages.	al - Rela	ational	Model		
Unit - IV	Manufa	cturing Consideration						9		
The product and its Structure-Inventory and Process Flow-Shop Floor Control-Data Structure and Procedure-Various Models - Order Scheduling Module-Input/Output Analysis Module (IOM) -Stock Status Database-Complete IOM Database.										
Unit - V	Jnit - V Information System for Manufacturing 9									
Parts Oriente Control Syste	Parts Oriented Production Information System – Concepts and Structure-Computerized Production Scheduling-Online Production Control Systems – Computerized Production Management System and Manufacturing Information Systems – Case Study.									

Total: 45

TEXT BOOKS:

Luca G. Sartori., "Manufacturing Information Systems", Addison Wesley Publishing Company, England, 1988 for units I,IV,V
 Date C.J. "An Introduction to Database Systems". 8th Edition, Addison Wesley, United States, 2003 for units II,III

REFERENCES:

1. Orlicky G. "Material Requirements Planning". 3th Edition, McGraw-Hill, New York, 2011.

2. Kerr Roger M. "Knowledge Based Manufacturing Management: Applications of Artificial Intelligence to the EffectiveManagement of Manufacturing Companies". Addison Wesley, Boston, MA, 1991.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the evolution of order practices.	Understanding (K2)
CO2	report the concept of DBMS	Applying (K3)
CO3	illustrate the concept involved in designing of data base.	Applying (K3)
CO4	describe about shop floor control and inventory management in an organization.	Applying (K3)
CO5	describe the concept and parameters involved in computerized production planning and control.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				3								3	3
CO2	3				3								3	3
CO3	3				3								3	3
CO4	3													3
CO5	3				3								2	3
4 015-164 0														

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	15	45	40				100				
CAT2	10	40	50				100				
CAT3	20	35	45				100				
ESE	20	35	45				100				

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

20MEE13 - GAS DYNAMICS AND JET PROPULSION

(Use of Gas Tables are permitted for the End Semester Examination)

Programme& Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics Thermal Engineering	7	PE	3	0	0	3

	This course deals with concepts of compressible huid now in variable and constant area ducts. The principles bei	iinu
e	aircraft and space propulsion systems along with their performance calculations are covered through this course.	

Unit - I Fundamentals of Compressible Flow and Isentropic Flow through Variable Area Ducts

Fundamentals of Compressible Flow: Adiabatic Energy and Momentum Equations for Compressible Fluid Flows - Stagnation State -Critical State - Mach Number - Reference Velocities - Various Regions of Flow - Mach Cone - Mach Angle - Effect of Mach Number on Compressibility. Isentropic Flow through Variable Area Ducts: T-s and h-s Diagrams for Nozzle and Diffuser - Area Ratio as a Function of Mach Number - Mass Flow Rate Through Nozzles and Diffusers.

Unit - II Flow Through Constant Area Ducts

Flow in Constant Area Ducts with Friction - Fanno Curves and Fanno Flow Equation - Variation of Flow Properties - Variation of Mach Number with Duct Length - Flow in Constant Area Ducts with Heat Transfer - Rayleigh Line and Rayleigh Flow Equation - Variation of Flow Properties - Maximum Heat Transfer.

Unit - III Flow Across Shock

Generation of Shock in Shock Tubes - Desirable and Undesirable Effects of Shock -Governing Equations of Normal Shock - Variation of Flow Parameters Across the Normal Shock - Prandtl Meyer Equation - Impossibility of Shock in Subsonic Flows - Strength of Shock Wave - Introduction to Oblique Shock.

Unit - IV Aircraft Propulsion

Types of Jet Engines - Energy Flow through Jet Engines - Study of Turbojet Engine Components — Diffuser — Compressor -Combustion Chamber - Turbine and Exhaust Systems - Performance of Turbo Jet Engines — Thrust - Thrust Power - Propulsive and Overall Efficiencies - Ram Jet and Pulse Jet Engines.

Unit - V Rocket Propulsion

Types of Rocket Engines - Solid Propellant Rocket - Liquid Propellant Rocket and Hybrid Rocket - Thrust Equation - Effective Jet Velocity - Specific Impulse - Rocket Engine Performance - Solid and Liquid Propellants - Comparison of Different Propulsion Systems - Stages of a Rocket during Course of Travel.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Yahya S.M., "Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion", 6th Edition, New AgeInternational Publishers, New Delhi, 2018.

1.	Rathakrishnan E., "Gas Dynamics", 7th Edition, Prentice Hall of India, Delhi, 2020.
2.	Ahmed F. El-Sayed., "Fundamentals of Aircraft and Rocket Propulsion", 1st Edition, Springer, Spain, 2016.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basic terms involved in compressible fluid flow and jet propulsion	Understanding (K2)
CO2	analyze the compressible flow through variable area ducts and report the change in properties	Analyzing (K4)
CO3	examine the flow through constant area ducts and distinguish between Fanno and Rayleigh flows	Analyzing (K4)
CO4	evaluate the flow associated with normal shock and report the variation in properties	Analyzing (K4)
CO5	breakdown the elements of aircraft and rocket propulsion system and calculate the performance parameters of the engines	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	20	35	35			100				
CAT2	10	20	40	30			100				
CAT3	10	20	40	30			100				
ESE	10	20	40	30			100				

20MEE14 - REFRIGERATION AND AIR CONDITIONING

(Use of Approved Refrigeration and Air-Conditioning Data Book is permitted for Examination)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics Thermal Engineering	7	PE	3	0	0	3

Preamble This course imparts knowledge on the working cycles of refrigeration and the processes involved in air-conditioning systems. The method of selection of refrigerants and usage of psychrometric charts are also covered through this course. 9

Unit - I **Review of Fundamentals and Refrigeration Cycles**

Review of Fundamentals: First and Second Laws of Thermodynamics - Heat Engines-Heat Pumps- Refrigeration Systems-COP-Condition for Maximum COP-Ton of Refrigeration. Refrigeration Cycles: Reverse Carnot Cycle -Bell Coleman Cycle- Ejector Refrigeration – Magnetic Refrigeration – Vortex and PulseTube Refrigeration.

Unit - II **Refrigeration Systems**

Vapor Compression Refrigeration Cycle- Superheating-Subcooling-Multistage-Multi Evaporator-Cascade System- Vapour Absorption Refrigeration System –Aqua Ammonia-LiBr Water Systems- COP Estimation of VAR System-Steam Jet Refrigeration-Thermoelectric Refrigeration-Thermionic Refrigeration and its Application.

Unit - III **Refrigerants and System Components**

Refrigerants: Refrigerants-Classification of Refrigerants-Refrigerant Properties- Environmental Impact- Montreal / Kyoto Protocols-Eco Friendly Refrigerants-GWP-ODP. Different Types of Refrigeration Tools-Charging Unit-Recovery Unit-Vacuum Pumps. System Components: Compressor-Types-Performance Characteristics of Reciprocating Compressors-Capacity Control-Types of Evaporators & Condensers and their Functional Aspects-Expansion Devices and their Behavior with Fluctuating Load-Methods of Defrosting.

Unit - IV **Psychrometry and Duct Design**

Psychrometry: Properties of Air-Psychrometric Processes - Sensible Cooling and Heating-Humidification and Dehumidification-Psychrometric Calculations for Simple Air Conditioning System. Duct Design: Dynamic and Frictional Pressure Drop in Ducts-Methods of Duct Design -Fan Total Pressure - Fan Characteristics inDuct Systems — Air Conditioning System Controls.

Unit – V Air Conditioning System

Requirements of Comfort Air Conditioning - Summer-Winter Air Conditioning-Working Principles -Centralized Air Conditioning Systems-Air Handling Unit-Split - Ductable Split-Transport Air Conditioning Systems - Indoor Air Quality-Heating-Cooling Load Calculations-Summer & Winter-Energy Efficiency Ratio (EER) Calculations.

Total: 45

9

9

9

9

TEXT BOOK:

1. Arora C.P., "Refrigeration and Air Conditioning", 4th Edition, Tata McGraw Hill, New Delhi, 2008.

REFERENCES:

1. Prasad Manohar., "Refrigeration and Air Conditioning", 3rd Edition, New Age International Pvt. Ltd, New Delhi, 2014.

2. Roy J. Dossat., "Principles of Refrigeration", 4th Edition, Pearson Education Asia, New Delhi, 2009.

3. Hundy G. F, Trott A. R. & Welch. T.C., "Refrigeration and Air Conditioning", 4th Edition, Butterworth-Heinemann, England, 2008.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze the thermodynamic refrigeration cycles.	Analyzing (K4)
CO2	illustrate the working of refrigeration systems with their practical applications.	Applying (K3)
CO3	illustrate the characteristics of refrigerants and explain the functions of refrigeration system components	Applying (K3)
CO4	perform calculations for psychrometric applications using Psychrometry chart	Applying (K3)
CO5	Calculate the cooling loads for air-conditioning system and also design the air-conditioning system	Applying (K3)

Mapping of COs with POs and PSOs														
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3												1
CO2	3	3												1
CO3	3	3				1	1							1
CO4	3	3												1
CO5	3	3												1
1 - Slight 2 - Moderate 3 - Substantial RT- Bloom's Taxonomy														

Substantial, B1-Bloom's Taxonomy Slight, 2 -Moderate, 3 Ľ

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

20MEE15 - SUPPLY CHAIN MANAGEMENT

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	The course provides insight on the fundamentals, tools and techniques of supply chain and logistic networks					
Unit - I	Introduction					
Role of Logis - Competitive	tics and Supply Chain Management: Scope and Importance- Evolution of Supply Chain - Decision Phases in Supply and Supply Chain Strategies – Drivers of Supply Chain Performance and Obstacles.	Chain				
Unit - II	Supply Chain Network Design	9				
Role of Distr NetworkDist	ibution in Supply Chain — Factors Influencing Distribution Network Design — Design Options for Distribution ibution Network in Practice-Role of Network Design in Supply Chain – Framework for Network Decisions.					
Unit - III	Logistics In Supply Chain	9				
Role of trans Tailoredtrans	portation in supply chain – factors affecting transportations decision – Design option for transportation network – sportation — Routing and scheduling in transportation.					
Unit - IV	Sourcing and Coordination In Supply Chain	9				
Role of source supply chain strategicpart	cing supply chain supplier selection assessment and contracts- Design collaboration - sourcing planning and ana co-ordination - Bull whip effect — Effect of lack of co-ordination in supply chain and obstacles — Building nerships and trust within a supply chain.	lysis -				
Unit - V	Supply chain and Information Technology (IT)	9				
The role IT in management	supply chain- The supply chain IT frame work - Customer Relationship Management – Internal supply chain – supplier relationship management – future of IT in supply chain – E-Business in supply chain.					

Total: 45

TEXT BOOK:

1. Sunil Chopra, Peter Meindl and Karla, "Designing and Supply chain Management, Strategy, Planning and Operation", Pearson Education, 7th Edition2018.

- 1. Simchi Levi Davi, "Designing and Managing the Supply Chain", Tata McGraw Hill Publishing Company Ltd, New Delhi, 3rd edition2019.
- 2. V.V.Sople, "Supply Chain Management, text and cases", Pearson Education South Asia,2012
- 3. Srinivasan, G, "Quantitative Models in Operations and Supply Chain Management", Prentice Hall India Pvt Limited, India, 2018

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	infer the building blocks, functions and drivers of supply chain management	Understand (K2)
CO2	summarize the factors involved in network design	Understand (K2)
CO3	construct the role of logistics in industrial supply chain	Applying (K3)
CO4	interpret the role of coordination in supply chain	Understand (K2)
CO5	contrast the necessity of IT in different cases of supply chain	Applying (K3)

					Марр	ing of C	Os with	n POs ar	nd PSO	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	3		3					1			3	2
CO2	3	2	3		3					1			3	2
CO3	3	2	3		3					1			3	2
CO4	3	2	3		3					1			3	2
CO5	3	2	3		3					1			3	2
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	45	55					100							
CAT2	30	35	35				100							
CAT3	30	35	35				100							
ESE	30	35	35				100							

20MEE16 – LEAN SIX SIGMA

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3

Preamble	This course delivers the implementation concept of lean, six sigma, project selection, process toolsand desig industries.	n tools in
Unit - I	Introduction to Lean and Six Sigma	9
Definition-Pu	rpose, Features of lean, Top seven wastes and Need for lean management. The philosophy of lean management	- Creating
a lean enterp Origin,Conce	prise, Elements of lean, Lean principles, Lean metric and Hidden time traps. Introduction to quality - Definition of a pt and Critical success factors for six sigma.	six sigma,
Unit - II	Integration of Lean and Six Sigma	9
Evolution, sy benefits of L Organizatior	nergy, definition, principles, scope and features of Lean Six Sigma (LSS). Laws of LSS - Elements of LSS - LSS r SS. Initiation - Top management commitment — Infrastructure and deployment planning, Process focus, alstructures. Measures — Rewards and Recognition, Infrastructure tools and Structure of transforming.	nodel and
Unit - III	Project Selection and Team Building	9
Resource an Top down (B Valuestream	d project selection, Selection of black belts, Training of black belts and Champions and Identification of potentia alanced score card) and bottom up approach — Methods of selecting projects - Benefit/effort graph, Process mapp mapping, Predicting and Improving team performance, Nine team roles and Team leadership.	l projects. bing,
Unit - IV	Design Measure Analyze Improve Control (DMAIC) Process and Tools	9
The DMAIC p Lead time/cy voting. Data - run charts.	process - Toll gate reviews. The DMAIC tools - Project definition form and SIPOC diagram. Measure tools-Process rcle time, Cause and effect matrix. Generating and organizing tools- Brainstorming, Nominal group technique a collection and accuracy tools- Check sheet, Gage Repeatability and Reproducibility-Understanding and Eliminating Analyze tools - scatter plots, ANOVA, Regression analysis and Time trap analysis.	mapping, and Multi- variation
Unit - V	Institutionalizing and Design for Six Sigma	9
Institutionaliz Reducing pro (TRIZ), Robu	ing lean six sigma — Improving design velocity, Creating cycle time base line, Valuing projects, Gating the oduct line complexity. Design for lean six sigma -Quality Function Deployment(QFD), Theory of Inventive Proble st Design-Case study presentations.	e projects, em solving

TEXT BOOK:

Total: 45

1. Michael L. George, "Lean Six Sigma", 5th Edition, McGraw-Hill., Europe, 2002.

1.	Salman Taghizadegan, "Essentials of Lean Six Sigma", 4 th Edition Elsevier, 2010.
2.	Matthew John Franchetti, "Lean Six Sigma for Engineers and Managers: With Applied Case Studies", 1 st Edition, CRC Press, 2021.
3.	Erick Jones, "Quality Management for Organizations Using Lean Six Sigma Techniques", 1 st Edition, CRC Press, 2014.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF	RSE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	rephrase the concept of lean six sigma and its significance in industry.	Understanding (K2)
CO2	interpret the various laws of lean six sigma	Understanding (K2)
CO3	construct the concepts of team building	Applying (K3)
CO4	categorize the lean six sigma tools and its importance in industry	Analyzing (K4)
CO5	examine productivity improvement tool through the six sigma principles.	Analyzing (K4)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1	3	3		3	3				3			3	3	3	
CO2	3	3		3	3				3			3	3	3	
CO3	3	3		3	3				3			3	3	3	
CO4	3	3		3	3				3			3	3	3	
CO5	3	3		3	3				3			3	3	3	
1 Clight 2	Modere	+0.2 0	Subatan	LIDT	Ploom'	Tayon	0,0001								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	45	55					100							
CAT2	25	35	40				100							
CAT3	15	20	30	35			100							
ESE	20	20	35	25			100							

20GEE01 - FUNDAMENTALS OF RESEARCH

(Common to All BE/BTech branches)

Programn Branch	ne&	Common to All BE/BTech branches	Sem.	Category	L	Т	Р	Credit					
Prerequis	ites	NIL	7	PE	3	0	0	3					
Preamble	This cours dissemina form using	se familiarize the fundamental concepts/techniques adopte te the process involved in collection, consolidation of publis platest tools.	ed in re shed lite	esearch, proble erature and rev	em forn vriting f	nulatior hem in	n and a aprese	ilso entable					
Unit - I	Introduct	ion to Research						9					
Types and Problem -	d Process Errors in S	of Research - Outcome of Research - Sources of Research electing a Research Problem - Importance of Keywords.	h Proble	em - Character	ristics o	of a Go	od Res	search					
Unit - II Literature Review													
Literature	Collection -	Methods - Analysis - Citation Study - Gap Analysis - Probler	n Formı	ulation Techniq	ues.								
Unit - III	Research Methodology 9												
Appropriat Problem -	e Choice o Interpretati	f Algorithms/Methodologies/Methods - Measurement and Rea on - Research Limitations. Data analysis, Design of Experime	sult Ana ents, Ex	lysis - Investig perimental skil	ation ol Is, Safe	Solutions Solutions for the second se	ons for aborator	Research y.					
Unit - IV	Journals	and Papers						9					
Journals ir of Researd /Research	n Science/E ch Papers n papers.	ngineering - Indexing and Impact factor of Journals. Plagiarie - Original Article/Review Paper/Short Communication/Case	sm and e Study	Research Ethic – Systematic	cs. Inte Approa	llectual ach to I	propert Prepare	y. Types Review					
Unit - V	Reports a	Ind Presentations						9					
How to Wr Sub-Headi PPTs. Res	rite a Repo ings - Foot search Too	rt - Language and Style - Format of Project Report - Title P notes - Tables and Figures - Appendix - Bibliography etc ls.	Page - A · Differe	Abstract - Tabl nt Reference I	e of Co Formate	ontents s. Prese	- Head entation	lings and using					
								Total: 45					

TEXT BOOK:

1. Walliman, Nicholas. "Research Methods: The basics". Routledge, 2017.

REFERENCES:

1. Melville S, Goddard W. "Research Methodology: An Introduction For Science and Engineering Students". Kenwyn: Juta &Co Ltd., 1996.

2. Kumar, Ranjit. "Research Methodology: A step-by-step guide for beginners". SAGE Publications Limited, 2019.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	list the various stages in research and categorize the quality of research problem	Analyzing (K4)
CO2	formulate a research problem from published literature/journal papers	Analyzing (K4)
CO3	select appropriate research method for a defined problem	Applying (K3)
CO4	prepare review / research paper, select suitable journal and submit a paper.	Applying (K3)
CO5	prepare research report and presentation	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	
CO1	2	3	1	3	3			3		3		2	3	3	
CO2	2	3	1	3	3			3		3		2	3	3	
CO3	2	3	1	3	3			3		3		2	3	3	
CO4	2	3	1	3	3			3		3		2	3	3	
CO5	2	3	1	3	3			3		3		2	3	3	
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy								

ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1		40	35	25			100					
CAT2		50	50				100					
CAT3		50	50				100					
ESE		40	40	20			100					

20MEE17 - PIPING DESIGN

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisite	S	Engineering Materials and Metallurgy Strength of Materials	7	PE	3	0	0	3			
Preamble	This co	urse imparts the fundamentals of piping design involving va	arious pi	ping compone	nts and	layout	s with r	espect to			
Unit - I	Introdu	ction to Piping and Classification of Pipes						9			
Introduction to Piping: Evolution of Piping – Piping and Pipeline Codes – ASME B31 Codes – Boiler and Pressure Vessel Codes –ASME B16 Standards – API Standards and Recommended Practices. Classification of Pipes: Process – Line – Structural – Manufacturing Methods.											
Unit - II	Unit - II Piping Materials 9										
Ferrous Pipe Properties –	– Non-l Procure	ferrous Pipe – Fabrication of Steel Pipe – Fabrication of Pip ment	pe Fittir	igs and Comp	onents	– Mecl	hanical				
Unit - III	Pressu	re Design for Piping						9			
Thin Wall App Rating –High	proxima n Pressu	tion – Pipeline Design Equation – Pressure Design of Plant ure Design — Design Pressure — Buckling Pressure	t Piping	– Yield and Bi	urst Pre	essure	– Press	ure			
Unit - IV	Basic I	Piping Components and Equipment						9			
Basic Piping Flanges:Typ Major Valves Piping Equip boiler —Hea	Basic Piping Components: Fittings – Elbows – Weld Tee – Couplings – Reducers – Cap – Flanged Fittings and use of Fittings. Flanges:Types – P-T Ratings – Facings. Major Valves: Types – Operations – Applicability – Gaskets – Bolts and Nuts. Piping Equipment: Horizontal Vessels/Accumulators – Fractionating Columns – Pumps – Heat Exchangers – Re- boiler – Heaters/Boilers – Tanks – Cooling Towers										
Unit - V	Unit - V Piping Layouts and Pipe Ways										
Piping Layou SteelFrames Pipe Ways: T	its: Spa s — Anc ypes –	Piping Layouts: Spacing of Pipe Supports – Design Standards – Selection of Pipe Supports – Design of Support – Design of SteelFrames – Anchorage to Concrete – Layout Rules for Good Practice. Pipe Ways: Types – Trenched Piping – Underground Piping – Subsea Pipelines – Welding of Pipe.									

TEXT BOOKS:

Total: 45

1.	Sahu G. K., "Handbook of Piping Design", 2 nd Edition, New Age International Publishers, New Delhi, 2008 for units I,II,III.	
2.	George A. Antaki, "Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair", Edition, CRC Press, New York, 2003 for units IV,V.	1 st

REFERENCES:

1. Rudomino B., "Steam Power Plant Piping Design", 1st Edition, MIR Publishers, Moscow, 1979.

COUR	SE OUTCOMES:	BT Mapped
On cor	npletion of the course, the students will be able to	(Highest Level)
CO1	identify and apply standard codes during piping practice	Applying (K3)
CO2	choose suitable pipe material for a given application environment	Applying (K3)
CO3	employ an appropriate pipe design for desired working pressure needs	Applying (K3)
CO4	illustrate various pipe fittings and piping equipment used in industries	Applying (K3)
CO5	prepare pipe layouts and explain various pipe ways	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1										3
CO2	3	2	2	1										3
CO3	3	2	2	1										3
CO4	3	2	2	1										3
CO5	3	2	2	1										3
1 – Slight 2 –	Modera	te 3-5	Substant	ial BT-	Bloom's	s Taxon	omv							

Siigni, Z would ale, 5 Substantial, BT-Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	20	40	40				100						
CAT2	20	40	40				100						
CAT3	20	40	40				100						
ESE	20	40	40				100						

20MEE18 - DESIGN OF JIGS, FIXTURES AND PRESS TOOLS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Manufacturing Technology Strength of Materials Design of Machine Elements	7	PE	3	0	0	3

Preamble	eamble This course provides the fundamental aspects of various types of work holding devices and designing of jigs, fixtures, press, strip layouts, dies for industrial applications.										
Unit - I	Introduction to Jigs and Fixture	9									
Tool Design Objectives - Production Devices – Inspection Devices- Materials used in Jigs and Fixtures — Types of Jigs - Types of Fixtures – Mechanical - Pneumatic Actuation - Hydraulic Actuation- Analysis of Clamping Force- Tolerance and Error Analysis.											
Unit - II	Unit - II Jigs 9										
Drill Bushes Jigs-Rack an	Drill Bushes - Different Types of Jigs-Plate Latch- Channel- Box- Post- Angle Plate- Angular Post- Turnover- Pot Jigs Automatic Drill Jigs-Rack and Pinion Operated- Air Operated Jig Components- Design of Jigs.										
Unit - III	Fixtures	9									
General Prin Welding fixtu	ciples - Boring- Lathe- Milling and Broaching Fixtures- Grinding- Planning and Shaping Fixtures Assembly- Inspectio res- Modular Fixtures-Design of Fixtures	n and									
Unit - IV	Press Working Terminologies and Elements of Press	9									
Press Workin Elements of I Pins – Bushe	Press Working Terminology: Presses and Press Accessories-Computation of Capacities and Tonnage Requirements. Elements of Press: Progressive- Combination and Compound- Die Block-Die Shoe- Bolster Plate-Punch Plate – Punch Holder-Guide Pins – Bushes- strippers – Knockouts-Stops – Pilots-Selection of Standard Die sets-Strip Lavout Calculations.										
Unit – V	Unit – V Design of Dies 9										
Design of Pr DieDesign-D	ogressive and Compound Dies — Blanking and Piercing Operations- Bending Dies Design –Forming and Draw Design of Drawing Dies.	ing									

Design Considerations: Forging- Extrusion- Casting-Plastic Dies.

Total: 45

TEXT BOOKS:

1.	Edward G. Hoffman, "Jigs & Fixture Design", 5th Edition, Thomson-Delmar Learning, Singapore, 2004 for units I, II.
2.	Elanchezhian.C., Sunder Selwyn.T., Vijaya Ramnath. B., "Design of Jigs, Fixtures and Press Tools", 1 st Edition, EswarPress,
	Chennai, 2004 for units III,IV ,V.

1.	Donaldson C, George H. Lecain, Joyjeet Ghose, Goold V.C, "Tool Design", 4th Edition, Tata McGraw-Hill, New Delhi, 2010.
2.	Joshi P.H., "Jigs & Fixtures", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2012.
3.	Kempster, "Jigs & Fixtures Design", 5th Edition, Cengage India, Uttar Pradesh, India, 2008.

COURSE OUTCOMES: On completion of the course, the students will be able to												BT Mapped (Highest Level)			
CO1	demonst	rate the	fundame	ntals of	various v	vork hold	ding devi	ces and	analyze	the related	forces		Applying (K3)		
CO2	identify and design the jigs for various components. Analyzing (K4)														
CO3	identify and design the fixtures for various components. Analyzing (K4)														
CO4	demonstrate the function of various parts of dies and design the strip layout for various press Analyzing (K4) works.														
CO5	design and select the various types of dies. Analyzing (K4)														
					Ма	pping of	⁻ COs wi	th POs a	and PSO	s					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2 PSO1	PSO2	
CO1	3	1	1											3	
CO2	2	2	3	2										3	
CO3	2	2	3	2										3	
CO4	2	2	3	2										3	
CO5	2	2	3	2										3	
1 – Slight	., 2 – Mo	derate, 3	– Subst	tantial, E	T- Blooi	n's Taxo	onomy								

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	15	15	40	30			100						
CAT2	15	15	40	30			100						
CAT3	15	15	40	30			100						
ESE	15	15	40	30			100						

20MEE19 - FUELS AND COMBUSTION TECHNOLOGY

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	S	Engineering Thermodynamics	7	PE	3	0	0	3
	1							
Preamble	This co thermo	urse provides an overview of various fuel properties and the dynamics, sources of pollution and their controlling measures	eir comp s.	osition. It also	descril	oes cor	nbustio	n
Unit - I	Fuel Cl	haracteristics						9
Fuels - Types Moisture Det Estimation - F	s and Ch ermination Tue Gas	naracteristics of Fuels - Determination of Properties of Fuels on - Calorific Value - Gross and Net Calorific Values - (Analysis - Orsat Apparatus - Adiabatic Flame Temperature.	s - Fuels Calorim	s Analysis- Pro etry - DuLong'	oximate s Form	and U nula foi	ltimate r Calori	Analysis - fic Value
Unit - II	Solid F	uels and Liquid Fuels						9
Preparation a Liquid Fuels: Testing - Gas	nd Stora Origin of	age of Coal-Coal washing - Briquetting. f Petroleum Fuels-Production -Composition-Petroleum Refini of Liquid Fuels.	ing- Var	ious Grades of	f Petro-	Produc	ts-Prop	erties and
Unit – III	Gaseo	us Fuels						9
Classification	n - Com as - Wat	position and Properties – Fractional Distillation – Gas Ca ter gas — Hydrogen — Acetylene.	alorimet	er- Rich and	Lean N	latural	gases	and LPG
Unit – IV	Stoichi	ometry and Kinetics						9
Stoichiometry Methods. Kin Combustion -	: Mass netics: C Ignition	Basis and Volume Basis - Excess Air Calculation - Fuel ombustion Processes -Stationary Flame - Flameless Comb and Ignition Energy - Spontaneous Combustion - Flame Pro	and Fluoustion · pagation	ue Gas Comp - Submerged (n.	ositions Combus	stion- N	culation lechani	s - Rapid sm of
Unit - V	Air Pol	lution						9
Types- Comb Generated Po	oustion Collution a	Generated Air Pollution - Effects of Air Pollution - Fossil Fuend and Power Plants Generated Pollution and its Control.	el Gene	rated Pollutior	n and it	s Cont	rol - Au	Itomobiles

Total: 45

TEXT BOOK:

1. Samir Sarkar., "Fuels & Combustion", 3rd Edition, CRC Press, India, 2010.

1.	Mishra D.P., "Fundamentals of Combustion", 1 st Edition, PHI Learning Pvt Ltd, India, 2010.
2.	Bhatt B.I, Thakore S.B., "Stoichiometry", 5th Edition, Tata McGraw Hill Education Private Ltd, New Delhi, 2017.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	calculate the fuel properties using standard methods	Applying (K3)
CO2	interpret the composition and their properties of solid & liquid fuels	Applying (K3)
CO3	illustrate the composition of various gaseous fuels & their properties	Applying (K3)
CO4	demonstrate the stoichiometry and kinetics of combustion	Applying (K3)
CO5	recognize the various possible pollutants from fossil fuels and its control methods	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2												3	
CO2	3	2												3	
CO3	3	2												3	
CO4	3	2												3	
CO5	3					1								3	
1 – Slight, 2 –	I – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	40	40				100							
CAT3	20	40	40				100							
ESE	20	50	30				100							

20MEE20 - COMPUTATIONAL FLUID DYNAMICS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fluid Mechanics and Hydraulic Machines, Heat and Mass Transfer	7	PE	3	0	0	3

Preamble This course deals with the application of numerical methods in solving fluid flow and heat transfer problems. Grid generation techniques and turbulence models are covered extensively through this course. 9

Unit - I **Governing Equations and Boundary Conditions**

Governing Equations: Basics of Computational Fluid Dynamics – Governing Equations – Continuity - Momentum and Energy Equations – General Transport Equation. Boundary Conditions: Physical Boundary Conditions – Discretization – Mathematical Behavior of PDEs on CFD – Elliptic - Parabolic - Hyperbolic Equations.

Unit - II **Finite Difference Method**

Finite Difference Method - Taylors Series - Forward - Central - Backward Differences - Explicit Method - Implicit Method Tridiagonal Matrix-Application of the TDMA to Two-Dimensional Problems- ADI Method -Solution Methodology for Parabolic and Elliptic Equations – Errors.

Unit – III **Finite Volume Method**

Finite Volume Formulation for Steady-State – One and Two - Dimensional Diffusion Problems – Parabolic Equations – Explicit Implicit Schemes - Unsteady Heat Conduction on Elliptic and Parabolic Equations - Steady State One-Dimensional Convection and Diffusion problems – Central - Upwind Differencing Schemes- Hybrid - Power-Law - QUICK Schemes – Properties of Discretization Schemes.

Unit – IV Grids

Types of Grid – Grid Generation – Grid Transformation – Calculation of Flow Field Variable – Staggered Grid – Pressure and VelocityCorrection – SIMPLE Algorithm – SIMPLER Algorithm - SIMPLEC Algorithm – PISO Algorithm..

Unit - V **Turbulence Models**

Turbulence – Effect of Turbulence on Time Averaged Navier Stokes Equation – Characteristics of Simple Turbulent Flow – Flat PlateBoundary Layer – Pipe Flow – Turbulence Models – Mixing Length Model – K-ε Models – Reynolds Stress Equation Model -AlgebraicStress Model.

Total: 45

9

9

9

9

TEXT BOOK:

Versteeg H. K. & Malalasekera W., "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", 2ndEdition, 1. Pearson Education Ltd., UK, 2007.

REFERENCES:

Anderson John D., "Computational Fluid Dynamics: Basic with Applications", 1st Edition, Tata McGraw-Hill, India, 2012.

Ghoshdastidar P. S., "Computational Fluid Dynamics and Heat Transfer", 1st Edition, Cengage Learning India Pvt. Ltd., Delhi, 2. 2017.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	derive the governing equations and use the boundary conditions for fluid dynamic problems.	Applying(K3)
CO2	apply finite difference methods to solve the one dimensional and two dimensional problems.	Applying (K3)
CO3	formulate the finite volume equations for convection diffusion problems	Applying(K3)
CO4	perform the grid generation and grid transformation operations and calculate the flow field variables.	Applying (K3)
CO5	recognize the characteristics of turbulence models and apply the models to physical problems.	Applying(K3)

	Mapping of COs with POs and PSOs														
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2										2		2	
CO2	3	3												2	
CO3	3	3	2		2								3	2	
CO4	3	2	2		2								3	2	
CO5	CO5 3 2 2 2 2 1 3 2														
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	40	40				100							
CAT3	20	40	40				100							
ESE	20	40	40				100							

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

20MEE21 - CNC TECHNOLOGY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Material Removal Processes	7	PE	3	0	0	3

Preamble The course focus on Computer Numerical Control (CNC) machines and tools with automation processes in manufacturing industry, considerable improvements in consistency, error free and quality of machine components. 9

Unit - I Basic Concepts of Metal Cutting and CNC Machines

Introduction – Mechanics of Chip Formation-Mechanics of Oblique Cutting - Cutting Forces and Power- Tool Life – Surface Finish-Machinability.

Classification - Construction Details- Structure- Configuration of CNC System - Interfacing - Monitoring - Diagnostics - Machine Data – Compensations for Machine Accuracy – Direct Numerical Control (DNC) Machine – Adaptive Control CNC Systems.

Unit - II **Drives and Controls**

Drive Mechanism- Gearbox- Spindle Drives- Axes Drives - Magnetic Levitation and Linear Motors- Timing Belts and Pulleys- Spindle Bearing – Arrangement and Installation- Slide Ways- Re-Circulating Ball Screws – Backlash Measurement and Compensation- Linear Motion Guide Ways.

Unit - III Part Programming of CNC Machines

Part Program Terminology - G And M Codes – Types of Interpolation- CNC Part Programming – Manual Part Programming (TurningAnd Milling) - Various Programming Techniques – Automatically Programmed Tool (APT) Programming for Various Machines in ISO And FANUC - CAM Packages for CNC Machines.

Unit - IV **Tooling For CNC Machines**

Interchangeable Tooling System – Preset and Qualified Tools – Coolant Feed Tooling System – Modular Fixturing – Quick Change Tooling System – Automatic Head Changers – Tooling Requirements for Turning and Machining Centers – Tool Holders – Tool Assemblies – Tool Magazines – Automatic Tool Changer (ATC) Mechanisms – Automatic Pallet Changer Tool Management-Principles of Location- Clamping and Work Holding Devices.

Unit - V Economics of CNC Machines and Retrofitting

Factors Influencing Selection of CNC Machines – Cost of Operation of CNC Machines – Practical Aspects of Introducing CNC Machines in Industries – Maintenance Features of CNC Machines – Preventive Maintenance- Other Maintenance Requirements-Retrofitting - Necessary for Retrofitting - Advantages.

Total: 45

q

9

9

9

TEXT BOOKS:

Kalpakijan S. and Schmid S.R., "Manufacturing Engineering and Technology", 7th Edition, Pearson Education India, New Delhi, 1. 2018 for unit I

Radhakrishnan P, "Computer Numerical Control Machines", 1st Edition, New Central Book Agency, Kolkata, 2013 for units I,II,III,IV,V

REFERENCES:

1. HMT Limited, "Mechatronics", 1st Edition, Tata McGraw-Hill, New Delhi, 2000.

2. Thyer G.E, "Computer Numeric Control of Machine Tools", 2nd Edition, Butterworth- Heinemann, Burlington, 1991.

Adithan M. and Pabla B.S., "CNC Machines", 3rd Edition, New Age International Pvt. Ltd., New Delhi, 2018. 3.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	estimate the parameters of metal cutting and comprehend the basic components involved in a CNC system	Applying (K3)
CO2	choose the appropriate drives and controls for CNC machines	Understanding (K2)
CO3	develop part programming for various machining process	Applying (K3)
CO4	select various tooling systems and fixtures for CNC machines	Understanding (K2)
CO5	compute operation and maintenance cost of CNC machines	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												PSO2		
CO1	3	3	3							3				3	
CO2	3	3	3							3				3	
CO3	3	3	3							3				3	
CO4	3	3	3							3				3	
CO5	CO5 3 3 3 0 0 0 3 3 3														
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy								

	ASSESSMENT PATTERN - THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	40	30				100						
CAT2	30	30	40				100						
CAT3	30	40	30				100						
ESE	30	30	40				100						

20MEE22 - PRECISION ENGINEERING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Material Removal Processes Metrology and Measurement	7	PE	3	0	0	3

 Preamble
 This course deals with precision manufacturing, micro machining and fundamental design requirements of precision machine tools. It also provides insights on machine surface characteristics and error detection methods.

 Unit - I
 Precision Manufacturing
 9

 Introduction - Need for Precision Manufacturing - Taniguchi Diagram - Four Classes of Achievable Machining Accuracy —

NormalPrecision - High-Precision - Ultra-Precision Processes and Nanotechnology.

Unit - II Precision Machining and Unconventional Micromachining Techniques

Overview of Micro and Nano Machining - Conventional Micro Machining Techniques - Micro-Turning - Micro-Milling - Micro-Grinding - Ultra-Precision Diamond Turning.

Unconventional Micromachining Techniques: Abrasive Jet and Water Jet Micromachining - Ultrasonic Micromachining - Micro Electrical Discharge Machining - Photochemical Machining - Electro Chemical Micromachining - Laser Beam Micromachining - Electron Beam Micromachining - Focused Ion Beam Micromachining.

Unit - III Machine Design For Precision Manufacturing

Philosophy of Precision Machine Design - Ultra-Precision Machine Elements: Guide Ways - Drive Systems - Friction Drive - Linear Motor Drive - Spindle Drive. Bearings: Principle - Construction and Application of Rolling - Hydrodynamic and Hydrostatic Bearings -Aerostatic Bearings - Magnetic Bearings.

Unit - IV Mechanical and Thermal Errors

Sources of Error - Principles of Measurement - Errors Due to Machine Elements – Bearings – Spindles - Kinematic Design -StructuralCompliance – Vibration - Thermal Effects - Environmental Control of Precision Machinery. Error Mapping and Error Budgets.

Unit - V Dimensional Metrology for Micro Machining

Machine Vision - Laser Tracking Systems - Laser Scanners, White Light Interference 3D Microscopes - Focus-Based Optical Metrology- Fringe Projection Method - Measurement of Typical Nano Features. Surface Metrology: 3D Surface Topography – Need - Measurement – Chromatic Confocal Microscopy – Interferometer - Non-Optical Scanning Microscopy – Scanning Electron Microscopes - Scanning Probe Microscopes - Parameters for Characterizing 3D Surface Topography.

Total: 45

9

9

9

q

TEXT BOOKS:

1. Jain V.K., "Micro-manufacturing Processes", 1st Edition, CRC Press, Taylor and Francis Group, 2012 for units I, V

2. David Dornfeld, Dae-Eun Lee, "Precision Manufacturing", 1st Edition, Springer Boston, 2008 for units II, III, IV

REFERENCES:

1. Venktesh V.C., SudinIzman., "Precision Engineering", 2nd Edition, Tata McGraw-Hill, New Delhi, 2007.

2. Jain V.K., "Introduction to Micromachining", 2nd Edition, Narosa Publishers, New Delhi, 2018.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the concepts of precision engineering and machining accuracy	Understanding (K2)
CO2	demonstrate the working principle of different precision machining process.	Applying (K3)
CO3	choose the basic design requirements for the construction of precision machine tools.	Applying (K3)
CO4	identify various errors affecting the accuracy of precision manufacturing	Applying (K3)
CO5	apply a suitable measurement technique to measure and characterize the features of precision machined components.	Applying (K3)

					Марр	ing of C	Os with	n POs ai	nd PSO	s				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3									1				3
CO2	3									1		1		3
CO3	1	2	3							1				2
CO4	1	3	2							1				2
CO5	2	1	3							1				3
1 – Slight, 2 –	– Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	50	25				100					
CAT2	25	25	50				100					
CAT3	25	25	50				100					
ESE	25	30	45				100					

20MEE23 - TOTAL QUALITY MANAGEMENT

Programme & B.E. & Mechanical Engineering Branch		Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

D	This second deals with multiple second Total Quality Managements (TQM) sets sight (
Preamble	assure product quality to the customers. It also deals with the basic and modern quality management tools including standards	ity to J ISO		
Unit - I	Quality Concepts and Principles	9		
Definition of Elements/Prir – Importance	Quality, Dimensions of Quality, Quality Planning, Quality Assurance and Control, Quality Costs With Case Studi nciples of TQM - Historical Review, Leadership-Qualities/Habits, Quality Council, Quality Statements, Strategic Plann - Case Studies, Deming Philosophy, Barriers to TQM Implementation.	dies, ing		
Unit - II	TQM-Principles and Strategies	9		
Customer Sa Motivation - E Trilogy - PD Relationshipl	tisfaction –Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involveme Empowerment - Teams - Recognition and Reward- Performance Appraisal, Continuous Process Improvement –Ju SA Cycle - 5S – Kaizen, Supplier Partnership – Partnering - Sourcing - Supplier Selection - Supplier Rati Development, Performance Measures-Purpose- Methods-Cases.	nt — ran's ing -		
Unit - III Control Charts for Process Control				
Basic Seven Population an Sigma.	Tools of Quality and its Role in Quality Control, Statistical Fundamentals –Measures of Central Tendency and Disper d Sample, Normal Curve, Control Charts for Variables and Attributes - Process Capability- Case Study- Introduction t	sion, o Six		
Unit - IV	TQM-Modern Tools:	9		
New Seven Construction Productive Ma - Case Studie	Tools of Quality, Benchmarking-Need - Types and Process, Quality Function Deployment-House Of Quality (H - Case Studies, Introduction to Taguchi's Robust Design-Quality Loss Function — Design of Experiments (DOE), aintenance (TPM)-Uptime Enhancement, Failure Mode and Effect Analysis(FMEA)-Risk Priority Number (RPN) - Pro- s.	1OQ) Total cess		
Unit - V	Quality Systems	9		
Need For ISC Documentatic Process of Im	D 9000 and Other Quality Systems - ISO 9000 : 2015 Quality System –Elements - Implementation of Quality Syst on - Quality Auditing, Introduction to ISO 14000- IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO 20000 - ISO 2 plementing ISO - Barriers in TQM Implementation.	:em - 2000.		
	Tota	ıl: 45		

1. Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, Urdhwareshe Hemant, UrdhwaresheRashmi. "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

1.	Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.									
2.	James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.									
3	David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8th Edition,									
	Pearson, 2015.									

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the evolution of TQM principles.	Applying (K3)
CO2	illustrate the principles and strategies of TQM	Applying (K3)
CO3	make use of various tools and techniques of quality management	Applying (K3)
CO4	apply various quality tools and techniques in both manufacturing and service industry	Applying (K3)
CO5	explain the concepts of quality management system and ISO.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1				2	2	3	2	2	1	1		3
CO2	1	1				3	2	3	3	3	1	1	2	3
CO3	3	2	2	2	2	2		1	2	2	1	1	1	3
CO4	2	2	2	2	2	2		1	2	2	1	1	2	3
CO5						3	3	2	3	2	1	1		3
1 Clight 2	Modoro	+0.2 0	ubotop	tial DT	Ploom'	Toyon	0,0001							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	45	30				100					
CAT2	20	40	40				100					
CAT3	25	45	30				100					
ESE	20	40	40				100					

20MEE24 - PROJECT MANAGEMENT

Programme a Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisites	5	Nil	7	PE	3	0	0	3			
Preamble	This co provide:	urse provides market analysis, financial analysis and syst s different industrial management techniques for various appl	ems ap	pproach in indu	ustrial c	ase stu	idy pro	jects. It			
Unit - I	Introdu	ction						9			
An Overview – Types - Characteristics of Projects – Project Life Cycle- Identification of Investment Opportunities - Screening and Selection-Project Appraisal.											
Unit - II	Market and Demand Analysis 9										
Market Surve Project Chart	y-Demai s and La	nd Forecasting Methods-Technical Analysis – Manufacturir ayouts.	ng Proc	cess - Material	s-Produ	ict Mix-	Plant L	ocation-			
Unit - III	Fina	ancial Management						9			
Budgeting Tee	chniques	- Net Present Value- Profitability Index Internal Rate of Retu	rn- Pay	back Period- A	ccountir	ng Rate	of Retu	rn.			
Unit - IV	Mat	hematical Techniques for Project Management						9			
Mathematical Techniques for Project evaluation — Linear Programming - Goal Programming - Network Technique for ProjectManagement — CPM - PERT- Multiple Projects and Constraints- Scheduling.											
Unit - V	Project	Implementation						9			
Organization	Systems	for Project Implementation- Work Breakdown-Coordination a	nd Con	trol- Project Ma	nageme	ent Soft	ware.				

Total: 45

TEXT BOOK:

1. Prasanna Chandra, "Projects – Planning, Analysis, Financing, Implementation and Review", 9th Edition, TataMcGraw Hill, New Delhi, 2019.

1.	Choudhury S, "Project Management". 32 nd reprint, Tata McGraw Hill Education Private Limited, India, 2009.
2.	Mike Field & Laurie Keller, "Project Management", 3rd Edition, Thompson Business Press, Washington, 2012.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	discuss the importance of projects in society	Understanding (K2)
CO2	describe the market - demand analysis and Technical analysis of projects	Understanding (K2)
CO3	perform financial analysis of projects	Applying (K3)
CO4	evaluate the project using mathematical tools	Analyzing (K4)
CO5	categorise the different phases of project implementation	Analyzing (K4)

	Mapping of COs with POs and PSOs												
COs/Pos	COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO1	3	3			3			1			3	3	3
CO2	3	3			3						3	3	3
CO3	3	3			3						3	3	3
CO4	3	3			3						3	3	3
CO5	3	2			3						3	3	3
1 _ Slight 2 _	Moders	to 3_9	Substan	tial BT-	. Bloom'	e Tavon	omv						

Substantial, BI-Bloom's Taxonomy Slight, Z moderate, 3

		ASSESSMEN	T PATTERN - 1	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2	25	25	50				100
CAT3	20	20	30	30			100
ESE	20	25	35	20			100

20MEE25 - MECHANICS OF COMPOSITE MATERIALS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Mechanics Engineering Materials and Metallurgy Strength of Materials	7	PE	3	0	0	3

Preamble This course involves the basic concept, manufacturing, characterization and design of composite materials for various static and dynamic applications.

Unit - I Basics of Fibers, Matrices and Composites

Basics of Fibers: Definition – Need – General Characteristics and Applications.

Fibers: Glass- Carbon- Ceramic-Aramid-Polymer and Natural Fibers.

Matrices: Polymer- Ceramic and Metal Matrices — Characteristics of Fibers and Matrices- Fiber Surface Treatments- Fillers and Additives.

Unit - II Composite Manufacturing

Hand Layup – Spray up - Bag Molding – Compression Molding – Pultrusion – Filament Winding –Resin Film Infusion - Elastic ReservoirMolding - Tube Rolling – Quality Inspection Methods- Processing of Metal Matrix Composites (MMC) – Diffusion Bonding – Stir Casting – Squeeze Casting and Powder Metallurgy Technique.

Unit - III Composite Performance and Analysis

Static Mechanical Properties – Dynamics Mechanical Analysis–Thermogravimetric Analysis- Fatigue and Impact Properties – Environmental Effects – Long Term Properties -Service Life Predication- Fracture Behavior and Damage Tolerance.

Unit - IV Composite Mechanics

Fiber Content - Density and Void Content- Rule of Mixture -Volume and Mass Fractions - Evaluation of Four Elastic Moduli Based on Strength of Materials Approach and Semi-Empirical Model-Longitudinal Young's Modulus-Transverse Young's Modulus–Major Poisson's Ratio-in-Plane Shear Modulus- Ultimate Strengths of a Unidirectional Lamina- Characteristics of Fiber-Reinforced Lamina– Laminates–Lamination Theory.

Unit - V Design of Composites

Failure Predictions - Theories of Failure - Laminate Design Consideration - Design Criteria - Design Allowable - Design Guidelines -Joint Design-Bolted and Bonded Joints - Design Examples-Design of a Tension Member — Design of a Compression Member – Design of a Beam-Design of a Torsional Member - Application of Finite Element Method (FEM) for Design and Analysis of Laminated Composites.

Total: 45

9

q

q

9

9

TEXT BOOK:

1. Mallick P.K., "Fiber Reinforced Composites: Materials, Manufacturing and Design", 3rd Edition, CRC Press Taylor and Francis, New York, 2007.

REFERENCES:

2. Bhagwan D. Agarwal, Lawrence J. Broutman & Chandrashekhar K., "Analysis and Performance of Fiber Composites", 4th Edition, John Wiley & Sons, New York, 2017.

COUR On cor	COURSE OUTCOMES: Dn completion of the course, the students will be able to						
CO1	demonstrate the fundamentals of fibers, matrices, additives and composites	Applying (K3)					
CO2	describe the various manufacturing processes involved in the fabrication of composite material.	Applying (K3)					
CO3	evaluate the performance of composite materials.	Applying (K3)					
CO4	calculate the physio-mechanical properties of composite materials.	Applying (K3)					
CO5	design appropriate fiber reinforced composites for suitable applications.	Applying (K3)					

					Марр	ing of C	Os with	n POs ar	nd PSO	S				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											1	3
CO2	3	3											1	3
CO3	3	3	3										1	3
CO4	3	3	3	2									1	3
CO5	3	3	3	2									1	3
1_Slight 2_	Modera	to 3_9	Substant	ial RT-	Bloom'	e Tavon	omv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMEN	T PATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	50				100
CAT2	20	30	50				100
CAT3	20	30	50				100
ESE	20	30	50				100

20MEE26 - ADVANCED MECHANICS OF MATERIALS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Mechanics Strength of Materials	7	PE	3	0	0	3

Preamble	This course imparts the knowledge on three-dimensional theory of elasticity, stress and strain interactions compatibility equations shear center calculation, unsymmetrical section bending stresses, stress analysis on o	s, and curved
	beams, the torsion on non-circular members, and membrane stresses in shells, rotating disc and the beam on foundation.	elastic
Unit - I	Theory of Elasticity	9
Theory of Str Elastic Const Conditions - Plane Strain	resses- Infinitesimal and Finite Strains - Strain-Displacement Relationships- Compatibility - Stress-Strain Relation tants - Stress and Displacement Functions- Plane Stress Problems in Cartesian and Polar Coordinates- Bou Representations of Three - Dimensional Stress of a Tension-Generalized Hooke's Law - St.Vennant's Prince - Plane Stress - Airy's Stress Function.	onship- undary ciple —
Unit - II	Shear Centre	9
Location of SI Unsymmetrica	hear Center for Various Sections – Shear Flow. al Bending: Stresses and Deflection in Beams Subjected to Unsymmetrical Loading – Kern of a Section.	
Unit - III	Stresses on Curved Beams	9
Curved Flexu	ural Members - Analysis of Stresses in Beams with Large Curvature – Stress Distribution in Curved Beams – Stre ks and C Clamps - Closed Ring Subjected to Concentrated Load and Uniform Load – Chain Link.	esses
Unit – IV	Stresses Due to Rotation	9
Stresses Du —Allowable S	e to Rotation — Radial and Tangential Stresses in Solid Disc and Ring of Uniform Thickness and Varying Thick Speed.	kness
Unit – V	Beams on Elastic Foundation	9
Infinite Bean –Triangular L	n Subjected to Concentrated Load – Boundary Conditions – Infinite Beam Subjected to a Distributed Load Second S oad - Semi Infinite Beam Subjected to Loads at the Ends and Concentrated Load near the Ends – Short Beams.	gment

Total: 45

TEXT BOOKS:

1.	Sadhu Singh, "Applied Stress Analysis", 19th Edition, Khanna Publishers, New Delhi, 2009 for unit I
2.	Rattan S.S., "Strength of Materials", 3rd Edition, McGraw Hill Education, New York, 2017 for units II,III,IV,V
RE	FERENCES:
1.	Timoshenko S.P., "Strength of Materials", 3 rd Edition, CBS Publishers, New Delhi, 2002.
2.	Timoshenko S.P. & Goodier J.N., "Theory of Elasticity", 3rd Edition, McGraw Hill Education, New York, 2017.
3.	Raiput R. K., "Strength of Materials", 6th Edition, S. Chand & Co. New Delhi, 2014.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	calculate the stress and strain at a point in a three dimensional mode.	Applying (K3)
CO2	calculate analytically the shear centre and stresses in unsymmetrical bending.	Applying (K3)
CO3	determine the stresses and deflections on Curved beams	Applying (K3)
CO4	solve the stresses due to rotation	Applying (K3)
CO5	apply the stresses in beams under elastic foundation	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3												3
CO2	3	3		3										3
CO3	3	3		3										3
CO4	3	3		3										3
CO5	3	3		3										3
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	30	50				100							
CAT2	20	30	50				100							
CAT3	20	30	50				100							
ESE	20	30	50				100							

20MEE27 - TURBOMACHINES

Programme & Branch	B.E. Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Thermal Engineering	7	PE	3	0	0	3

Preamble	This course provides the knowledge on the energy transfer principles of centrifugal fans, blowers, centrifugal & axial flow compressors and axial & radial flow turbines. Efficiency calculations for the rotating machineries based on velocity triangles are also covered.												
Unit - I	Principles	9											
Energy Transfer between Fluid and Rotor-Classification of Fluid Machinery-Dimensionless Parameters-Specific Speed – Applications-Stage Velocity Triangles-Work and Efficiency. Image: Specific Speed - Applications-Stage Velocity Triangles-Work and Efficiency. Image: Specific Spec													
Unit - II	Centrifugal Fans and Blowers	9											
Types- Stage and Design Parameters-Flow Analysis in Impeller Blades-Volute and Diffusers – Losses - Characteristic Curves and Selection - Fan Drives and Fan Noise.													
Unit - III	Centrifugal Compressor	9											
Construction Performance	Details - Impeller Flow Losses - Slip Factor - Diffuser Analysis - Losses	and											
Unit - IV	Axial Flow Compressor	9											
Stage Veloc DesignProb	ity Diagrams — Enthalpy - Entropy Diagrams - Stage Losses and Efficiency –Work done - Simple Stage lems and Performance Characteristics.												
Unit - V	Axial and Radial Flow Turbines	9											
Stage Veloc Characteristi	ity Diagrams - Reaction Stages - Losses and Coefficients - Blade Design Principles - Testing and Performics.	ance											

Total:45

TEXT BOOK:

1. Yahya S. M., "Turbines, Compressors and Fans", 4th Edition, Tata McGraw- Hill, New Delhi,2017.

1.	Seppo A. Korpela "Principles of Turbomachinery", 2 nd Edition, John Wiley& Sons, USA, 2019.
2.	Erick Dick, "Fundamentals of Turbomachines", 1 st Edition, Springer, Netherlands, 2015.

COURSE On compl	OUTCOMES: etion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basic principles and classification of turbo machinery	Understanding (K2)
CO2	illustrate the principles and applications of the centrifugal Fans and Blowers	Applying (K3)
CO3	Illustrate the construction details of centrifugal compressor	Applying (K3)
CO4	elaborate the principles and applications of the axial flow compressor	Applying (K3)
CO5	explain the principles and applications of the axial and radial flow turbines	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy							

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	10	40	50				100							
CAT2	10	40	50				100							
CAT3	10	40	50				100							
ESE	10	40	50				100							

20MEE28 - DESIGN OF HEAT EXCHANGERS

(Use of Design of Heat Exchanger Data Book is permitted for the End Semester Examination)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics, Fluid Mechanics and Hydraulic Machines, Heat and Mass Transfer	7	PE	3	0	0	3

Preamble The course provides the fundamental aspects on designing different types of heat exchangers. The global standards and factors to be considered in the design process of heat exchangers are covered extensively.

Unit – I Fundamentals of Heat Exchangers

Introduction - Types - Application - Overall Heat Transfer Coefficient –Fouling - Effect of Fouling on Heat Transfer - Fouling Factor -Techniques to Control Fouling - Logarithmic Mean Temperature Difference (LMTD) Method - Effectiveness-Number of Transfer Units (NTU) Method of Heat Exchanger Analysis - Selection of Heat Exchangers.

Unit – II Design of Double Pipe Heat Exchangers

Introduction - Thermal and Hydraulic Design of Inner Tube and Annulus - Hairpin Heat Exchanger with Bare and Multi Tube Finned Inner Tube - Parallel-Series Arrangements of Hairpins - Total Pressure Drop.

Unit – III Design of Shell and Tube Heat Exchangers

Introduction - Basic Components - Classification - Basic Design Procedure - Tubular Exchanger Manufacturers Association (TEMA) Code - Heat Transfer and Pressure Drop Analysis on Shell Side and Tube Side - Bell Delaware Method.

Unit – IV Design of Compact Heat Exchangers

Introduction - Heat Transfer Enhancement - Plate Fin Heat Exchangers - Tube Fin Heat Exchangers - Heat Transfer and Pressure Drop Analysis of Finned Tube and Plate Fin Heat Exchangers.

Unit – V Design of Condensers and Evaporators

Introduction - Classification - Thermal Design of Shell and Tube Condensers - Thermal Analysis of Evaporators - Condensers and Evaporators for Refrigeration and Air Conditioning - Standards for Condensers and Evaporators.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Sadik Kakac, Hongtan Liu & Anchasa Pramuanjaroenkij., "Heat Exchangers: Selection, Rating, and Thermal Design",4th Edition, CRC Press, USA, 2020.

REFERENCES:

1. Kuppan Thulukkanam, "Heat Exchanger Design Handbook", 2nd Edition, CRC Press, USA, 2013.

2. Ramesh K. Shah, Dusan P. Sekulic., "Fundamentals of Heat Exchanger Design", 1st Edition, John Wiley & Sons Inc, USA, 2003.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the basic methodologies of different types of heat exchangers.	Applying (K3)
CO2	design and analyze the thermal performance of double pipe heat exchangers.	Analyzing (K4)
CO3	design and analyze the thermal performance of shell and tube heat exchangers.	Analyzing (K4)
CO4	design and analyze the thermal performance of compact heat exchangers.	Analyzing (K4)
CO5	design and analyze the thermal performance of condensers and evaporators.	Analyzing (K4)

Mapping of COs with POs and PSOs														
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3												3
CO2	3	3	3											3
CO3	3	3	3											3
CO4	3	3	3											3
CO5	3	3	3											3
1 – Slight, 2 –	Modera	ate, 3 – 8	Substan	tial, BT-	Bloom'	s Taxor	omy							

Sec.

	ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	15	30	30	25			100	
CAT2	5	15	40	40			100	
CAT3	5	15	40	40			100	
ESE	10	10	40	40			100	

20MEE29 - ADDITIVE MANUFACTURING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Manufacturing Technology Engineering Materials and Metallurgy	7	PE	3	0	0	3

Preamble This course provides scientific as well as technological aspects of various additive and formative rapid manufacturing processes for mass customization.

Unit - I Introduction to Additive Manufacturing

Evolution - Fundamental Fabrication Processes - CAD for RPT - Product Design and Rapid Product Development - Need for Time Compression in Product Development - Conceptual Design - Detail Design - Prototype Fundamentals - Fundamentals of Rapid Prototype (RP) Systems — RP Process Chain - 3D Modeling - 3D Solid Modeling Software and their Role in RPT - Data Format - STL files- History of RP Systems - Classification of RP Systems - Benefits of RPT.

Unit - II Liquid based RP systems

Stereo Lithography Apparatus (SLA) - Principle, Photo Polymers - Post Processes - Process Parameters - Machine Details -Advantages. Solid Ground Curing (SGC) - Principle - Process Parameters - Process Details - Machine Details - Limitations. Solid Creation System (SCS) - Principle - Process Parameters - Process Details - Machine Details - Applications.

Unit - III Solid based RP systems

Fusion Deposition Modeling (FDM) - Principle - Raw materials - BASS - Water Soluble Support System - Process Parameters -Machine Details - Advantages and Limitations. Laminated Object Manufacturing (LOM) - Principle - Process Parameters - Process Details - Advantages and Limitations - Solid Deposition Manufacturing (SDM) - Principle - Process Parameters - Process Details -Machine Details - Applications.

Unit - IV Powder based RP systems

Selective Laser Sintering (SLS) - Principle - Process Parameters - Process Details - Machine Details - Advantages and Applications. 3-Dimensional Printers (3DP) - Principle - Process Parameters - Process Details - Machine Details - Advantages and Limitations - Laser Engineered Net Shaping (LENS) - Principle - Process details - Advantages and Applications.

Unit - V Rapid Tooling and Applications of RP

Design for Additive Manufacturing, Rapid Tooling - Direct Rapid Tooling - Indirect Rapid Tooling - Soft Tooling and Hard Tooling. Applications of RP in Product design - Automotive Industry and Medical Field - Conversion of CT/MRI Scan Data - Customized Implant - Case Studies -Reverse Engineering.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Chua.C.K., Leong K.F. & Lim C.S., "Rapid Prototyping: Principles and Applications", World Scientific, NewJersy, 2010.

1.	Pham D.T. and Dimov S.S., "Rapid Manufacturing", Springer -Verlag, London, 2011.
2.	Amitabha Ghosh., "Rapid Manufacturing a brief Introduction", Affiliated East West Press, New Delhi, 2011.
3.	Dr. Sabrie Soloman, "3D Printing and Design", 1 st Edition, Khanna Publishing House, Delhi, 2020

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COLIDEE		MEC.											DT Mar	
COURSE						.1							BIWap	pea
On comp	In completion of the course, the students will be able to (highest Level)													
CO1	apply the concepts of rapid prototyping in product design and development. Applying (K3)													
CO2	select th	e suitabl	e liquid b	based ra	pid proto	otyping s	ystem fo	or a spec	ific appli	cation.			Applying	J (K3)
CO3	identify t	he suitat	ole solid	based ra	apid prot	otyping :	system f	or a spe	cific appl	ication.			Applying	J (K3)
CO4	choose t	he suital	ole powd	ler based	d rapid p	rototypir	ng syster	m for a s	pecific a	pplication.			Applying	յ (K3)
CO5	apply the	e concep	ts of rap	id protot	yping in	product	design a	and deve	lopment	•			Applying	J (K3)
					Ма	pping o	f COs w	vith POs	and PS	Os				
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	2	2						2	2	2	2
CO2	2	3	1	2	2						2	2	2	2
CO3	2	3	1	2	2						2	2	2	2
CO4	2	3	1	2	2						2	2	2	2
CO5	2	3	1	2	2						2	2	2	2
1 – Slight	t, 2 – Mo	derate, 3	3 – Subs	tantial, E	3T- Bloc	m's Tax	onomy							

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	30	40	30				100
CAT3	20	45	35				100
ESE	30	40	30				100

20MEE30 - WELDING TECHNOLOGY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Manufacturing Technology Engineering Materials and Metallurgy	7	PE	3	0	0	3

Preamble This course provides the knowledge on various advanced welding processes, welded joint designs and testing of weldment.

Unit - I Welding Principles, Gas and Arc Welding Processes

Classifications of Welding Processes – Power Sources –Arc Characteristics – V-I Characteristics – Metal Transfer Modes – Electrodes and Fluxes – Types of Weld Joints –Weld Position – Gas Welding: Oxy-Acetylene Welding – Oxy-Hydrogen Welding – Arc Welding: Shielded Metal Arc Welding – Submerged Arc Welding – Gas Tungsten Arc Welding – Gas Metal Arc Welding – Plasma Arc Welding – Electro Slag Welding – Electro-Gas Welding Process – Advantages – Limitations and its Applications.

Unit - II Resistance Welding Processes

Spot Welding – Seam Welding – Projection Welding – Resistance Butt Welding – Flash Butt Welding – Percussion Welding – High Frequency Resistance Welding Process – High Frequency Induction Welding Process – Advantages – Limitations and its Applications.

Unit - III Solid State Welding Processes

Forge Welding – Friction Welding – Friction Stir Welding - Explosive Welding – Ultrasonic Welding –Cold Welding – Diffusion Bonding –Roll Welding – Hot Pressure Welding Processes – Advantages -– Limitations and its Applications.

Unit - IV Special Welding Processes and Design of Weld Joints

Thermit Welding – Atomic Hydrogen Welding –Electron Beam Welding – Laser Beam Welding – Under Water Welding – Welding Symbols – Welding Dimension – Design of Various Welded Joints: Weldability of Aluminium, Copper, Cast Iron and Stainless Steels.

Unit - V Testing of Weldments, Codes & Standards and Welding Automation

Destructive Tests: Tensile Test – Ductility Test – Toughness Test – Fatigue Test – Non-Destructive Test: Visual Inspection – Liquid Penetrant Test –Magnetic Particle Test – Radiographic Test – Ultrasonic Testing of Weldments. **Codes and Standards:** Introduction to Codes and Standards – Welding and Welder Qualification – Procedure Qualification Record

–Welding Procedure Specification – Welder Performance Qualification – Welding Automation in Aerospace, Nuclear and Surface Transport Vehicles.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. David Phillips. H, "Welding Engineering: An Introduction", 1st Edition, John Wiley & Sons, Ltd., United States, 2016.

1.	Parmer R.S., "Welding Engineering and Technology", 3 rd Edition, Khanna Publishers, New Delhi, 2015.
3.	Nadkarni S.V., "Modern Arc Welding Technology", 1 st Edition, Oxford IBH Publishers, New Delhi, 2014.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the working principle of welding process and selecting parameters for the given applications.	Understanding (K2)
CO2	demonstrate the basic concepts of different resistance welding process and select an appropriate technique for industrial requirement.	Understanding (K2)
CO3	demonstrate the basic concepts of various solid state welding processes and apply appropriate technique based on specified applications.	Applying (K3)
CO4	illustrate the need for special welding techniques and apply these principle on different materials.	Applying (K3)
CO5	select weld codes, standards and procedure to examine the weldment for industrial application.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		1										3
CO2	3	3												3
CO3	3	3												3
CO4	3	3												3
CO5	3	3	1		1								2	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	20	60	20				100
CAT3	20	40	40				100
ESE	30	40	30				100

20MEE31 - QUALITY CONTROL AND RELIABILITY ENGINEERING

Programme a Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	5	NIL	7	PE	3	0	0	3
Preamble	Preamble The course deals with basic concepts of quality, various tools and techniques involved in improving the custome satisfaction of the product. It also deals concepts of reliability and testing procedure of product							
Unit - I	Introdu	ction						9
Definition of C Assurance-Qu	Quality - I Jality Co	Basic Concept of Quality - Definition of Statistical Quality Cor ntrol Quality Cost-Variation in Process- Causes of Variation-	ntrol (S0 Six Sigi	QC) - Benefits a ma Concepts.	and Lim	itation o	f SQC-	Quality
Unit - II	Proces	s Control for Variables and Attributes						9
Theory of Co Capability —F Chart - np Ch	ntrol Ch Process hart – C a	art- Uses of Control Chart — Control Chart for Variables – Capability Studies and Simple Problems- Control Chart for A and U charts - State of Control and Process Out of Control Id	– X cha Attribute lentifica	rt - R chart an s –Control Cha tion in charts -	d σ cha art for N Pattern	art -Proc Ion Con Study.	cess formitie	s– p
Unit - III	Accept	ance Sampling						9
Lot-by-Lot Sa Producer's Ri Quality Limit	ampling sk and ((AOQL)	 Types — Probability of Acceptance in Single - Double Consumer's Risk. (Acceptable Quality Limit) AQL - Lot Tole Concepts-Standard Sampling Plans for AQL and LTPD - U 	- Multip rance P ses of \$	ble Sampling T Percent Defectiv Standard Samp	echniqu /e (LTP pling Pla	ues — (D) - Ave ans.	D.C. Cu erage C	urves — Jutgoing
Unit - IV	Reliabil	ity Engineering						9
Life Testing – Rate – Weibu Availability –	Life Testing – Objective – Failure Data Analysis- Mean Failure Rate- Mean Time to Failure- Mean Time Between Failure- Hazard Rate – Weibull Model- System Reliability Series - Parallel and Mixed Configuration – Simple Problems. Maintainability and Availability –Simple Problems- Acceptance Sampling Based on Reliability Test – Operating Characteristic (O.C) Curves.						ard d	
Unit - V	Reliabil	ity Improvements						9
Reliability Imp –Optimization	Reliability Improvements Techniques- Use of Pareto Analysis – Design for Reliability – Redundancy Unit and Standby Redundancy - Optimization in Reliability – Product Design – Product Analysis – Product Development – Product Life Cycles.							

Total: 45

TEXT BOOKS:

Douglas.C. Montgomery, "Introduction to Statistical Quality Control", 8th Edition, John Wiley, United States, 2019 for units I,II,III,IV
 Srinath L.S, "Reliability Engineering", 4th Edition, Affiliated East West Press, 2005 for unit V

1.	Robert James Oakland, John S Oakland, "Statistical Process Control", 7th Edition, Taylor & Francis, 2018.
2.	Patrick O'Connor and Andre Kleyner, "Practical Reliability Engineering", 5th Edition, Wiley, 2011.
3.	Eugene Grant, Richard Leavenworth "Statistical Quality Control", 7th Edition, McGraw-Hill, 2017.

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret basics concepts of quality and variation in process	Understanding (K2)
CO2	distinguish and plot the different types of control charts for variables and attributes	Analyzing (K4)
CO3	identify the consumer's and producer's risk in sampling	Analyzing (K4)
CO4	exhibit the knowledge on fundamental concepts of reliability	Analyzing (K4)
CO5	apply the different techniques of reliability improvements.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3		2								3	3
CO2	3		3		2								3	3
CO3	3	1	3	1	2								3	3
CO4	3	1	3		2								3	3
CO5	3	1	3	1	2								3	3
1 Slight 2 Moderate 2 Substantial PT Bloom's Taxonomy														

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20	40	30	10			100	
CAT2	15	20	30	35			100	
CAT3	20	20	35	25			100	
ESE	20	20	35	25			100	

20MEE32 – INDUSTRIAL ENGINEERING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3

Preamble	The course deals with fundamental aspects of various Industrial Engineering tools like work study, resource pla forecasting techniques and value engineering that involves improving the efficiency of an organization.	nning,
Unit - I	Work Study	9

Method Study- Basic Procedure-Selection-Recording of Process - Critical Analysis- Development - Implementation - Micro Motion andMacro motion study — Principles of Motion Economy-Work Measurement –Techniques of Work Measurement –Time Study - Computation of Standard Time-Work Sampling -Synthetic Data -Predetermined Motion Time Standards-Job Evaluation-Merit Rating-Ergonomics and Safety.

Unit - II **Process Control for Production Planning and Control**

Need for PPC-Objectives–Functions-Information Required for PPC-Production-Organization-Manufacturing Methods -Types of Production System-Characteristics of Flow - Job - Batch - Productivity-Factors Affecting Productivity-Plant Layout-Layout Classification- Layout Design Procedures- Computerized Relative Allocation of Facilities Technique (CRAFT) — Automated Layout Design Program (ALDEP) - Computerized Relationship Planning (CORELAP)- Productivity Measures – Problems– Production control-Loading-Sequencing-Scheduling-Dispatching.

Unit - III Forecasting and Facility Planning

Need for Forecasting-Demand Patterns-Forecasting Models–Judgmental Techniques- Time Series Analysis- Moving Average-Exponential Smoothing-Regression and Correlation Method-Forecast Error-Costs and Accuracy of Forecasts. Facility Location-Factors Influencing Plant Location-Single and Multi Facility Location Problems.

Unit - IV Material Requirement Planning and Capacity Planning

Material Requirement Planning (MRP): Objectives-Terminologies -Systems-Outputs -Management Information to MRP -Manufacturing Resource Planning-Capacity Requirement Planning-Measures of Capacity-Capacity-Need-

Capacity Planning: Influencing -- Aggregate Planning-Guidelines Master Production Schedule- Introduction to Enterprise Resource Planning (ERP)-Strategy-Need-Benefit-Modules- Introduction to Lean Manufacturing - Comparison with conventional manufacturing. 9

Production Cost Estimation Unit - V

Importance of costing and estimation -methods of costing-elements of cost estimation -Types of estimates - Estimating procedure-Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost. Estimation of few Types of Jobsfrom forming and machining operations.

Total: 45

q

9

9

TEXT BOOKS:

TO	or units I,II,III,IV		
2. Sir	inha B.P, "Mechanical Estimating and Costing", Tata-McGraw Hill publishing co, 1995 for unit V		
REFERENCES:			

1.	Buffa Elwood S., and Sarin Rakesh K, "Modern Production/Operations Management", 8 ^{art} Edition, Wiley, New York, 2007.
2.	Chase, Jacobs and Aquilano, "Operations Management for Competitive Advantage", 11 th Edition Tata McGraw-Hill, New Delhi, 2006.
Y.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUF On co	RSE OUTCOMES: Impletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the various principles & techniques of industrial engineering	Applying (K3)
CO2	interpret the concept of production, planning and control techniques.	Understanding (K2)
CO3	analyze the data and forecast the demand of future	Analyzing (K4)
CO4	explain the various resource in an organization.	Understanding (K2)
CO5	examine the different types of cost estimation in industry	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	3										3
CO2	3	3	1										2	3
CO3	3	3		3	3								2	3
CO4	3	3	1	3	3						2		2	3
CO5	3	3		3	3						2		2	3
1 – Slight, 2 –	Modera	te, 3 – S	Substant	tial, BT-	Bloom's	s Taxon	omy							

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	40	40				100				
CAT2	20	25	25	30			100				
CAT3	20	30	25	25			100				
ESE	20	30	25	25			100				

20MEE33 - INTRODUCTION TO AIRCRAFT SYSTEMS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Mechanics Fluid Mechanics and Hydraulic Machines Strength of Materials	7	PE	3	0	0	3

Preamble This course provides knowledge on various aircraft systems, basic principles of flight and its control, aircraft performance and various maneuvers

Unit - I Introduction to Aircrafts

Basic Components of an Aircraft- Structural Members- Aircraft Axis System- Aircraft Motions- Control Surfaces and High lift Devices -Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations Based on Power Plant Location-Wing Vertical Location- Intake Location- Tail Unit Arrangements- Landing Gear Arrangements- Unconventional Configurations-Biplane-Variable Sweep- Canard Layout- Twin Boom Layouts- Span Loaders- Advantages and Disadvantages of these Configurations.

Unit - II Aircraft Systems

Aircraft Systems Types of Aircraft Systems - Mechanical Systems-Engine Control System- Fuel System- Hydraulic System- Electrical Systems- Electronic Systems and Avionics Systems.

Unit - III Basic Principles of Flight

Aerofoil Nomenclature- Types of Aerofoil- Wing Section- Aerodynamic Center - -Aspect Ratio- Significance of Speed of Sound- Air Speed and Ground Speed- Properties of Atmosphere- Lifting surfaces-Lift and Drag- Angle of Attack- Pressure Distribution Over a Wing Section- Centre of Pressure and its Effects- Generation of Lift- Drag- Pitching Moments- Types of Drag- Lift Curve- Drag Curve-Lift/Drag Ratio Curve- Factors Affecting Lift and Drag.

Unit - IV Stability and Control

Stability and Control: Degree of Stability- Lateral- Longitudinal and Directional Stability- Controls of Aircraft- Taxying — Landing -Gliding and Turning.

Unit - V Aircraft Performance and Maneuvers

Taking off- CLIMBING- Power Curves- Maximum and Minimum Speeds of Horizontal Flight- Effects of Changes of Engine Power-Effects of Weight on Performance- Effects of Altitude on Power Curves- Forces acting on an Aeroplane During a Turn- Correct and Incorrect Angles of Bank- Aerobatics- Inverted Maneuvers- Maneuverability.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Kermode A.C, "Mechanics of Flight", 11th Edition, Pearson Education, New Delhi, 2006.

REFERENCES:

1. Shevell, "Fundamentals of Flight", 2nd Edition, Pearson Education, New Delhi, 1988.

2. John David Anderson, "Introduction to Flight", McGraw-Hill Higher Education, New Delhi, 2005.

 Ian Moir & Allan Seabridge, "Aircraft Systems: Mechanical - Electrical and Avionics Subsystems Integration", Willey international, England, 2011.

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify the various aircrafts, components and its types	Understanding (K2)
CO2	describe various aircraft systems and its functioning	Understanding (K2)
CO3	demonstrate the flight mechanics and infer the principles	Applying (K3)
CO4	delineate the stability and control of aircrafts with various actuation mechanisms	Applying (K3)
CO5	analyze the performance and control of various aircrafts with respect to various working condition	Applying (K3)

	Mapping of COs with POs and PSOs												
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO1	2		3				1			1		1	3
CO2	2		3				1			1		1	3
CO3	2	2	3				1			1		1	3
CO4	2		3				1			1		1	3
CO5	2		3				1			1		1	3
1 – Slight 2 –	Modera	te 3-5	Substant	ial BT-	Bloom'	s Taxon	omv						

	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %			
CAT1	50	50							
CAT2	20	30	50						
CAT3	20	30	50						
ESE	20	30	50						

20MEE34 - INDUSTRIAL TRIBOLOGY

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Fluid Mechanics and Hydraulic Machines Design of Machine Elements.	7	PE	3	0	0	3

	1							
Preamble	This course deals with the fundamentals of friction, wear, lubrication and design aspects of bearing.							
Unit - I	Surfaces and Friction	9						
Topography of Friction of No	Fopography of Engineering Surfaces–Contact Between Solids –Sources of Sliding Friction – Friction Characteristics of Metals – Friction of Non-Metals–Friction of Ceramics and Polymers –Rolling Friction –Source of Rolling Friction – Stick Slip Motion.							
Unit - II	Wear and Lubrication	9						
Types of We Wear —Brittle	Types of Wear –Simple Theory of Sliding Wear Mechanism –Adhesive and Abrasive Wear –Corrosive Wear –Surface Fatigue Near —Brittle Fracture –Wear of Ceramics and Polymers. Types and Properties of Lubricants –Testing Methods.							
Unit - III	Film Lubrication Theory	9						
Hydrodynami FilmLubricat	c Lubrication – Fluid Film in Simple Shear–Viscous Flow Between Very Close Parallel Plates-Reynolds Equation f ion –Solid Lubrication–Hydrostatic Lubrication.	or						
Unit - IV	Journal Bearings	9						
Bearing Geometry– Pressure Distribution – Load Capacity – Friction Force – Coefficient of Friction – Lubricant Flow rate – Practicaland Operational Aspects of Journal Bearings – Thermal Effects in Bearings – The Sommerfield Diagram.								
Unit - V	Bearing Materials	9						
Surface Trea	atments – Reduction of Friction – Wear Resistant Coatings –Materials for Rolling Element Bearings –Materials arings –Materials for Marginally Lubricated and Dry Bearings.	for						

Total: 45

TEXT BOOK:

1.	Gwidon W. Stachowiak & Andrew W. Batchelor, "Engineering Tribology", 4th Edition, Butterworth-Heinmann,	UK,2013.

REFERENCES:

1.	Williams J. A.,	"Engineering	Tribology",	1 st Edition,	Oxford University	Press, Nev	v Delhi, 2	2005
----	-----------------	--------------	-------------	--------------------------	-------------------	------------	------------	------

2. Cameron A., "Basic Lubrication Theory", 3rd Edition, Ellis Horwood Ltd. Publishers, UK, 1983.

COUF On co	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	elaborate the surface topography and physic-chemical aspects of solid surfaces.	Understanding (K2)
CO2	demonstrate the different wear mechanisms and lubrication aspects on solid metal surfaces.	Applying (K3)
CO3	compare the hydrodynamic and hydrostatic lubrication.	Applying (K3)
CO4	apply the procedure and design journal bearings for different applications.	Applying (K3)
CO5	characterize the materials for bearings for different applications.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3										
CO2	3	3	3	3										
CO3	3	3	3	3										
CO4	3	3	3	3										
CO5	CO5 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	40	40				100							
CAT3	20	40	40				100							
ESE	20	40	40				100							

Instruments.

20MEE35 - INSTRUMENTATION IN THERMAL ENGINEERING

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisite	s	Mechatronics and IoT, Metrology and Measurements	PE	3	0	0	3	
Preamble	This co analysis	urse introduces the characteristics of measuring instruments s. Modern measurement techniques for gas properties are sp	, technic ecifically	ques and impor y covered throu	rtance o Igh this	f error a course.	and und	certainty
Unit – I	Unit – I Measurement Characteristics							
Instrument Classification-Characteristics of Instruments-Static and Dynamic Responses-Experimental Error Analysis-Systematic a Random Errors-Statistical Analysis-Uncertainty-Experimental Planning and Selection of Measuring Instruments-Reliability								atic and bility of

Unit – II Microprocessors and Computers in Measurement

Data Logging and Acquisition -Use of Sensors for Error Reduction- Elements of Microcomputer Interfacing- Intelligent Instruments in Use.

Unit – III Measurement of Physical Quantities

Measurement of Thermo-Physical Properties-Temperature-Pressure-Flow- Use of Sensors for Physical Variables.

Unit – IV Advanced Measurement Techniques

Shadowgraph-Schlieren-Interferometer-Laser Doppler Anemometer-Hot Wire Anemometer-Heat Flux Sensors-Telemetry in Measurement.

Unit – V Measurement Analyzers

Chemical-Thermal-Magnetic-Optical Gas Analyzers-Measurement of Smoke-Dust and Moisture-Gas Chromatography-Spectrometry-Measurement of pH.

Total: 45

9

9

9

9

TEXT BOOK:

1. Holman J.P., "Experimental Methods for Engineers", 8th Edition, McGraw-Hill, New York, 2012.

REFERENCES:

1. Barnery G.C.V., "Intelligent Instrumentation", 2nd Edition, Prentice Hall of India, New Delhi, 1988.

2. Bolton W, "Industrial Control & Instrumentation", 2nd Edition, Universities Press, Pvt. Ltd, Hyderabad, 2004.

3. Rangan C.S., Sarma G.R., Mani V.S.V., "Instrumentation Devices and Systems", 2ndEdition, McGraw-Hill, New Delhi, 2008

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	classify the instruments and perform error analysis.	Applying (K3)
CO2	illustrate the integration of microprocessors and computers with physical instruments.	Applying (K3)
CO3	describe the measurement methods of thermo-physical properties.	Applying (K3)
CO4	illustrate the principles of modern measurement techniques.	Applying (K3)
CO5	explain the principles of exhaust gas analysis.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3			3							3	3	3
CO2	3	3			3							3	3	3
CO3	3	3			3							3	3	3
CO4	3	3			3							3	3	3
CO5	3	3			3							3	3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	35	40	25				100							
CAT2	25	30	45				100							
CAT3	20	35	45				100							
ESE	30	30	40				100							

20MEE36 - ENERGY AUDITING AND MANAGEMENT

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
	Engineering Thermodynamics						
Prerequisites	Thermal Engineering	7	PE	3	0	0	3
•	Heat and Mass Transfer						

Preamble	This course provides insights on energy conservation measures in thermal & electrical utilities, energy audit and e monitoring procedures to be followed by Energy Managers in industries.	nergy
Unit - I	Energy Audit	9
Introduction -	Types - Methodology-Energy Management-Definition and Objectives-Managerial Eulections and Responsibilities of	

Introduction - Types - Methodology-Energy Management-Definition and Objectives-Managerial Functions and Responsibilities of Energy Manager- Top Management Commitment and Support for Energy Action Planning-Management Tools for Effective Implementation- Utility Rate Structures- Portable and Online Instruments for Survey-Energy Monitoring and Targeting- EMIS.

Unit - II Energy Conservation and Water Management

Energy Conservation: Introduction – Energy Conservation Programme (ENCON) - Need for Energy Conservation- Energy Efficiency-Development of Energy Balance-Energy Conservation in Domestic Sector-Standards and Labeling of Appliances. **Water Management**: Water Audit-Indoor and Outdoor Water Management.

Unit - III Energy Audit Applied to Buildings

Building Envelope Analysis– Internal Heat Gain - Thermal Comfort - Air Quality and Air Tightness-Thermal Insulation-Reflective and Radiant Barriers - Energy Conservation Building Code (ECBC) and its Guidelines-Star Rating-Energy Saving Measures in New Buildings-IOT in Building Energy Management.

Unit - IV Electrical System Audit

Load Management - Power Factor - Efficiency Improvements-Harmonics- Energy Performance Assessment of Electric Motors and Variable Speed Drives-Energy Efficient Motors- Lighting System Audit –Terminology- Light Sources and Lamp Types - Electronic Ballasts - Energy Saving Opportunities in Lighting - Case Study.

Unit - V Energy Efficiency in Thermal Utilities

Performance Assessment of Thermodynamic Systems – Boilers – Furnaces – Compressors - HVAC Systems - Water Pumps - Fans - Blowers-Heat Exchangers.

Total: 45

9

9

9

9

TEXT BOOK:

1. Sonal Desai, "Handbook of Energy Audit", 1st Edition, McGraw Hill Education, New Delhi,2015

REFERENCES:

1.	Albert Thumann, Terry Niehus &, William J. Younger, "Handbook of Energy Audits", 9th Edition, Fairmont Press, Lilburn, 2013
2.	Stephen A. Roosa, Steve Doty & Wayne C. Turner, "Energy Management Handbook", 9th Edition, River Publishers, New York, 2018.
3.	"Guide Books (Volume - 1 to Volume - 4) for National Certification Examination for Energy Auditors and Energy Managers", 4 th Edition, India, 2015.

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the energy audit procedures.	Understanding (K2)
CO2	apply the various techniques and standards for energy conservation.	Applying (K3)
CO3	apply the energy audit principles in buildings.	Applying (K3)
CO4	explain the procedure for conducting electrical audit.	Applying (K3)
CO5	assess the performance of thermal utilities.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				3	1	1	3			2		3	3
CO2	3		2		3	1	1	3					3	3
CO3	3		2		3	1	1	3		1			3	3
CO4	3	2			3	1	1	3		1			3	3
CO5	3	2	2		3			3					3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	30	40	30				100							
CAT2	30	30	40				100							
CAT3	30	30	40				100							
ESE	30	30	40				100							

20MEE37 - MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS

Programme Branch	&	B.E. Mechanical Engineering	Sem.	Category	L	Т	Р	Credit			
Prerequisite	S	Industrial Engineering	7	PE	3	0	0	3			
Preamble	This cou quality r	urse provides the knowledge on design and analysis methodo elated performance measures in manufacturing systems.	ologies f	or the purpose	of com	outing q	uantity	and			
Unit - I	Manufa	cturing Systems and Models						9			
Types and F Model Uses,	ypes and Principles of Manufacturing Systems, Types and uses of Manufacturing Models, Physical Models, Mathematical Models, Iodel Uses, Model Building.										
Unit - II	Unit - II Material Flow Systems (Assembly lines, Transfer lines & Shop Scheduling):										
Assembly Lin Serial Syster	nes - Re ns - Pace	liable Serial Systems, Approaches to Line Balancing, Sequed Lines without Buffers, Unpaced Lines. Shop Scheduling wi	uencing ith many	Mixed Models / Products.	. Trans	fer Line	s and	General			
Unit - III	Materia	I Flow Systems (FMS, GT & Facility Layout):						9			
Flexible Man Assigning Pa	ufacturin irts to Ma	g Systems - System Components, Planning and Control. G chines. Facility Layout - Quadratic Assignments Problem App	Group T proach,	echnology - As Graphic Theor	ssigning etic App	Machir Machir	ies to	Groups,			
Unit - IV	- IV Supporting Components:										
Machine Set AGV System	achine Setup and Operation Sequencing - Integrated Assignment and Sequencing. Material Handling Systems - Conveyor Analysis, GV Systems. Warehousing - Storage and Retrieval Systems, Order Picking.										
Unit - V	Generic	Modeling Approaches:						9			
Analytical Qu Process Mod	nalytical Queuing Models, A Single Workstation, Open Networks, Closed Networks. Empirical Simulation Models - Event Models, rocess Models, Simulation System, Example Manufacturing System.										

Total: 45

TEXT BOOK:

1. Ronald G. Askin, and Charles R. Standridge, "Modeling and Analysis of Manufacturing Systems", JohnWiley & Sons, New York, 1993.

REFERENCES:

1. Mengchu Zhou, "Modeling, Simulation, and Control of Flexible Manufacturing Systems: A Petri Net Approach", World Scientific Publishing Co. Pvt. Ltd., 2000.

2. Groover, Mikell P., "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education India, 2016.

COURSE On comp	E OUTCO	MES: he cours	e, the stu	udents w	ill be abl	e to							BT Map (Highest	oped Level)
CO1	summari	ze type o	of manufa	acturing	systems	and mod	lels						Jnderstand	ding (K2)
CO2	construc	t the ass	embly lin	es, trans	fer lines	and sho	p schedu	ıling					Applying	g (K3)
CO3	manipulate the flexible manufacturing systems, group technology and facility layouts Applying (K3)													
CO4	describe materials handling systems Understanding (K2)													
CO5	solve the generic modeling system approaches Applying (K3)													
					Мар	ping of	COs witl	h POs ar	nd PSOs					
COs/PO	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		3										3	3
CO2	3		3										3	3
CO3	3		3										3	3
CO4	O4 3 3										3	3		
CO5	3		3										3	3

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	40	20				100							
CAT2	40	30	30				100							
CAT3	40	40	20				100							
ESE	40	30	30				100							

20MEE38 - MICRO ELECTRO MECHANICAL SYSTEMS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Applied Physics, Engineering Mechanics, Mechatronics and IoT	7	PE	3	0	0	3

Preamble This course provides introduction to the basic concepts of sensors, actuators and scaling laws of micro system. It introduces the phenomenon of fabrication, manufacturing and packaging of micro System. It familiarizes students to design and develop a micro product for various applications.

Unit - I Microsystems

Overview-Microsystems - Working Principle of Microsystems - Scaling LAWS - Scaling in Geometry - Scaling in Rigid Body Dynamics -Scaling in Electrostatic Forces - Scaling in Electromagnetic Forces - Scaling in Electricity - Scaling in Fluid Mechanics - Scaling in Heat Transfer.

Unit - II Micro sensors and Actuators

Micro Sensors - Micro Actuation Techniques – Micro pump – Micro motors – Micro valves – Micro grippers - Micro Accelerometers.

Substrates - Single Crystal Silicon Wafer Formation - MEMS Materials - Photolithography - Ion Implantation - Diffusion – Oxidation – Chemical Vapour Deposition (CVD) - Physical Vapor Deposition - Deposition by Epitaxy - Etching Process.

Unit - IV Micro System Manufacturing

Bulk Micro manufacturing - Surface Micromachining — Lithographic Galvano Forming Abforming (LIGA) — Stepped Lithographic Galvano Forming Abforming (SLIGA). Micro system packaging - Materials - Die level - Device level - System level - Packaging techniques - Surface bonding - Wire bonding - Sealing - Design considerations.

Unit - V Micro System Applications

Applications of micro system - Automotive - Bio medical - Aerospace - Telecommunications field. Basic exposure to software for MEMS design - Micro system Design using CAD tool.

Total: 45

9

9

9

q

TEXT BOOK:

1. Tai-Ran Hsu., "MEMS and Microsystems: Design and Manufacture", 2nd Edition, John Wiley and Sons, New York, 2017. **REFERENCES:**

1. Marc Madou., "Fundamentals of Micro fabrication", 2nd Edition, CRC press, New York, 2011.

2. Zhang, Dan, Wei & Bin (Eds.), "Advanced Mechatronics and MEMS Devices II", 1st Edition, Springer, Switzerland, 2017.

COUR	SE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	express Scaling laws of micro system.	Applying (K3)
CO2	interpret the concepts of micro sensors and micro actuators.	Understanding (K2)
CO3	choose the fabrication process of microsystem.	Applying (K3)
CO4	demonstrate the micro manufacturing process and packaging techniques.	Applying (K3)
CO5	infer the various applications of micro system.	Understanding (K2)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3												3	
CO2	3												3	
CO3	3												3	
CO4	CO4 3 3 3 3													
CO5	CO5 3 3 3													
1 – Sliaht, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	20	40	40				100							
CAT3	20	50	30				100							
ESE	20	50	30				100							

20MEE39 - MAINTENANCE ENGINEERING

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit			
Prerequisite	s	Nil	7	PE	3	0	0	3			
Preamble The course describes the industrial maintenance system with recent trends of maintenance activities. It also deals reliability of components and its safety adopted in industries.											
Unit - I	Princip	les and Maintenance System Planning						9			
–Importance Systems – M Down Time -	and Ber laintaina Hazard	hefits of Sound Maintenance Systems- Maintenance Systemsbillity — Inherent and Overall Availability — Mean Time Bet Rate.	ems – I tween F	Reactive - Pre Failures - Mear	ventive Time 1	or Proa to Repa	active airs and	i Mean			
Unit - II	Mainter	nance Techniques						9			
Total Productive Maintenance (TPM) –Relationship Between Overall Equipment Effectiveness (OEE) and World Class Maintenance Seven Modern Tools – Applications - Ladder of Maintenance Improvement– Computerized Online Health Monitoring of Machine– Da Acquisition for Effective Management of Computerized Maintenance Management System (CMMS) - Logic Tree Analysis -Critica Matrix.											
Unit - III	nit - III Condition Based Maintenance										

Condition Monitoring Techniques -Vibration Analysis–Ultrasonic Detection Techniques -Thermograph - Lubrication Methods and its Analysis – Motor Condition Monitoring (MCM)- Cost Comparison With and Without Condition Monitoring (CM)- On-load Testing and off-Load Testing Methods – Temperature Sensitive Tapes – Pistol Thermometers – Wear-Debris Analysis.

Unit - IV Failure Analysis and Repair Methods of Basic Elements

Failure Analysis : Defect/Failure Definition; Failure - Rate –Mode -Reporting – Date Collection- Failure Analysis - Tools –Fault Tree Analysis - Event Tree Analysis-Root Cause Analysis – Failure Mode and Effect Analysis (FMEA) – Failure Mode Effect Criticality Analysis (FMECA) - Electrical Stress Analysis

Repair methods: Sideways- Spindles- Gears- Lead Screws and Bearings – Repair Methods for Material Handling Equipment – Equipment Records – Job Order Systems.

Unit - V Reliability Engineering and Safety in Maintenance

Reliability Engineering: Reliability – Definition - Failure Data - Failure Density - Failure Rate - Mean Failure Rate - Types of Failures -Failure Rate Curve. System Reliability- Series - Parallel and Mixed Configuration – Reliability Increasing Techniques. **Safety in maintenance:** Definition – Methods of Enhancing Safety – Modern Industrial Scenarios- Safety Tools – Case Studies – Quantification Of Safety - Code and Standards- Hazards and its Management.

TEXT BOOK:

Total: 45

9

9

1. Srivastava S.K., "Maintenance Engineering (Principles - Practices and Management)", 2st Edition, S. Chand & Co., NewDelhi, 2014.

REFERENCES:

1.	Bhattacharya S.N., "Installation, Servicing and Maintenance", S. Chand & Co., New Delhi, 2013.
2.	Venkataraman.K., "Maintenance Engineering and Management", PHI Learning Pvt. Ltd., New Delhi, 2010.
3.	Srinath L.S., "Reliability Engineering", East-West Press, New Delhi, 2009.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the principles and functions of maintenance in industry.	Applying (K3)
CO2	plan and implement maintenance management systems.	Applying (K3)
CO3	interpret the various condition based maintenance principles.	Applying (K3)
CO4	identify and analyze failures of various equipments in an industry	Analyzing (K4)
CO5	synthesize the functional concepts of reliability and safety engineering.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	3				3						3		3
CO2	3	3				3						3		3
CO3	3	3				3						3		3
CO4	3	3			1	3						3	1	3
CO5	3	3				3						3		3
1 Clight 2	Clinite 2. Medeante 2. Cubetential DT Diservia Taylor any													

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	25	50				100							
CAT2	25	25	50				100							
CAT3	20	25	25	30			100							
ESE	20	30	25	25			100							

20MEE40 - INDUSTRIAL SAFETY ENGINEERING

Programm Branch	e &	B.E. & Mechanical Engineering	Sem.	Category	L	т	Ρ	Credit						
Prerequisit	es	Nil	7	PE	3	0	0	3						
Preamble	The cours	se explores the awareness and knowledge on safety aspect	cts, proc	edures and g	uideline	s to be	follow	ed in the						
	industry w	hile performing various types of operations in industry.												
Unit - I	Safety Ma	y Management												
Evolution of Planning for Accident Ha Safety Audit	Managem Safety-Fo zard Cont -Safety Ec	ent Thoughts- Need for Safety- Progress in Modern Safety C ormulation of Safety Policy- Job Safety Analysis- Safety S rol- Hazard and Operability (HAZOP) Study- Hazard Rank ducation and Training-Good Housekeeping- Personal Protect	Concept Sampling ing (DC ion and	-Safety Manag Technique -I W and MONI First aid.	lement Plant S D index	and its F afety In: x)- Safet	Respor spectic y Orga	sibilities n- Majo nization						
Unit - II	Accident	Causation and Prevention						9						
Accident Pre Models- Kep Prevention. Case Study	evention S ner-Trego Case Stud of Major A	teps - Organization- Fact Finding- Analysis of Facts- Select e Model- Error Reduction Model- Performance Cycle Model- y of Major Accidents Performance Cycle Model- Updated Sat ccidents	tion of Updated fety Mar	Remedy- Appli d Safety Manag nagement Mod	cation gement el-5 E's	of Reme Model-5 of Accie	edy- M E's of lent Pr	onitoring Acciden evention						
Unit - III	Safe han	dling of materials and tools						9						
Safety in Me Hand and Po Electrical Sa Noise and V	echanical H ower Tools fety- Reac ibration Me	Handling-Lifting Machines- Tackles-Cranes-Conveyors-Truck a. Machine Guarding-Basic Need & Importance- Principles of tor Control and Explosion Prevention System- Radiation Shi easurement and Control- Air Pollution Control- Air Sampling a	s-Cause Machin elding ar ind Pollu	es and Control e Guarding-Mand Control- Rad ution Measuring	of Tool aterials diation I g Instrur	Accider for Guar Measurin ments.	nts-Sa d Con ng Inst	ie Use of struction- ruments-						
Unit - IV	Safety in	engineering industry						9						
Safety in Me Safety in Fo Machines - (and their Sa Transportatio	echanical V undry Sho General He afety Aspe on of Chen	Norking - Safety Measures in Machining Process- Safety in ps - Safety Measures in Heat and Cold Process - Safety in I ealth Hazards and Control Measures in Engineering Industry ects- Safety in Boilers- Safe Storage & Handling of Gas nicals.	Use of Usage c - Haza Cylinde	Power Tools-3 of Dies - Safe C rd Communica rs-Safety in L	Safety i Operatic tion System aborato	n Weldii ons and stem - S ory –Saf	ng and Mainte Storage e Trar	Cutting- nance of Vessels sfer and						
Unit - V	Fire and e	explosion						9						
Nature, Stag Design for F of Fire and Ignition Test Protection.	ges and S ire Safety- Explosion - Electrica	pread of Fire -Classification of Fire and Extinguishers-Stat Fire Detection and Alarm Systems- Fire Load Determination in Flammable Substances - Explosive Testing - Thermal al Fires- Fire Emergency Action Plan & Drill Rig Explosion -	utory Pi - Fire S Sensitiv Types-I	rovisions and uppression or l ity Analysis - nspection, Mai	ndian S Extingui Accelera ntenanc	Standard ishing S ated Ra ce and T	ls-NFF /stems te Cal raining	'A Code - Contro orimeter- g for Fire						
TEXT BOO	K:						٦	⁻ otal: 45						

1. Mistry. K.U "Fundamentals of Industrial safety and health" Second Edition, Siddharth Prakashan Publisher, Gujarat, 2008.

REFERENCES:

1.	Jane Bluent, Nigel & Balchin C., "Health and Safety in Welding and Allied Processes", 5th Edition, Wood Head Publishing, England, 2002.
2.	Rao S, Jain R.K. & Saluja H.L., "Electrical Safety - Fire Safety Engineering and Safety Management", 2nd Edition, Khanna Publishers, Delhi, 1997.
3.	Methodologies for Risk and Safety Assessment in Chemical Process Industries, Commonwealth Science Council, UK
4.	Loss Prevention in Process Industries-Frank P. Less Butterworth-Hein UK, Second Edition 1990 (Vol.I, II & III)

Sh.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

242	No. 2	
COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	outline the significance of safety in industry.	Understanding (K2)
CO2	identify the factors causing accidents and prevent them from occurring.	Applying (K3)
CO3	choose the safe operating practices in material handling and tool usage.	Applying (K3)
CO4	identify the safety measures in the engineering industry	Applying (K3)
CO5	employ the prevention strategies for fire and explosion.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3												3
CO2	3	3	3											3
CO3	3	3												3
CO4	3	3												3
CO5	CO5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3													
1 – Slight, 2 –	I – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

Slight, 2 – Moderate, 3 – Substantial, BI - Bloom's Taxonomy Ľ

ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	35	40				100						
CAT2	30	40	30				100						
CAT3	20	30	50				100						
ESE	25	35	40				100						

20MEE41 - HYBRID VEHICLE TECHNOLOGY

Programme Branch	&	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisite	S	Nil	7	PE	3	0	0	3
Preamble	This co energy	urse gives brief ideas on hybrid vehicle architecture, pov storage technology and driving cycle simulation.	ver trair	n modeling, el	ectrical	motor	charac	teristics,
Unit - I	Introdu	ction and Components of Hybrid Vehicles						9
Introduction Components Transmission	: Genera s of Hybi n System	I Architectures- Vehicle System Components and Analysis- C id Vehicles: Prime Mover- Electric Motor with DC/DC Conve in Hybrid Vehicle.	Controls erter and	of Hybrid Vehic I Inverter- Ener	cle gy Stora	age Sys	stem-	
Unit - II	Hybrid	Vehicles System Modeling						9
Internal Com Driver Model.	bustion E	Engine- Electric Motor- Battery System- Transmission Syster	m- Final	Drive and Wh	eel- Vel	nicle Bo	ody- Pll	D-Based
Unit – III	Power	Electronics and Electric Motor Drives						9
Power Electric Mot Vehicle Batte	ronics: F or Drive	Power Electronic Devices- DC/DC Converter- DC–AC Inverte s: BLDC Motor and Control- AC Induction Motor and Cont m and Charging Characteristics.	r trol- Plu	g-In Battery C	harger I	Design-	Plug-i	n Hybrid
Unit – IV	Energy	Storages System Modeling and Control						9
Methods of D Cell Core Ter	Determinii mperatur	ng State of Charge- Estimation of Battery Power Availability- e- Battery System Efficiency.	Battery	Life Prediction	- Cell Ba	alancing	g- Estin	nation of
Unit - V	Simula	tion of Driving Cycles						9
Simulation S Emissions Si	System-	Typical Test Driving Cycles- Preliminary Sizing of Main C Calculations.	ompone	ents of Hybrid	Vehicle	- Fuel I	Econor	ny and
ТЕХТ ВООК							T	Fotal: 45

 Wei Liu, "Introduction to Hybrid Vehicle System Modeling and Control", 1st Edition, John Wiley & Sons, Inc., NewJersey, 2013.

REFERENCES:

1. Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles ", 2nd Edition, CRC Press, Boca Raton, 2018

2. Iqbal Husain, "Electric and Hybrid Vehicles", 3rd Edition, CRC Press, Boca Raton, 2021

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	summarize about the layout and sub systems of hybrid vehicles	Applying (K3)
CO2	explain the architecture of various models of hybrid Vehicles Systems	Applying (K3)
CO3	classify and explain electronic devices and motor drives	Applying (K3)
CO4	estimate the parameters influencing the energy storage Systems	Applying (K3)
CO5	infer the results from simulation of driving cycles	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3					3							3	
CO2	3	3					3							3	
CO3	3	3					3							3	
CO4	3	3					3							3	
CO5	3	3					3							3	
4 Climbt O	Madara	1- <u>)</u> (

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	20	40	40				100							
CAT2	30	40	30				100							
CAT3	20	40	40				100							
ESE	10	50	40				100							

20MEE42 - INTRODUCTION TO AIRCRAFT STRUCTURES

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Engineering Mechanics Strength of Materials Design of Machine Elements	8	PE	3	0	0	3

Preamble The course offers the fundamentals of aircraft design process, materials, properties, failures, structural members, joints, associated vibrations and flutter

Unit - I Overview of the Aircraft Design Process, Aircraft Loads, Aircraft Structures Description

Introduction- Phases of Aircraft Design- Aircraft Conceptual Design Process- Conceptual Stage- Preliminary Design- Detailed Design-Design Methodologies-Airworthiness- Definition- Airworthiness Regulations- Regulatory Bodies-Type of Certification- General Requirements- Requirements Related to Aircraft Design Covers- Performance and Flight Requirements- Airframe Requirements-Landing Requirements- Fatigue and Failsafe Requirements- Emergency Provisions- Emergency Landing Requirements-Aerodynamic Loads- Inertial Loads- Loads due to engine- Actuator Loads-Maneuver Loads- VN diagrams-Gust Loads-Ground Loads-Ground Conditions- Miscellaneous Loads- Types of Structural Members of Fuselage and Wing Section and Empennage Ribs- Spars- Frames-Stringers- Longeron- Splices- Types of Structural Joints- Type of Loads on Structural Joints.

Unit - II Aircraft Materials and Properties

Introduction- Basic Construction- Material Forms-Metallic Materials and Forms- Alloy Designations-Mechanical Properties- Strength-Static- Stress Strain Curves.

Unit - III Static and Fatigue Failures

Fatigue Properties-Crack Growth- Brief Review of Principal Stresses-Principal Strains- Mohr's Circle for Stress and Strain- Fatigue Failures- Fatigue Theory- Introduction to Low Cycle Fatigue- Stress Life and Strain Life Techniques- Mean Stress Effects- Multi-Axial Effects- Isothermal and Thermomechanical Fatigue- Introduction to High Cycle Fatigue.

Unit - IV Box Beams, Buckling of Thin Sheets

Box Beams- Introduction- Shear Flow Due to Shear-Shear Flow Due to Torsion-Bredt Batho- Single and Multicell Boxes- Buckling of Thin Sheets- Buckling of Flat Plate in Compression and Shear- Buckling of Curved Plates in Compression and Shear- Buckling of Stiffened Panels-Post Buckling- Effective Width- Concept of Diagonal Tension-Buckling Under Combined Loads.

Unit - V Aircraft Structural Joints, Advanced materials, Vibrations and Flutter

Introduction to Fasteners- Splices- Eccentric joints-Bolt Group Analysis-Welded joints- Bonded joints- Lug Analysis- Tension Fitting and Clips-Introduction to Composite Materials- Matrices-Fibers-Forms- Characteristics of Composite Materials-Study of Vibration and Flutter.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Daniel P.Raymer, "Aircraft Design-A Conceptual Approach", 6th Edition, AIAA Education, series, USA, 2012. **REFERENCES:**

1. Michael Niu, "Airframe Structural Design", 2nd Edition, Conmilit Press, Hong Kong, 1988.

2. Megson T.H.G, "Aircraft Structures For Engineering Students", 6th Edition, Butterworth Heinemann, USA, 2017.

3. Peery, "Aircraft Structures", 1st Edition, Dover publications, New York, 2011.

ſ

CAT3

ESE

COUR On cor	COURSE OUTCOMES: On completion of the course, the students will be able to							
CO1	brief about overview of the aircraft design process, aircraft loads, aircraft structures description	Understanding (K2)						
CO2	select and identify aircraft materials and their properties	Applying (K3)						
CO3	predict static and fatigue failures of aircraft members	Applying (K3)						
CO4	apply the shear flow in box beams and buckling of thin sheets	Applying (K3)						
CO5	identify the nature of aircraft structural joints, vibrations and flutter of aircraft	Applying (K3)						

	Mapping of COs with POs and PSOs														
COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													PSO2		
CO1	3		3				1			1		3		2	
CO2	3		3				1			1		3		2	
CO3	3		3				1			1		3		2	
CO4	3		3				1			1		3		2	
CO5	CO5 3 3 1 1 3 2														
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy														

60

50

Total %

100

100

100

100

(K6) %

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Analyzing Evaluating Creating Applying (K2) % (K4) % (K5) % Category* (K1) % (K3) % CAT1 20 40 40 CAT2 20 30 50

20

25

25 * ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

20

20MEE43 – PRINCIPLES OF FARM MACHINERIES

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Automobile Engineering Manufacturing Technology	8	PE	3	0	0	3

This course explores the nature of soil conditions with the appropriate fertilizer applicators and principles of farm Preamble equipment including harvesting tools and machines. 9

Unit - I Introduction to Farm Machines and Soil

Introduction to Farm Machines: Objectives of Farm Mechanisms - Classification of Farm Machines - Materials for Construction of Farm Machines - Principles of Operation and Selection of Machines for Production of Crops - Field Capacities & Economics. Soil: Nature and Origin of Soil- Soil Forming Rocks and Minerals - Soil Classification and Composition - Soil Forming Processes.

Unit - II Tillage

Primary and Secondary Tillage Equipment - Forces Acting on Tillage Tools - Field Operation Patterns - Draft Measurement of Tillage Equipment - Earth Moving Equipment - Construction & Working Principles of Bulldozer - Trencher - Excavators - Sowing - Planting and Transplanting Equipment their Calibration and Adjustments.

Unit - III Fertilizer Application Equipment

Selection - Calibration - Construction Features - Different Components and Adjustment of Weed Control - Plant Protection Equipment -Sprayers and Dusters

Unit - IV Principles and Types of Cutting Mechanisms

Construction and Adjustments of Shear and Impact Type Cutting Mechanisms - Crop Harvesting Machinery: Mowers - Windrowers -Reapers - Reaper Binders and Forage Harvesters - Forage Chopping and Handling Equipment - Threshing Mechanics - Types of Threshers - Straw Combines - Grain Combines - Maize Harvesting - Shelling Equipment - Root Crop Harvesting Equipment - Cotton Picking and Sugarcane Harvesting Equipment.

Unit - V Principles of Harvesting Tools and Machines

Horticultural Tools and Gadgets - Testing of Farm Machine - Test Codes and Procedure - Interpretation of Test Results - Selection and Management of Farm Machines for Optimum Performance - Workplace Layout for Men and Women.

Total: 45

9

9

q

9

TEXT BOOK:

Kepner R. A., Bainer Roy and Barger E. L, "Principals of Farm Machinery", 3rd Edition, CBS Publishers and Distributors, New Delhi, 2005.

REFERENCES:

1.	Boson E.S., "Theory, Construction and Calculation of Agricultural Machines", 1 st Edition, Scientific Publishers, New Delhi, 2016.
2.	Ghosh R.K. and Swain S., "Practical Agricultural Engineering", 1 st Edition, Naya Prokash, Calcutta, 1993.
3.	Donnel Hunt, " Farm Power and Machinery Management", 10 th Edition, Medtech, Ames, USA, 2013.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the nature of soil condition and different types of farming equipments	Understanding (K2)
CO2	illustrate the working of tillage equipments	Applying (K3)
CO3	identify the fertilizer application equipments and explain its working construction	Applying (K3)
CO4	explain the cutting mechanisms for various crops	Applying (K3)
CO5	demonstrate the principle of harvesting equipments for various crop	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3													3
CO2	3													3
CO3	3													3
CO4	3													3
CO5	3													3
1 – Slight, 2 –	– Slight 2 – Moderate 3 – Substantial BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	50	30				100			
CAT2	20	45	35				100			
CAT3	20	45	35				100			
ESE	20	45	35				100			

20MEE44 - POWER PLANT ENGINEERING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics Thermal Engineering	8	PE	3	0	0	3

Preamble This course imparts knowledge on layout and working of various power plants and also the terminologies involved in economic analysis of the power plants.

9

9

9

9

9

Total: 45

Unit - I Energy Scenario and Thermal Power Plant

Energy Scenario: Indian and Global Energy Scenario - Environmental Issues of Present Day Power Generation. **Thermal Power Plant:** Layout of Thermal Power Plant – Selection Criteria –Boilers- Fluidized Bed Boilers – Boiler Trial and Testing -Fuel and Ash Handling Systems -Pulverizer - Stokers – Dust Collectors - Cooling Towers – Feed Water Treatment – Distributed Control System (DCS).

Unit - II Gas Turbine Power Plant and Diesel Power Plant

Gas Turbine Power Plant: Gas Turbine Cycles - Thermodynamic Analysis of Cycles - Reheating - Regeneration and Intercooling - Layout of Gas Turbine Power Plant- Selection Criteria - Binary and Combined Cycle - IGCC. **Diesel Power Plant:** Layout –Types - Selection Criteria– Selection of Engine.

Unit – III Nuclear Power Plant and Hydel Power Plant

Nuclear Power Plant: Layout - Selection Criteria – Types of Reactors - Radioactivity – Fission Process – Reaction Rates – DiffusionTheory -Elastic Scattering and Slowing Down – Global Standards in Waste Disposal and Nuclear Safety. Hydel Power Plant: Layout - Selection Criteria - Selection of Turbines -Micro Hydel Developments.

Unit – IV Other Types of Power Generation

MHD Power Generation –Solar Thermal and PV System- WECS - Types — Biomass -Geo thermal –OTEC- Micro Fuel Cells and Portable Power - Comparative Analysis of Combined Heat and Power Cycles.

Unit - V Power Plant Economics

Cost of Electric Energy – Load Duration Curves-Fixed and Operating Costs – Energy Rates – Types of Tariffs – Economics of LoadSharing - Comparison -Selection and Economics of Various Power Plants – Energy Auditing – Types - Energy Auditing for Thermal

Power Plant – Waste Heat Recovery Boilers in Cement, Sugar and Steel Plants.

TEXT BOOK:

1. Rajput R.K, "Power Plant Engineering", 5th Edition, Laxmi Publications, New Delhi, 2016.

REFERENCES:

1.	Arora S.C. and Domkundwar S., "A Course in Power Plant Engineering", 5th Edition, Dhanpat Rai, New Delhi, 2012.
2.	Nag P.K, "Power Plant Engineering", 4th Edition, Tata McGraw-Hill, New Delhi, 2014.
3.	Hegde R.K, "Power Plant Engineering", 1 st Edition, Pearson India Education Services Pvt. Ltd, Delhi, 2015.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the layout and working of various sub circuits involved in steam power plant	Applying (K3)
CO2	explain the working of gas and diesel power plants with layouts	Applying (K3)
CO3	explain the basic theory of nuclear processes and working of Nuclear and Hydel power plants with their layouts	Applying (K3)
CO4	describe the concepts of utilizing renewable energy sources for power generation	Applying (K3)
CO5	identify the various terminologies related to power plant economics and perform cost analysis inpower generation	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/ POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3			3	3					3		3
CO2	3	3	3			3	3					3		3
CO3	3	3	3			3	3					3		3
CO4	3	3	3			3	3					3		3
CO5	3	3	3			3	3				1	3		3

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	50				100
CAT2	10	40	50				100
CAT3	10	30	40	20			100
ESE	10	40	40	10			100

20MEE45 - ENERGY CONSERVATION IN HVAC SYSTEM

(Use of Refrigeration and Air-Conditioning Table and Psychrometry chart are permitted for the End Semester Examination)

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Engineering Thermodynamics Thermal Engineering	8	PE	3	0	0	3

Preamble This course provides significant information on energy conservation, energy audit and management practices adoptable for Heating, Ventilation and Air-Conditioning (HVAC) systems.

Unit - I Fundamentals of Thermodynamics

Introduction to Energy Conservation – Second Law of Thermodynamics – Exergy Analysis – Reversibility and Irreversibility – AirConditioning Systems and Cycles – Heat pumps – Psychrometry.

Unit - II Climates and Buildings

Climate – Types - Factors that Determine Climate - Climatic Variations – Thermal Properties and Energy Content of Building Materials – Effect of Geographic Locations – Building Aesthetics and Infiltration.

Unit - III Indoor Environmental Requirements

Thermal Comfort – Ventilation and Air Quality – Air Conditioning Requirement –Energy Management Options – Energy Audit and Energy Targeting – Design Consideration in Different Climatic Conditions.

Unit - IV Heating and Ventilation Systems

Energy Conservation and Feasibility Analysis – Conventional Ventilation Systems – Constant Volume and Variable Volume InductionSystems – Indoor Air Quality – Duct Design and Installation.

Unit - V Air conditioning Systems

Energy Conservation in Air Handling Units – Fans - Air Condition Apparatus– Window Air Condition System – Central Air Condition System – Energy Efficient Motors – Cooling Load Estimation – Bypass Factor - Room Sensible Heat Factor – Grand Sensible Heat Factor – Effective Room Sensible Heat Factor.

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Faye C.McQuiston, Jerald D.Paeker and Jeffrey D.Spitler, "Heating, Ventilating, and Air Conditioning", 6th Edition, JohnWiley & Sons Inc., Singapore, 2005.

REFERENCES:

1. Shan K. Wang, "Hand Book of Air conditioning and Refrigeration", 2nd Edition, McGraw-Hill, New York, 2000.

Jan F. Kreider & Peter S. Curtiss, "Heating and Cooling of Buildings: Design for Efficiency", 2nd Edition, CRC Press, New York, 2010.

3. ASHRAE Handbook, "HVAC Systems and Equipment 2011, HVAC Applications", ASHRAE Inc., Atlanta, 2019.

COUF On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	define the fundamental thermodynamic principles.	Understanding (K2)
CO2	determine the thermal properties and energy content of building materials.	Applying (K3)
CO3	prepare the requirement of indoor environmental conditions based on standards.	Applying (K3)
CO4	analyze the duct design in heating and ventilation systems.	Analyzing (K4)
CO5	perform the cooling load calculations involved in air-conditioning systems.	Analyzing (K4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3											3
CO2	3	3	3		3	3	3							3
CO3	3	3	3		3	3	3						3	3
CO4	3	3	3		3	3	3						3	3
CO5	3	3	3		3	3	3						3	3
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating Total % Category* (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % CAT1 30 100 45 25 CAT2 20 40 40 100 CAT3 20 20 30 30 100 ESE 40 15 100 15 30

20MEE46 - NANOTECHNOLOGY FOR MECHANICAL ENGINEERS

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble	The course imparts the basics of Nanotechnology. It emphasize on the fabrication procedures, characterization techniques, technical properties and applications of several nanostructured materials.	
Unit - I	Fundamentals of Nanotechnology	9
Nanoscience -Fabrication Nanomateria Optical Prope	and Nanotechnology – Fundamentals - Classification and General Themes of Nanotechnology - Nanoscale Sc and Processing Technology - Size Dependence of Materials Properties - Characterization Tools - Proper s - Structural Properties - Thermal Properties - Chemical Properties - Mechanical Properties - Magnetic Proper erties - Electronic Properties - Biological Properties.	tience ties of erties -
Unit - II	Nanoscale Fabrication and Characterization	9
Nanoscale Fa Beam Lithogra Soft Lithogra Ultraviolet–V	abrication - Bottom-up Approach - Chemical Synthesis - Self-Assembly - Top-down approach – Photolithography - E aphy - Focused Ion Beam Lithography - Extreme Ultraviolet Lithography – Nano Imprint Lithography - X-ray Lithog phy. Characterization of Nanomaterials - Atomic Structure and Chemical Composition - Vibrational Spectrosco isible Spectroscopies - Electron Microscopy - Zeta Potential Analyzer - Laser Granulometry.	lectror raphy opies
Unit - III	Metal Based Nanomaterials and Fluidics	9
Classification Silica - Trans – Nanowires	s of Nanostructured Materials – Nanopowders - Metal Nanopowders - Metal Oxide Nanopowders - Nanoporous Mat sition Metal Oxides - Metal Sulfides – Metal Aluminum Phosphates - Silicon Nitrides - Aluminum Oxides – Nan - Zinc oxide Nanostructures - Micro and Nano Fluidics - Synthesis – Properties – Applications.	erials odusts
Unit - IV	Carbon Nanomaterials	9
Carbon Allotr Method - So Chemical Va - Specific He Applications	opes - Molecule Structures - Physical and Chemical Properties - Synthesis Methods - Electric Arc Method - Laser A lar Energy Method. Carbon Nanotubes — Structure and Synthesis - Arc Discharge Method - Laser Ablation Me por Deposition Method. Properties - Electrical Conductivity - Optical Activity - Vibrational Properties - Mechanical St eat and Thermal Conductivity – Applications - Defects in Carbon Nanotubes - Fullerenes - Synthesis – Prope	blation ethod rength rties -
Unit - V	Nanocomposites	9
Nanoscale Re Matrix Nanoc Vapor Depos Nanocompos	einforcements — Synthesis and Properties: Nano Clays - Equi-axed Nanoparticles. Ceramic Matrix Nanocomposites composites Magnetic Nanocomposites. Polymeric Nanocomposites, - Synthesis methods - Sol-gel Processing - Ch ition - Mechanical Alloying - Thermal Spraying. Metal Matrix Nanocomposites - Magnetic Nanocomposites. Po ites - Synthesis - Melt Mixing Method - Solution Mixing - Thermal Spray Method - Properties - Mechanical Prop	, Meta iemica lymeri erties

Composites - Smart and Intelligent Nanocomposites.

Total: 45

1. Vijay K Varadan, Sivathanu Pillai A, Debashish Mukherji, Mayank Dwivedi, Linfeng Chen, "Nanoscience and Nanotechnology in Engineering ", 1st Edition, World Scientific, Singapore, 2010.

Abrasion and Wear Resistance - Permeability - Thermal Stability - Flammability - Rubber Matrix Nanocomposites - Nano-Bio-

REFERENCES:

TEXT BOOK:

1.	Maria Stepanova, Steven Dew, "Nanofabrication Techniques and Principles", 1 st Edition, Springer International Publishing, Switzerland, 2012.
2.	Thangadurai, T.D., Manjubaashini, N., Thomas, S., Maria, H.J, "Nanostructured Materials", 1st Edition, Springer International

Publishing, Switzerland, 2020.
 Paulo Davim J. and Constantinos A. Charitidis, "Nanocomposites - Materials, Manufacturing and Engineering", 1st Edition, De Gruyter, Germany, 2013.

COUF On co	COURSE OUTCOMES: On completion of the course, the students will be able to				
CO1	interpret the fundamental of nanotechnology	Understanding (K2)			
CO2	present the different techniques involved in nanoscale fabrication and characterization	Understanding (K2)			
CO3	demonstrate the synthesis route, properties and applications of metal based nanomaterials and fluidics	Applying (K3)			
CO4	describe the synthesis route and correlate the structure - property relationship of carbon nanomaterials	Applying (K3)			
CO5	select appropriate materials and fabrication techniques to prepare nanocomposites for desired applications	Applying (K3)			

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1												2
CO2	3				3								3	2
CO3	3	3	1	2	3								3	3
CO4	3	3	1	2	3								3	3
CO5	3	2	1		3	1							3	3
1 – Slight, 2 –	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

ASSESSMENT PATTERN - THEORY Test / Bloom's Remembering Understanding Applying Analyzing Evaluating Creating Total % Category* (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % CAT1 100 40 60 -------20 100 CAT2 40 40 CAT3 20 40 40 100 ---ESE 30 30 100 40 ---

20MEE47 - NON DESTRUCTIVE EVALUATION TECHNIQUES

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
	Engineering Materials and Metallurgy						
Prerequisites	Metrology and Measurements	8	PE	3	0	0	3
-	Manufacturing Technology						

Preamble This course provides the principle and procedures of various non-destructive testing methods used for different engineering inspections to evaluate the defects.

Unit - I Introduction and Liquid Penetrant Testing

Non-Destructive Testing (NDT) and its Importance - NDT vs Destructive Testing - Preparation of Test Materials - Visual Examination -Basic Principles - Optical Aids Used and Applications. Liquid Penetrant - Principles - Procedure for Penetrant Testing - Light Sources and Special Lighting - Calibration - Penetrant Testing Methods - Post Emulsification - Developers - Properties of Liquid Penetrant -Sensitivity - Applications and Limitations - Standards.

Unit - II Magnetic Particle Testing

Principles - Theory of Magnetism - Characteristics of Magnetic Fields - Magnetizing Techniques - Circular and Longitudinal Magnetization Techniques - Procedures - Equipment Calibration - Sensitivity - Principles and Methods of Demagnetization - Residual Magnetism - Applications and Limitations - Standards - Case studies.

Unit - III Ultrasonic Testing

Properties of Sound Beam - Transducers - Inspection Methods - Techniques for Normal and Angle Beam Inspection - Flaw Characterization - Equipment - Methods of Display - A Scan - B Scan - C Scan - Immersion testing - Calibration - Advanced Ultrasonic Testing Methods - Phased Array Ultrasonic Testing (PAUT) & Time of Fight Diffraction (TOFD) - Standards - Application - Advantages and Limitations.

Unit - IV Radiography

Electromagnetic Radiation Sources - X-ray Production & Gamma Ray Sources - Properties - Radiation - Attenuation and Effects in Film - Exposure Charts - Radiographic Imaging - Inspection Techniques - Image Quality Indicators (IQI) - Applications and Limitations -Safety in Industrial Radiography -Neuron Radiography - Standards - Case Studies.

Unit - V Eddy Current and Selection of NDT Methods

Eddy Current: Principles - Instrumentation - Techniques - Probe - Sensitivity - Advanced Test Methods - Applications & Limitations - Standards - Other Techniques - Acoustic Emission Testing - Principle - Techniques - Instrumentations - Applications and Standards - Homography Thermography - Principles - Equipments - Techniques - Applications and Standards - Leak Testing Methods - Detection and Standards.

Selection of NDT Methods: Defects in Material - Selection of NDT Method and Instrumentation - Some Case Studies.

Total: 45

9

g

9

9

9

TEXT BOOK:

1. Baldev Raj, Jayakumar T. & Thavasimuthu M., "Practical Non Destructive Testing", 3rd Edition, Narosa Publishing House, New Delhi, 2019.

REFERENCES:

1. Hull Barry & John Vernon., "Non Destructive Testing", 3rd Edition, Macmillan, London, 2015.

2. Hellier C., "Handbook of Non Destructive Evaluation", 3rd Edition, McGraw-Hill Education, 2020.

3. Shull Peter J., "Non Destructive Evaluation: Theory - Techniques and Applications", Marcel Dekkar Inc., New York, USA, 2002.

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	depict the importance of non-destructive testing methods and impart knowledge on liquid penetrant and visual inspection methods.	Applying (K3)
CO2	demonstrate the various magnetic particle testing methods.	Understanding (K2)
CO3	illustrate the principle of ultrasonic testing and its modern methods.	Applying (K3)
CO4	demonstrate Radiographic principles and testing of defects.	Applying (K3)
CO5	discuss on other non-destructive testing techniques and select appropriate method for defect identification.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3				2					1		1	3	2
CO2	3				2					1		1	3	2
CO3	3				3					1		1	3	2
CO4	3				3					1		1	3	2
CO5	3	2			3					1		1	3	2
1 – Slight, 2 –	- Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	15	40	45				100				
CAT2	15	40	45				100				
CAT3	30	35	35				100				
ESE	20	35	45				100				

20MEE48 - INDUSTRIAL MARKETING

Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	8	PE	3	0	0	3

Preamble	This course deals with the behaviour of customers and marketing strategies. It improves the skills for solving the real engineering marketing strategies and useful to design the channel of market and product development.	al time							
Unit - I	Introduction	9							
Introduction to of Industrial a	to Industrial Markets - Marketing System - Concepts - Characteristics – Definition Exchange Processes – Character and Consumer Markets –Market Demand – Cross Elasticity of Demand-Business Ethics.	istics							
Unit - II	Industrial Purchasing	9							
Types of Ind Units – Mode	ypes of Industrial Customers - Purchasing Practices - Industrial Buyer Behaviour – Industrial Buying Situation – Decision Making Jnits – Models of Organizational Buying Behaviour- Modern Purchasing Terminologies.								
Unit – III	Marketing Planning and Research	9							
Marketing F MarketingInt Marketing R - Research Ir	Marketing Planning: Business Marketing – Marketing Planning – Corporate Strategic Planning – Target Marketing - MarketingInformation Systems. Marketing Research: Market Evaluation - Role of IT in Marketing Information Systems - Definition and Process of Marketing Research - Research Instruments.								
Unit - IV	Product Development and Pricing	9							
Industrial Pr - Industrial Pricing Strat	oducts and Services Definition - New Industrial Product Development — Product Life Cycle - Marketing Stra Pricing Characteristics- Influencing Factors in Pricing Decisions of Industrial Markets-Classification of egies.	ategies Costs-							
Unit - V	Channel Design	9							
Economic Po Distributors- Communica	erformances and Channel Management Decisions- Industrial Logistics System- Role and Characteristics of Ind Sales Promotion – Personal Selling - Sales Force Management – Advertising in Marketing – Ind tionPrograms.	dustrial Iustrial							

Total: 45

TEXT BOOK:

1. Hawaldar, K. Krishna, "Industrial Marketing", 4th Edition, Tata McGraw Hill, New Delhi, 2015.

REFERENCES:

1. Philip Kotler, Gary Armstrong & Prafulla Agnihotri, "Principles of Marketing", 17th Edition, Pearson Education, 2018

2. Robert R. Reeder, Briety & Betty H. Reeder, "Industrial Marketing", 4th Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2015.

COURSE	COURSE OUTCOMES: BT Mapped													
On comp	On completion of the course, the students will be able to (Highest Level)													
CO1	explain industrial marketing system and concepts. Understanding (K2)													
CO2	apply the	e concep	ot of indu	ustrial ma	arket mo	dels in o	organiza	ition.					Applying	(K3)
CO3	prepare	the buye	ers recei	nt marke	t informa	ation in 1	the cont	ext of ma	arket res	earch.			Applying	(K3)
CO4	integrate	the pric	ing stra	tegies w	ith the le	evel com	petitors.						Applying	(K3)
CO5	apply the	e new de	ecisions	and cha	nnel mo	dels for	sales pr	omotion	in indus	stries.			Applying	(K3)
					М	apping	of COs	with PO	s and P	SOs				
COs/POs	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2					3	3	2						2
CO2	2	2				3	3	2		1				2
CO3	2	2				3	3	2		1				2
CO4	2	2				3	3	2		1				2
CO5	2	2				3	3	2		1				2
1 – Sligh	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMEN	T PATTERN - 1	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50				100
CAT2	15	35	50				100
CAT3	20	40	40				100
ESE	20	35	45				100

20MEO01 - RENEWABLE ENERGY SOURCES

(Offered by Department of Mechanical Engineering)

Programme & Branch	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	OE	3	0	2	4

Preamble This course discusses various technologies behind renewable energy conversion process and the challenges in integrating power from renewable energy plants with grid.

Unit – I Grid Integration of Renewable Energy

Global Energy Use- Energy Status in India -Lifetime of Fossil Fuels- Energy Conversion Technologies - Thermodynamic Efficiency – Variability – Intermittency - Dispatchability - Electric Grid Infrastructure - Integrating Renewable Energy into the Grid - Growing a MoreEfficient Grid - Smart Grid - Secure Communication in the Smart Grid.

Unit – II Solar Energy and Wind Energy

Solar Energy: Solar Radiation — Measurements of Solar Radiation and Sunshine - Solar Thermal Collectors –Flat Plate and Concentrating Collectors - Fundamentals of Solar Photo Voltaic Conversion – Solar PV Systems-Types- Design of a Standalone Solar PV System - Solar PV and Thermal Applications - Building Integrated Solar- Leadership in Energy Environment Design (LEED) Certification- Challenges - Economics.

Wind Energy: Basic Terms – Types - Horizontal Axis Wind Turbine-Vertical Axis Wind Turbine - Building Integrated Wind Turbines - Wind Turbine Generator and its Performance - Wind Turbine Applications - Recent Developments in Offshore Wind Turbines and Energy Storage - Hybrid Systems - Challenges - Economics.

Unit - III Bioenergy

Biomass Resources - Biomass Conversion Technologies - Factors Affecting Biogas Production -Biogas Plant – Types – KVIC Model -Deenbandhu Model - Cogeneration Plant in Rice Mill- Ethanol Production - Energy Recovery from Urban Waste. Transportation --Challenges - Economics.

Unit - IV Geothermal Energy and Ocean Energy

Geothermal Energy: Geothermal Resources-Structure of Earth's Interior - Electricity Production - Conversion Technology - Challenges - Economics.

Ocean Energy: Tidal Plants – Types - Energy Estimation - Grid Interfacing of Tidal Power - Wave Energy Conversion Machines – Types – Buoy - Dolphin - Oscillating Duck - Challenges - Economics.

Unit – V Direct Energy Conversion Systems and New Energy Sources

Direct Energy Conversion Systems: MHD Generators – Thermoelectric Power Generation. **New Energy Sources**: Hydrogen – Generation – Storage - Transport and Utilization - Applications - Power Generation – Transport - Hydrogen Economy - Safety Issues - Fuel Cell – Principle – Types.

List of Exercises / Experiments:

1.	Evaluate the cut in speed of the wind turbine.
2.	Analyze the effect of the variation of Tip speed ratio on the Coefficient of power of wind turbine.
3.	Study the air flow over an aerofoil in a Wind Tunnel.
4.	Determine the thermal energy gain at the focal point of a concentrating collector.
5.	Determine the efficiency of solar (Liquid/Air) collector.
6.	Plot the effect of variation of tilt angle on the PV module output.
7.	Plot the effect of variation of Solar intensity on the PV module output.
8.	Study on rooftop Solar PV plant.
9.	Study on weather monitoring station.
10.	Innovative model development based on Renewable Energy Sources.

TEXT BOOK:

1. Jefferson W. Tester, Elisabeth M. Drake, Michael J. Driscoll, Michael W. Golay, William A. Peters., "SustainableEnergy: Choosing Among Options", 2nd Edition, MIT Press, USA, 2012.

Total: 75

9

9

9

9

9

REFERENCES:

1.	John Twidell, Tony Weir, "Renewable Energy Resources", 3rd Edition, Routledge, New York, 2015.
2.	Kothari D.P., Singal K.C., Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies", 2 nd Edition, PHI Learning Pvt. Ltd., New Delhi, 2011.
2	Pai C. D. "Non Conventional Energy Sources" 6th Edition, Khanna Publishers, New Dalhi, 2017

Ċ	3. 🛛 Rai G.D.,	"Non-Conventional	Energy Sources",	6 th Edition, Khar	nna Publishers, New De	lhi, 2017.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the concepts behind the integration of renewable energy into the grid.	Understanding (K2)
CO2	describe the working and applications of solar and wind energy systems.	Applying (K3)
CO3	describe the bio-energy production techniques.	Applying (K3)
CO4	describe the working of geothermal energy and Ocean energy conversion systems.	Understanding (K2)
CO5	the direct energy conversion systems and new energy sources.	Understanding (K2)
CO6	conduct the experiments in solar PV and solar collectors.	Applying (K3), Manipulation (S2)
C07	evaluate the cut in speed, tip speed ratio and coefficient of power in wind electric generators.	Applying (K3), Manipulation (S2)
CO8	analyse the data from weather monitoring station and develop small scale innovative models.	Analyzing (K4), Articulation (S4)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3					3							
CO2	3	3					3							
CO3	3	3					3							
CO4	3	3					3							
CO5	3	3					3							
CO6	3	3		3					3	3			2	3
CO7	3	3		3					3	3			2	3
CO8	3	3		3					3	3			2	3

		ASSESSMEN	T PATTERN - 1	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	30				100
CAT2	30	30	40				100
CAT3	50	50					100
ESE	30	40	30				100

20MEO02 - DESIGN OF EXPERIMENTS

(Offered by Department of Mechanical Engineering)

Programme & Branch	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	5	OE	3	0	2	4

Preamble The course explores the fundamentals of experimental design, single factor and multifactor experiments. In addition, the course deals with design of experiments, which includes the optimization techniques like ANOVA, Factorial Design, Response Surface Methodology, Taguchi Method.

Unit - I Experimental Design Fundamentals

Importance of Experiments - Experimental Strategies-Basic Principles of Design-Terminology-ANOVA-Steps in Experimentation-Sample Size-Normal Probability Plot-Linear Regression Model.

Unit - II Multifactor Experimental Design

Classical Experiments: Factorial Experiments-Terminology-Factor Levels - Interactions-Treatment Combination-Randomization-Two Level Experimental Designs for Two Factors and Three Factors. Three Level Experimental Designs for Two Factors and Three Factors-Factor Effects-Factor Interactions-Fractional Factorial Design-Saturated Designs-Central Composite Designs-Illustration Through Numerical Examples.

Unit - III Analysis and Interpretation Methods

Measures of Variability-Ranking Method-Column Effect Method-Plotting Method-Analysis of Variance (ANOVA) in Factorial Experiments-YATE's Algorithm for ANOVA-Regression Analysis-Mathematical Models from Experimental Data-Illustration Through Numerical Examples.

Unit - IV Special Experimental Designs

Fractional Factorial Design-Nested Designs-Split Plot Design-Introduction- Response Surface Methodology-Experiments with Random Factors-Rules for Expected Mean Squares- Approximate F-Tests.

Unit - V Taguchi Methods

Steps in Experimentation-Design using Orthogonal Arrays-Data Analysis-Robust Design- Control And Noise Factors-S/N Ratios-Parameter Design-Case Studies.

List of Exercises / Experiments :

1.	Design of experiments for turning operations by the Taguchi method.
2.	Design of experiments for milling operations by Taguchi method.
3.	Optimize the parameters that affect the quality of CNC turning operation by the Taguchi method.
4.	Optimize the parameters that affect the quality of CNC milling operation by the Taguchi method.
5.	Process parameter optimization in turning using the central composite design method.
6.	Process parameter optimization in turning using the Box–Behnken design method.
7.	Process parameter optimization in surface grinding by Response Surface Method
8.	Mathematical model development for turning operation
9.	Mathematical model development for milling operation.
10.	Mathematical model development for drilling operation.

Lecture: 45, Practical: 30, Total: 75

9

9

9

9

g

TEXT BOOK:

1.	Douglas C. Montgomery, "Design and Analysis of Experiments", 10th Edition, John Wiley and Sons, United States, 2019.
RE	FERENCES:
1.	Phillip J.Rose., "Taguchi Techniques for Quality Engineering", 2 nd Edition, McGraw Hill, New Delhi, 2005.
2.	Nicolo Belavendram., "Quality by Design; Taguchi Techniques for Industrial Perimentation", Prentice Hall, London, 1995.
3.	Krishnaiah, K and Shahabudeen, P., "Applied Design of Experiments and Taguchi Methods", PHI Learning Private Ltd., New Delhi, 2012.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	present the fundamental concepts in experimental design.	Understanding (K2)
CO2	identify and design single and multifactor experiments.	Applying (K3)
CO3	select different analysis and interpretation methods for experimental results.	Analyzing (K4)
CO4	apply the concepts of special experiment designs.	Analyzing (K4)
CO5	apply and analyze the concepts of Taguchi experiment design for practical problems.	Analyzing (K4)
CO6	design and conduct experiments using Taguchi method.	Analyzing (K4) Manipulation (S2)
C07	design and analyze the experimental results using response surface method	Analyzing (K4), Manipulation (S2)
CO8	develop mathematical model using regression analysis.	Applying (K3), Articulation (S4)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	3												
CO2	3	3	3	3											
CO3	3	3	3	3											
CO4	3	3	3	3											
CO5	3	3	3	3											
CO6	3	3	3	3	3						3		3	3	
CO7	3	3	3	3	3						3		3	3	
CO8	3	3	3	3	3						3		3	3	
1 – Slight, 2 –	Moderat	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*Remembering (K1) %Understanding (K2) %Applying (K3) %Analyzing (K4) %Evaluating (K5) %Creating (K6) %															
CAT1	15	30	55				100								
CAT2	10	15	50	25			100								
CAT3	10	20	30	40			100								
ESE	10	20	35	35			100								

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

20MEO03 - FUNDAMENTALS OF ERGONOMICS

(Offered by Department of Mechanical Engineering)

Programme Branch	&	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	Т	Р	Credit						
Prerequisite	s	Nil	6	OE	3	0	0	3						
Preamble	This co comfort	urse provides the basic concepts of ergonomics and various table and safe workplace.	s tools a	and techniques	s involv	ed in de	esigning]						
Unit - I	Introdu	ntroduction to Ergonomics 9												
Fundamentals of Ergonomics / Human Factors - Disciplines - Physical - Cognitive and Organizational - Needs of Ergonomics ir Workplace - Ergonomic Principles - Applications - Ergonomic Evaluation - Questionnaire Survey.														
Unit - II	Anthro	pometry						9						
Human Body Measuring Te	- Struc echnique	ture and Function - Types of Anthropometric Data - Applices - Statistical Treatment of Data and Percentile Calculations	cation o	of Anthropome	try in E	Design	- Anthr	opometric						
Unit - III	Postur	e and Movement						9						
Posture : Bio Movement: Body Assess	omechar Lifting - ment (R	nical Background - Physiological Background - Sitting - Sta Carrying - Pulling - Pushing - Repetitive Motions - Rapid U EBA) and Ovako Working Posture Assessment (OWAS) Met	nding (pper Lii hod.	Change of Pos mb Assessme	ture - I nt (RUI	Hand aı _A) — R	nd Arm Rapid E	Postures ntire						
Unit - IV	Work C	Counter Behavior and Perception						9						
Work Count Issues - Inform	er: Envi mation F	ronmental Issues - Physical Work Capacity - Factors Affect Processing and Perception: Interaction with Machines - Ment	cting wo al Work	ork Capacity - kload.	Comm	unicatio	on and	Cognitive						
Unit - V	Work s	system Evaluation and Safety						9						
Work system Workplace Ev Safety : Occ	n Evalu /aluation upationa	ation: Contribution of Ergonomics to Workstation Design Tools - Case Studies al / Ergonomic Safety and Stress at Various Workplace - H	- Analy	sis of Workpla Ianagement R	ce Des ules - :	ign - W Scope (ork En	velopes - nomics in						

Total: 45

TEXT BOOK:

India-Case Studies.

1. Bridger, Robert. "Introduction to Human Factors and Ergonomics", United Kingdom, CRC Press, 2017

REFERENCES:

1. Pamela McCauley-Bush, "Ergonomics: Foundational Principles, Applications, and Technologies", 1st Edition, Taylor & Francis, CRC Press, New York, 2011.

2. Dul, Jan, and Weerdmeester, Bernard. "Ergonomics for Beginners: A Quick Reference Guide", 3rd Edition. United Kingdom, Taylor & Francis, 2017.

Ser.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

1	
1	
1	

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	define ergonomics and its components.	Understanding (K2)
CO2	make use of statistical treatment of data in designing the components of office and shop floor.	Applying (K3)
CO3	examine the common risk factors and areas for ergonomic improvement.	Analyzing (K4)
CO4	apply ergonomic principles in assigning task to the workers	Applying (K3)
CO5	plan the essential elements for an effective ergonomics programme.	Analyzing (K4)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	2	1		2							2	2	1	
CO2	2		2	2	2							1	2	1	
CO3	2			1	2	2	2					2	2	1	
CO4	2		2		2	1	1					1	2	1	
CO5	CO5 2 2 2 1														
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	25	45	30				100								
CAT2	20	30	30	20			100								
CAT3	20	25	25	30			100								
ESE	10	40	30	20			100								

20MEO04 - PRINCIPLES OF MANAGEMENT AND INDUSTRIAL PSYCHOLOGY

(Offered by Department of Mechanical Engineering)

Programme & Branch	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	6	OE	3	0	0	3

 Preamble
 The course provides the principles, theory and practice of management followed in organizations. In addition, it covers the skills to meet the challenges of management, human behavior in a diverse and complex environment.

 Unit - I
 Principles of Management
 9

 Definition and Significance of Management - Evolution of Modern Management - Scientific Management - Development of Management Thought - Approaches to the study of Management - Basic Functions of Management - Introduction.

Unit - II Functions of Management

Planning - Objectives and Strategies - Policies and Planning Premises - Decision Making - Organizing - Nature and Process - Premises -Departmentalization - Decentralization - Organizational culture - Staffing - Selection and training - Placement - Performance appraisal -Career Strategy - Organizational Development - Leading - Managing Human Factor - Leadership - Communication - Controlling - Process of Controlling - Controlling Techniques - Productivity and Operations Management - Preventive Control - Industrial Safety.

Unit - III Organizational Behavior

Definition - Organization - Managerial Role and Functions - Organizational Approaches - Individual Behavior - Causes - Environmental Effect - Behavior and Performance - Perception - Organizational Implications - Personality - Contributing factors - Dimension - Need Theories - Process Theories - Job Satisfaction - Learning and Behavior - Learning Curves - Work Design and Approaches.

Unit - IV Industrial Psychology and Group Dynamics

Industrial Psychology : Introduction - Concept and Meaning - Characteristics and Scope - Historical Development - Individual Behavior Group Dynamics: Group Behavior - Features of Group - Formation and Development - Types of Groups - Group Structure and Cohesiveness.

Unit - V Interpersonal Relationship

Leadership - Concept and Meaning - Principles and Theories - Managing Emotions - Emotional Intelligence - Building Interpersonal Relations - Managing the Boss - Dealing with Subordinates.

Total: 45

9

g

g

q

TEXT BOOKS:

1. Harold Koontz & Heinz Weihrich., "Essentials of Management: An International, Innovation and Leadership Perspective",11th Edition, McGraw Hill Education Pvt. Ltd., New Delhi, 2020 for units I,II,III

2. Michael G Aamodt., "Industrial Psychology", 7th Edition, Cengage Learning, India, 2013 for units IV,V

REFERENCES:

1. Chandran J.S., "Organizational Behaviour", 3rd Edition, Vikas Publishing House Pvt. Ltd., New Delhi, 2014.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	interpret the theory and the practice of management.	Understanding (K2)
CO2	demonstrate knowledge and understanding of the functions of management.	Understanding (K2)
CO3	define organizational behavior and explain how managers create organizational culture.	Applying (K3)
CO4	develop an intuitive understanding of the science of human behavior and the art of managing groups.	Understanding (K2)
CO5	develop ability for solving problems involving employee - industry relationship.	Applying (K3)

	Mapping of COs with POs and PSOs														
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02														
CO1						3		3	3	3	1			3	
CO2						3		3	3	3				3	
CO3						3		3	3	3				3	
CO4						3		3	3	3				3	
CO5						3		3	3	3				3	
1 – Slight, 2 –	Modera	te, 3 – S	Substant	ial, BT-	Bloom's	s Taxon	omy								

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	45	55					100								
CAT2	25	45	30				100								
CAT3	30	30	40				100								
ESE	30	35	35				100								

20MEO05 - SAFETY MEASURES FOR ENGINEERS

(Offered by Department of Mechanical Engineering)

Programme & Branch	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Preamble The course explores the knowledge on safety aspects, procedures and guidelines to be followed in various industries, while performing various types of activities in electrical, chemical industries with appropriate personal personnel protection equipments and risk assessment procedures.

Unit - I Safety Management and Accident Prevention

Safety Management: Need for Safety - Safety and Productivity - Safety Management Techniques - Job Safety Analysis - Safety Sampling Technique - Incident Recall Technique - Plant Safety Inspection —

Accident Prevention: Nature and Causes of Accidents - Accident Proneness - Cost of Accident - Accident Prevention Methods Accident Reporting and Investigation - Safety Education and Training

Unit - II Electrical and Fire Safety

Usefulness and Hazards of Electricity - Statutory Provisions - Indian Standards - Effects of Electrical Parameters on Human Body -Safety Measures for Electric work - Overload and Other Protections - Portable Electrical Apparatus - Electric Work in Hazardous Atmosphere - Static Electricity - Energy Conservation and Safety Fire Phenomena - Classification of Fire and Extinguishers - Statutory and other standards - Design for Fire Safety - Fire Prevention and Protection System - Explosion Phenomena - Inspection, Maintenance and Training for Fire Protection

Unit – III Safety in Chemical Industry

Types of Chemical Industry - Statutory Provisions - Indian Standards – Types of Chemical Hazards & Controls – Material (Property)Hazards and Controls – Storage Hazards & Controls - Process Hazards & Controls - Utility Hazards & Controls - Pollution Hazards & Controls - Instrumentation for Safe Plant Operations - Safe Transfer of Chemicals - Inspection, Testing & Maintenance - Work Permitsof Hazardous Work

Unit – IV Personnel Protection Equipment (PPE)

Need and Limitation - Statutory Provisions - Indian & Other standards - Selection and Classification - Non Respiratory Equipment - Respiratory Equipment - Training, Maintenance, Precaution and Care of PPE - Detection Equipment - PPE Testing Procedures & Standards

Unit - V Risk Assessment

Basic Concepts of Risk - Safety Appraisal, Analysis and Control Techniques - Accident Investigation, Analysis and Reporting - Hazard and Risk Assessment Techniques - Reliability Engineering - Major Accident Hazard (MAH) Control - On-site and Off-site Emergency Plans

Total: 45

9

9

9

9

9

TEXT BOOK:

1. Mistry K.U., "Fundamentals of Industrial Safety and Health", 2nd Edition, Siddharth Prakashan, Ahmedabad, 2008. **REFERENCES:**

1. John Cadick, Mary Capelli Schellpfeffer & Dennis Neitzell, "Electrical Safety Handbook", 4th Edition, McGraw-Hill Education, 2012.

2. Davies V.J. & Thomasin K., "Construction Safety Hand Book", 2nd Edition, Thomas Telford Ltd., London, 1996.

3. Rao S, Jain R.K. & Saluja H.L., "Electrical Safety, Fire Safety Engineering and Safety Management", 2nd Edition, Khanna Publishers, 2012.

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	perceive the safety management concepts and accident prevention methods.	Understanding (K2)
CO2	apply appropriate measuring and /or insulating equipment, use of fire extinguishers and safe earthing practices.	Applying (K3)
CO3	identify the hazards in chemical industries during transporting, storing and processing to ensure safe plant operations	Applying (K3)
CO4	select the PPE based on the type of industry and standards.	Applying (K3)
CO5	implement the techniques like risk assessment disaster management and emergency preparedness with the proper knowledge on accident prevention.	Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02													
CO1	3			2		3	3	3						
CO2	3			2		3	3	3						
CO3	3			3		3	3	3						
CO4	3			1		3	3	3						
CO5	3			3		3	3	3						
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMEN	FPATTERN - T	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	45	40				100
CAT2	20	40	40				100
CAT3	30	30	40				100
ESE	30	35	35				100

20MEO06 - ENERGY CONSERVATION IN THERMAL EQUIPMENTS

(Offered by Department of Mechanical Engineering)

Programme & Branch	All BE/BTech branches except Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3

Preamble This course provides the knowledge on the methods to conserve energy in thermal equipments after a detailed evaluation of the performance parameters. Unit - I **Basics of Energy** 9 Energy – Forms of Energy – Power – Units – Estimation of Energy Requirement – Electricity – Voltage – Current -Resistance – Measurement of Electrical Quantities - Energy Efficiency and Conservation – Plant Energy Performance Production Factor – Company Energy Performance – Energy Audit and Survey Instruments - Energy related CO₂ emissions – Strategies for Energy Savings in Industries. Unit - II Energy Conservation in Steam System 9 Steam Phase Diagram - Steam Distribution - Steam Pipe Design and Sizing – Steam Traps – Selection – Operation – Maintenance -Performance Assessment Methods -- Energy Saving Opportunities. Unit – III Energy Conservation in Boilers and Furnaces 9 Boiler: Water Treatment – Water for Steam Raising – Hot Water Systems – Heat transfer Coefficients – Boiler PerformanceAssessment using Direct and Indirect Method – Energy Conservation Opportunities. Furnace: Performance Evaluation – General Fuel Economy Measures- Estimation of fuel savings. Unit – IV Energy Conservation in Air conditioners 9 Load Characteristics and Calculation- Factors Affecting Cooling Rate- Air conditioner – Working – Types – Efficiency – Sizing -EnergyConservation Opportunities — Energy Monitoring and Control System. Unit - V Cogeneration 9 Need – Classification – Commercial Cogeneration Systems – Factors and Technical Parameters Influencing the Selection of Cogeneration Systems – Energy Savings through Cogeneration Systems- Relative Merits of Cogeneration Systems – PerformanceAssessment.

, Total: 45

TEXT BOOK:

 Guide Books for National Certification Examination for Energy Managers and Auditors, 4th Edition, Bureau of Energy Efficiency,2015.

REFERENCES:

1.	Sonal Desai, "Handbook of Energy Audit", 1 st Edition, McGraw Hill Education, New Delhi, 2015.
2.	Stephan A Roosa, Steve Doty, Wayne C Turner, "Energy Management Handbook", 9th Edition, River Publishers, New York, 2018.

Department of Mechanical Engineering, Kongu Engineering College, Perundurai, Erode - 638060, India

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	infer the basics of energy with a view of conserving it.	Understanding (K2)
CO2	identify the energy conservation opportunities in steam system.	Applying (K3)
CO3	categorize the energy conservation opportunities in boilers and furnaces.	Applying (K3)
CO4	recognize the energy conservation opportunities in air conditioners.	Applying (K3)
CO5	quantify the energy savings due to cogeneration	Applying (K3)

					Марр	ing of C	Os with	n POs a	nd PSO	s				
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy													

		ASSESSMEN	Γ PATTERN - Τ	HEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50	20				100
CAT2	15	50	35				100
CAT3	15	50	35				100
ESE	15	50	35				100

BOARD OF MECHANICAL ENGINENEERING

DEGREE & PROGRAMME : B. E. Mechanical Engineering

HONOURS DEGREE TITLE: SMART MANUFACTURING

The following courses are identified to earn additional 18 credits to get a Honours degree with specialization in **Smart Manufacturing.**

S.No	Course Code	Course Title	Credits	Prerequisites	Semester
1.	20MEH01	Digital Manufacturing	4	Manufacturing Technology	5
2.	20MEH02	Factory Automation	3	Nil	5
3.	20MEJ01	3D Modeling and Prototyping	4	Nil	6
4.	20MEH03	Smart Manufacturing Transformation	3	Manufacturing Technology	6
5.	20MEH04	Industrial IOT	4	Nil	7
		TOTAL	18		

BoS Coordinator

BoS Chairman

	20MEH01 -	DIGITAL MANUFACTURI	NG					
Programm Branch	B.E. & Mechanical Engineering		Sem.	Category	L	т	Ρ	Credit
Prerequisi	es Manufacturing Technology		5/6/7	HN	3	1	0	4
Preamble	This course provides the impor manufacturing. It additionally descr	tance of information, sen ibes the digital twin technolo	isors, a	ctuators, co its implement	ntrolle ation i	rs n sł	used nop flo	in digital por.
Unit – I	Introduction to Digital Manufactu	ıring:						9+3
Introduction Architectur Manufactur	 Development, Concepts and Connotation of Digital Manufacturing System - Model ng in Digital Manufacturing Science – Method 	, Theory System of Digital I ling theory and Method of dology – Manufacturing - The	Manufac Digital eoretical	cturing Science Manufacturir I units.	xe - O ng Sci	pera	ation :e - (mode and Computing
Unit – II	Manufacturing Informatics:							9+3
Manufactur Security. Ir Self-Learni	ng Informatics in Digital Manufacturing - Prir elligent Manufacturing in Digital Manufacturi g.	ncipal Properties - Measurer ng Science - Sensing End	ment an Fusion⊸	d Synthesis - - Knowledge	Integ Engin	ratio eeri	on, Sł ng - /	haring and Autonomy,
Unit – III	Bionic Manufacturing and Manag	ement Technology:						9+3
Science of Developme Technologi Product Lif	Bionic Manufacturing in Digital Manufactu t of Bio-Manufacturing. Management Tec al Strategies Management - Production Pa Cycles - Resource and Environment Technol	rring Science-Overview, Bi hnology in Digital Manufact ttern - MOT mode. Key teo blogy.	onic Ma uring Sc chnology	achinery - Bi cience - Mana of Digital M	ologic ageme anufa	al N ent o ctur	Manuf of Teo ing S	facturing - chnology - ccience -
Unit – IV	Digital Twin:							9+3
Digital Twi Digital Twir	and Related Concepts - Value of Digital T – Requirements - Three level Digital Twins -	win - Application of Digital Rules for Digital Twin Mode	Twin an Iling.	id its Challen	ges -	Thr	ee-Di	mensional
Unit – V	Equipment Energy Consumption	Management (EECM) in D	igital T	win Shop Flo	or:			9+3
Implementa Fusion in D Health Mar	tion of EECM in Digital Twin Shop floor - Po gital Twin Shop Floor Models Fusion - Data I agement (PHM) Method, Case study.	tential Advantages of EECM Fusion – Services - Digital T	1 in Digit win for (al Twin Shop Complex Equ	Floor	t – C	Cyber Progn	- Physical ostics and
				Lecture:	45, Tu	utor	ial:15	5, Total:60
TEXT BOC	<s:< td=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></s:<>							
1. Zu	e Zhou, Shane Xie, Dejun Chen, "Fundame 2 for units I, II, III	entals of Digital Manufacturi	ing Scie	nce", 1 st Edit	ion, S	prin	ger, I	New York,
2 Fe un	Tao, Meng Zhang A.Y.C.Nee, "Digital Twin E s IV, V	Driven Smart Manufacturing"	′ 1 st Edit	ion, Academi	c pres	s, L	ondor	n, 2019 for
REFEREN	ES:							
1. Ka	shik Kumar, Divya ZindaniJ. Paulo Davi.," C Press, London, 2019	Digital Manufacturing and A	Assembl	y Systems in	Indus	stry	4.0",4	1 th Edition,
2 Su	iya Kanta Pal, Debasish Mishra, Arpan Pa	al, Samik Dutta, Debashish	Chakra	avarty, "Digit	al Tw	in ·	– Fu	ndamental
2. Co	cepts to Applications in Advanced Manufact	uring", 1 st Edition, Springer,	New Yo	ork, 2021				

COUR: On cor	SE OU npletio	TCOM on of t	IES: he cours	se, the st	udents	will be a	able to						(BT Mapp Highest L	oed evel)		
CO1	CO1 Illustrate the digital manufacturing concepts in manufacturing applications													Understanding (K2)			
CO2	CO2 conceptualize manufacturing informatics for digital manufacturing													Understanding (K2)			
CO3	CO3 extend Bionic manufacturing and manufacturing technology to the real word problems													Applying (K3)			
CO4	CO4 discriminate digital twin and its application													Understanding (K2)			
CO5	selec	t suital	ole equip	ment ene	rgy cons	sumption	n manag	gement	method	in digita	al twin sh	op-floor		Applying (K3)			
1																	
						Mappin	g of CO	s with	POs an	d PSOs	5						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	1	3			3		2			2				1			
CO	2	3			3		2			2				2			
CO	CO3 3 3 2 2													3			
CO4	CO4 3 3 2 2													1			
CO	CO5 3 3 2 2													3			

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70					100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	20	50	30				100
* ±3% may be varied (C	CAT 1,2,3 – 50 mark	s & ESE – 100 mar	ks)				

															2	OM	1EI	HO)2 ·	– F	FA(ст	го	DR	۲Y	Ά	U	т	0	M	A	TIC	ON	I															
			1																																									_					
Program Branch	nme &	I	E	В	B.E		& I	Ne	c	ha	ni	ca	IE	En	gi	ne	er	in	g															S	əm		Ca	ate	go	ry	L		т		Ρ		C	Credi	t
Prerequ	isites		١	Ν	lil																													5/	6/7			Н	Ν		3		0		0			3	
Preamble	e	i	۲ ii a	T in a	his nsp	ec	tic ati	urs on or	e a	p inc	ro d t	/ic es	les tir	s ng n.	the . I	es Ita	sig als	gni SO	fic: in	ant npa	t ro art	ole tł	e he	oi e	of a kn	au 10\	to vl	om ec	na dg	tic e	on C	ii on	n p se	oro eve	du eral	ctic pi	n inc	line iple	s, S	ma of	ater co	ial ndi	ha tioi	ano 1	dlin mo	g nit	sy: ori	stem ng f	s, or
Unit – I		4	ł	A	ut	on	nat	tic	'n	ir) P	ro	d	uc	tic	on	Sy	ys	ter	m:																												9	
Introduct - Levels Assembl	tion, Princip of Automati ly - Types of	tio tio	les ior f A	es on Ai	aı s. utc	d A m	St uto ate	ra on ed	te na A	gie te ss	es d F en	of Io nb	A w y	ut lii S <u>y</u>	on ne /st	nat s - ten	ior • N ns	n - /let ar	- B thc nd	asi ods Bu	ic E s of uffe	Ele fV er\$	en No St	ne orl tor	ent k p rag	ts pa ge	of rt	a T	in Ta	A an:	sp	tor	na rt -	tec Ti	I S <u>y</u> an	/ste	∍m r N	- A lecl	.dv nar	ano nisr	;ed n -	Aı De	utoi esig	ma jn	atio for	n F Ai	=ur utc	nction	ns ∋d
Unit – II		1	ŀ	Α	١d	ar	C	ed	N	la	tei	ia	lŀ	la	nc	llir	ng	Т	ec	hn	olo	og	jie	es	:																							9	
Automate Applicati system,	ed handling ions of RG Robots and	ga Vs dth	∣a /s th	ar s the	nd an eir	sto d ap	ora AC pli	ag SV ca	e s. tio	sy A on	ste lut s i	em on n h	s na na	in te	m d Jlir	ian Sto	nuf ora an	ac ago nd	e a sto	ring and orag	g - d F ige	R Re	Rai etri	il iev	Gi va	uic al S	Je Sy	ed /st	V tei	′el m	hio S	cle (A	es \S/	(R) RS	GV: 5),	s), Co	Au nsi	ton der	nat atio	ed ons	Gu fo	ide r p	d \ lar	/e ni	hic ng	les an	s (A n A	AGV: AS /F	s), S
Unit – III	I		ŀ	Α	ut	on	nat	te	d	In	sp	ec	tio	or	ı a	nd	ΙT	es	stir	ng:																												9	
Automate Non-Cor Future tr	ed Inspection ntact inspection rends.	ion ctio	on tic	n ioi	Pr n	nc ne	ip th		s a ls.	an . I	d ∕Ia	Me ch	eth in	no e	ds Vi	- sic	Se on:	en F	so Res	r te soli	ech utio	nn on	ole 1,	log Li	gie .igł	əs htii	fc ng	or J,	A C	ui Co	toi nr	ma	ate ctiv	⊧d ∕ity	ns ar	bec naly	tio /sis	n - 3 -	C Tł	ont	act e di	in: im	spe ens	ecti sio	ion nal	m vi	ietł isic	nods on ar	– nd
Unit – IV	1		F	R	lob	ot	ic	ir	S	ре	ct	o	า ส	an	d	lde	en	tif	ica	atic	on	Te	ec	ch	nni	iqι	Je	s:																				9	
Introduct testing a systems.	tion - Types and Inspectio	ior	s c on	o n	fr - \$	ob Sei	ots vc	s · o r	F ob	=u	nd :s	an · (ne Ca	ent Se	als ; s	s c tuc	ofi dy.	rol . Ic	bot der	t co ntifi	ica	tro atic	ol on	aı n te	ind tec	d p chr	orc nic	og qu	ira ies	am S	חור - 1	nin Mi	ig cro	- I) S	nte ens	llig or:	ent s, N	t ro Ian	bo o s	ts sen	- R sor	ob s,	oti Ba	r c	/isi od	on e a	, F anc	Robo 1 RF	tic ID
Unit – V		((С	or	di	tic	on	N	lo	nit	or	in	g	:																																	9	
Principle condition	es - Sensors n monitoring	rs i g -	s f -	fc - E	or Dir		ni tc	to ool	rir M	ng /ea	fo ar	rce as	e se	- ' ss	√ik sm	ora ien	tio nt,	n Ind	an dire	nd i ect	noi t to	ise ol	e w	- vea	Se ar	ele a	ect ss	tio es	on ss	o m	of Iei	se nt	ens - T	or	s a I co	nd ond	mo itio	nit n n	orii 10r	ng nito	tecl rinç	nni J S	qu /ste	es em	. N 1.	lac	hir	ne to	ol
																																															Тс	otal:4	45
TEXT BO	OOKS:																																																
1.	Mikell P Gro for Units I &	00 3) 00	ov II	er	" /	ut	0	na	ati	on	Ρ	ro	d	lct	ior	n S	Sys	ste	ems	s a	nd	d C	Сс	om	າpເ	Jte	er	lr	nte	eg	jra	teo	d N	lan	ufa	ctu	irin	g",	1 th	Edit	ior	۱, F	ea	ars	on,	, 20	019	
2	Stanley L. I 2019 for Un	Ro nite	Ro its	loł ts	bir III	so &	n V	&	R	lic	ha	d	K	er	nda	all	М	ille	ər,	"A	uto	om	na	ate	əd	Ir	IS	pe	ec	tic	on	а	nd	Q	ual	ity	As	sur	an	ce"	, 1 ^s	st E	Edit	io	n, (CR	C	pres	s,
3	Amiya R. M	1oh	oh	ha	an	y,'	N	la	ch	in	ery	C	0	nc	itio	on	M	on	ito	orin	ng F	Pri	ind	cip	ple	es	a	nd	1 F	٦r	ac	ctic	ces	s",	1 st	Ed	tio	n, C	R	CF	res	s,	20 ⁻	15	for	·U	nit	V	
REFERE	ENCE:																																																
1.	Singh and J	Joł	loh	bhi	n١	Vil	эу	,"	Sy	/si	er	۱ <i>۴</i>	٩	pr	oa	ich	n to	o (Cor	mp	oute	ər	In	nte	egr	rat	ec	d [De	es	sig	n :	an	d N	/lar	ufa	acti	ırin	g"	1 st	Edi	tio	n, \	Ni	ley	, 19	99	5	

COUR On co	SE OL mpleti	JTCOM	IES: he cours	se, the st	udents	will be a	able to						(BT Mapp Highest L	oed .evel)
CO1	desc	ribe the	e principl	es, types	and leve	of auto	omation						Ur	Iderstandir	ng (K2)
CO2	com	pare va	rious ma	terial han	dling sys	stems in	automa	ated ind	ustry				Ur	derstandir	ng (K2)
CO3	cont	rast var		Applying	(K3)										
CO4	discu	uss the	Ur	Iderstandir	ng (K2)										
CO5	appr	aise the	e role of o	condition I	monitori	ng in fac	ctory aut	tomation	า					Applying	(K3)
													L		
						Mappin	g of CO	s with	POs an	d PSOs	S				
COs/F	Mapping of COs with POs and PSOsPOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11													PSO1	PSO2

						1					1
CO1	3	1		3					2	3	3
CO2	3	1		3					2	3	3
CO3	3	1		3					2	3	3
CO4	3	1		3					2	3	3
CO5	3	1		3					2	3	3
1 Clight 2	Mode	roto 2	Substanti		Tayono	mv					

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1 40 60 100														
CAT2	20	50	30				100							
CAT3	20	50	30				100							
ESE	20	50	30				100							
* ±3% may be varied (C	CAT 1,2,3 – 50 mark	s & ESE – 100 mar	ks)											

		20MEJ01 - 3D MODELING AND P	ROTOTYPING					
Progra	mme &					_		
Branch	1	B.E. & Mechanical Engineering	Sem.	Category	L	Т	Р	Credit
Prereq	uisites	Machine Drawing Laboratory	5/6/7	HN	3	0	2	4
Droomk		This source emphasizes the strategic modeling cons	idarationa raqui	rad for 2D m	intin	~ +		dataila tha
Pream	Die	quidelines for material design considerations, part co	onsolidation and	computation	al to	g. n ols.	The 3	3D printing
		modules available in CAD packages are also dealt in	this course. The	theory, optic	ns a	nd fi	le forr	nats of 3D
Unit – I	1	printing files are covered. Practical classes are also include to 3D Design for Prototyping:	cluded to have ha	ands on expe	rienc	e.		9
Introduc Design Optimiz	ction - Using to Avoid Ani ation of Latti	prototype to Add Value to Products - General Guidelin sotropy - Economics of AM - Design to Minimize Print ce Structures.	nes for Designin Time - Design to	g Additive Ma Minimize Po	anufa ost-p	acturi roces	ing (A ssing	M) Parts - - Topology
Unit – I		Design for Plastic Prototyping:						9
Genera	l design gui	delines - Designing for Material Extrusion: Material Ex	trusion Accuracy	/ and Tolerar	nces	- La	yer T	hickness -
Print O	rientation - S	upport Material – Overhangs – Various Feature Type	s. Designing for rts and Resin Re	moval – Deta	ymer ails -	Hori	zonta	esolution -
Connec	ctions – Vario	us Feature Types.				-		- 3
Unit – I	II ing for Motol	Design for Metal Prototyping:	vdar Marabalagy	Motol AM	Mate	vrial (Chara	9
Topolog up a Me	gy Optimizati etal AM Print	on - Lattice Structures - Overhangs and Support Mater Job - Design for Laser Powder Bed Fusion and Electror	rial - Residual St n Beam Melting.	ress - Stress	Cor	ncent	ration	is - Setting
Unit – I	V	Computational Tools and Part Consolidation:						9
Compu	tational Tool	s: Aims of Using Design Analysis - Special Considera	tions for Analysi	s – Meshing	- Bo	unda	ary Co	onditions –
Guideli	nes for Part	Consolidation: Design for Function - Material Consider	rations - Conver	itional Desigr	n For	Mar	nufact	ure (DFM)
/Design	For Assemb	ly(DFA) - Assembly Considerations.						
Introduce Prototy and Ide	v ction - The pe File Type amaker softv	Software related to Rapid Prototyping: Stereolithography (STL) File - Problems with STL Fil s – Other file formats – Prototyping modules in CAD p vare and its features.	les - STL File N backages (Solidw	Nanipulation vorks and Cre	- Be eo) -	yond Intro	the ducti	STL File - on to Cura
LIST O		-NTS [.]						
1.	Modeling ar	nd 3D printing of a tea cup.						
2.	Modeling ar	nd 3D printing of a mechanical component.						
3.	Modeling ar	nd 3D printing of a functional mechanical assembly.						
4.	Modeling ar	nd 3D printing of an innovate component/structure.						
5.	Creating sk	in surface for simple scanned components for 3D printin	ıg.					
6.	Perform cor	nplex surface for 3D printing design.						
7.	Modeling ar	nd 3D printing for style components.						
8.	Analysis of	3D printed components through mechanical testing.						
				Lecture:4	5, P	racti	cal:30	0, Total:75
TEXT E	BOOKS:							
1.	Olaf Diegel, Nature, Sing	Axel Nordin, Damien Motte, "A Practical Guide to Desig gapore, 2019 for Units –I, II, III and IV.	gn for Additive Ma	anufacturing"	1 st E	ditio	n, Spr	inger
2.	lan Gibson, Manufacturi	David W. Rosen and Brent Stucker, "Additive Manufacting", 2 nd Edition, Springer, USA, 2015, for Unit – V.	uring Technologi	es: Rapid Pro	ototy	bing t	to Dire	ect Digital

REFER	RENCES/ MANUAL / SOFTWARE:	
1.	Samuel N. Bernier, BertierLuyt, Tatiana Reinhard, "Make: Design for 3D Printing", 1 st Edition, Make 2015.	er Media Inc, Canada,
2.	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rap Edition, Hanser Publisher, Germany, 2011.	id Manufacturing", 1 st
3.	Creo 7.0, SolidWorks 2018, CATIA V5R12, UltimakerCura 4.3.	
4.	Laboratory Manual	
COUR: On coi	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	recognize the various principles in design for additive manufacturing	Understanding (K2)
CO2	choose suitable design for polymer AM	Applying (K3)
CO3	select the correct design for metal AM	Applying (K3)
CO4	describe the computational tools for checking AM designs and guidelines for part consolidation	Understanding (K2)
CO5	develop proper CAD model and STL file for performing 3D printing	Applying (K3)
CO6	perform 3D modeling and 3D printing of a mechanical component	Applying (K3), Manipulation (S2)
C07	perform 3D modeling and 3D printing of a functional mechanical component	Applying (K3), Precision (S3)
CO8	analyze a 3D printed object as per design guidelines	Applying (K3), Precision (S3)
I		

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3										1	2
CO2	1	3	3										1	2
CO3	1	3	3										1	2
CO4	1	3	3		2								1	3
CO5	1	3	3		3								3	2
CO6		3	2	1	3								3	2
CO7		3	2	1	3								3	2
CO8		3	2	1	3								3	2
						_								

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

	ASSESSMENT PATTERN - THEORY														
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %								
CAT1	CAT1 20 40 40 - - 100														
CAT2	20	40	40	-	-	-	100								
CAT3	20	30	50	-	-	-	100								
ESE	20	40	40	-	-	-	100								
* ±3% may be varied (C	CAT 1,2,3 – 50 mark	s & ESE – 100 mar	ˈks)												

	20MEH03 – SMART MANUFACTURING TRANS	SFORMA	ΓΙΟΝ				
Programme & Branch	B.E. & Mechanical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Manufacturing Technology	5/6/7	HN	3	0	0	3
Preamble	This course details the application concepts of smart manufa outlines the importance of smart additive manufacturing for a	acturing in sustainab	various man ble future.	ufac	turing	sect	ors. It also
Unit – I	Introduction to Manufacturing 4.X:						9
Introduction to Ma Manufacturing 4.x	nufacturing 4.x for Smart Digital Manufacturing: From Industry - The Manufacturing 4.x Roadmap - Finding the Tipping Points.	4.0 to M	anufacturing	4.x	- The	Fran	nework for
Unit – II	Manufacturing 4.x for Specific Approaches:						9
Manufacturing 4. Manufacturing - M	for Repetitive Operations - Manufacturing 4.x for Process anufacturing 4.x for Small and Medium Businesses, Cloud Adopt	s Industrie tion.	es - Manufa	cturi	ng 4	.x for	Complex
Unit – III	Big Data Analytics in Semiconductor Manufacturing:						9
Semiconductor M Manufacturing - N of Artificial Intellig	anufacturing - The Big Data Revolution and Associated Challe ext Generation Fault Detection and Classification - Predictive Ma ence and Other Big Data-Friendly Analytics - Realizing the Comp	nges - Ar aintenance llete Smar	nalytics Appro e - Big Data A t Manufacturi	bach Irchit	es in ectur /isior	Sem es - E	iconductor mergence
Unit – IV	Cyber Physical System Integrated Smart Manufacturing N	Workshop	os:	-			9
Construction of Workshops - Mat Case study Infere	Cyber-Physical System–Integrated Smart Manufacturing Working Workshop - A case study inces.	rkshops- in Automo	Framework otive Industry	of S - M	Smart aturit <u>y</u>	Mar / Ass	ufacturing essment –
Unit – V	Sustainable and Smart Additive Manufacturing:						9
Introduction to Su and Additive Man of SSAM - Manag	stainable and Smart Additive Manufacturing (SSAM) - Additive M Ifacturing - Big Data Analytics Framework for SSAM - Key Tech erial Implications - Case study scenario.	lanufactur Inologies f	ing and its Qi for Big Data a	ualifi analy	catior tics S	n - Su SSAM	stainability - Benefits
							Total:45
TEXT BOOK:							
1. René Wo Across In	f and Raffaello Lepratti, "Smart Digital Manufacturing: A Guide fo dustries" 1 st Edition, Wiley-VCH, Germany, 2020.	or Digital 1	Fransformatio	n wi	h Re	al Cas	se Studies
REFERENCES :							
1. Masoud S Elsevier,	oroush, McKetta Michael Baldea, Thomas Edgar, "Smart Mar Jnited Kingdom, 2020	nufacturin	g Concepts a	and	Metho	ods" 1	st Edition,
2. Feitao, N 2019.	eng Zhang, A.Y.C. Nee, "Digital Twin Smart Manufacturing", 1	st Edition,	, Academic F	ress	, Uni	ted K	ingdom,

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	discuss the concepts of Manufacturing 4.x	Understanding (K2)
CO2	select desired approach during implementation of Manufacturing 4.x	Understanding (K2)
CO3	implement the application of big data analytics in manufacturing sector	Applying (K3)
CO4	apply the concepts of cyber-physical system-integrated smart manufacturing workshops	Applying (K3)
CO5	infer the importance of smart additive manufacturing	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	1			1								2	3	
CO2	2	1			1								2	3	
CO3	3	2	1		1								2	3	
CO4	3	2	1		1								2	3	
CO5	2	1			1								2	3	

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	60	-	-	-	-	100				
CAT2	30	45	25	-	-	-	100				
CAT3	30	45	25	-	-	-	100				
ESE	20	50	30	-	-	-	100				
* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)											

	20MEH04 – INDUSTRIAL IOT												
Programme & B.E. & Mechanical Engineering Sem. Category L T P													
Prereguisites	Nil	1	0	4									
Preamble The course will provide a thorough understanding of the components used in Industrial Internet of Things (IIOT) and information communication systems utilized in manufacturing plants.													
Unit – I IIOT and Cloud Computing: 9+3													
Introduction, Physical Design of IOT - Logical Design of IOT - IOT Enabling Technologies - Domain Specific IOTs, IOT Design Methodology - IOT Physical Devices: Raspberry Pi, pcDuino, Beaglebone Black, Cubieboard. Introduction to Cloud Computing: Cloud Models, Cloud based Services and Applications, Cloud Service and Platforms.													
Unit – II	Machine to Machine Communication and Technologies:						9+3						
Introduction to M2M, Description of M2M Market, Segments/Applications – Automotive, Smart Telemetry, Surveillance and Security - M2M Industrial Automation - M2M Terminals and Modules. Communication Protocols: IEEE 802.15.4, ZigBee, Z Wave, Bluetooth, Bluetooth Low Energy (BLE), Near Field Communication (NFC), Radio Frequency Identification (RFID) Industry Standards Communication Technology: LoRAWAN, Open Platform Communication (OPC) Unified Architecture, Message Queuing Telemetry Transport (MQTT). Connecting into Existing Modbus and Profiles Network Communication													
Unit – III IIoT Components: 9+3													
Mechatronics Applie Development - Pner	cations and Trends - Sensors and Transducers - Signal Conc umatic and Hydraulic Actuators – Microcontrollers - Basic Closed	ditioning d-Loop C	 Mechanical ontrol. 	Со	mpor	ents	- Software						
Unit – IV	Information Systems in Manufacturing:						9+3						
Manufacturing Org Dimensions of Technical and Beha	anizations and Management - Networked Enterprises - G Information Systems - Approaches to vioural Approach - Information Technology Infrastructure.	ilobalizati Stuc	ion Challeng dy Inforn	ies natic	and on	Oppo Sys	ortunities - stem -						
Unit – V	Applications of IIOT:						9+3						
Smart Metering - e- Real Life examples	Health Body Area Networks - City Automation - Energy Applic of IIOT in Manufacturing Sector.	ations -	Home Autom	atio	n - R	etail -	Industry -						
			Lecture	45,	Tuto	rial:1	5, Total:60						
TEXTS BOOKS:													
1. A. Bahga and V. Madisetti, "Cloud Computing, A hands-on approach", 1 st Edition, Universities Press (India) Private Limited, Hyderabad, 2014 for Unit I.													
2. D. Boswarthick, O. Elloumi, and O. Hersent, "M2M Communications: A Systems Approach", 1 st Edition, Wiley, 2012 for Unit II.													
 A. Bahga and V. Madisetti, "Internet of Things: A hands-on approach", 1st Edition, Universities Press (India) Private Limited, Hyderabad, 2016 for Units I, II and V. 													
4. J. Edward Carryer, Matthew Ohline, Thomas Kenny, "Introduction to Mechatronic Design", 1 st Edition, Prentice Hall, 2010 for Unit III.													
REFERENCES:													
1. A. Suresh, Malarvizhi Nandagopal, Pethuru Raj, E. A. Neeba, Jenn-Wei Lin, "Industrial IoT Application Architectures and Use Cases", 1 st Edition, Auerbach Publications, 2020.													

COUR On co	BT Mapped (Highest Level)	
CO1	describe an IOT system with cloud infrastructure	Understanding (K2)
CO2	explain the M2M Communication protocols in a prototype	Understanding (K2)
CO3	present the basic concepts of the sensors used in electromechanical systems	Understanding (K2)
CO4	demonstrate the system information in manufacturing units	Understanding (K2)
CO5	perform the case study on Industrial IOT applications	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1		3					1			3	3
CO2	2	1	1		3					1			3	3
CO3	2	1	1		3					1			3	3
CO4	2	1	1		3					1			3	3
CO5	3	2	2		3					1			3	3

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	35	65					100			
CAT2	35	65					100			
CAT3	20	50	30				100			
ESE	30	55	15				100			
* +2% may be varied (CAT 1.2.2. 50 marks & ESE 100 marks)										