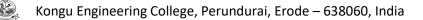
KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE - 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI – 2022


(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted during 2022 - 2023 and onwards)

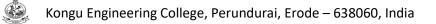
MASTER OF ENGINEERING DEGREE IN EMBEDDED SYSTEMS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638060 (An Autonomous Institution Affiliated to Anna University)

REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION


MASTER OF ENGINEERING (ME) / MASTER OF TECHNOLOGY (MTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into ME/MTech Degree programmes from the academic year 2022 – 2023 onwards.

1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Master of Engineering (ME) / Master of Technology (MTech) Degree programme
- iv. "Branch" means specialization or discipline of ME/MTech Degree programme, like Construction Engineering and Management, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Engineering Design Methodology, Machine Learning Techniques, etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch
	Structural Engineering
	VLSI Design
	Embedded Systems
	Computer Science and Engineering
MTech	Information Technology
NI LECH	Food Technology

3. ADMISSION REQUIREMENTS

Candidates seeking admission to the first semester of the ME/MTech Degree programme shall be required to have passed an appropriate qualifying Degree Examination of Anna University or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto, subject to amendments as may be made by the Anna University, Chennai from time to time. The candidates shall also be required to satisfy all other conditions of admission prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The ME / MTechprogramme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester and project work, internship,etc that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Foundation Courses (FC)
- ii. Professional Core (PC) Courses
- iii. Professional Elective (PE) Courses
- iv. Open Elective (OE) Courses
- v. Employability Enhancement Courses (EC) like Innovative Project, Internship cum Project work in Industry or elsewhere, Project Work

4.2 Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1
2 Project Work Periods	1
40 Training /Internship Periods	1

The minimum number of credits to complete the ME/MTechprogramme is 72.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like innovative project, internship cum project work and project work during the programme to gain/exhibit the knowledge/skills.

4.3.1 Innovative Project

A candidate shall earn two credits by successfully completing the project by using his/her innovations in second semester during his/her programme.

4.3.2 Internship cum Project Work

The curriculum enables a candidate to go for full time projects through internship during the third semester and can earn credits through it for his/her academics vide clause 7.6 and clause 7.12. Such candidate shall earn the minimum number of credits as mentioned in the third semester of the curriculum other than internship by either fast track mode or through approved courses in online mode or by self study mode. Such candidate can earn the number of credits for the internship same as that of Project Work in the third semester. Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.3.4 Project Work

A candidate shall earn nine credits by successfully completing the project work in fourth semester during the programme inside the campus or in industries.

4.4 One / Two CreditCourses / Online Courses / Self Study Courses

The candidates may optionally undergo One / Two Credit Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1** One / Two Credit Courses: One / Two Credit Courses shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of six credits through one / two credit courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.

- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance (up to second semester).
- **4.4.5** A candidate can earn a maximum of 15 credits through all one /two credit courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the second to fourth semesters the candidates have the option of registering for additional elective courses or dropping of already registered additional elective courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the ME / MTech Degree programme in 4 consecutive semesters (2 Years), but in any case not more than 8 semesters (4 Years).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The ME/MTechprogrammes consist of Theory Courses, Theory cum Practical courses, Practical courses, Innovative Project, Internship cum Project work and Project Work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks
1.	Theory	40	60
2.	Theory cum Practical (The distribution of marks shall be	50	50
3.	Practical	60	40
4.	Project Work / Internship cum Project Work	50	50
5.	One / Two credit Course	The distribution of marks shall be	
6.	All other Courses	decided based on the credit weightage assigned	

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, innovative project and internships shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 40 marks and the end semester examination shall be for 60 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

Sl. No.	Туре	Max. Marks	Remarks
1.	Test - I	12.5	
1.	Test - II	12.5	
2.	Tutorial / Others (Tutorial/Problem Solving (or) Simulation (or) Simulation & Mini Project (or) Mini Project (or) Case Studies (or) Any other relevant to the course)	10	Type of assessment is to be chosen based on the nature of the course and to be approved by Principal
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	40	Rounded off to the one decimal place

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters of every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

- **7.5.1** The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.
- **7.5.2** The end semester examination shall be conducted for a maximum of 100 marks for duration of 3 hours and reduced to 40 marks. The appointment of examiners and the schedule shall be decided by chairman of Board of Study of the relevant board.

7.6 Project Work

- **7.6.1** Project work shall becarried out individually. Candidates can opt for full time internship (vide clause 7.7) in lieu of project work in third semester. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work and the Viva-Voce Examination shall be distributed as below.

		Continuous (Max. 5	s Assessn 0 Marks)			End Sen (Ma	nester Ex ax. 50 M		on
Review I (Max)	10 Marks)	Review II (Max 20 M	Marks)	Review III (Max. 20 Marks))	Report Evaluation (Max. 20 Marks)	Viva - V (Max. 30)		
Rv. Com	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2
5	5	10	10	10	10	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. A candidate must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester. This applies to both Internship cum Project work and Project work.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.

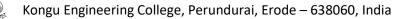
Kongu Engineering College, Perundurai, Erode – 638060, India

- **7.6.6** Every candidate shall, based on his/her project work, publish a paper in a reputed journal or reputed conference in which full papers are published after usual review. A copy of the full paper accepted and proof for that shall be produced at the time of evaluation.
- **7.6.7** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.8** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.7.
- **7.6.9** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Internship cum Project Work

Each candidate shall submit a brief report about the internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work as per clause 7.6 excluding 7.6.6.

7.8 One / Two Credit Course


Two assessments shall be conducted during the value added course duration by the offering department concerned.

7.9 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.10 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.11 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of Registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SC (Successfully Completed). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

8. REQUIREMENTS FOR COMPLETION OF A SEMESTER

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
 - **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.
 - **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
 - **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.

Kongu Engineering College, Perundurai, Erode – 638060, India

- 8.1.5 Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.

- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.

Kongu Engineering College, Perundurai, Erode – 638060, India

11.6 If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements, but the grade awarded shall be only the lowest passing grade irrespective of the marks secured.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

15. AWARD OF LETTER GRADES

For all the passed candidates, the relative grading principle is applied to assign the letter grades.

Marks / Examination Status	Letter Grade	Grade Point
	O (Outstanding)	10
	A+ (Excellent)	9
Based on the relative	A (Very Good)	8
grading	B+ (Good)	7
	B (Average)	6
	C (Satisfactory)	5
Less than 50	U (Reappearance)	0
Successfully Completed	SC	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

$$GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum (course credits) \text{ for all courses in the specific semester}}$$

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

 $CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

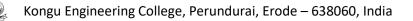
A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the ME / MTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.


17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the four semesters in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- **17.1.2** Acandidate who joins from other institutions on transfer or a candidate who gets readmitted and has to move from one regulation to another regulation and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the four semesters in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all four semesters within six consecutive semesters excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 6.50

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its ME / MTechprogramme.

M.E EMBEDDED SYSTEMS CURRICULUM – R2022 (For the students admitted from the academic year 2022-23 onwards)

SEMESTER	-1								
Course	Course Title	Но	urs / V	Veek	Credit	Мах	imum	Marks	Cate
Code		L	Т	Ρ		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
22AMT12	Applied Mathematics for Electronics Engineers	3	1	0	4	40	60	100	FC
22GET11	Introduction to Research	2	1	0	3	40	60	100	FC
22VLT11	Advanced Digital System Design	3	1	0	4	40	60	100	PC
22ESC11	Verilog HDL For Embedded FPGA Processor	2	0	2	3	50	50	100	PC
22EST11	Microcontroller System Design	3	0	0	3	40	60	100	PC
22EST12	Programming Languages for Embedded Systems	3	0	0	3	40	60	100	PC
Practical / E	mployability Enhancement								
22ESL11	Microcontroller System Design Laboratory	0	0	2	1	60	40	100	PC
22ESL12	Programming Languages for Embedded Systems Laboratory	0	0	2	1	60	40	100	PC
	Total Credits to be earned				22				

SEMESTER	- 11								
Course Code	Course Title	Но	urs / V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/The	ory with Practical								
22EST21	Embedded Networking and Buses	3	0	0	3	40	60	100	PC
22EST22	Single Board Computer	3	0	0	3	40	60	100	PC
22ESC21	Embedded Linux	3	0	2	4	50	50	100	PC
	Professional Elective - I	3	0	0	3	40	60	100	PE
	Professional Elective - II	3	0	0	3	40	60	100	PE
	Professional Elective - III	3	0	0	3	40	60	100	PE
Practical / E	mployability Enhancement								
22ESL21	Single Board Computer Laboratory	0	0	2	1	60	40	100	PC
22ESL22	Embedded Networking and Buses Laboratory	0	0	2	1	60	40	100	PC
	Total Credits to be earned				21				

M.E EMBEDDED SYSTEMS CURRICULUM – R2022 (For the students admitted from the academic year 2022-23 onwards)

Course Code	Course Title	Но	urs / V	Veek	Credit	Мах	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/The	ory with Practical								
	Professional Elective - IV	3	0	0	3	40	60	100	PE
	Professional Elective - V	3	0	0	3	40	60	100	PE
	Professional Elective - VI	3	0	0	3	40	60	100	PE
Practical / E	Employability Enhancement								
22ESP31	Project Work - I	0	0	16	8	50	50	100	EC
	Total Credits to be earned			1	17		1	II	

SEMESTER	– IV								
Course	Course Title	Но	urs / V	Veek	Credit	Мах	imum	Marks	Cate
Code		L	Т	Ρ		CA	ESE	Total	gory
Practical / E	mployability Enhancement								
22ESP41	Project Work - II	0	0	24	12	50	50	100	EC
	Total Credits to be earned	•		•	12				

Total Credits : 72

		LIST OF PROFESSIONAL ELECTIVES (PEs)				
S. No.	Course Code	Course Name	L	т	Р	С
	l	Semester - II				
		Elective – I				
1.	22VLE01	Testing of VLSI Circuits	3	0	0	3
2.	22ESE01	Distributed Embedded Computing	3	0	0	3
3.	22ESE02	Solar and Energy Storage System	3	0	0	3
		Elective – II				
4.	22ESF01	ASIC For Embedded Systems	2	0	2	3
5.	22ESE04	QT Cross Compiling Application Development	3	0	0	3
6.	22ESE05	Sensors and Actuators For Robotics	3	0	0	3
		Elective - III				
7.	22ESE06	Signal and Image Processing for Real Time Applications	3	0	0	3
8.	22VLE04	Low Power VLSI Design	3	0	0	3
9.	22ESE07	RTOS for Embedded System	3	0	0	3
		Semester - III				
		Elective – IV				
10.	22ESE08	Multicore Processor and Computing	3	0	0	3
11.	22ESE09	Virtual Instrumentation for Industrial Applications	3	0	0	3
12.	22ESE10	Wireless Sensor Networks	3	0	0	3
		Elective - V				
13.	22ESE11	Programming Internet of Things	3	0	0	3
14.	22ESE12	System on Chip for Embedded Applications	3	0	0	3
15.	22ESE13	Sensors and Engine Management System	3	0	0	3
	1	Elective - VI	1	1	1	
16.	22ESE14	Nature Inspired Optimization Techniques	3	0	0	3
17.	22VLE17	Supervised Machine Learning Algorithms	3	0	0	3
18.	22ESE03	Design of Embedded Systems	3	0	0	3
19.	22GET13	Innovation, Entrepreneurship and Venture Development	3	0	0	3

	22AMT12 - APPLIED MATHEMATICS FOR EI	LECTRONICS	ENGINEERS				
Programme& Branch	M.E &Embedded Systems	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	FC	3	1	0	4
Preamble	This course will demonstrate various analytical skills in tools such as linear programming, matrix factorizations and logical thinking applicable in electronics engineerir	is and queuing					
Unit – I	Advanced Matrix Theory:						9+3
	natrices – Cholesky decomposition – Generalized Eiger composition –Least squares solution.	envectors – QR	factorization	– Ge	enera	lized	inverses
Unit – II	Vector Spaces:						9+3
Vector Space – So Space – Rank and	ubspaces – Linear dependence and independence – Basi I nullity.	sis and dimension	on – Row spac	ce, C	olumi	n spac	ce and Nu
	,						
	Linear Programming:	<u> </u>				-	9+3
Mathematical Forr Model – Mathema	-	th west corner	rule - Vogel's	s app			nsportatio
Mathematical Forr Model – Mathema Optimum solution	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North	th west corner	rule - Vogel's	s app			nsportatio
Mathematical Forr Model – Mathema Optimum solution I Unit – IV Formulation of nor	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For	th west corner rmulation – Hun with equality co	rule – Vogel's garian algorith onstraints – Co	s app im. onstra	proxin	nation	nsportatio method 9+3
Mathematical Forr Model – Mathema Optimum solution I Unit – IV Formulation of nor inequality constrain	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization	th west corner rmulation – Hun with equality co	rule – Vogel's garian algorith onstraints – Co	s app im. onstra	proxin	nation	nsportatio method 9+3
Mathematical Forr Model – Mathema Optimum solution I Unit – IV Formulation of nor inequality constrain Unit – V	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization of the programming problem	th west corner rmulation – Hun with equality co m involving only	rule – Vogel's garian algorith onstraints – Co / two variables	s app im. onstra	ined	optim	9+3 9+3 9+3
Mathematical Forr Model – Mathema Optimum solution I Unit – IV Formulation of nor inequality constrain Unit – V	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization nts – Graphical method of non–linear programming probler Queuing Theory:	th west corner rmulation – Hun with equality co m involving only	rule – Vogel's garian algorith onstraints – Co / two variables eues – Pollacz	s app im. onstra 	ined	optim	9+3 ization wi 9+3
Model – Mathema Optimum solution Unit – IV Formulation of nor inequality constrain Unit – V Markovian queues	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization nts – Graphical method of non–linear programming probler Queuing Theory:	th west corner rmulation – Hun with equality co m involving only	rule – Vogel's garian algorith onstraints – Co / two variables eues – Pollacz	s app im. onstra 	ined	optim	9+3 9+3 9+3
Mathematical Forr Model – Mathema Optimum solution I Unit – IV Formulation of nor inequality constrain Unit – V Markovian queues	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization nts – Graphical method of non–linear programming probler Queuing Theory: a – Single and Multi-server Models – Little's formula – Non-	th west corner rmulation – Hun with equality co m involving only - Markovian Qu	rule – Vogel's garian algorith onstraints – Co / two variables eues – Pollacz Lectur	s app im. onstra : :ekKh e:45,	ined intch	optim	9+3 ization wi 9+3
Mathematical Forr Model – Mathema Optimum solution Unit – IV Formulation of nor inequality constrain Unit – V Markovian queues REFERENCES/MA 1. Bronson,	Linear Programming: mulation of LPP – Basic definitions – Solutions of LPP: atical Formulation – Initial Basic Feasible Solution: North by MODI method – Assignment Model – Mathematical For Non-Linear Programming: n-linear programming problem – Constrained optimization nts – Graphical method of non–linear programming probler Queuing Theory: a – Single and Multi-server Models – Little's formula – Non-	th west corner rmulation – Hun with equality co m involving only - Markovian Qu dition, McGraw-	rule – Vogel's garian algorith onstraints – Co / two variables eues – Pollacz Lectur Hill Education,	s app im. onstra : :ekKh e:45,	ined intch	optim	9+3 ization wi 9+3

	SE OUTCOM mpletion of		tudents will be abl	le to			BT Mapped (Highest Level)
CO1	apply vario	ous methods in ma	trix theory in comm	unication engineerir	ng problems.		Applying (K3)
CO2	apply the o		Applying (K3)				
CO3		mathematical mo	dels for linear prog	ramming problems	and solve the tra	nsportation	Applying (K3)
CO4	use non-lir	near programming	concepts in real life	e situations.			Applying (K3)
							Applying (K3)
CO5	identify the	e suitable queuing	model to handle co	mmunication proble	ems.		
CO5	Identify the	suitable queuing		pping of COs with I			
	s/POs	PO1				PO5	PO6
CO			Мар	oping of COs with I	POs	PO5	PO6
CO (s/POs	P01	Мар	oping of COs with I	POs	PO5	P06
CO ()	ps/POs	P01 3	Мар	oping of COs with I	POs	PO5	P06
CO () () ()	Is/POs CO1 CO2	P01 3 3	Мар	oping of COs with I	POs PO4		P06

		ASSESSMENT	PATTERN	- THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60	-	-	-	100
CAT2	10	20	70	-	-	-	100
CAT3	10	20	70	-	-	-	100
ESE	10	30	60	-	-	-	100
* +3% may be varied (CAT 1 2 3 - 50 marks	& ESE _ 100 marks	N				

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

		ION TO RESEAR					
	(Common to all ME / MTe	ch Branches & MC	CA)			1	
Programm Branch	All ME/MTech branches & MCA	Sem.	Category	L	т	Ρ	Credit
Prerequisi	ites NIL	1/2	FC	2	1	0	3
Preamble	This course will familiarize the fundamental con patenting. Also will disseminate the process rewriting them in a presentable form using lates	nvolved in collect					
Unit - I	Concept of Research: Ind Significance of Research: Skills, Habits and Attitudes						6+3
Characteris Collection	and What a Research is? - Types and Process of Res stics of a Good Research Problem - Errors in Selectir - Analysis - Citation Study - Gap Analysis - Problem Form	g a Research Pr	oblem - Impor				- Literatu
Unit - II	Inary Research - Need for Experimental Investigations						6+3
Research	gies / Methods - Measurement and Result Analysis - In Limitations. Journals in Science/Engineering - Indexing a licies - How to Read a Published Paper - Ethical issues R	and Impact factor	of Journals - (Citations	s - h l	ndex ·	
		elated to Publishin	g - Plagiarism a	and Self	-Plagi	arism.	
Unit - III Types of R	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor	nmunication/Case	Study - When	and Wh	ere to	Publis	
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intro- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of	Study - When search Paper related to Refe SPSS, ANOV	and Wh - Revie erence A etc., s Method	ere to w Pro Manag Softwa of Tra	Publis cess - gemen ire for inscrip	sh? - Journ Addressir t Software detection 6+3 tion Speci
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements:	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intro- Effective Technical Thesis Writing/Presental	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings -	Study - When search Paper related to Refe SPSS, ANOV	and Wh - Revie erence A etc., s Method	ere to w Pro Manag Softwa of Tra	Publis cess - gemen ire for inscrip	sh? - Journ Addressir t Software detection 6+3 tion Speci
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements:	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intra- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project Title Page - Abstract - Table of Contents - Headings ar	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings -	Study - When search Paper related to Refe SPSS, ANOV	and Wh - Revie erence A etc., s Method	ere to w Pro Manag Softwa of Tra	Publis cess - gemen ire for inscrip	sh? - Journ Addressir t Software detection 6+3 tion Speci
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements: Bibliograph Unit - V Patents - I	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intra- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project Title Page - Abstract - Table of Contents - Headings ar ny etc Different Reference Formats. Presentation using I	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings - PPTs.	Study - When search Paper related to Refe SPSS, ANOV Quotations - N Footnotes - T	and Wh - Revie erence A etc., s Aethod ables a	ere to w Pro- Manag Softwa of Tra nd Fig	Publis cess - gemen ire for unscrip gures - ration	sh? - Journ Addressir t Software detection 6+3 tion Speci - Appendix 6+3
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements: Bibliograph Unit - V Patents - I	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intro- Image: Strategy of the strategy of	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings - PPTs.	Study - When search Paper related to Refe SPSS, ANOV Quotations - N Footnotes - T echnological res Procedure for	and Wh - Revie erence A etc., s Method ables a search - grants c	ere to w Pro- Manag Softwa of Tra nd Fig - innov of pate	Publis cess - gemen ire for unscrip jures - vation nts.	sh? - Journ Addressir t Software detection 6+3 tion Speci - Appendix 6+3
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements: Bibliograph Unit - V Patents - I	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intra- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project Title Page - Abstract - Table of Contents - Headings ar ny etc Different Reference Formats. Presentation using I Nature of Intellectual Property: Designs - Trade and Copyright. Process of Patenting and	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings - PPTs.	Study - When search Paper related to Refe SPSS, ANOV Quotations - N Footnotes - T echnological res Procedure for	and Wh - Revie erence A etc., s Method ables a search - grants c	ere to w Pro- Manag Softwa of Tra nd Fig - innov of pate	Publis cess - gemen ire for unscrip jures - vation nts.	sh? - Journ Addressir t Software detection 6+3 tion Speci - Appendix 6+3 - patenting
Unit - III Types of R Selection I Reviewer (EndNote, S Plagiarism Unit - IV How to W Elements: Bibliograph Unit - V Patents - E developme REFEREN	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intra- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project Title Page - Abstract - Table of Contents - Headings ar ny etc Different Reference Formats. Presentation using I Nature of Intellectual Property: Designs - Trade and Copyright. Process of Patenting and	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings - PPTs.	Study - When search Paper related to Refe SPSS, ANOV Quotations - N Footnotes - T chnological res Procedure for Lec	and Wh - Revie erence A etc., s Method ables a search - grants c ture: 3 (ere to w Pro- Manag Softwa of Tra nd Fig - innov of pate D, Tuto	Publis cess - gemen ire for anscrip gures - vation nts. prial:1	sh? - Journ Addressir t Software detection 6+3 tion Speci - Appendix 6+3 - patenting 5, Total:4
Unit - III Types of R Selection I Reviewer (i EndNote, S Plagiarism Unit - IV How to W Elements: Bibliograph Unit - V Patents - I developme REFEREN 1. DePo	Paper Writing and Research Tools: Research Papers - Original Article/Review Paper/Short Cor Methods. Layout of a Research Paper - Guidelines for Comments. Use of tools / Techniques for Research - H Software for Paper Formatting like LaTeX/MS Office. Intra- Effective Technical Thesis Writing/Presenta rite a Report - Language and Style - Format of Project Title Page - Abstract - Table of Contents - Headings ar ny etc Different Reference Formats. Presentation using I Nature of Intellectual Property: Designs - Trade and Copyright. Process of Patenting and ent. International Scenario: International cooperation on International Cooperation on International Scenario: International cooperation to Rese	nmunication/Case Submitting the Re ands on Training oduction to Origin, tion: Report - Use of d Sub-Headings - PPTs. Development: Te ellectual Property. arch-E-Book: Und	Study - When search Paper related to Refe SPSS, ANOV Quotations - N Footnotes - T chnological res Procedure for Lec	and Wh - Revie erence A etc., s Method ables a search - grants c ture: 3 (ere to w Pro- Manag Softwa of Tra nd Fig - innov of pate D, Tuto	Publis cess - gemen ire for anscrip gures - vation nts. prial:1	sh? - Journ Addressir t Software detection 6+3 tion Speci - Appendix 6+3 - patenting 5, Total:4

	E OUTCOMES: pletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	list the various stages in research and categorize the quality of journals.	Analyzing (K4)
CO2	formulate a research problem from published literature/journal papers	Evaluating (K5)
CO3	write, present a journal paper/ project report in proper format	Creating (K6)
CO4	select suitable journal and submit a research paper.	Applying (K3)
CO5	compile a research report and the presentation	Applying (K3)

		Mapping	of COs with PO	s and PSOs	
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1		
CO2	3	2	3		
CO3	3	3	1		
CO4	3	2	1		
CO5	3	2	1		
1 - Slight 2 -	Moderate 3 – S	Substantial BT- Bloom's Tax	conomy		•

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASS	SESSMENT PATTE	RN - THEORY	,		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying(K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		30	40	30			100
CAT2		30	40	30			100
CAT3			30	40	30		100
ESE		30	40	30			100
* ±3% may l	be varied (CAT 1,2	,3 – 50 marks & ESE -	- 100 marks)				

	(Common to VLSI Design and En	haddad Systems k	aranches)				
D		ibeutet Systems i	Jianchesj	1			
Programme & Branch	ME - VLSI DESIGN & Embedded Systems	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	1	PC	3	1	0	4
Preamble	To design synchronous, asynchronous digita	l circuits and implem	nent using ASN	/l char	t and F	PLDs	
Unit- I	Synchronous Sequential Circuit Design:		5			-	9+3
•	ocked Synchronous Sequential Networks (CSSN) – Complete Design of CSSN.	Modeling of CSSN	– State table	Redu	uction	-Stabl	е
Unit- II	Algorithmic State Machine (ASM):						9+3
ASM - ASM	Chart – Synchronous Sequential Network Design Usi	ng ASM Charts – S	tate Assignme	ent – A	ASM T	ables -	– ASM
Realization -	Asynchronous Inputs.						
Unit- III	Asynchronous Circuit Design:						9+
Analysis of A	synchronous Sequential Circuit (ASC) - Flow Table F	Reduction - Racesi	n ASC – State	e Assi	gnme	nt Prob	lem and
the Transition	Table – Design of ASC- Static and Dynamic Has	zards – Essential I	Hazards.				
Unit- IV	Programming Logic Arrays:						9+3
	ion – Essential Prime Cube theorem – PLA folding – fo Synchronizers – Designing Vending Machine Controlle		matrix - The C	Compa	act Alg	orithm.	Practical
Unit- V	Programmable Devices:						9+3
Programmab	e Logic Devices – Designing a Synchronous Seque	ential Circuit using a	a PAL - Realiz	zation	Stat	e mach	nine using
PLD Langua	e – FPGAs - ActelACT.						
			Lect	ture:4	5, Tut	orial:1	5, Total:6
REFERENCE	S:						
1. Givor	e Donald G,"Digital Principles and Design" 1 st Edition ,	McGraw Hill India,	reprint 2017.				
	ough, JohnM.,"Digital Logic Applications and Design",C	Cengage Learning Ir	ndia,1st Editior	n, repr	int 200)9	
2. Yarbı		0000		-			

	SE OUTCO		dents will be able to	D			BT Ma (Highest	
CO1	design clo	ocked synchronous s	equential circuits usir	ng state table re	eduction and assi	ignment	Applyin	g (K3)
CO2	realize fur	nctions using algorith	mic state machines				Applyin	g (K3)
CO3	design th circuits	e asynchronous se	quential circuit using	g flowtable red	luction and find	the hazards in	Applyin	g (K3)
CO4		ne Boolean function and compact algorith	and implement usi	ng Programma	able logic array,	essential cube	Applyin	g (K3)
CO5	design th		uential circuits using	Programmabl	le Logic Device,	Programmable	Applyin	g (K3)
			Mapping of (COs with POs	and PSOs			
CC	Ds/POs	PO1	PO2	PO3	PO4	PO5		PO6
	CO1	3	3	2		3		3
	CO2	3	3	2		2		3
	CO3	3	3	2		3		3
	CO4	3	3	2		3		3
	CO5	3	3	2		3		3
1 – Sli	ght, 2 – Mod	lerate, 3 – Substantia	al, BT- Bloom's Taxor	nomy				
			ASSESSME	NT PATTERN -	- THEORY			
	/ Bloom's tegory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
(CAT1	5	15	80				100
(CAT2	5	15	80				100
(CAT3	5	15	80				
	ESE	10	10	80				100
* ±3%	6 may be vai	ried (CAT 1,2,3 – 50	marks & ESE – 100 i	marks)				·

Progran Branch	nme&	M.E Embedded Systems	Sem.	Category	L	т	Р	Credit
Prerequ	isites	Nil	1	PE	2	0	2	3
Preambl	e	To impart knowledge on designing and verification of and to understand MOS transistor theory.	integrated circuit	s using Verilo	og HE	DL an	d syst	em Verilo
Unit – I		Verilogconcepts:						6
	Directive	sign flow- Design hierarchy- components of a simul s-Modules and ports-test bench- Gate level Modelin						
Unit – II		LogicSynthesiswithVerilogHDL:						6
		esis-Synthesis Design Flow-Verification of the gate circuit synthesis.	level net list -	Modeling for	logio	c syn	thesis	- Exampl
Unit – II		Introduction to System Verilog:						6
Methods	- Choo	rocedural statements: Built-In Data Types- Fixed-Size Ar sing a Storage Type - Creating New Types with type es- Task and Function Overview- Routine Arguments- Re	def- Creating Us	er-Defined St				
Unit – IV	/	Connecting the Test bench and Design:						6
Togethe	r-Top-Le	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog						ecting It A
Togethe the LC3 Unit – V	r-Top-Le Fetch Bl	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics	g Assertions-The	Four-Port AT	M Ro	uter -	Direc	ecting It A ted Test fo
Togethe the LC3 Unit – V Review Structure	r-Top-Le Fetch Blo of fabric e, Opera	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte	r-Top-Le Fetch Ble of fabric e, Opera eristics-se	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte	r-Top-Le Fetch Blo of fabric e, Opera eristics-s	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation.	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte	r-Top-Le Fetch Blo of fabric e, Opera eristics-so EXPER Model	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ation process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation.	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1.	r-Top-Le Fetch Blo of fabric e, Opera eristics-st EXPER Model Model	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ation process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation.	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2.	r-Top-Le Fetch Blo of fabric e, Opera eristics-sv EXPER Model Model	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3.	r-Top-Le Fetch Blo of fabric e, Opera eristics-so EXPER Model Model Model	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ation process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theory
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3. 4.	r-Top-Le Fetch Blo of fabric e, Opera eristics-so EXPER Model Model Model	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions ing of FSM and Memory design with test benches in and implementation of ALU, MAC using FPGA	g Assertions-The : _ayout Design R	Four-Port ATN	M Ro	uter -	Direc	ecting It A ted Test fo 6 tor Theor
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3. 4. 5.	r-Top-Le Fetch Blo of fabric e, Opera eristics-sv EXPER Modeli Modeli Modeli Modeli Desigr	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions ing of FSM and Memory design with test benches in and implementation of ALU, MAC using FPGA	g Assertions-The : _ayout Design R	Four-Port ATM ules-Review FET Capacit	of M ⁱ ance:	OS ti s-CM	Direc ransis OS II	tecting It A ted Test for tor Theor nverter D
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3. 4. 5. 6.	r-Top-Le Fetch Blo of fabric e, Opera eristics-su EXPER Model Model Model Desigr Mini p	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions ing of FSM and Memory design with test benches in and implementation of ALU, MAC using FPGA	g Assertions-The : _ayout Design R	Four-Port ATM ules-Review FET Capacit	of M ⁱ ance:	OS ti s-CM	Direc ransis OS II	tecting It A ted Test for tor Theor nverter D
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3. 4. 5. 6. REFERE	r-Top-Le Fetch Blo of fabric e, Opera eristics-sv EXPER Modeli Modeli Modeli Desigr Mini pl ENCES:	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions ing of FSM and Memory design with test benches in and implementation of ALU, MAC using FPGA	g Assertions-The : _ayout Design R old Voltage-MOS	Four-Port ATM ules-Review FET Capacit	M Rol	OS ti s-CM	Direc ransis OS Iı	ecting It A ted Test fo 6 tor Theor
Togethe the LC3 Unit – V Review Structure Characte LIST OF 1. 2. 3. 4. 5. 6. REFERE 1.	r-Top-Le Fetch Bla of fabric e, Opera eristics-sv EXPER Modeli Modeli Modeli Desigr Mini pl ENCES: Samir Pa	est bench and Design-The Interface Construct-Stimulus vel Scope-Program – Module Interactions-System Verilog ock MOS Transistor and CMOS Inverter Characteristics ration process-CMOS n-well process & SOI process-L ation-MOSFET Current-Voltage Characteristics-Thresho witching characteristics-power dissipation. IMENTS / EXERCISES: ing of combinational digital systems with test benches ing of sequential digital systems with test benches ing of CMOS gates and Boolean functions ing of FSM and Memory design with test benches in and implementation of ALU, MAC using FPGA roject alnitkar, "Verilog HDL: A Guide to Digital Design and Synt wear, "System Verilog for Verification: A Guide to Learning	g Assertions-The : _ayout Design R bld Voltage-MOS	Four-Port ATM ules-Review FET Capacit Education New	M Rol of Mu ance: 	Pract	Direc ransis OS II tical:3	tecting It A ted Test for tor Theor nverter D

		FCOMES: n of the course, t	the students will b	be able to				[·] Mapped hest Leve				
CO1		digital design conc ntial and transistor	epts and simulate	Verilog progr	ams for the co	ombinational,		olying (K3 cision (S3				
CO2		and synthesize comming	ombinational and s	equential circ	cuits using Ve	rilog		olying (K3 cision(S3				
CO3	understand the basic principles of verification process and System Verilog Understanding(K2 Late free test level beside on the set of the se											
CO4	Interfa	Interface testbench and design environment Applyin										
CO5			es of MOS Transis arious parameters.		s fabrication a	nd MOS	Under	standing(K2)			
			Mapping o	of COs with	POs and PSC)s						
CO	s/POs	PO1	PO2	PO3	F	°O4	PO5	P	D 6			
C	01	3	3	3		3	2	:	3			
C	02	3	3	3		3	2	:	3			
C	03	3		3		3	2	:	3			
C	04	3		3		3	2	:	3			
C	05	3		3		3	2	:	3			
1 – SI	ight, 2 –	Moderate, 3 – Sul	ostantial, BT- Bloor	n's Taxonom	у							
			ASSESSM	IENT PATTE	RN - THEOR	Y						
Blo	est / om's egory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating	(K6) %	Tota %			
C/	AT1	10	20	70					100			
C/	AT2	10	55	35					100			
C/	AT3	10	55	35					100			
E	SE	10	40	50					100			

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

22EST11 - MICROCONTROLLER SYSTEM DESIGN

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1	PC	3	0	0	3
Preamble	To learn assembly and C programmingfor8051,PIC interface sensors and motors for project development		ontroller arch	itect	ure	andb	e able to
Unit – I	8051 Architecture:						9
	nemory organization - addressing modes - instructi ication – Simple assembly language programming	on set - timers	-counters-	Inte	rrupt	:s -I/(D ports -
Unit – II	8051 Programming:						9
	Programming - Serial Communication Programming - FullRTOS - Task creation and Run - LCD digital clo				acinę	g I/O	Devices
Unit – III	PIC Microcontroller:		0				9
	PIC18FXX - memory organization - addressing mo amming	odes - instruction	on set - I/O	Port	-Sim	ple /	Assembly
LanguageProgra	, , ,		on set - I/O	Port	-Sim	ple /	Assembly 9
LanguageProgra Unit – IV Introduction to	amming	rogramming:					9
LanguageProgra Unit – IV Introduction to memories Unit – V	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing	rogramming: verter-UART-C	CP modules	-Int	erru	pts -	9 Eepron 9
LanguageProgra Unit – IV Introduction to memories Unit – V	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R	rogramming: verter-UART-C	CP modules	-Int	erru	pts -	9 Eepron 9
LanguageProgra Unit – IV Introduction to memories Unit – V LCD Display -to	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R	rogramming: verter-UART-C	CP modules	-Int	erru	pts -	9 EEPRON 9 trol using
LanguageProgra Unit – IV Introduction to memories Unit – V LCD Display -to PWM –Stepper	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R Motor	rogramming: verter-UART-C	CP modules	-Int	erru	pts -	9 Eepron 9
LanguageProgra Unit – IV Introduction to memories Unit – V LCD Display -to PWM –Stepperf REFERENCES: 1 Muhami	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R Motor	Programming: verter-UART-C RTC- DC Motor	CP modules Direction an	-Int	erru Deec	pts -	9 EEPRON 9 trol using Total:4
LanguageProgra Unit – IV Introduction to memories Unit – V LCD Display -to PWM –Stepperf REFERENCES: 1. Muhami Systems 2 Muhami	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R Motor Motor mad Ali Mazidi, Janice G. Mazidi and Rolin D McKinla	Arogramming: verter-UART-C RTC- DC Motor Ay, The 8051 M Microcontroller	CP modules Direction an icrocontroller	-Int d Sp	erru Deec Em	pts -	9 EEPRON 9 trol using Total:4
LanguageProgra Unit – IV Introduction to memories Unit – V LCD Display -tc PWM –Stepperf REFERENCES: 1. Muhami Systems 2. Muhami	amming PIC MicrocontrollerPeripherals&Embedded C P Embedded C - I/O Port-Timers - I2C bus-A/D con Hardware interfacing buch screen- Keypad - SPI Bus Protocol -DS1307 R Motor mad Ali Mazidi, Janice G. Mazidi and Rolin D McKinla s, 2nd edition,Prentice Hall, 2014. mad Ali Mazidi, Rolin D McKinlay, Danny Causy, PIC	Programming: verter-UART-C RTC- DC Motor Ay, The 8051 M Microcontroller Education, 202	CP modules Direction an icrocontroller and Embedo 1.	-Int d Sp and	erru Deec Em	pts -	9 EEPRON 9 trol usin Total:4 ed

	RSE OUTCO	-					BT Map	
On co			students will be a e of 8051 and write			m for	(Highest L	.evei)
CO1		and logical operat		assembly lar	iguage prograi		Understandi	ng (K2)
CO2	write asse	mbly language pro	gram for internal p RTOS for 8051 m			ntroller and	Applying	(K3)
CO3	comprehe	nd the architecture	e of PIC18fxx and v	vrite assembly	y language pro	ogram	Understandi	ng (K2)
CO4	write ASM	/ Embedded C pro	grams to manipula	te the periphe	erals of PIC18	Fxx	Applying	(K3)
CO5		ate simple embedd I/O devices	ed applications usi	ing DS1307 F	RTC/DC Motor/	Stepper Motor	Applying	(K3)
			Mapping of C	Os with POs	and PSOs			
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PC	D6
CO	1	1	2	3	2			
CO	2	1	2	3	3		1	1
CO	3	2		3	3		2	2
CO	4	1	3	3	3	2		
CO	5	3	3	2	3	2	2	2
1 – Sli	ight, 2 – Moo	derate, 3 – Substa	ntial, BT- Bloom's	Taxonomy				
			ASSESSMEN	T PATTERN	- THEORY			
	/ Bloom's tegory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
(CAT1	5	15	80				100
(CAT2	5	15	80				100
	CAT3	5	15	80				100
(0/110							

22EST12 - PROGRAMMING LANGUAGES FOR EMBEDDED SYSTEMS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	Т	Р	Credit					
Prerequisites	Nil	1	PC	3	0	0	3					
Preamble	Toknowabouttheprogrammingtechniquesinvo and Python programs.	olvedinembedde	edsystemdesig	gnandto	oimplen	nentC	, C++					
Unit – I												
	vs Embedded C – Constants - CPU regise anaging Input and Output Operations - Decision					Opera	tors an					
Unit – II	Embedded C Programming:			.9	aje		9					
User defined Fu	unctions - Structures and Unions –Pointers –	File Manageme	ent in C - Dyna	amic m	emory	alloca	ation an					
Linked Lists - Pr		0										
	C++ Programming:						9					
Basics of C++ F	Programming - Namespace - objects and class						ocation					
Basics of C++ F Inheritance - Re	Programming - Namespace - objects and class pusing code in C++ - Friend functions - Excepti						ocation					
Basics of C++ F Inheritance - Re Unit – IV	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals:	ons - Input and	Output operat	ions –F	File Ma	någen	ocation nents 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements	ons - Input and	Output operat	ions –F	File Ma	någen	ocation nents 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and obj	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements jects - Error and Exception handling	ons - Input and	Output operat	ions –F	File Ma	någen	ocation nents 9 andling					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and ob Unit – V	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements - jects - Error and Exception handling Application using Python Packages:	ons - Input and - Functions and	Output operat	ions –ł	File Mai Trings -	File h	ocation nents 9 andling 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and obj Unit – V Numpy- Intrinsio	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating of	ons - Input and - Functions and	Output operat	ions –ł	File Mai Trings -	File h	ocation nents 9 andling 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and obj Unit – V Numpy- Intrinsio	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements - jects - Error and Exception handling Application using Python Packages:	ons - Input and - Functions and	Output operat	ions –ł	File Mai Trings -	File h	ocation nents 9 andling 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and obj Unit – V Numpy- Intrinsio	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating of	ons - Input and - Functions and	Output operat	ions –ł	File Mai Trings -	File h	ocation nents 9 andling 9					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and ob Unit – V Numpy- Intrinsio Logarithmic plot	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements - jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating of ss - Scatter plots	ons - Input and - Functions and	Output operat	ions –ł	File Mai Trings -	File h	ocation nents 9 andling 9 ib plots					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and ob Unit – V Numpy- Intrinsic Logarithmic plot	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements - jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating of ss - Scatter plots	ons - Input and - Functions and existing array -	Output operat Modules - Pyr pandas- matp	ions –F thon St lotlib- E	rings - Basicma	File h	ocation nents 9 andling 9 ib plots					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and ob Unit – V Numpy- Intrinsic Logarithmic plot REFERENCES 1. Brain	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating is - Scatter plots w.Kernighan, Dennis Ritche, "The C Program naThareja, "Python Programming using proble	ons - Input and - Functions and existing array - nming Language	Output operat Modules - Pyt pandas- matp e", 2nd Edition	ions –F thon St lotlib- F	rings - Basicma	File h atplotl	ocation nents 9 andling 9 ib plots Total:4					
Basics of C++ F Inheritance - Re Unit – IV Basics of Pytho Classes and ob Unit – V Numpy- Intrinsic Logarithmic plot REFERENCES 1. Brain 2. Reer 2017	Programming - Namespace - objects and class eusing code in C++ - Friend functions - Excepti Python Fundamentals: n Programming - Decision control statements jects - Error and Exception handling Application using Python Packages: c Array creation - replicating- joining/mutating is - Scatter plots w.Kernighan, Dennis Ritche, "The C Program naThareja, "Python Programming using proble	ons - Input and - Functions and existing array - nming Language m solving appro	Output operat Modules - Pyr pandas- matp e", 2nd Edition pach", 1st Editi	ions –F thon St lotlib- E , Pears ion, Ox	rings - Basicma son, 20	File h atplotl	ocation nents 9 andling 9 ib plots Total:4					

COURSE On comp			he students will be a	ble to			BT Mappe (Highest Le		
CO1		rograms for dat sions usingEml	a manipulation, I/O pro bedded C	ocess, array a	and numerical		Applying(K	3)	
CO2	apply a	advanced data	structures for problem	solving			Applying(K	3)	
CO3	apply object-oriented programming concepts for data manipulation Applying(K3)								
CO4	write python programs for data manipulations with object oriented and exception Applyin handling features								
CO5	apply t python	using	Applying(K	3)					
			Mapping of C	Os with POs	and PSOs				
COs/POs	;	PO1	PO2	PO3	PO4	PO	5 P	06	
CO1		3	2	2	3	1		1	
CO2		3	2	3	3	2		1	
CO3		3	2	2	2	2		1	
CO4		3	2	3	2	2		1	
CO5		3	1	3	2			1	
1 – Slight,	2 – Mo	oderate, 3 – Sub	stantial, BT- Bloom's	Taxonomy					
			ASSESSMEN	T PATTERN	- THEORY				
Test / Blo Catego	•••••	Rememberin (K1) %	g Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
CAT1		10	40	50				100	
CAT2	2	10	50	40				100	
CAT	3	10	40	50				100	
ESE		10	45	45				100	

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

22ESL11 - MICROCONTROLLER SYSTEM DESIGN LABORATORY

Prog Bran	ramme& ch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit		
	equisites	Nil	1 PC 0 0 2							
Prea	To impart the knowledge of design and development of embedded applications using Microcontrollers									
LIST	OF EXPER	IMENTS / EXERCISES/Projects:								
	Introduct	ion to Electronic system design								
1.	• [Explore the knowledge of Basic componer Design of simple voltage regulator Design a simple circuit of Brightness contr		rectifier, and	sold	ering				
2.	Room Au	 utomation Systemusing 8051 To count Number of persons prese To control fan and light based on t Design a simple circuit of Brightne 	he number of persons							
3.		ng AC/DC appliances using Bluetooth (80) Fo design relay Controlled AC appliances	51)	notor)						
4.		d Tank water level indicator system with a Fo sense 5 level of indication o Full o High	larm and Auto-shutoff (F	PIC18F series	.)					
		 Medium Low Very low 								
5.	• 1	Dased Traffic Control System(PIC18FXX s Fo control 4 way traffic signal Fo use indicators and Sensor Fo measure the density of each road and I								
6.	 To measure the density of each road and Display in LCD Automatic college bell management system(PIC18FXX series) To use RTC to make precise and Accurate timing To use keypad for timing adjustment To use seven segment display for display timing information To use buzzer or Electric Gong Bell to ring alarm 									
								Total:30		
REF	ERENCES/	MANUAL /SOFTWARE:								
1.	Laborato	ry Manual								
2.	Drataura	Professional/CCS Compiler/UMPS/MPLAI	- <i>u</i>							

	SE OUTCO		ne students will	be able to			BT Mapped (Highest Level)			
CO1	CO1 Program the I/O and timer modules of an 8-bit microcontroller for a counting application									
CO2	CO2 Write embedded C program for ADC, Serial communication and sensor interfacing using Proteus simulator									
CO3										
			Mapping	of COs with POs	and PSOs					
COs	s/POs	PO1	PO2	PO3	PO4	PO5	PO6			
С	:01	1		3	3	1				
С	:02	2 2	2 2 2		3	3	3			
<u>م</u>	:03	3	2	3	3	3	3			

22ESL12 - PROGRAMMING LANGUAGES FOR EMBEDDED SYSTEMS LABORATORY

Branc	ramme& ch	ME &EMBE	DDED SYSTEMS		Sem.	Category	L	т	Р	Credit	
Prere	quisites	Nil			1	PC	0	0	2	1	
Pream	nble	To write pro	gram for various ap	oplications using C	, C++ and	Python.					
LIST	OF EXPER	IMENTS / EXE	RCISES:								
1.		Multi-dimensional arrays handling by passing with /without argument to the user defined functions as pointer array in C									
2.	Impleme	Implementation of singly/doubly linked list and its operations in C									
3.			perations using use using file managem			e 2D/n'D feat	ure ve	ectors	and r	esultant c	
4.	2D vecto	r related opera	tions as operator o	verloading of user	-defined cl	ass in CPP					
5.		ined class of I thon script	Data Frame with it	ts member functio	ons of stat	istic operatio	ns wi	th exe	ceptio	n handling	
6.	Data ma using pyt	•	alization and plottir	ng charts using nu	mpy, panc	las and matp	lotlib	packa	ges re	espectivel	
										Total:3	
REFE	RENCES/	MANUAL /SOI	TWARE:							Total:3	
	RENCES/		TWARE:							Total:3	
REFE 1. 2.	C/C++ in	terpreter	TWARE: Windows/Linux							Total:3	
1. 2. COUF	C/C++ in Python 3	terpreter interpreter for OMES:		be able to						lapped	
1. 2. COUF On co	C/C++ in Python 3 RSE OUTC	terpreter interpreter for OMES: of the course,	Windows/Linux		using C a	nd C++ progr	am	(Highe Apply Preci	flapped est Level) ring(K3), sion(S3)	
1. 2. COUF On co	C/C++ in Python 3 RSE OUTC pompletion of represen	terpreter interpreter for OMES: of the course, t the data as ve	Windows/Linux the students will	vector operations	•		am	(Highe Apply Preci Apply	flapped est Level) ring(K3),	
1. 2. COUF On co CO1 CO2	C/C++ in Python 3 RSE OUTC ompletion of represen construct	terpreter interpreter for OMES: of the course, it the data as ve t linked list of d	Windows/Linux the students will lectors and perform	vector operations ked list operations	s using C p	rogram	am		Highe Apply Preci Apply Precis Apply	Mapped est Level) ring(K3), sion(S3) ing (K3),	
1. 2. COUF On cc CO1 CO2	C/C++ in Python 3 RSE OUTC ompletion of represen construct	terpreter interpreter for OMES: of the course, it the data as ve t linked list of d	Windows/Linux the students will l ectors and perform ata and perform lin vork and perform st	vector operations ked list operations	s using C p	rogram	am		Highe Apply Preci Apply Precis Apply	Apped est Level ring(K3), sion(S3) ing (K3), sion (S3) ring(K3),	
1. 2. COUF On cc CO1 CO2 CO3	C/C++ in Python 3 RSE OUTC ompletion of represen construct	terpreter interpreter for OMES: of the course, it the data as ve t linked list of d	Windows/Linux the students will l ectors and perform ata and perform lin vork and perform st	vector operations ked list operations tatistic operations u	s using C p	rogram			Highe Apply Preci Apply Precis Apply Preci	Mapped est Level ring(K3), sion(S3) ing (K3), sion (S3) ring(K3),	
1. 2. COUF On cc CO1 CO2 CO3 CO 3	C/C++ in Python 3 SE OUTC ompletion of represen construct handle b s/POs CO1	terpreter interpreter for OMES: of the course, it the data as ver t linked list of d ig data frame v PO1 2	Windows/Linux the students will ectors and perform ata and perform lin vork and perform st Mapping PO2	vector operations ked list operations tatistic operations u of Cos with POs a PO3 3	ausing C p using pythe and PSOs PO4 3	rogram on PO 2	5		Highe Apply Preci Apply Precis Apply Preci	flapped est Level ring(K3), sion(S3) ing (K3), sion (S3) ring(K3), sion(S3)	
1. 2. COUF On cc CO1 CO2 CO3 CO3	C/C++ in Python 3 RSE OUTC ompletion of represen construct handle b	terpreter interpreter for OMES: of the course, it the data as vo t linked list of d ig data frame v	Windows/Linux the students will ectors and perform ata and perform lin vork and perform st Mapping	vector operations ked list operations tatistic operations u of Cos with POs a PO3	and PSOs	rogram on PO	5		Highe Apply Preci Apply Precis Apply Preci	flapped est Level ring(K3), sion(S3) ing (K3), sion (S3) ring(K3), sion(S3)	

22EST21 - EMBEDDED NETWORKING AND BUSES

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PC	3	0	0	3
	1						
Preamble	To understand the concepts of networking for emb standards.	edded ap	plications w	ith r	espe	ect to	ISO/OS
Unit – I	Introduction to Networks:						9
Introduction to Grounding, Shi	Networks-Advantages and Disadvantages. OSI Model-Fo	oundation	s of OSI Moo	del.	Proto	ocol S	Standards
Unit – II	Embedded Communication:						9
Serial Protocols Bus protocols	rial/Parallel Communication Serial communication proto -Serial Peripheral Interface (SPI) Inter Integrated Circuit						
Unit – III	USB Protocol:						9
	have been developed on a set of the set of t	04-4				- 1	Destrate
Data flow type	bus Introduction- Speed - Identification on the bus US Enumeration Descriptors	SB States	USB bus co	omm	iunic	ation	T
Data flow type Unit – IV Introduction-IEI Ethernet transe	s Enumeration Descriptors Ethernet Standards: EE Standards-Ethernet MAC layer-IEEE 802.2 and Eth reivers, Ethernet types, switches & switching hubs, 10	ernet SN Mbps Et	AP- OSI and	I IEI	EE 8	302.3	9 standard
Data flow type Unit – IV Introduction-IE Ethernet transe Ethernet. TCP	Enumeration Descriptors Ethernet Standards: Standards-Ethernet MAC layer-IEEE 802.2 and Eth eivers, Ethernet types, switches & switching hubs, 10 IP Overview- Internet Layer Protocols-Host-to-Host layer	ernet SN Mbps Et	AP- OSI and	I IEI	EE 8	302.3	9 standard
Data flow type Unit – IV Introduction-IEI Ethernet transc Ethernet. TCP Unit – V Overview Laye ErrorDetection	s Enumeration Descriptors Ethernet Standards: EE Standards-Ethernet MAC layer-IEEE 802.2 and Eth reivers, Ethernet types, switches & switching hubs, 10	ernet SN Mbps Et erview- La	AP- OSI and hernet, 100 ayers. Founda	I IEI Mbp atior	EE 8 s Et	302.3 herne	9 standard et, Gigabi 9 s- Layers
Data flow type Unit – IV Introduction-IEI Ethernet transc Ethernet. TCP Unit – V Overview Laye ErrorDetection	Enumeration Descriptors Ethernet Standards: E Standards-Ethernet MAC layer-IEEE 802.2 and Eth eeivers, Ethernet types, switches & switching hubs, 10 IP Overview- Internet Layer Protocols-Host-to-Host layer Devicenet: rs Profibus-Overview-Protocol Stack. HART Protocol Over and Diagnostics. CANBus Introduction - Frames	ernet SN Mbps Et erview- La	AP- OSI and hernet, 100 ayers. Founda	I IEI Mbp atior	EE 8 s Et	302.3 herne	9 standard et, Gigabi 9 s- Layers
Data flow type Unit – IV Introduction-IEI Ethernet transe Ethernet. TCP Unit – V Overview Laye ErrorDetection TimingPIC18F>	Enumeration Descriptors Ethernet Standards: E Standards-Ethernet MAC layer-IEEE 802.2 and Eth reverse, Ethernet types, switches & switching hubs, 10 IP Overview- Internet Layer Protocols-Host-to-Host layer Devicenet: rs Profibus-Overview-Protocol Stack. HART Protocol Over and Diagnostics. CANBus Introduction - Frames x microcontroller CAN Interface	ernet SN Mbps Et erview- La	AP- OSI and hernet, 100 ayers. Founda	I IEI Mbp atior	EE 8 s Et	302.3 herne	9 standard et, Gigabi 9 s- Layers minal Bi
Data flow type Unit – IV Introduction-IE Ethernet transe Ethernet. TCP Unit – V Overview Laye ErrorDetection TimingPIC18F REFERENCES 1 Steve I	Enumeration Descriptors Ethernet Standards: E Standards-Ethernet MAC layer-IEEE 802.2 and Eth reverse, Ethernet types, switches & switching hubs, 10 IP Overview- Internet Layer Protocols-Host-to-Host layer Devicenet: rs Profibus-Overview-Protocol Stack. HART Protocol Over and Diagnostics. CANBus Introduction - Frames x microcontroller CAN Interface	ernet SN Mbps Et erview- La Bit stuffi	AP- OSI and hernet, 100 ayers. Founda ng Types o	t IEI Mbp ation	EE 8 s Et	302.3 herne Id Bu s No	9 standard et, Gigabi s- Layers minal Bi Total:4
Data flow type Unit – IV Introduction-IEI Ethernet transge Ethernet. TCP Unit – V Overview Laye ErrorDetection TimingPIC18F> REFERENCES 1. Steve I Installa	Enumeration Descriptors Ethernet Standards: E Standards-Ethernet MAC layer-IEEE 802.2 and Etherivers, Ethernet types, switches & switching hubs, 10 IP Overview- Internet Layer Protocols-Host-to-Host layer Devicenet: rs Profibus-Overview-Protocol Stack. HART Protocol Over and Diagnostics. CANBus Introduction - Frames x microcontroller CAN Interface Mackay. Edwin Wright, Deon Reynders, John Park, Pra	ernet SN Mbps Et erview- La Bit stuffi ictical Ind	AP- OSI and hernet, 100 ayers. Founda ng Types o ustrial data N evier 2004.	I IEI Mbp ation of e	EE 8 s Et	302.3 herne Id Bu s No	9 standarc et, Gigabi 9 s- Layers minal B Total:4

		COMES: n of the course, th	e students will be	able to			BT Mappe (Highest Lev						
CO1	realize	e the embedded co	mmunication with	respect OSI	model and its	s standards.	Understanding	g (K2)					
CO2	illustra	illustrate the concepts of serial and parallel communication and its standards Understanding (K2)											
CO3	develop a system to transfer data between peripheral device and microcontroller through USB Protocol Understand the concepts of USB protocol Understanding (K2)												
CO4	analyze the different IEEE Standards, challenges and its solutions in wireless networks. Applying(K3)												
CO5		n bit stuffing and err ng and receiving end	ta at the	Applying(K	3)								
			Mapping of (COs with PO	s and PSOs								
COs/F	POs	PO1	PO2	PO3	PO4	PO	5 PC	06					
CO)1	3	3	3	2	1	3	3					
CO	2	3	2	3	3								
CO	3	3	3	2	2	3							
CO	4	3	2	1	1		2	2					
CO	5	2	1			2	3	3					
1 – Sli	ight, 2 –	Moderate, 3 – Subs	tantial, BT- Bloom's	Taxonomy									
			ASSESSME		I - THEORY								
	Bloom': egory*	s Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %					
	CAT1	30	70					100					
C	CAT2	30	70					100					
C	CAT3	20	40	40				100					
	ESE	10	60	30				100					

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

22EST22 - SINGLE BOARD COMPUTER

Programme& BranchME &EMBEDDED SYSTEMSSPrerequisitesNilImage analysisPreambleTo develop a basic knowledge of working with single board of Image analysis for research applicationsUnit - IIntroduction to SBC and Linux Basics:Types of single board computer - Linux file system - text editors - accessing boot SD card - configuration - networking with Host computer - terminal accessUnit - IIPython Programming and Sensor Interfacing:Pin diagram - GPIO access - LED & Switch - Timers - external circuit interfaciUnit - IIIPeripheral Control:Interfacing touch screen - ADC, DAC and, Motor - DC Motor Control using PVUnit - IVInternet of Things:Open API's for Internet of Things - collect and store sensor data - analyz device.Unit - VImage Processing in SBC:	Sem.	Category	L	т	Ρ	Credit	
Prerequisites	Nil	2	PC	3	0	0	3
Preamble		ngle board comp	uter for multif	functi	ional	tasks	like loT,
Unit – I	Introduction to SBC and Linux Basics:						9
			s - power sup	oply ι	unit -	prepa	aration o
Unit – II	Python Programming and Sensor Interfacing						9
Pin diagram - C	3PIO access - LED & Switch - Timers - external cir	cuit interfacing -	UART - sense	or int	erfaci	ng.	
Unit – III	Peripheral Control:						9
Interfacing touc	h screen - ADC, DAC and, Motor - DC Motor Cont	rol using PWM R	elay and Ste	pper	Moto	r inter	rfacing.
Unit – IV	Internet of Things:						9
		ata - analyze ar	nd visualize o	lata	- con	trol p	eriphera
	Image Broossing in SPC:						9
	OPENCV - reading and writing images - create im	and draw ou	worsion mo	rao	vido	o pro	
	e processing in SBC.	laye - ulaw - col		ige -	- viue	0 010	cessing
							Total:45
REFERENCES	::						
	Monk, "Raspberry Pi Cookbook: Software and Hard Inc, California, USA, 2020.	dware Problems	and Solutions	s", 3r	d Edi	tion, C	O'Reilly
	no Guillen, "Sensor Projects with Raspberry Pi: Inte	ernet of Things a	nd Digital Ima	age F	Proce	ssing'	', A
2 Guillerr	Media,1st Edition 2019.						

COUR On co			-	the students will be a	able to			BT Mapp (Highest Le	
CO1	desc	ribe th	he fundamenta	als of an SBC for deve	lopment of em	bedded appli	cations	Understandin	g (K2)
CO2	write	prog	ram to access	ports and interface pe	ripherals			Applying (K3)
CO3	deve	lop er	mbedded appl	ications using a single	board comput	ter		Applying (K3)
CO4	imple	ement	t the concepts	of internet of things in	an SBC			Applying (K3)
CO5	apply	y imag	ge processing	techniques in an SBC	for real time a	pplications		Applying (K3)
				Mapping of C	COs with POs	and PSOs			
COs/F	POs		PO1	PO2	PO3	PO4	PO5	PO	6
CO	1		3						
CO	2		3	3	3				
CO	3		2	2	3	2	3	2	
CO	4		2	2	3	2	3	2	
CO	5		2	2	3	2	3	2	
1 – Sli	ght, 2	– Moo	derate, 3 – Su	ostantial, BT- Bloom's	Taxonomy				
				ASSESSMEN	NT PATTERN	- THEORY			
	/ Blooi tegory		Rememberii (K1) %	ng Understanding (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Tot al %
(CAT1		10	30	60				100
(CAT2		10	30	60				100
(CAT3		10	30	60				100
	ESE		10	35	55				100
* ±3%	may b	be vai	ried (CAT 1,2,	3 – 50 marks & ESE	– 100 marks)				

22ESC21 - EMBEDDED LINUX **Programme&** Sem. Category L Т Ρ Credit M.E.- Embedded Systems Branch 2 2 Prerequisites Nil PC 3 0 4 Preamble To develop the embedded RTOS for any target board and to port the RTOS with necessary file system to the target board along with the bootloader. Unit – I Fundamentals of Linux: 9 Basic Linux System Concepts: Working with Files and Directories - Introduction to Linux File system - Basic Linux commands and concepts Logging in - Shells - Basic text editing - Advanced shells and shell scripting - Processes and threads in Linux - Inter process communication -Linux System calls. Various Distributions and Cross Platform Tool Chain: Unit – II 9 Introduction - History of Embedded Linux - Embedded Linux versus Desktop Linux - Embedded Linux Distributions -Architecture of Embedded Linux - Linux kernel architecture - User space Linux startup sequence - GNU cross platform Tool chain Unit – III Host-Target Setup and Overall Architecture: a Real Life Embedded Linux Systems -Design and Implementation Methodology - Types of Host/Target Development Setups -Generic Architecture of an Embedded Linux System - System Startup - Types of Boot Configurations System Memory Unit – IV Kernel Configuration and Root File System: 9 Selecting a Kernel - Configuring the Kernel - Compiling the Kernel - Installing the Kernel - Basic Root File System Structure - Libraries - Kernel Modules and Kernel Images -Setting Up the Bootloader U-boot Unit – V **Embedded Storage and Driver:** q Memory Technology Device (MTD) MTD Architecture - MTD Driver for NOR Flash The Flash Mapping drivers MTD Block and character devices mtdutils package Embedded File Systems Optimizing storage space-Porting Roadmap Linux serial driver and Ethernet driver LIST OF EXPERIMENTS / EXERCISES: 1. Linux file access 2. Linux shell scripting 3. Installation of Embedded Linux distribution 4. Installation of tool chain for the specified target board 5. Target Development setup and Boot Configurations 6. Compiling a kernel, Building a kernel for specified target Board 7. Configuring kernel modules, Images for specified target Board 8. Loading the images in Flash memory Lecture:45, Practical:30, Total:75 **REFERENCES/ MANUAL / SOFTWARE:** Karim Yaghmour. Jos Masters, Phillipe Gerum, Building Embedded Linux Systems, 2nd Edition, O'Reilly 1. Publications, 2008 P.Raghavan ,Amol Lad, Sriram Neelakandan. Embedded Linux System Design and Development, Auerbach 2. Publications, New York, 2005. 3. Paul Cobbaut. Linux Fundamentals, GNU Free Documentation License 2013

	SE OUT		the students will	be ab	le to			BT Map (Highest L	
CO1	execute	e the fundamenta	als commands of li	nux O	S and scripts	6		Applying(Precision	
CO2	demon	strate communic	ation between ker	nel sp	ace and use	space		Applying(Precision	
CO3	develo	o kernel images	for embedded hard	dware				Applying Precision	
CO4	develo	o system configu	ration and boot pro	ocess				Applying (Precision	
CO5			and configuring th nel images either in			ariables for bo	ot process to	Applying Precision	
			Mapping	of CO	s with POs	and PSOs			
COs	/POs	PO1	PO2		PO3	PO4	PO5	P	D 6
C	D1	2	1						
CC	D 2	3	2		2	1			
CC	D 3	3	2		2	1			
CC	D 4	3	2		2	2			
CC	D 5	3	2		2	2			
1 – Sli	ght, 2 – N	loderate, 3 – Su	bstantial, BT- Bloo	m's Ta	axonomy				
			ASSESSI	MENT	PATTERN -	THEORY			
	/ Bloom's tegory*	Remember (K1) %	ing Understan (K2) %	•	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
(CAT1	30	30		40				100
(CAT2	20	40		40				100
(CAT3	20	35		45				100
	ESE	10	40		50				100
* ±3%	may be v	varied (CAT 1,2,	3 – 50 marks & E	SE – '	100 marks)				

		22E	SL21 - SINGL	E BOARD COM	PUTER LABOR	ATORY				
Program	me& Branch	ME &EN	IBEDDED SYS	TEMS	Sem.	Category	L	т	Р	Credit
Prerequi	sites	Nil			2	PC	0	0	2	1
Preamble	;	To deve	op real-time ap	plications based	l on single board	computer (SBC	;).			
LIST OF	EXPERIMENT	S / EXER	CISES:							
1.	Interfacing a	camera w	ith SBC							
2.	Design of me	etal detect	or using SBC							
3.	Implement a	face dete	ction using SBC	;						
4.	Implementat	on of atte	ndance monitor	ina system with	student identity	card using SBC				
5.	· ·			toring device usi	· ·	<u> </u>				
6.	-			capture using SI	-					
0.	Design of bu	igiai uelei		capture using Si	50				-	Fotal:30
1.	Press, 2018.			y Raspberry Pi	Projects: Toys, T	ools, Gadgets,	and N	/lore!	. No	Starch
2.	Python 3 doc	cumentatio	n							
	OUTCOMES: Dietion of the c		e students will	be able to			(ped Level)
CO1	write prograr	ns to inter	face various pe	ripherals with SI	BC					(K3), n(S3)
CO2	develop emb	edded an	d IoT applicatio	ns using SBC				Appl	lying	(K3), i (S3)
CO3	implement co	omputer vi	sion and image	processing usir	ng SBC					(K3), n(S3)
			Mapping	of Cos with P	Os and PSOs					
COs	/POs	PO1	PO2	PO3	PO4	PO5			F	PO6
C	D1	2		3	3	2				
	D2	3	3	3	3	2				
C	D 3	1	2	3	3	1				

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

Brancl	amme& h	ME &EMBE	DDED SYSTEMS		Sem.	Category	L	т	Р	Credit
	uisites	Nil			2	PC	0	0	2	1
Pream	ble	To impart kr	nowledge of desig	n and developme	nt of embedo	led products				
LIST C	OF EXPER	IMENTS / EXE	RCISES:							
1.	Simula	tion of Serial po	ort programming	using RS232						
2.	Subnet	ting using IPV4	Ļ							
3.	TCP si	mulation using	Netsim							
4.	UDP si	mulation using	Netsim							
5.	Realiza	ation of Address	s Resolution Prot	ocol						
6.	Design NS3.	a client server	model and simul	ate and analysis c	of real packet	transmissior	in a	a netv	vork	using
7.	Design	and analysis c	f TCP/IP packet	using network prot	tocol analyze	r				
8.	Realisa	ation of TP for E	Bulk transfer using	g Protocol analyze	er					
	I									Total:3
		MANUAL /SOF	TWARE:							
1.	Netsim		TWARE:							
1.			TWARE:							
1. 2.	Netsim		TWARE:						Г Мар	
1. 2. COUR	Netsim Proteus SE OUTC	OMES:	TWARE:	be able to				(Hig	hest	Level)
1. 2. COUR	Netsim Proteus SE OUTC mpletion	OMES: of the course,						(Hig Appl	hest ying(Level) K3),
1. 2. COUR On co CO1	Netsim Proteus SE OUTC mpletion develop	OMES: of the course, so o serial port pro	t he students will ogramming using	RS standards.	rious departm	nents.		(Hig Appl Prec Ap	hest ying(ision plying	Level) K3), (S3) g(K3),
1. 2. COUR On col	Netsim Proteus SE OUTC mpletion develop design	OMES: of the course, to serial port pro and develop si	t he students will ogramming using ubnetting for an o		•	ients.		(Hig Appl Prec Ap Pre Appl	hest ying(ision plying cisio ying(Level) K3), (S3) g(K3), n(S3) K3),
1. 2. COUR On co CO1 CO2	Netsim Proteus SE OUTC mpletion develop design	OMES: of the course, to serial port pro and develop si	t he students will ogramming using ubnetting for an o etworking model	RS standards. rganization for var using TCP and UE)P	nents.		(Hig Appl Prec Ap Pre Appl	hest ying(ision plying ecisio	Level) K3), (S3) g(K3), n(S3) K3),
1. 2. COUR On coi CO1 CO2 CO3	Netsim Proteus SE OUTC mpletion develop design design	OMES: of the course, to serial port pro and develop su and develop no	the students will ogramming using ubnetting for an o etworking model Mapping	RS standards. rganization for var using TCP and UE of Cos with POs	DP and PSOs			(Hig Appl Prec Ap Pre Appl	hest ying(ision plying cisio ying(ision	Level) K3), (S3) g(K3), n(S3) K3), (S3)
1. 2. COUR On con CO1 CO2 CO3	Netsim Proteus SE OUTC mpletion develop design design	OMES: of the course, to serial port pro- and develop su and develop no PO1	the students will ogramming using ubnetting for an o etworking model Mapping PO2	RS standards. rganization for var using TCP and UE of Cos with POs a PO3)P	POS		(Hig Appl Prec Ap Pre Appl	hest ying(ision plying cisio ying(ision	Level) K3), (S3) g(K3), n(S3) K3),
1. 2. COUR On con CO1 CO2 CO3 COs COs	Netsim Proteus SE OUTC mpletion develop design design	OMES: of the course, to serial port pro and develop su and develop no	the students will ogramming using ubnetting for an o etworking model Mapping	RS standards. rganization for var using TCP and UE of Cos with POs	DP and PSOs			(Hig Appl Prec Ap Pre Appl	hest ying(ision plying cisio ying(ision	Level) K3), (S3) g(K3), n(S3) K3), (S3)

			22ESP3 ²	1 - PROJECT W	ORK - I						
Progr Branc	amme& :h	ME &EMBED	DED SYSTEMS	i		Sem.	Category	L	т	Р	Credit
Prere	quisites	Nil				3	EC	0	0	16	8
	SE OUTCO		he students will	be able to						T Maj Ihest	oped Level)
CO1	formulate	a problem stat	tement for the pr	oblem given by t	he industr	ry.			Ар	plying	g (K3)
CO2	summariz	ze the literature	review					ι	Inde	rstand	ding (K2)
CO3	develop a	a methodology f	or the identified p	problem					Ap	plyin	g (K3
CO4		the experimer		nalyse the perfor	mance a	s per	the specified		Ana	alyzin	g (K4)
CO5	prepare a	and present the	project report						Ар	plying	g (K3)
			Mapping	of Cos with PO	s and PS	SOs					
CO	s/POs	PO1	PO2	PO3	PC	04	POS	5		F	PO6
C	:01	3	2	3	3	3	2				3
C	:02	2	3	2	2	2	2				3
C	:03	3	2	3	3	3	3				3
C	04	3	3	3	3	3	3				3
C	:05	2	3	2	2	2	3				3
1 – Sli	ight, 2 – Mo	oderate, 3 – Sub	stantial, BT- Bloo	om's Taxonomy							

			22ESP3	1 - PROJECT WO	ORK - II					
Progr Branc	amme& ch	ME &EMBEI	DDED SYSTEMS		Sem.	Category	L	т	Ρ	Credit
Prere	quisites	Nil			4	EC	0	0	12	24
	RSE OUTC		the students will	be able to					T Maj jhest	oped Level)
CO1	identify t	he problem and	formulate a probl	lem statement				Ар	plying	g (K3)
CO2	summar	ize the literature	review				ι	Jnde	rstand	ling (K2)
CO3	develop	a suitable innov	ative methodolog	У				Ap	plyin	g (K3
CO4			ntal work and ar in VLSI domain.	nalyse the perfor	mance as per	the specified		Ana	alyzin	g (K4)
CO5	prepare	and present the	project report					Ap	plying	g (K3)
			Mapping	of COs with PO	s and PSOs					
CO	s/POs	PO1	PO2	PO3	PO4	PO	5		F	PO6
C	01	3	2	3	3	2				3
C	02	2	3	2	2	2				3
C	03	3	2	3	3	3			_	3
C	04	3	3	3	3	3				3
C	05	2	3	2	2	3				3
1 – Sli	ight, 2 – M	oderate, 3 – Sul	ostantial, BT- Bloo	om's Taxonomy						

22VLE01 - TESTING OF VLSI CIRCUITS (Common to VLSI Design and Embedded Systems branches)

Programme& Branch	ME - VLSI DESIGN & ME - EMBEDDED SYSTEMS	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To know the basics of VLSI test concepts, test gene memory testing and test compression.	eration, D	FT architect	ures,	Built	in S	SelfTest,
Unit – I	Fault modeling and simulation:						9
	esting- Challenges in VLSI Testing -Fault models- Logic on- Fault simulation- Serial fault simulation- Parallel f t simulation						
Unit – II	Design For Testability:						9
Testability analy	/sis –DFT basics- Scan cell designs- Scan architectures- S	Scan desig	n rules- Scar	n des	sign fl	ow	
Unit – III	Test Generation:						9
	neration- Designing a stuck-at model- ATPG for Combination based ATPG-Hybrid deterministic and simulation based			ng a	sequ	entia	I ATPG-
Unit – IV	Built In Self Test:						9
BIST design rule	es- Test pattern generation- Output response analysis- Log	gic BIST a	rchitectures				
Unit – V	Test compression and Memory Testing:						9
	compression- Code based schemes - RAM functional fau gorithms-March tests-Word-oriented memory- Multi-port me		s – Dynamic	faul	ts- Fi	unctio	onal test
						•	Total:45
REFERENCES							
	 – Terngwang, Cheng – wen wu, Xidogingwen, "VLSI Testi ility", Morgan Kaufmann Publisher, 2011. 	ng Princip	les and Arch	itect	ures:	Desi	gn for
Δhram	ovici, M., Breuer, M.A and Friedman, A.D., "Digital System	s and Tes	stable Design	", Ja	ico Pi	ublisł	ning
	, 2014.						

	SE OUTCO		urse, the stu	udents will be	able	to				BT I (High	Mapp est L	
CO1	distingui	sh betwe	en different	fault models ar	nd typ	pes of simula	ation			Underst	andii	ng (K2)
CO2	identify	he desig	n for testabil	ity techniques	for co	ombinationa	I and sequent	ial circuit	S	Underst	andii	ng (K2)
CO3	apply va	rious test	t generation	methods for co	ombir	national and	sequential ci	cuits		Appl	ying	(K3)
CO4	compare	e the vario	ous Built In S	Self Test archit	ectur	es				Underst	andii	ng (K2)
CO5				nodels for men ion approaches		test genera	tion algorithm	s for		Underst	andii	ng (K2)
				Mapping of	COs	with POs a	nd PSOs					
COs/	POs	PO1	F	PO2		PO3	PO4		PC)5	PC	D 6
CC	01	3				3	2		3		3	3
CC)2	3				3	2		3		3	
CC)3	3				3	2		3		3	3
CC)4	3				3	2		3		3	3
CC	95	3				3	2		3		3	3
1 – Slig	ght, 2 – Mc	derate, 3	– Substanti	al, BT- Bloom's	s Tax	konomy						
				ASSESSME	NT P	ATTERN -	THEORY					
	/ Bloom's tegory*		embering K1) %	Understandi (K2) %	ing	Applying (K3) %	Analyzing (K4) %	Evalua (K5)	•	Creati (K6) ^c		Tota %
(CAT1		15	85								100
(CAT2		15	55		30						100
(CAT3		15	85								100
	ESE		5	80		15						100

22ESE01 - DISTRIBUTED EMBEDDED COMPUTING

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	This course enables the students to understand the concept of Internet and programming language used.	ncept of di	stributed con	nputi	ng in	frastr	ucture,
Unit – I	The Hardware Infrastructure:						9
	nsmission facilities – Open Interconnection standards – gement – Network Security – Cluster computers.	Local Are	a Networks	– Wi	de A	rea N	letworks
Unit – II	The Internet Concepts:						9
	d limitations of the Internet – Interfacing Internet server e design and the use of active components.	applicatior	ns to corpora	ite da	ataba	ises I	HTML and
Unit – III	Distributed Computing using JAVA:						9
							-
	Object serialization - Networking - Threading - RMI - m	ulticasting	– distributed	d dat	abas	es – e	
java concepts -	Object serialization - Networking - Threading - RMI - m	ulticasting	– distributed	d dat	abas	es – e	
java concepts - Unit - IV Introduction to	Object serialization – Networking – Threading – RMI – m - case studies.	iteria – E	Behavior bas	sed,	Func	tiona	embeddeo 9 lity based
java concepts - Unit – IV Introduction to embedded age Unit – V	Object serialization – Networking – Threading – RMI – m - case studies. Embedded Agent: the embedded agents – Embedded agent design cu nts – Agent co-ordination mechanisms and benchmarks of Embedded Computing Architecture:	iteria – E embedded	Behavior bas -agent. Case	ed, e stud	Func dy: N	tiona lobile	9 lity based robots.
java concepts – Unit – IV Introduction to embedded age Unit – V Synthesis of th functional distri	Object serialization – Networking – Threading – RMI – m - case studies. Embedded Agent: the embedded agents – Embedded agent design contents the Agent co-ordination mechanisms and benchmarks of	iteria – E embedded ystems – ototyping	Behavior bas -agent. Case analog/digita	ed, e stud	Func dy: M desiç	tiona lobile gn –	9 lity base robots. 9 optimizin
java concepts – Unit – IV Introduction to embedded age Unit – V Synthesis of th functional distri	Object serialization – Networking – Threading – RMI – m - case studies. Embedded Agent: the embedded agents – Embedded agent design conts – Agent co-ordination mechanisms and benchmarks of Embedded Computing Architecture: ne information technologies of distributed embedded sybution in complex system design – validation and fast pro-	iteria – E embedded ystems – ototyping	Behavior bas -agent. Case analog/digita	ed, e stud	Func dy: M desiç	tiona lobile gn –	9 lity base robots. 9 optimizin
java concepts – Unit – IV Introduction to embedded age Unit – V Synthesis of th functional distri	Object serialization – Networking – Threading – RMI – m - case studies. Embedded Agent: the embedded agents – Embedded agent design cu nts – Agent co-ordination mechanisms and benchmarks of Embedded Computing Architecture: ne information technologies of distributed embedded sy bution in complex system design – validation and fast pr cheduling algorithm for real-time multiprocessor systems.	iteria – E embedded ystems – ototyping	Behavior bas -agent. Case analog/digita	ed, e stud	Func dy: M desiç	tiona lobile gn –	embedde 9 lity base robots. 9 optimizin n-chip –
java concepts – Unit – IV Introduction to embedded age Unit – V Synthesis of th functional distri new dynamic se REFERENCES 1 Bernd K	Object serialization – Networking – Threading – RMI – m - case studies. Embedded Agent: the embedded agents – Embedded agent design cu nts – Agent co-ordination mechanisms and benchmarks of Embedded Computing Architecture: ne information technologies of distributed embedded sy bution in complex system design – validation and fast pr cheduling algorithm for real-time multiprocessor systems.	iteria – E embedded ystems – ototyping	Behavior bas -agent. Case analog/digita of multiproce	ed, e stud al co essor	Func dy: N desig	ctiona lobile gn – cem-o	embedde 9 lity base robots. 9 optimizin n-chip – Total:4
java concepts – Unit – IV Introduction to embedded age Unit – V Synthesis of th functional distri new dynamic se REFERENCES 1. Bernd K Academ	Object serialization – Networking – Threading – RMI – m case studies. Embedded Agent: the embedded agents – Embedded agent design conts – Agent co-ordination mechanisms and benchmarks of Embedded Computing Architecture: the information technologies of distributed embedded sybution in complex system design – validation and fast procheduling algorithm for real-time multiprocessor systems. CleinjohannClab, Architecture and Design of Distributed Emic Publisher, Boston, April 2001. Coulouris and Jean Dollimore, Distributed Systems – context of the system of the system of the systems – context of the system system – system of the systems – context of the system system – system – system of the system system system of the system system of the system system system system of the system system of the system system of the system system system system of the system s	riteria – E embedded ystems – rototyping mbedded	Behavior bas -agent. Case analog/digita of multiproce Systems, 1 st	ed, e stud al co essor Edit	Func dy: M desig r syst	ctiona lobile gn – cem-o	embedde 9 lity base robots. 9 optimizin n-chip – Total:4

		UTCOMES: tion of the course, t	he students will be	able to			BT Mapp (Highest L	
CO1	unde	erstand about the Ha	rdware Infrastructure	9			Understanding	J(K2)
CO2	knov	w the concept of Inter	net for computing ap	oplications			Applying(K3)	
CO3	use	the concept of JAVA	in Distributed Embe	dded Computin	g		Applying(K3)	
CO4	dete	rmine the role of em	bedded agent for sim	nple applications	S		Applying(K3)	
CO5	know	w the usage of embe	dded computing arch	nitectures			Understanding	j(K2)
			Mapping of	COs with POs	and PSOs			
COs/F	POs	P01	PO2	PO3	PO4	PO	5 Р	O 6
CO	1	3		3				
CO	2	3		3	3			
CO	3	3	1	3		2		
СО	4	3	2	3	3	2		1
СО	5	3	2	3	3	2		1
1 – Sl	ight, 2	– Moderate, 3 – Sul	ostantial, BT- Bloom'	s Taxonomy				
			ASSESSME	NT PATTERN	- THEORY			
Blo	est / com's egory	(K1)%	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
С	AT1	10	60	30				100
С	AT2	-	40	60				100
С	CAT3	10	50	40				100
E	ESE	10	50	40				100
* ±3%	may	be varied (CAT 1,2,	3 – 50 marks & ESE	E – 100 marks)				

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To understand and apply the process of PV sy systems.	stems, power po	int tracking ar	nd de	esign	of P	V
Unit – I	Introduction to Solar Cells:						9
	of sunlight – semiconductors and P-N junctions	s -behavior of s	olar cells – c	ell p	prope	erties	– PV ce
interconnection Unit – II	Stand Alone PV System:						9
Schematics, Co	omponents, Batteries, Charge Conditioners-Ba bical applications for lighting, water pumping etc.	alance of syste	m componer	nts	for [DC a	nd/or AC
Unit – III	Grid Connected PV Systems:						9
Schematics, Co Buildings.	mponents, Charge Conditioners, Interface Comp	onents-Balance	of system Cor	npoi	nents	s -PV	System i
Unit – IV	Maximum Power Point Tracking:						9
	Maximum Power Point Tracking: Input impedance of DC-DC converters -Boost	converter, Buck	converter, Bu	ıck-E	Boos	t con	-
MPPT concept,	Maximum Power Point Tracking: Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A						verter, P
MPPT concept, module in SPIC	Input impedance of DC-DC converters -Boost	LGORITHMS-In	npedance con	trol	meth	ods,	verter, P' Referenc
MPPT concept, module in SPIC cell, Sampling r	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A	LGORITHMS-In	npedance con	trol	meth	ods,	verter, P Reference
module in SPIC cell, Sampling r	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me	LGORITHMS-In	npedance con	trol	meth	ods,	verter, P\ Reference
MPPT concept, module in SPIC cell, Sampling r Gate driver, MP Unit – V Radiation and I	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me PT for non-resistive loads, Simulation.	LGORITHMS-Im ethod, Practical p ifferent PV Appl	pedance con points - house ications-Sizing	trol i ekee	meth eping	ods, pow	verter, P\ Reference er supply
MPPT concept, module in SPIC cell, Sampling r Gate driver, MP Unit – V Radiation and I	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me PT for non-resistive loads, Simulation. Design of PV Systems: oad data-Design of System Components for d	LGORITHMS-Im ethod, Practical p ifferent PV Appl	pedance con points - house ications-Sizing	trol i ekee	meth eping	ods, pow	verter, P\ Reference er supply
MPPT concept, module in SPIC cell, Sampling r Gate driver, MP Unit – V Radiation and I	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me PT for non-resistive loads, Simulation. Design of PV Systems: oad data-Design of System Components for d olar Lighting-Solar Cooking-Solar Drying-Solar D	LGORITHMS-Im ethod, Practical p ifferent PV Appl	pedance con points - house ications-Sizing	trol i ekee	meth eping	ods, pow	verter, P Reference er supply 9 lity-Simple
MPPT concept, module in SPIC cell, Sampling r Gate driver, MP Unit – V Radiation and I Case Studies: S REFERENCES:	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me PT for non-resistive loads, Simulation. Design of PV Systems: oad data-Design of System Components for d olar Lighting-Solar Cooking-Solar Drying-Solar D	ALGORITHMS-Im ethod, Practical p ifferent PV Appl esalination-Solar	ipedance con points - house ications-Sizing Furnaces.	trol ekee g ar	meth eping	ods, pow	verter, P' Referenc er supply 9 lity-Simpl Total:4
MPPT concept, module in SPIC cell, Sampling r Gate driver, MP Unit – V Radiation and I Case Studies: S REFERENCES: 1. Cheta Learn	Input impedance of DC-DC converters -Boost E, Simulation - PV and DC-DC interface-MPPT A nethod, Power slope methods, Hill climbing me PT for non-resistive loads, Simulation. Design of PV Systems: oad data-Design of System Components for d olar Lighting-Solar Cooking-Solar Drying-Solar D n Singh Solanki, Solar Photovotaics–Fundament	ALGORITHMS-Im ethod, Practical p ifferent PV Appl esalination-Solar als, Technologies	pedance con points - house ications-Sizing Furnaces.	trol ekee g ar	meth eping	ods, pow	verter, P Referenc er supply 9 lity-Simpl Total:4

COURSE On comp		MES: f the course, t	he students	s will be al	ole to			BT Map (Highest L	
CO1	infer the	e characteristics	s of sunlight	and the ro	le of semicono	luctors in sola	cell	Understandi	ng (K2)
CO2	relate ty	pes and desigr	n of various	PV - interc	onnected syst	ems.		Applying	(K3)
CO3	experim	ent with grid co	onnected PV	' systems				Applying	(K3)
CO4	apply th	e concepts of N	/IPPT algori	thm for PV	modules			Applying	(K3)
CO5	design l	PV systems for	different ap	plications				Applying	(K3)
			Мар	ping of CO	Ds with POs a	and PSOs			
COs/POs	5	PO1	PO	2	PO3	PO4	PO5	PO	6
CO1					3	2			
CO2					3	2			
CO3		2			3	2			
CO4		1			3	2			
CO5		3			2	3		2	
1 – Slight	, 2 – Mo	derate, 3 – Sub	stantial, BT-	- Bloom's T	axonomy				
			ASS	SESSMEN ⁻	FPATTERN -	THEORY			
Test / Blo Catego		Rememberir (K1) %	•	standing 2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT	1	10		40	50				100
CAT	2	10		40	50				100
CAT	3	10		50	40				100
ESE		10		40	50				100
* ±3% ma	y be va	ried (CAT 1,2,3	8 – 50 mark	s & ESE –	100 marks)				

22ESF01 - ASIC FOR EMBEDDED SYSTEMS

Bran	jramme ich	÷&	M.E-EMBEDDED SYSTEM	Sem.	Category	L	т	Ρ	Credit
Prer	equisite	es	Verilog HDL for Embedded FPGA Processor	2	PE	2	0	2	3
Prea	mble		now the different programmable ASICs, logic cells nesis and physical design flow in carried out in an ASI			onne	ct ar	nd to	learn hov
Unit	-1	Intro	oduction to ASICs, CMOS Logic and ASIC Library	Design:					6
		ICs -	Design flow - Combinational Logic Cell – Sequential stor Parasitic Capacitance- Logical effort.		- Data path	logic	cell	- Trar	nsistors a
Unit	– II	Prog Cells	grammable ASICs, Programmable ASIC Logic Cell s:	s and Pro	grammable	ASI	C I/O)	6
			RAM - EPROM and EEPROM technology - Actel ACT outs - Clock & Power inputs - Xilinx I/O blocks.	Γ - Xilinx I	CA –Altera	FLE	X - A	Itera N	AX DC 8
Unit			grammable ASIC Interconnect:						6
Acte	ACT ->	(ilinx L	CA - Xilinx EPLD - Altera MAX 5000 and 7000 - Alter	ra MAX90	00 - Altera Fl	_EX.			
Unit			gn and synthesis:						6
repre	esentatio	onLo	Half gate ASIC –Schematic entry - Low level des gic synthesis – Logic Simulation - Design and synthes			tool	s -El	DIF- C	FI desig
Unit			sical Design:						6
AGIC	ranno	Jiiiig -	floor planning- placement and routing – power and c	IUCKING SU	alegies - Div	0.			
LIST	OF EX	PERIN	MENTS / EXERCISES:						
1.	Des	ign, sii	mulation and synthesis of Adders						
2.	Des	ign, sii	mulation and synthesis of multipliers						
3.	Des	ign, sii	mulation and synthesis of memory						
	a) P b) S c) G	erform ynthes enera	lowing the circuits, the functional verification sis the design te the layout (Automatic) ate the area, power, delay						
	8-bit	t micro	processor						
4.			•						
		p FIR							
4. 5. 6.	4-ta	p FIR projec	Filter						
5.	4-ta		Filter		Lecture:3	80, P	racti	cal:30), Total:6
5. 6.	4-ta	projec	Filter		Lecture:3	80, P	racti	cal:30), Total:6
5. 6.	4-ta Mini ERENC	projec ES:	Filter	Circuits,					-
5. 6. REF	4-ta Mini ERENC Mich	ES: neal Jo	Filter		12 th compres	sion	, Pea	irson,2	2013

	SE OUTC	-	-	students will be a	ble to			BT Map (Highest I	
CO1	understa	nd A	ASIC Design flo	w and Design Libra	aries			Understandi Precision	
CO2	understa	nd t	he ASIC progra	mming technology	and program	nmable ASIC	I/O cells	Understandi Precision	
CO3	summari	ze t	he architecture	of programmable A	SIC intercor	nnects		Understandi Precision	
CO4	infer syn	thes	is concept and	perform physical d	esign of digit	al circuits		Understandi Precision	• • •
CO5		sign		partitioning, floorp nalyze the perform				Applying Precision	
				Mapping of C	Os with PO	s and PSOs			
COs/P	Os PO	1	PO2	PO3	3	PO4	PO5	P	06
CO1	I 3			3		3	2	:	3
CO2	2 3			3		3	2	:	3
COS	3 3			3		3	2	:	3
CO4	4 3		3	3		3	2	:	3
COS	53		3	3		3	2		3
			1 – Sligh	t, 2 – Moderate, 3 -	 Substantia 	l, BT- Bloom's	Taxonomy		
				ASSESSMEN		I - THEORY			
	Bloom's egory*	R	emembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
С	AT1		20	60	20				100
С	AT2		10	50	40				100
С	AT3		10	40	50				100
				40	50				100

22ESE04 - QT CROSS COMPILING APPLICATION DEVELOPMENT

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To know the basic concepts of QT - single cross platform a deploy programs for real time applications.	and to use	e C++ tool to	des	ign,	deve	lop, test,
Unit – I	Introduction to C++:						9
	s - Conditionals and Loops - Data Types, Arrays, Poir olymorphism – sample programs.	nters – F	Functions -C	lass	es a	and	Objects
Unit – II	QT installation and compilation:						9
	tures - Qt Widgets - Learning the landscape – Build pro f cts pane and building project - Example with Qt Widgets.	ile - brea	kpoints – Ex	ami	ning	varia	ables and
Unit – III	Qt Designer:						9
Main form - an	plication resources - Instantiating forms - message boxes -	dialogs	- Wiring the	Ot \	Vida	oto o	polication
	ve user interface development.	alalogo	wining the	GUV	viug	eis a	pplication
logic - declarati					viug		9
logic - declarati Unit – IV	ve user interface development. QtIoT: ata using core classes - key-value pairs – Multithreading - A						9
logic - declarati Unit – IV Representing d	ve user interface development. QtIoT: ata using core classes - key-value pairs – Multithreading - A						9
logic - declarati Unit – IV Representing d XML parsing wi Unit – V Managing widg	ve user interface development. QtIoT: ata using core classes - key-value pairs – Multithreading - A ith HTTP.	ccessing	files - Acces	sing	HT	TP re	9 esources 9
logic - declarati Unit – IV Representing d XML parsing wi Unit – V Managing widg	ve user interface development. QtIoT: ata using core classes - key-value pairs – Multithreading - A ith HTTP. Application development: et layout – Model View Controller programming - Analyzing	ccessing	files - Acces	sing	HT	TP re	9 esources 9 model or
logic - declarati Unit – IV Representing d XML parsing wi Unit – V Managing widg Qt Creator – sa	QtloT: ata using core classes - key-value pairs – Multithreading - A ith HTTP. Application development: et layout – Model View Controller programming - Analyzing imple applications development.	ccessing	files - Acces	sing	HT	TP re	9 esources 9
logic - declarati Unit – IV Representing d XML parsing widg Unit – V Managing widg Qt Creator – sa REFERENCES	QtloT: ata using core classes - key-value pairs – Multithreading - A ith HTTP. Application development: et layout – Model View Controller programming - Analyzing imple applications development.	a concre	files - Acces te model sub	sing	HT ss - N	TP re MVC	9 sources 9 model or Total:4

		UTCOME tion of th	-	e students will be	able to			(BT Mappe Highest Lev	
CO1	use	class leve	el C++ progra	ims for simple appli	cations.				Applying(K	3)
CO2	appl	y the proc	cess of QT in	stallation, compilati	on with simple a	application.			Applying(K	3)
CO3	deve	elop graph	nic user interf	ace with application	n resources.				Applying(K	3)
CO4	appl	y QT for I	nternet of thi	ngs.					Applying(K	3)
CO5	deve	elop basic	applications	for different OS pla	atform.				Applying(K	3)
				Mapping of	COs with POs	and PSOs				
COs/F	POs	PC	01	PO2	PO3	PO4	F	PO 5	P	D6
CO	1				3	2				
CO	2				3	2				
СО	3	2	2		3	2				1
CO	4				3	1				
CO	5	2	2		3	3		2		2
1 – SI	ight, 2	2 – Modera	ate, 3 – Subs	tantial, BT- Bloom's	s Taxonomy					
				ASSESSME		- THEORY				
Blo	'est / oom's egory	5	membering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati (K5) %		Creating (K6) %	Tota %
C	CAT1		10	90						100
C	CAT2		10	90						100
C	CAT3		10	50	40					100
	ESE		10	70	20					100
' ±3%	may	be varied	I (CAT 1.2.3	– 50 marks & ESE	– 100 marks)					

22ESE05 - SENSORS AND ACTUATORS FOR ROBOTICS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To learn and infer the parameters components or manipulators, sensors and actuators	of robotic	s such as	para	allel	and g	grippers
Unit – I	Introduction to Robotics:						9
	brigin of robotics – different types of robotics – various f robotics – dynamic stabilization of robots.	generatio	ons of robots	– de	egree	es of f	reedom
Unit – II	Sensors and Actuators:						9
dynamics and f grippers – desig	ne vision – ranging – laser – acoustic– magnetic, fiber c orce control – electronic and pneumatic manipulator co gn considerations. Drives: Hydraulic, pneumatic and elec	ntrol circo	uits – end eff				
Unit – III	Mechatronics:						9
	of HP of motor and gearing ratio – variable speed arrange lem – multiple solution jacobian work envelope – hill Clin			natio	n So	lution	of invers
kinematics prot Unit – IV	elem – multiple solution jacobian work envelope – hill Clin Robot Programming:	nbing Teo	chniques.				9
kinematics prot Unit – IV Introduction to I	elem – multiple solution jacobian work envelope – hill Clin Robot Programming: robot programming languages – classification of robot lar	nbing Teo	chniques.				9
kinematics prok Unit – IV Introduction to I – VAL system a Unit – V	Ilem – multiple solution jacobian work envelope – hill Clin Robot Programming: robot programming languages – classification of robot land and Language Applications of Robots:	nbing Teo	chniques. – Computer c	ontro	ol and	d robo	9 t softwar 9
kinematics prok Unit – IV Introduction to – VAL system a Unit – V	Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system	nbing Teo	chniques. – Computer c	ontro	ol and	d robo	9 t softwar 9 I design
kinematics prob Unit – IV Introduction to – VAL system a Unit – V Multiple robots selection of rob	Image Image Im	nbing Teo	chniques. – Computer c	ontro	ol and	d robo	9 t softwar 9 Il design
kinematics prob Unit – IV Introduction to – VAL system a Unit – V Multiple robots selection of rob	Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system Image: Contract of the second system	nbing Teo	- Computer c uring applicat	ions	ol and – rot	d robo	9 t softwar 9 II design Total:4
kinematics prob Unit – IV Introduction to – VAL system a Unit – V Multiple robots selection of rob REFERENCES 1. Deb. 2010.	Alem – multiple solution jacobian work envelope – hill Clin Robot Programming: Tobot programming languages – classification of robot lar and Language Applications of Robots: – machine interface – robots in manufacturing and non- tot. S.R. Robotics Technology and flexible Automation, 2 nd	nbing Teo nguages - manufact	- Computer c uring applicat	ontro ions Pub	ol and - rol	d robo pot cel	9 t softwar 9 Il design Total:4
kinematics prob Unit – IV Introduction to 1 – VAL system a Unit – V Multiple robots selection of rob REFERENCES 1. Deb. 2010. 2. Nicho	Idem – multiple solution jacobian work envelope – hill Clin Robot Programming: robot programming languages – classification of robot lar Ind Language Applications of Robots: – machine interface – robots in manufacturing and non-root. S.R. Robotics Technology and flexible Automation, 2 nd las Odrey, Mitchell Weiss, MikellGroover, Roger N.Nage aw-Hill Singapore, 2012.	nbing Teo nguages - manufact d Edition, el, Ashish	- Computer c uring applicat McGraw Hill Dutta, Indust	ontro ions Pub	- rob	d robo pot cel ion, N tics, 2	9 t softwar 9 Il design Total:4 ew Delh
kinematics prob Unit – IV Introduction to 1 – VAL system a Unit – V Multiple robots selection of rob REFERENCES 1. Deb. 2010. 2. Nicho	Idem – multiple solution jacobian work envelope – hill Clin Robot Programming: robot programming languages – classification of robot lar Ind Language Applications of Robots: – machine interface – robots in manufacturing and non-root. S.R. Robotics Technology and flexible Automation, 2 nd las Odrey, Mitchell Weiss, MikellGroover, Roger N.Nage aw-Hill Singapore, 2012. n, Control in Robotics and Automation: Sensor Based Int	nbing Teo nguages - manufact d Edition, el, Ashish	- Computer c uring applicat McGraw Hill Dutta, Indust	ontro ions Pub	- rob	d robo pot cel ion, N tics, 2	9 t softwar 9 Il design Total:4 ew Delh

	E OUTCO	-	tudents will be able	e to			BT Map (Highest⊺	
CO1	infer the	functions of a robo	t.				Understand	ing (K2)
CO2	interpret	the type of sensors	s, actuators and drive	es for robots.			Understand	ing (K2)
CO3	apply the	e kinematics and pa	th planning for robo	t applications.			Applying	(K3)
CO4	experime	ent robot operations	s using VAL robot pr	ogramming lan	guage.		Applying	(K3)
CO5	apply the	e principles of robot	s for manufacturing	Industries.			Applying	(K3)
			Mapping of C	Os with POs a	nd PSOs			
COs/	POs	PO1	PO2	PO3	PO4	PO5	F	' 06
CO)1			3	2			
СО	2	1		3	2			
CO	3	1		3	2			
CO	94			3	2			
CO	95	2		2	3	1		2
1 – Sligł	nt, 2 – Moo	derate, 3 – Substan	tial, BT- Bloom's Ta	xonomy				
			ASSESSMEN	IT PATTERN -	THEORY			
	Bloom's gory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CA	AT1	10	30	60				100
CA	AT2	10	30	60				100
CA	AT3	10	30	60				100
E	SE	10	30	60				100
±3% m	nay be var	ied (CAT 1,2,3 – 5	0 marks & ESE – 1	00 marks)				

22ESE06 - SIGNAL AND IMAGE PROCESSING FOR REAL TIME APPLICATIONS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To develop the image processing tools from scratch, rath functions	her than	using any im	age	proc	essing	g library
Unit – I	Digital Image Fundamentals:						9
sampling- 2D Im equalization - S	ital image processing systems- Brightness- Contrast- Hu age transforms: DCT – KLT – Haar. Image Enhancement: Spatial filtering: Smoothing and sharpening Filters – Fro s – Homomorphic filters	: Basic ir	ntensity trans	form	atior	ns – H	istogram
Unit – II	Morphological Image Processing:						9
Boundary Extra	on – Duality – Opening – Closing – Hit or Miss Transfo ction- Hole filling – Extraction of connected componer orphological smoothing – Morphological gradient – Tophat	nts – T	hinning – T	hicke	ening	j – Č	
Unit – III	Image Segmentation:						9
Region splitting	edge detection – Basics of intensity thresholding – Reg and merging. Image Compression: Fundamentals: Type etic coding - Block Transform coding						
Unit – IV	Pattern recognition:						9
	attern classes - Representation of Pattern classes -						
Parametric class	sification - Template matching method - Structural Pat	tern Red	Sognition . S	lalis	licai	ana	structural
		tern Red	. s	lalis	licai		structural
Parametric class approaches Unit – V Speech Fundam acoustics of spe	sification – Template matching method – Structural Pat Overview of speech processing: entals: Articulatory Phonetics – Production and Classificat eech production; Short time Homomorphic Filtering of Spe t, LPC spectrum.	ion of Sp	beech Sound	s; A	cous	tic Ph	9 Dinetics –
Parametric class approaches Unit – V Speech Fundam acoustics of spe	Overview of speech processing: entals: Articulatory Phonetics – Production and Classificat ech production; Short time Homomorphic Filtering of Spe	ion of Sp	beech Sound	s; A	cous	tic Ph	9 onetics – is: Basis
Parametric class approaches Unit – V Speech Fundam acoustics of spe	Overview of speech processing: entals: Articulatory Phonetics – Production and Classificat ech production; Short time Homomorphic Filtering of Spe	ion of Sp	beech Sound	s; A	cous	tic Ph	9 onetics – is: Basis
Parametric class approaches Unit – V Speech Fundam acoustics of spe and developmer	Overview of speech processing: entals: Articulatory Phonetics – Production and Classificat ech production; Short time Homomorphic Filtering of Spe	ion of Sp eech; Lir	beech Sound hear Predictio	s; Ao on (I	cous	tic Ph	9 Dinetics –
Parametric class approaches Unit – V Speech Fundam acoustics of spe and developmer REFERENCES: 1. Gonzale	Overview of speech processing: entals: Articulatory Phonetics – Production and Classificat ech production; Short time Homomorphic Filtering of Spett, LPC spectrum. z.R.C, Woods. R.E, Digital Image Processing, 4 th Edition, Filtering, S, Esakkirajan.S, Veerakumar.T, Digital Image Processing	ion of Sp eech; Lir Pearson	beech Sound hear Prediction Education, 2	s; Ao on (I 009	cous _P) a	tic Pho analys	9 onetics – is: Basis Total:45

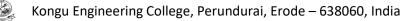
COUR On co			-	he st	udents will be al	ble to			BT Map (Highest I	•
CO1	inte	erpret th	ne basic image	proc	essing spatial dor	main characte	eristics of digita	al images	Understand	ng (K2)
CO2	app	oly Haa	r, DCT and KL	Tran	sforms to transfor	rm from spatia	al domain to ot	her domains	Applying	(K3)
CO3					s and segmentation y different coding				Applying	(K3)
CO4	Ар	oly the	pattern recogn	ition	for the recognitior	n of different c	lass of objects	5	Applying	(K3)
CO5			e speech proce diction analysis		approaches with	homomorphic	c filtering of sp	eech and	Applying	(K3)
					Mapping of CO	Os with POs	and PSOs			
COs/P	Os		PO1		PO2	PO3	PO4	PO5	PC	06
CO	1					3	3			
CO2	2					3	2			
COS	3		2			3	3			
CO4	4		2			3	3			
CO	5					2	3			
1 – Sli	ght, 2	2 – Moo	derate, 3 – Sub	stant	ial, BT- Bloom's T	「axonomy				
					ASSESSMEN	T PATTERN -	THEORY			
/ Test Cat	Bloc Bloc		Rememberir (K1) %	ng	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
C	CAT1		20		80					100
C	CAT2		20		60	20				100
C	САТЗ		10		30	60				100
	ESE		10		45	45				100
* ± 3%	may	be var	ried (CAT 1,2,3	3 – 50) marks & ESE –	100 marks)				

22VLE04 - LOW POWER VLSI DESIGN (Common to VLSI Design and Embedded Systems branches)

Programme& Branch	ME - VLSI DESIGN & ME - EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	VLSI Design Techniques	2	PE	3	0	0	3
Preamble	To design a low power digital circuits and analyze the v	various pov	wer optimizati	on r	netho	ods	
Unit – I	Sources of Power Dissipation and Power Optimizat	ion:					9
Combinational	f power dissipation in CMOS Circuits- Logic level circuits Technology independent optimization- Sec echnology-dependent optimization						
Unit – II	Circuit Level Techniques for Low Power Design:						9
load- Power, a	v-power design- Logic style- Latches and Flip-flops- Tra nd Delay in CMOS circuits- CMOS circuit design styles for dders and multipliers						
	Low Power System Design:						9
Unit – III Conventional <i>a</i>						em-	-
Unit – III Conventional a power consump Unit – IV	Low Power System Design: rithmetic and low power design- Logarithmic Number S tion in memories- Static random access memories- Dyna Low Power Clock Design and Power Estimation:	mic randoi	m access me	mori	es		Reducinę 9
Unit – III Conventional a power consump Unit – IV Low-Power Clo	Low Power System Design: rithmetic and low power design- Logarithmic Number S tion in memories- Static random access memories- Dyna	mic randoi	m access me	mori	es		Reducing 9
Unit – III Conventional a power consump Unit – IV Low-Power Clo power estimatio	Low Power System Design:rithmetic and low power design- Logarithmic Number Stion in memories- Static random access memories- DynamicLow Power Clock Design and Power Estimation:ck Design- Interconnect Delays- Classification of power	mic randoi	m access me	mori	es		Reducinę 9
Unit – III Conventional a power consump Unit – IV Low-Power Clo power estimation Unit – V Sources of soft	Low Power System Design: rithmetic and low power design- Logarithmic Number S tion in memories- Static random access memories- Dyna Low Power Clock Design and Power Estimation: ck Design- Interconnect Delays- Classification of power n- Probabilistic methods.	mic randor estimatio	m access mei	mori gies-	es · Sim	nulatio	Reducing 9 on based 9
Unit – III Conventional a power consump Unit – IV Low-Power Clo power estimation Unit – V Sources of soft	Low Power System Design: rithmetic and low power design- Logarithmic Number S tion in memories- Static random access memories- Dyname Low Power Clock Design and Power Estimation: ck Design- Interconnect Delays- Classification of power n- Probabilistic methods. Software Design for Low Power: ware power dissipation- Software power estimation- Software	mic randor estimatio	m access mei	mori gies-	es · Sim	nulatio	Reducing 9 on base 9
Unit – III Conventional a power consump Unit – IV Low-Power Clo power estimation Unit – V Sources of soft code generation	Low Power System Design: rithmetic and low power design- Logarithmic Number S otion in memories- Static random access memories- Dynamic Low Power Clock Design and Power Estimation: ck Design- Interconnect Delays- Classification of power n- Probabilistic methods. Software Design for Low Power: ware power dissipation- Software power estimation- Software n- Co-design for low power.	mic randor estimatio	m access mei	mori gies-	es · Sim	nulatio	Reducing 9 on base 9 ow powe
Unit – III Conventional a power consump Unit – IV Low-Power Clo power estimation Unit – V Sources of soft code generation	Low Power System Design: rithmetic and low power design- Logarithmic Number S otion in memories- Static random access memories- Dynamic Low Power Clock Design and Power Estimation: ck Design- Interconnect Delays- Classification of power n- Probabilistic methods. Software Design for Low Power: ware power dissipation- Software power estimation- Software n- Co-design for low power.	estimatio	m access men	gies-	es Sim toma	nulatio	Reducing 9 on base 9 ow powe Total:4
Unit – III Conventional a power consump Unit – IV Low-Power Clopower estimation Unit – V Sources of soft code generation REFERENCES 1. Dimitric	Low Power System Design: rithmetic and low power design- Logarithmic Number S otion in memories- Static random access memories- Dynamic Low Power Clock Design and Power Estimation: ck Design- Interconnect Delays- Classification of power n- Probabilistic methods. Software Design for Low Power: ware power dissipation- Software power estimation- Software n- Co-design for low power.	estimatio vare power	m access men	gies-	es Sim toma	nulatio	9 on base 9 ow powe Total:4

	RSE OUT		/IES: the course, t	ne st	udents will I	oe ab	le to			BT Map (Highest I	
CO1	enume	erate		ourc	es of power o			S and various	s logic level	Understand	
CO2	apply	variou	us power optir	nizat	ion technique	es at o	circuit level.			Applying	(K3)
CO3	desigr	low	power circuit	s at a	architecture le	evel a	nd memories	5		Applying	(K3)
CO4	outline low lev		•	bab	ilistic method	of po	ower analysis	s and low pow	er issues at	Understand	ing (K2)
CO5	perfor	m pov	wer estimatior	n and	loptimization	at pr	ogramming l	evel		Understand	ing (K2)
					Mapping	of CO	s with POs	and PSOs			
COs	s/POs		PO1		PO2		PO3	PO4	PO5	Р	06
С	01		3				3	3	3		3
С	02		3				3	3	3		3
С	O3		3				3	3	3		3
С	04		3				3	3	3		3
С	O5		3				3	3	3		3
1 – Sli	ight, 2 –	Mode	erate, 3 – Sub	stant	ial, BT- Blooi	n's T	axonomy				
					ASSESS	IENT	PATTERN -	- THEORY			
	/ Bloom itegory*	's	Rememberi (K1) %	ng	Understand (K2) %	ding	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1		15		65		20				100
	CAT2		15		35		50				100
	CAT3		15		85						100
	ESE		10		60		30				100
* ±3%	may be	varie	ed (CAT 1,2,3	- 50) marks & E	SE –	100 marks)				

Programmea Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisite	s Nil	2	PE	3	0	0	3
Preamble	To provide a clear description of the concepts that u complete performance measurements at run-time, to achieve pending on multiple kernel objects.						
Unit – I	Introduction to Operating Systems:						9
Services - U	agement – Memory Management – Protection and S ser and Operating system Interface – System calls – Ty ntation – Operating system Structure. Real Time Systems:						
Overview-Sys Concepts: Fo	stem Characteristics-Hard Real Time and Soft real time preground/Background systems – Real time kernels – oints - Round robin scheduling – scheduling Internals						· - RTOS
	μ C/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a						
Introduction - Task Schedu Management management	μ C/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T	/OS-III – Clock of stack-Dete	τick - μC/Ο cting Task	S-III	Initia	alizati	States – on. Task
Introduction - Task Schedu Management management Unit – IV	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management:	/OS-III – Clock of stack-Dete ïme Managem	t Tick - μC/O cting Task ent.	S-III stac	Initia k o	alizati verflo	States – on. Task ows-Task 9
Introduction - Task Schedu Management management Unit – IV Disable/Enab Task Semap	μ C/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T	/OS-III – Clock of stack-Dete ime Managem hore – Deadlo sage Passing:	t Tick - μC/O cting Task ent. ck – Synchro Messages –	S-III stac nizat	Initia k o tion:	alizati verflo Sem ges C	States – on. Task ows-Task 9 aphore – Queues –
Introduction - Task Schedu Management management Unit – IV Disable/Enab Task Semap	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mese Queue –Flow control – using message queues – client	/OS-III – Clock of stack-Dete ime Managem hore – Deadlo sage Passing:	t Tick - μC/O cting Task ent. ck – Synchro Messages –	S-III stac nizat	Initia k o tion:	alizati verflo Sem ges C	States – on. Task ows-Task 9 aphore – Queues –
Introduction - Task Schedu Management Unit – IV Disable/Enab Task Semap Task Messag Unit – V Creating a m memory part	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC : Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mes	/OS-III – Clock of stack-Deter ime Managem hore – Deadlo sage Passing: ts and servers	tick - μC/O cting Task ent. ck – Synchro Messages – – message q Memory Blo	S-III stac nizat - Me ueue ck t	Initia k o tion: essag e Inte	Sem ges C partiti	States - on. Task ows-Task 9 aphore - Queues - S. 9 on-using
Introduction - Task Schedu Management Unit – IV Disable/Enab Task Semap Task Messag Unit – V Creating a m memory part	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC : Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mese Queue –Flow control – using message queues – clien Memory Management: emory Partition- getting a Memory Block from partition tions- Porting μC/OS-III: μC/CPU-μC/OS-III Port- Board	/OS-III – Clock of stack-Deter ime Managem hore – Deadlo sage Passing: ts and servers	tick - μC/O cting Task ent. ck – Synchro Messages – – message q Memory Blo	S-III stac nizat - Me ueue ck t	Initia k o tion: essag e Inte	Sem ges C partiti codir	States - on. Task ows-Task 9 aphore - Queues - S. 9 on-using
Introduction - Task Schedu Management Unit – IV Disable/Enab Task Semap Task Messag Unit – V Creating a m memory part	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mese Queue –Flow control – using message queues – clien Memory Management: emory Partition- getting a Memory Block from partition tions- Porting μC/OS-III: μC/CPU-μC/OS-III Port- Board ocolate Vending Machine using MUCOS RTOS.	/OS-III – Clock of stack-Deter ime Managem hore – Deadlo sage Passing: ts and servers	tick - μC/O cting Task ent. ck – Synchro Messages – – message q Memory Blo	S-III stac nizat - Me ueue ck t	Initia k o tion: essag e Inte	Sem ges C partiti codir	States – on. Task ows-Task 9 aphore – Queues – s. 9 on-using ng for ar
Introduction - Task Schedu Management Unit – IV Disable/Enat Task Semap Task Messag Unit – V Creating a m memory part Automatic Ch	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mese Queue –Flow control – using message queues – clien Memory Management: emory Partition- getting a Memory Block from partition tions- Porting μC/OS-III: μC/CPU-μC/OS-III Port- Board ocolate Vending Machine using MUCOS RTOS.	/OS-III – Clock of stack-Deter ime Managem hore – Deadlo sage Passing: ts and servers n– Returning a d support Pack	tick - μC/O cting Task ent. ck – Synchro Messages – – message q Memory Blo kage - Case	S-III stac	Initia k o tion: ssaç e Into o a y of	Sem ges C partiti codir	States - on. Task ows-Task 9 aphore - Queues - S. 9 on-using ng for ar
Introduction - Task Schedu Management Unit – IV Disable/Enat Task Semap Task Messag Unit – V Creating a m memory part Automatic Ch REFERENCI 1. A. Sill	μC/OS-III: μC/OS-III Features - Goals of μC/OS-III – Directories a ling – Idle Task – Statistics Task – Interrupts Under μC Assigning Task Priorities-Determining the size of services-Task Management Internals-Internal Tasks - T Resource Management: le Interrupts - Lock/Unlock- Semaphores- Mutex semaphore – Event Flags -Synchronizing multiple tasks. Mese Queue –Flow control – using message queues – clien Memory Management: emory Partition- getting a Memory Block from partition tions- Porting μC/OS-III: μC/CPU-μC/OS-III Port- Board ocolate Vending Machine using MUCOS RTOS.	/OS-III – Clock of stack-Deter ime Managem hore – Deadlo sage Passing: ts and servers – Returning a d support Pack	tick - μC/O cting Task ent. ck – Synchro Messages – – message q Memory Blo kage - Case	S-III stac	Initia k o tion: ssaç e Into o a y of	Sem ges C partiti codir	States - on. Task ows-Task 9 aphore - Queues - S. 9 on-using ng for ar


		JTCOMES: on of the course,	the students will be	able to			BT Map (Highest I	
CO1	outlin	e the characteristic	s of real time system	S			Understand	ing(K2)
CO2	realiz	e the concepts of s	cheduling employed	in RTOS			Understand	ing(K2)
CO3		task creation, prio S – III	ovided by	Applying(K3				
CO4	apply	semaphore, mute		Applying	(K3)			
CO5			rtitions and allocation ting $\mu C/OS$ - III to a c			nd identify the	Applying	(K3)
			Mapping of	COs with POs	and PSOs			
COs/F	POs	PO1	PO2	PO3	PO4	PO5	P	D6
CO	1			3	2			
CO	2			3	2			
CO	3	2	2	3	2	2		
CO	4	2	2	3	2	2		
CO	5	2		3	2		:	3
1 – Sl	ight, 2 -	– Moderate, 3 – Su	bstantial, BT- Bloom	s Taxonomy				
			ASSESSME	ENT PATTERN	- THEORY			
Blo	est / com's egory*	Rememberin (K1) %	g Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
C	CAT1	10	50	40				100
C	CAT2	10	30	60				100
C	CAT3	10	30	60				100
I	ESE	10	30	60				100
* ± 3%	may b	e varied (CAT 1.2	,3 – 50 marks & ESE	E – 100 marks)				·

22ESE08 - MULTICORE PROCESSOR AND COMPUTING

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To know the basic knowledge about multiprocessor technology in parallel processors	, multicompu	iter systems a	nd a	dvan	ced p	processor
Unit – I	MULTI-CORE PROCESSORS:						9
	Multi-core architectures – SIMD and MIMD system ed Memory Architectures – Cache coherence - Perfo						
Unit – II	PARALLEL PROGRAM CHALLENGES:						9
locks, semaph	Scalability – Synchronization and data sharing – Da pres, barriers) – deadlocks and live locks – com e queues and pipes).						
Unit – III	SHARED MEMORY PROGRAMMING WITH Oper						9
	tion Model – Memory Model – OpenMP Directives - and Functional Parallelism – Handling Loops - P				Libra	ary fu	Inctions ·
Unit – IV	DISTRIBUTED MEMORY PROGRAMMING WITH						9
	xecution – MPI constructs – libraries – MPI send -MPI derived data types – Performance evaluation.	and receive	– Point - to	- p	oint	and	Collective
Unit – V	PARALLEL PROGRAM DEVELOPMENT:						9
Case studies - r	- Body solvers – Tree Search –OpenMP and MPI im	plementation	s and compai	ison			Total:4
							10(a).4
REFERENCES:				ior 2	2011		
	S. Pacheco, An Introduction to Parallel Programming,	Morgan - Ka	unman/Eisev	ici, z			
	S. Pacheco, An Introduction to Parallel Programming, Gove, Multicore Application Programming for Win	•			aris,	Pear	son,
1. Peter S 2. Darryl 2011		idows, Linux	, and Oracle	Sol		Pear	son,

	E OUTCO pletion of	-	tudents will be ab	le to			BT Mapı (Highest L				
CO1	interpre	t the operations of	multiprocessor and	multicomputer	systems.		Understandir	ng(K2)			
CO2	Know th	ne advanced proce	ssor technology, pi	pelining and sca	alable architect	ures.	Understandir	ng(K2)			
CO3	develop	programs using C	penMP.				Applying(K3))			
CO4	write sir	write simple programs for distributed memory in MPI									
CO5	develop	programming for s	serial processors pa	arallel processo	rs.		Applying(K3))			
			Mapping of C	Os with POs a	nd PSOs						
COs/P	Os	PO1	PO2	PO3	PO4	PO5	P	06			
CO1				3	3						
CO2				3	2						
CO3		2	2	3	2	2		1			
CO4		2	2	2	3	2		1			
CO5				3	3			2			
1 – Sligh	t, 2 – Mod	lerate, 3 – Substar	tial, BT- Bloom's Ta	axonomy							
			ASSESSMEN	T PATTERN -	THEORY						
	Bloom's gory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %			
	T1	10	90	<u> </u>				100			
CA	T2	10	50	40				100			
CA	T 3		50	50				100			
E	SE	10	50	40				100			
* ±3% m	ay be var	ied (CAT 1,2,3 – 5	0 marks & ESE – 1	100 marks)							

22ESE09 - VIRTUAL INSTRUMENTATION FOR INDUSTRIAL APPLICATIONS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To impart knowledge about advanced tools in virtual instruations.	imentation	to develop n	iew	ndu	strial	
Unit – I	Graphical Programming Environment:						9
Components	History of Virtual Instrumentation- LabVIEW and VI- Co of LabVIEW- Tools and Other Palettes- Arranging Object ontext Sensitive Help- Types of VIs- Creating Sub-VIs.						
Unit – II	Introduction to LabVIEW:						9
LabVIEW Envi	ronment - Front Panel - Block Diagram - Building GUI - Loop	s - Execut	ion Structure	s – [Data	type	es.
Unit – III	LabVIEW Programming:						9
Arrays - Cluste	rs - Charts - Graphs - Structures - String and File I/O- Data F	low Progr	amming.				
Unit – IV	Data Acquisition:						9
	ntrol - GPIB - VISA - Instrument Drivers - DAQ Basics - Signa - DAQ Assistant - Components of Computer Based Measure			lard	ware	e - Ar	nalog I/C
Unit – V	Embedded Programming with LabVIEW:						9
	Setting Up CompactRIO system - Implementing an Ember al time processor - Embedded State Machine - Case Study: T					10.	terfacing
							1 Utal.40
REFERENCE	S:						
		. PHI Lear	ning Pvt. Ltd.	Ne	w De	elhi. 2	2012
1. Jovitha 2 Jeffrey	S: Jerome. Virtual Instrumentation using LabVIEW, 3rd Edition Travis, Jim Kring. LabVIEW for Everyone: Graphical Progree Hall, 2009.		.				

	SE OUTC		e students will be	able to			BT Mappe (Highest Le	
CO1	describe	the components of	of LabVIEW and vir	tual instrument	S		Understanding	g (K2)
CO2	describe	front panel, block	diagram and synta	x of LabVIEW			Understanding	g (K2)
CO3	apply the	structured progra	imming concepts ir	developing VI	programs		Applying(k	(3)
CO4	apply the	knowledge on DA		Applying(k	(3)			
CO5	analyze t	the compact RIO s		Analyzing(I	≺4)			
			Mapping of	COs with POs	and PSOs			
COs/F	POs	PO1	PO2	PO3	PO4	PC	05 P	06
CO	1			3	2			
CO	2			3	2			
CO	3	2	1	3	3			
CO	4	2	1	3	3			
CO	5	2	2	3	3	1		
1 – Sli	ight, 2 – M	oderate, 3 – Subs	tantial, BT- Bloom's	s Taxonomy				
			ASSESSME	NT PATTERN	- THEORY			
	Bloom's egory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
C	CAT1	20	80					100
C	CAT2	20	40	40				100
C	CAT3	10	40	50				100
I	ESE	20	40	40				100
* ±3%	may be v	aried (CAT 1,2,3	– 50 marks & ESE	– 100 marks)				

22ESE10 - WIRELESS SENSOR NETWORKS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Computer networks	3	PE	3	0	0	3
<u> </u>			, , ,				
Preamble	To understand and apply the concepts of wireless sensor	networks	for real world	app	licat	ions.	
Unit – I	Introduction to Wireless Sensor Networks						9
	wireless sensor networks (WSNs): Concepts, Components twork Topology –Coverage Metrics-Types of wireless senso			oplic	atio	าร –	Networl
Unit – II	Wireless Personal Area Network:	THEIWOIK	5.				9
Establishment	E 802.15.1)- Bluetooth Protocol Stack- Bluetooth Link in Bluetooth- Bluetooth low energy - Zigbee (IEEE 802.1 PAN Device Architecture-Applications.						
Unit – III	WSN MAC:						9
	WON MAC.						9
Physical and D	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC	cols for W	/SNs- B-MAC	C, S-	MAC	C-Su	
Physical and D Structure-Fram Unit – IV	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer:			-			perframe
Physical and D Structure-Fram Unit – IV Introduction - I	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC			-			perframe
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a			-			perframe
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F Unit – V Building IOT w	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a Routing Protocol: AODV, LEACH	and enca	osulation, 6L0	OWF	PAN	arch	perframe 9 nitecture 9
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F Unit – V Building IOT w	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a Routing Protocol: AODV, LEACH Case Studies and Real-World Applications: ith RASPERRY PI - Linux on Raspberry Pi – Raspberry Pi	and enca	osulation, 6L0	OWF	PAN	arch	perframe 9 nitecture 9
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F Unit – V Building IOT w Python - Other	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a Routing Protocol: AODV, LEACH Case Studies and Real-World Applications: ith RASPERRY PI - Linux on Raspberry Pi – Raspberry Pi IoT Platforms – Arduino/ NodeMCU.	and enca	osulation, 6L0	OWF	PAN	arch	9 nitecture 9 y Pi witl
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F Unit – V Building IOT w Python - Other REFERENCES	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a Routing Protocol: AODV, LEACH Case Studies and Real-World Applications: ith RASPERRY PI - Linux on Raspberry Pi – Raspberry Pi IoT Platforms – Arduino/ NodeMCU.	and encap	osulation, 6L0 s -Programm	OWF	PAN	arch	9 nitecture 9 y Pi with Total:4
Physical and D Structure-Fram Unit – IV Introduction - I frame format, F Unit – V Building IOT w Python - Other REFERENCES 1. Vijay K 2010	ata link layer -Fundamentals of MAC Protocols, MAC Proto e formats-CSMA/CA- Case Studies: CSMA, WSN MAC Mobile Network Layer: Mobile IP: IP packet delivery, Agent discovery, tunneling a Routing Protocol: AODV, LEACH Case Studies and Real-World Applications: ith RASPERRY PI - Linux on Raspberry Pi – Raspberry Pi IoT Platforms – Arduino/ NodeMCU.	and encar Interfaces	osulation, 6L0 s -Programm organ Kaufma	OWF	PAN	arch	9 nitecture 9 y Pi with Total:4

		JTCOMES: ion of the course, t	he students will be	e able to			BT Map (Highest			
CO1	interp	oret various WSN top	ology and models				Understand	ling (K2)		
CO2	illustr	ate the functionalitie	s of personal area	wireless syster	ns		Understand	ling (K2)		
CO3	choo	se MAC protocols fo	r wireless sensor ne	etworks			Applying(K3)			
CO4	apply	L2, L3 distinct prote		Applying	g(K3)					
CO5	deplo	y IoT applications a	nd analyze in real ti	me scenario			Applying	g(K3)		
			Mapping of	f COs with PC	s and PSOs					
COs/P	Os	PO1	PO2	PO3	PO4	P	05	PO6		
CO1	I	2		3			3			
CO2	2	2		3						
CO3	3	3		3	2		2			
CO4	1	3		3	3		3			
CO5	5	3	2	3	3		3	2		
1 – Slię	ght, 2	 Moderate, 3 – Sub 	stantial, BT- Bloom	's Taxonomy						
			ASSESSM		N - THEORY					
Blo	est / om's gory*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CA	AT1	20	80					100		
CA	AT2	20	45	35				100		
CA	AT3	20	35	45				100		
E	SE	10	50	40				100		
* ± 3%	may b	e varied (CAT 1,2,	8 – 50 marks & ESI	E – 100 marks	5)					

22ESE11 - PROGRAMMING INTERNET OF THINGS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To learn the fundamentals of this emerging tec collaboration and ubiquitous services.	hnology and to de	esign of smar	t obje	ects th	nat pr	ovide
Unit – I	IOT ARCHITECTURE:						9
Functional View Design Constra remote control.	e-State of the Art –Reference Model and architectu v, Information View, Deployment and Operational aints- Introduction, Technical Design constraints- -IoT Communication Models-Communication API	View, Other Rele Data representat s-IoT Enabling T	evant archited ion and visua	ctural	view	s. Re	al-World ction and
Unit - II	IOT LEVELS, M2M, AND SYSTEM MANAGEN	MENT:					9
	6—M2M-Difference between IoT and M2M –SE YANG, IoT Design Methodology.	ON and NFV-Nee	ed of IoT sys	tem	Mana	agem	ent- with
11							-
Data types – I operation – Cla	INTEROPERABILITY IN IoT, INTRODUCTION Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De	odules – Packag esign: Basic build	es – File Ha ing blocks –	ndline Rasp			
operation – Cla Raspberry Pi – Unit - IV Data Analytics	Data structures - Control flow - Functions - Mo	odules – Packag esign: Basic build g on Raspberry F K: Case Study: Batc	es – File Ha ing blocks – Pi with Python h Data Analy	ndling Rasp sis a	berry	' Pi –	and time Linux or
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics	Data structures – Control flow – Functions – Mo Isses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve	es – File Ha ing blocks – Pi with Python h Data Analy lopment with	ndling Rasp sis a	berry	' Pi –	and time Linux or
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O Application Framework: Django, -Django Architect	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM	es – File Har ing blocks – 'i with Python h Data Analy lopment with ENT:	ndling Rasp sis a Djan	nd Rego.	' Pi –	and time Linux or 9 ime Data 9
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O Application Framework: Django, -Django Architect WEB SERVER INSTALLATIONS AND PROJI on– Home temperature monitoring system – Web	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM	es – File Har ing blocks – 'i with Python h Data Analy lopment with ENT:	ndling Rasp sis a Djan	nd Rego.	Pi –	and time Linux or 9 ime Data 9 pberry P
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O Application Framework: Django, -Django Architect WEB SERVER INSTALLATIONS AND PROJI on– Home temperature monitoring system – Web e, Line follower Robot.	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM	es – File Har ing blocks – 'i with Python h Data Analy lopment with ENT:	ndling Rasp sis a Djan	nd Rego.	Pi –	and time Linux or 9 ime Data 9 pberry P
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati LASER trip wire REFERENCES	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O Application Framework: Django, -Django Architect WEB SERVER INSTALLATIONS AND PROJI on– Home temperature monitoring system – Web e, Line follower Robot.	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM cam and Raspbe	es – File Hai ing blocks – 'i with Python h Data Analy lopment with ENT: rry Pi camera	ndling Rasp sis ar Djan proje	nd Rego.	Pi –	and time Linux or 9 ime Data 9 pberry P Total:4
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati LASER trip wire REFERENCES 1. Arsho Hyde	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-O Application Framework: Django, -Django Architect WEB SERVER INSTALLATIONS AND PROJI on– Home temperature monitoring system – Web e, Line follower Robot. deepBahga, Vijay K. Madisetti—Internet of Things	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM cam and Raspbe	es – File Hai ing blocks – Pi with Python h Data Analy lopment with ENT: rry Pi camera	ndling Rasp sis al Djan proje	nd Rego.	Pi – eal Ti . Ras	and time Linux or 9 ime Data 9 pberry P Total:45
Data types – I operation – Cla Raspberry Pi – Unit - IV Data Analytics Analysis. Web Unit - V LAMP Installati LASER trip wire REFERENCES 1. Arsho Hyde 2. Dona Beag	Data structures – Control flow – Functions – Mo asses – Python packages of IoT. IoT Physical De GPIO- Interfaces (LED and Switch) – Programmin DATA ANALYTICS AND WEB FRAMEWORK for IOT: Apache Handoop-Map Reduce Models-C Application Framework: Django, -Django Architect WEB SERVER INSTALLATIONS AND PROJI on– Home temperature monitoring system – Web e, Line follower Robot. SteepBahga, Vijay K. Madisetti—Internet of Things rabad, 2015. Id Norris —The Internet of Things: Do-It-Yourself a	odules – Packag esign: Basic build g on Raspberry F Case Study: Batc ure-starting Deve ECT DEVELOPM cam and Raspbe	es – File Hai ing blocks – Pi with Python h Data Analy lopment with ENT: rry Pi camera proach, 1 st Edi for Arduino, F	ndling Rasp sis an Djan proje	berry nd Ra go. ect, A Unive	Pi – eal Ti . Ras	and time Linux or 9 ime Data 9 pberry P Total:45

	OUTCON		tudents will be able	e to			BT Mapp (Highest L	
CO1	compare	the IoT physical a	nd logical Architectu	re and its Ena	abling Technol	ogies	Understandir	ng (K2)
CO2	interpret of	differentIoT Levels	and Networking Me	thodologies			Understandir	ng (K2)
CO3	implemen	nt IoT Programmin	g Concepts using Py	/thon and its	Open-Source ⁻	Fools	Applying(K3)
CO4	perform D	Data Analysis usin	Applying(I					
CO5	design an	id integrate projec	ts using Raspberry F	Pi with Tempe	erature Sensor	, Webcam	Applying(K3)
			Mapping of COs	with POs ar	nd PSOs			
COs/POs	s	PO1	PO2	PO3	PO4	PO5	PO	6
CO1				2	3			
CO2				2	3			
CO3		2		3	2			
CO4		2		2	3			
CO5		2	2	3	3	3	2	
1 – Slight	, 2 – Mode	erate, 3 – Substan	tial, BT- Bloom's Tax	konomy				
			ASSESSMENT F	PATTERN - T	HEORY			
Test / B Cateç		Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Tota I %
CA	T1	20	80					100
CA	T2	20	40	40				100
CA	Т3	10	40	50				100
ES	SE	20	40	40				100
* ± 3% ma	y be varie	ed (CAT 1,2,3 – 5	0 marks & ESE – 10	00 marks)				

22ESE12 - SYSTEM ON CHIP FOR EMBEDDED APPLICATIONS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisite s	Nil	3	PE	3	0	0	3
Preamble	To know the architecture of embedded ARM processystems	essor and to study	the concepts	s of c	pei	ating	
Unit – I	Introduction to System on Chip Design:						9
	itecture and organization, Abstraction in hardware sor design trade-offs, The Reduced Instruction Set						
Unit – II	ARM Organization and Implementation:						9
	e ARM organization, 5-stage pipeline ARM organiza erface, The ARM instruction set and programming.	tion, ARM instruc	tion executior	n and	d im	plem	entation,
Unit – III	ARM Processor Cores and Memory Hierarchy:						9
	RM8, and ARM9TDMI ARM10TDMI - Memory size	and speed, On-ch	ip memory, C	Cach	es,	Cach	ie design
		and speed, On-ch	ip memory, C	Cach	es,	Cach	e design
- an example, N Unit – IV An introduction	lemory management.	l coprocessor,CP	15 protection	uni	t re	giste	9 ers, ARM
- an example, N Unit – IV An introduction protection unit, Unit – V	Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Synd Embedded ARM Applications:	l coprocessor,CP chronization, Cont	15 protection ext switching	i uni , Inp	t re ut/o	egiste utput	9 ers, ARM
- an example, M Unit – IV An introduction protection unit, Unit – V The VLSI Rub	Memory management. Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Synd	I coprocessor,CP chronization, Cont SI ISDN Subscril	15 protection ext switching	i uni , Inp r, Tl	t re ut/o	egiste utput Erics:	9 ers, ARM 9 son-VLSI nications
- an example, N Unit – IV An introduction protection unit, Unit – V The VLSI Ruby Bluetooth Base controller	Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Synd Embedded ARM Applications: y II Advanced Communication Processor, The VL aband Controller, The ARM7500 and ARM7500FE	I coprocessor,CP chronization, Cont SI ISDN Subscril	15 protection ext switching	i uni , Inp r, Tl	t re ut/o	egiste utput Erics:	9 ers, ARV 9 son-VLS nications
- an example, M Unit – IV An introduction protection unit, Unit – V The VLSI Ruby Bluetooth Base controller	Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Synd Embedded ARM Applications: y II Advanced Communication Processor, The VL aband Controller, The ARM7500 and ARM7500FE	I coprocessor,CP chronization, Cont SI ISDN Subscril E, case study on	15 protection ext switching ber Processo The DRACC	n uni , Inp or, TI) tel	t re ut/o	egiste utput Erics:	9 ers, ARM 9 son-VLS nications
- an example, M Unit – IV An introduction protection unit, Unit – V The VLSI Rub Bluetooth Base controller REFERENCES 1. Steve F 2 Andrew	Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Sync Embedded ARM Applications: y II Advanced Communication Processor, The VL aband Controller, The ARM7500 and ARM7500FE	I coprocessor,CP chronization, Cont SI ISDN Subscril E, case study on ssion, Pearson Ec stem Developer's	15 protection ext switching ber Processo The DRACC	n uni , Inp or, TI D tel 9.	t re ut/o	egiste utput Erics: mmu	9 ers, ARM son-VLSI nications Total:45
- an example, M Unit – IV An introduction protection unit, Unit – V The ∨LSI Rub Bluetooth Base controller REFERENCES 1. Steve F 2. Andrew System 3 Joseph	Architectural Support for Operating Systems: Architectural Support for Operating Systems: to operating systems, The ARM system contro CP15 MMU registers, ARM MMU architecture, Synd Embedded ARM Applications: y II Advanced Communication Processor, The VL aband Controller, The ARM7500 and ARM7500FE : urber. ARM System-on-Chip Architecture, 2 nd Impre N. Sloss , DominicSymes, Chris Wright. ARM Sy	I coprocessor,CP chronization, Cont SI ISDN Subscrit E, case study on ssion, Pearson Ec stem Developer's , 2004.	15 protection ext switching ber Processo The DRACC ducation, 200 Guide: Desi	ı uni , Inp r, Tl) tel 9.	t re ut/o ne l eco	egiste utput Erics mmu	9 ers, ARM son-VLSI nications Total:45

	RSE OL ompleti		-	the	students will be a	ble to				apped st Level)
CO1	identi	fy the	e basic design	of s	ystem on chip with	ARM architec	ture as a refer	ence	Understar	nding (K2)
CO2	know instru			e pi	pelining concept of	ARM organiza	ation and prog	ramming with	Understar	nding (K2)
CO3	const ARM1		8, ARM9 and	d Applying(K3)						
CO4	mode	l the	concept of AR	RM c	perating systems,	ARM protectio	n unit and MM	U.	Applyi	ng(K3)
CO5					ncept for different e ommunication conti		lications such	as ISDN,	Applyi	ng(K3)
					Mapping of C	Os with POs	and PSOs			
COs/ s			PO1		PO2	PO3	PO4	POS	5	PO6
CO	1					3	2			
CO	2					3	2			
CO	3		2			3	2			
CO	4		2			3	2			
CO	5		3			3	2			2
1 – SI	ight, 2 -	- Mo	derate, 3 – Su	bsta	antial, BT- Bloom's	Taxonomy				
					ASSESSMEN	T PATTERN -	THEORY			
	/ Bloon tegory*	-	Rememberii (K1) %	ng	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
(CAT1		30		70					100
(CAT2		10		60	30				100
(CAT3		10		50	40				100
	ESE		10		50	40				100
* ±3%	may b	e va	ried (CAT 1.2	,3 –	50 marks & ESE -	100 marks)				

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To look the concepts and applying the uses of concers in				-	the	oriouo
Fleample	To learn the concepts and analyze the uses of sensors in a novel methods to develop electronic based automobile dev					une v	anous
Unit – I	Sensors and Actuators in Automotive Systems:						9
Sensors – The Variable Resist Turbine fluid flo Methanol – Rai Stepper motor	Development of electronics in automobiles- Electrical and ermistors – Thermocouples – Inductive Sensor – Hall Effe ance – Knock Sensors – LVDT – Hot wire air flow – Thin w sensor – optical sensors – Oxygen sensors – Light ser n – Oil – Dynamic vehicle position sensor – Actuators – Sol - Synchronous – Thermal Actuators. Standards and Norms	ect – Stra n film air nsors – T lenoid Act	ain gauge – flow – Vorte hick flim air uators – EGF	Varia ex flo temp R Va	able ow - oera lve	Cap - Pito ture – Mc	eacitive - ot tube - sensor - torized -
Testing							1
Unit – II	Batteries, Charging and Starting systems:						9
testing batteries	s requirements, choosing battery and positioning – Lead a – Working of charging system – Circuit diagram – Rect . Requirements of starting system – Starter motor and Circ	tification 1	methods – T	ypes	of	Alte	mators -
Unit – III	Ignition and Injection Systems:						9
less Ignition – C exhaust emissio	: Ignition fundamentals – Electronic ignition systems – Electoric ignition systems – Electoric on plug ignition – Spark Plugs. Electronic fuel Control – ns – Electronic control of carburetion – Fuel Injection – Petr	Basics o	f combustion	– Ei	ngin	e fue	elling and on.
Unit – IV	Engine Management System:						9
Motronic M3 – system – Active	on and fuel systems– Exhaust Emission control – Catalytic DI Motronic – ME Motronic principles – Lean burn engin & Cooling - Engine trends – spark ignition – Transonic cor ine management systems. Case study of Plug-in Hybrid Ele	ne – 2 str mbustion	oke engine - – Formula 1	- Co	mb	ustio	n contro
	Chassis, Comfort and Safety Systems:						9
Unit – V		pension				ntrali	
Antilock braking transmission – locking system Vehicle Layout	g system – Traction and Stability Control – Active Sus Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au - Charging system. Jrks: CAN, LIN, FLEXRAY, MOST, KWP2000	and Sea			Elec	ric v	
Antilock braking transmission – locking system Vehicle Layout	Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au - Charging system.	and Sea			Elec		
Antilock braking transmission – locking system Vehicle Layout In vehicle netwo	Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au - Charging system. hrks: CAN, LIN, FLEXRAY, MOST, KWP2000	and Sea			Elec		ehicles ·
Antilock braking transmission – locking system Vehicle Layout In vehicle netwo REFERENCES	Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au - Charging system. hrks: CAN, LIN, FLEXRAY, MOST, KWP2000	g and Sea utomatic F	Parking Syste	m. E			ehicles - Total:4
Antilock braking transmission – locking system Vehicle Layout In vehicle netwo REFERENCES 1. Tom De 2013. 2. Ribbens 2012.	Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au - Charging system. wrks: CAN, LIN, FLEXRAY, MOST, KWP2000	g and Sea utomatic F ition, Edw on, Butterv	Parking Syste ard Arnold Pu vorth- Heinen	ublis	hers n, Bi	, Lor urling	ehicles - Total:4
Antilock braking transmission – locking system Vehicle Layout In vehicle netwo REFERENCES 1. Tom De 2013. 2. Ribbens 2012.	Cruise control – Adaptive cruise control – Security – Airbag – Climate control of cars – Obstacle avoidance Radar – Au – Charging system. Mrks: CAN, LIN, FLEXRAY, MOST, KWP2000	g and Sea utomatic F ition, Edw on, Butterv	Parking Syste ard Arnold Pu vorth- Heinen	ublis	hers n, Bi	, Lor urling	ehicles - Total:4 ndon, ton,

		COMES: n of the course, th	e students will be	able to			BT Mappe (Highest Le	
CO1		o the continuous ch ors in automobile ap		norms of India a	nd uses of sen	sors and	Understanding	g (K2)
CO2	identify	the operations of c	harging and starting	g techniques invo	olved in vehicle	es.	Applying(K	(3)
CO3	choose	appropriate electro	les	Applying(K3)				
CO4	apply t	ne engine and fuel o	nt system	Applying(K	(3)			
CO5	employ	the essential comfo	ort and safety syste	ms for automobi	le.		Applying(K	(3)
			Mapping of	f COs with POs	and PSOs			
COs/F	POs	PO1	PO2	PO3	PO4	PO	95 P(D 6
CO	1	3	1					
CO	2	3	2	1	1			
CO	3	3	2	1	1			
CO	4	3	2	1	1			
CO	5	3	2	1	1			
1 – Sli	ight, 2 –	Moderate, 3 – Subs	tantial, BT- Bloom's	s Taxonomy				
			ASSESSM	ENT PATTERN	- THEORY			
	Bloom' egory*	s Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
C	CAT1	20	50	30				100
C	CAT2	10	40	50				100
C	CAT3	10	40	50				100
I	ESE	10	60	30				100
* ±3%	may be	varied (CAT 1,2,3	– 50 marks & ESE	– 100 marks)				

22ESE14 – NATURE INSPIRED OPTIMIZATION TECHNIQUES

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To acquaint and familiarize with different types of op problems, implementing computational techniques, abstra						
Unit – I	Optimization Methods and Algorithms:						9
Metaheuristics Algorithms – N	 Optimization – Search for Optimality – No-Free Brief History of Metaheuristics. Analysis of Algorithm ature-Inspired Algorithms – Parameter Tuning and Parameter 	ns: Introd	luction – Ana				
Unit – II	Simulated Annealing:						9
Convergence F	Boltzmann Distribution – Parameters – SA Algorithm roperties – SA Behavior in Practice – Stochastic Tunneling ole of Genetic Operators – Choice of Parameters - GA V	. Genetic	Algorithms: I	ntro	duo	ction -	- Geneti
Unit – III	Particle Swarm Optimization:						9
Unit – III Swarm Intellige Problems. Cat	Particle Swarm Optimization: ence – PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarr the CSO Algorithm.						y PSO
Unit – III Swarm Intellige Problems. Cat Performance o Unit – IV	nce – PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarr the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms:	n – Optii	mization Algo	orithi	n ·	– Flo	y PSO wchart 9
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms	 PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: n: Introduction – Mapping a Classroom into the Teaching skoo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I 	m – Optin -Learning nart –Cucl DA. Bat A	mization Algo - Based optir <oos' initial="" r<br="">Algorithms – E</oos'>	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchart cations of Bats sis
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms Unit – V	 nce – PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: Introduction – Mapping a Classroom into the Teaching skoo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I Hybrid algorithms for optimization: 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori	mization Algo - Based optir <oos' initial="" r<br="">Algorithms – E</oos'>	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchar cations of Bats
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cue Cuckoos' Egg I Bat Algorithms Unit – V	 PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: n: Introduction – Mapping a Classroom into the Teaching skoo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori	mization Algo - Based optir <oos' initial="" r<br="">Algorithms – E</oos'>	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchar cations of Bats sis 9
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms Unit – V Ant Algorithms	 PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: Introduction – Mapping a Classroom into the Teaching koo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I Hybrid algorithms for optimization: Bee-Inspired Algorithms – Harmony Search – Hybrid Algo 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori	mization Algo - Based optir <oos' initial="" r<br="">Algorithms – E</oos'>	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchar cations of Bats sis 9
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms Unit – V Ant Algorithms	 PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: Introduction – Mapping a Classroom into the Teaching koo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I Hybrid algorithms for optimization: Bee-Inspired Algorithms – Harmony Search – Hybrid Algo 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori	mization Algo - Based optir <oos' initial="" r<br="">Algorithms – E</oos'>	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchar cations of Bats sis 9
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms Unit – V Ant Algorithms REFERENCES	 PSO Algorithm – Accelerated PSO – Implementation Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: Introduction – Mapping a Classroom into the Teaching koo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I Hybrid algorithms for optimization: Bee-Inspired Algorithms – Harmony Search – Hybrid Algo 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori	mization Algo - Based optir (oos' Initial R Algorithms – E thm – Conver	niza esid	n tioi enc	- Flo n - F ce Lo ation	y PSO wchart 9 lowchar cations of Bats sis
Unit – III Swarm Intellige Problems. Cat Performance of Unit – IV TLBO Algorithm Problems. Cuc Cuckoos' Egg I Bat Algorithms Unit – V Ant Algorithms REFERENCES 1. Xin-She 2 OmidBo	 PSO Algorithm – Accelerated PSO – Implementations Swarm Optimization: Natural Process of the Cat Swarm the CSO Algorithm. TLBO Algorithm, Cuckoo Search & Bat Algorithms: Introduction – Mapping a Classroom into the Teaching ekoo Search: Cuckoo Life Style – Details of COA – flowch aying Approach – Cuckoos Immigration –Capabilities of CO – Implementation – Binary Bat Algorithms – Variants of the I Hybrid algorithms for optimization: Bee-Inspired Algorithms – Harmony Search – Hybrid Algo 	m – Optin -Learning hart –Cucl DA. Bat A Bat Algori prithms Elsevier,	mization Algo - Based optir coos' Initial R Algorithms – E thm – Conver 2014	niza esid cho gen	tion end loc ce	– Flo n – F ce Lo ation Analy	y PSO wchart 9 lowchar cations of Bats sis 9 Total:4

COURSE On comp		-	students will be a	ble to			BT Mapp (Highest L	
CO1	infer the	e concepts of optir	mization techniques	6			Understandi	ng (K2)
CO2	identify	the parameter wh	ich is to be optimiz	ed for an appli	cation		Applying(K3)
CO3		tiate the concentratical optimization	and create	e Applying(K3)				
CO4	select s	uitable optimizatio	on algorithm for a re	eal time applica	ation		Applying(K3)
CO5	make re	ecommendations t	o solve combinator	ial optimization	n problems		Applying(K3)
			Mapping of C	Os with POs	and PSOs			
COs/PO	s	PO1	PO2	PO3	PO4	PO	5 P	06
CO1		2		3	2			
CO2		1		2	3			
CO3		2		3	2			
CO4		3		2	3			2
CO5		2		2	3			2
1 – Slight	;, 2 – Mo	derate, 3 – Substa	antial, BT- Bloom's	Taxonomy		U		
			ASSESSMEN	T PATTERN -	THEORY			
Test / Bl Categ		Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT	Г1	10	50	40				100
CAT	Г2	10	50	40				100
CAT	ГЗ	10	50	40				100
ES	E	10	50	40				100
* ±3% ma	av be va	ried (CAT 1.2.3 –	50 marks & ESE -	- 100 marks)				

22VLE17- SUPERVISED MACHINE LEARNING ALGORITHMS (Common to VLSI Design and Embedded Systems branches)

Programme& Branch	ME - VLSI DESIGN & ME - EMBEDDED SYSTEMS	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To focus on supervised machine learning algorithms a classification and regression problem	and to create si	mple, interpre	etabl	e mo	dels	to solve
Unit – I	Discriminative Algorithms :						9
	LMS Algorithm – The normal Equations-Probability inter neralized linear models-Application to prediction.	pretation-locall	y weighted lir	near	regre	essio	n-logistic
Unit – II	Generative Algorithms :						9
Generative Mo Vector Machine	dels: Gaussian Discriminant Analysis (GDA)-Naïve Baye e (SVM) as optimal Margin classifier-Application to Class	es- Laplace sm	oothing-Marg	jinal	class	sifier:	Support
Unit – III							-
Multilayer Per	Multilayer Perceptrons: ceptrons-Implementation of Multilayer Perceptrons-Fo						
Multilayer Per- computer Grap Prediction.	ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in						tion and ise Price
Multilayer Pero computer Grap Prediction. Unit – IV	ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) :	Deep Learnin	g-Dropout-Ca	ise s	tudy	: Hou	tion and ise Price 9
Multilayer Pero computer Grap Prediction. Unit – IV From fully Cor	ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in	Deep Learnin	g-Dropout-Ca	ise s	tudy	: Hou	tion and ise Price 9
Multilayer Pero computer Grap Prediction. Unit – IV From fully Cor	ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : nected Layers to Convolutions –Convolution for Image	Deep Learnin	g-Dropout-Ca	ise s	tudy	: Hou	tion and ise Price 9
Multilayer Pero computer Grap Prediction. Unit – IV From fully Cor output channel Unit – V Working with s	ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : nected Layers to Convolutions –Convolution for Image Pooling-Case study: LeNet, Alexnet, VGGnet.	Deep Learnin	g-Dropout-Ca	iple i	input	: Hou and	tion and ise Price 9 multiple 9
Multilayer Per- computer Grap Prediction. Unit – IV From fully Cor output channel Unit – V Working with s	Ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : Innected Layers to Convolutions –Convolution for Image Pooling-Case study: LeNet, Alexnet, VGGnet. Recurrent Neural Network(RNN): Sequences-Converting Raw Text into Sequence Data-I	Deep Learnin	g-Dropout-Ca	iple i	input	and	tion and ise Price 9 multiple 9
Multilayer Per- computer Grap Prediction. Unit – IV From fully Cor output channel Unit – V Working with s	Ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : Innected Layers to Convolutions –Convolution for Image Pooling-Case study: LeNet, Alexnet, VGGnet. Recurrent Neural Network(RNN): Sequences-Converting Raw Text into Sequence Data-I rough time-Case study: GRU,LSTM.	Deep Learnin	g-Dropout-Ca	iple i	input	and	tion and ise Price 9 multiple 9 ork-Back
Multilayer Pero computer Grap Prediction. Unit – IV From fully Cor output channel Unit – V Working with s Propagation the REFERENCES	Ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : Innected Layers to Convolutions –Convolution for Image Pooling-Case study: LeNet, Alexnet, VGGnet. Recurrent Neural Network(RNN): Sequences-Converting Raw Text into Sequence Data-I rough time-Case study: GRU,LSTM.	a Deep Learning es-Padding and Language mod	g-Dropout-Ca	iple i	input	and	tion and ise Price 9 multiple ork-Back
Multilayer Perediction Computer Grap Prediction. Unit – IV From fully From fully Output channel Unit – V Working with s Propagation the REFERENCES 1. Christor 2	Ceptrons-Implementation of Multilayer Perceptrons-Fo hs-Numerical stability and Initialization-Generalization in Convolutional Neural Networks (CNN) : Innected Layers to Convolutions –Convolution for Image Pooling-Case study: LeNet, Alexnet, VGGnet. Recurrent Neural Network(RNN): Sequences-Converting Raw Text into Sequence Data-I rough time-Case study: GRU,LSTM.	n Deep Learning es-Padding and Language moo	g-Dropout-Ca d Stride-Multi lel-Recurrent -Verlag New	iple i Neu York	input ural I	and Netwo	tion and ise Price 9 multiple ork-Back Total:4

		COMES: n of the course	e, the students	will be	able to					T Mapp ghest L				
CO1	unders	stand discrimina	tive algorithms f	or class	sification and re	gression prob	olems		Unc	derstand	ding(K2)			
CO2	validat	te a generative	model based alg	orithm	for classification	n and regress	ion probl	lems	A	Applying	J (K3)			
CO3	unders	stand the desigr	ed ANN for a re	al time	application usir	ng BPN			Unc	derstand	ding(K2)			
CO4	develo	develop a CNN model for image analysis Applying(K3)												
CO5	develo	op a RNN mode	for various type	es of se	equence				A	Applying	j (K3)			
			Марр	ing of	COs with POs	and PSOs								
COs/	POs	PO1	PO2		PO3	PO4		PO	5	Р	06			
CC)1	3						3			3			
CC)2	3			3			3			3			
CO)3	3			3			3			3			
CO	94	3			3			3			3			
CC	95	3			3			3			3			
1 – Sli	ght, 2 –	Moderate, 3 – S	Substantial, BT-	Bloom's	s Taxonomy									
			ASSE	SSME	NT PATTERN -	- THEORY								
Blo	est / om's egory*	Rememberin (K1) %	g Understan (K2) %		Applying (K3) %	Analyzing (K4) %	Evalua (K5)	<u> </u>		ating 6) %	Total %			
CA	AT1	10	50		40	-	-			-	100			
CA	AT2	10	50		40	-	-			-	100			
CA	AT3	10	50		40						100			
E	SE	5	45		50	-	-			-	100			
* ±3%	may be	varied (CAT 1	2,3 – 50 marks	& ESE	– 100 marks)									

22ESE03 - DESIGN OF EMBEDDED SYSTEMS

Programme& Branch	ME & EMBEDDED SYSTEMS	Sem.	Category	L	т	Р	Credi
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To understand the design and use of single-purpose proc describe memories and buses.	essors, g	eneral-purpo	se p	oroc	esso	ors and to
Unit – I	Embedded Design Life Cycle:						9
software desig	sign life cycle – Product specification – Hardware / Soft n – Integration – Product testing Selection Processes ols – Bench marking – RTOS availability – Tool chain availab	- Microp	processor Vs	i Mi	crc	Co	ntroller
Unit – II	Partitioning Decision:						9
environment – I code density.	tware duality – Coding Hardware – ASIC revolution - Mana Memory organization –System startup – Hardware manipulat						
	Emulator:						9
Unit – III	Linuator.						9
Interrupt Servic	e routines – Watch dog timers – Flash memory Basic to M emulators – logic Analyzer – Caches – Computer optimiz					ing -	-
Interrupt Servic debugging – RC Unit – IV	e routines – Watch dog timers – Flash memory Basic to DM emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators:	ation – St	atistical profi	ling.			- Remot
Interrupt Servic debugging – RC Unit – IV Bullet proof run	e routines – Watch dog timers – Flash memory Basic to DM emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over	ation – St	atistical profi	ling.			- Remot
debugging – RC Unit – IV	e routines – Watch dog timers – Flash memory Basic to DM emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over	ation – St	atistical profi	ling.			- Remot
Interrupt Servic debugging – RC Unit – IV Bullet proof run issues – Trigge Unit – V Bug tracking –	e routines – Watch dog timers – Flash memory Basic to DM emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over s.	ation – St rlay mem Regressio	atistical profi ory – Timing n testing – C	ling. cor	nstr	aints	- Remot 9 - Usag 9
Interrupt Servic debugging – RC Unit – IV Bullet proof run issues – Trigge Unit – V Bug tracking –	e routines – Watch dog timers – Flash memory Basic to DM emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over s. Testing: reduction of risks & costs – Performance – Unit testing – R	ation – St rlay mem Regressio	atistical profi ory – Timing n testing – C	ling. cor	nstr	aints	- Remot 9 - Usag 9 t cases
Interrupt Servic debugging – RC Unit – IV Bullet proof run issues – Trigge Unit – V Bug tracking – Functional tests	e routines – Watch dog timers – Flash memory Basic to M emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over s. Testing: reduction of risks & costs – Performance – Unit testing – R – Coverage tests – Testing embedded software – Performa	ation – St rlay mem Regressio	atistical profi ory – Timing n testing – C	ling. cor	nstr	aints	 Remot 9 Usag 9 t cases
Interrupt Servic debugging – RC Unit – IV Bullet proof run issues – Trigge Unit – V Bug tracking – Functional tests REFERENCES	e routines – Watch dog timers – Flash memory Basic to M emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over s. Testing: reduction of risks & costs – Performance – Unit testing – R – Coverage tests – Testing embedded software – Performa	ation – St rlay mem Regressio nce testin	atistical profi ory – Timing n testing – C g – Maintena	ing. cor hoo: ance	nstr	aints	- Remot 9 - Usag 9
Interrupt Servic debugging – RC Unit – IV Bullet proof run issues – Trigge Unit – V Bug tracking – Functional tests REFERENCES 1. Arnold S	e routines – Watch dog timers – Flash memory Basic to M emulators – logic Analyzer – Caches – Computer optimiz In-Circuit Emulators: control – Real time trace – Hardware break points – Over s. Testing: reduction of risks & costs – Performance – Unit testing – R – Coverage tests – Testing embedded software – Performa	ation – St rlay mem Regressio nce testin	atistical profi ory – Timing n testing – C g – Maintena	ing. cor hoo: ance	nstr	aints	- Remot 9 – Usag 9 t cases

	RSE OL mpleti			e students will be a	able to			BT Map (Highest L	
CO1	realiz	e the	e design flow of a	n embedded systen	n			Understandi	ng (K2)
CO2	comp	rehe	end partitioning d	ecision involved in e	mbedded syste	em design		Understandi	ng (K2)
CO3	utilize	e bas		Applying (K3)					
CO4	use v	ariou	nories	Applying(K3)					
CO5	apply syste		erent testing met	nods involved in test	phase for the	design of embe	edded	Applying	(K3)
				Mapping of (COs with POs	and PSOs			
COs/F	POs		PO1	PO2	PO3	PO4	PO5	P	06
CO	1		2		3	2	2		
CO	2				2	3	1		
CO	3		2		2	3			
CO	4		2		2	3			2
CO	5		2		2	3			3
1 – Sli	ight, 2 -	– Mo	oderate, 3 – Subs	tantial, BT- Bloom's	Taxonomy				
				ASSESSME		- THEORY			
	Bloon egory*	-	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
C	CAT1		10	90					100
C	CAT2		10	50	40				100
C	CAT3		-	55	45				100
	ESE		10	45	45				100
* ± 3%	may b	e va	ried (CAT 1.2.3	– 50 marks & ESE	– 100 marks)				

	(Common to ME/MTech and MC	CA Programmes)					
Programme & Branch	All ME/MTech and MCA Programmes	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	This course will direct the students on how to emplo venture development.	y their innovations	towards a suc	cess	ful er	ntrepro	eneurial
Unit – I	Innovation and Entrepreneurship:						9
	novation – Types of innovation – challenges in innovation nip - Role of Entrepreneurship in Economic Developmen nip.						
Unit – II	Design Thinking and Product Design:						9
architecture -Mir	 Brainstorming – Mind mapping. Techniques and too imum Viable Product (MVP)- Product prototyping – tools and techniques for user-product interaction. Business Model Canvas (BMC) and Business Place 	s and techniques-					
	Business model barras (Bino) and Business I h	an Preparation:					9
	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannir	- Design - Strate		-Busi	iness	mod	_
Reasons and ren	d BMC - difference and building blocks- BMC: Patterns	- Design - Strate		-Busi	iness	mod	_
Reasons and ren Unit – IV Need for Intelle	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannir	- Design - Strate g Process and Pre	paration.	5, Pa	itents	s, Geo	el failure 9 ographica
Reasons and ren Unit – IV Need for Intelle	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannir IPR and Commercialization: ctual Property- Basic concepts - Different Types of	- Design - Strate g Process and Pre	paration.	5, Pa	itents	s, Geo	el failures 9 ographica
Reasons and ren Unit – IV Need for Intelle Indications, Trade Unit – V Startup Stages -	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannin IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech	 Design – Strate Ig Process and Pre IPs: Copy Rights Inology Commercia Idea Grant – S 	paration. , Trademarks alization – Inno	s, Pa ovatio	itents on Ma	s, Geo arketir	9 ographica ng. 9
Reasons and ren Unit – IV Need for Intelle Indications, Trade Unit – V Startup Stages -	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannin IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance	 Design – Strate Ig Process and Pre IPs: Copy Rights Inology Commercia Idea Grant – S 	paration. , Trademarks alization – Inno	s, Pa ovatio	itents on Ma	s, Geo arketir	9 ographica ng. 9
Reasons and ren Unit – IV Need for Intelle Indications, Trade Unit – V Startup Stages - Institutional Supp	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannin IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance	 Design – Strate Ig Process and Pre IPs: Copy Rights Inology Commercia Idea Grant – S 	paration. , Trademarks alization – Inno	s, Pa ovatio	itents on Ma	s, Geo arketir	9 ographic ng. 9 re Fund
Reasons and ren Unit – IV Need for Inteller Indications, Trade Unit – V Startup Stages - Institutional Supp	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannin IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance	 Design – Strate IPs: Copy Rights Inology Commercia Idea Grant – S Entrepreneurs. 	paration. , Trademarks alization – Inno Geed Fund – A	s, Pa ovatio Ange	itents on Ma	s, Geo arketir /entu	9 ographica ng. 9 re Fund Total:4
Reasons and ren Unit – IV Need for Inteller Indications, Trade Unit – V Startup Stages - Institutional Supp REFERENCES: 1. Gordon B	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannin IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance fort to Entrepreneurs – Bank and Institutional Finance to	 Design – Strate IPs: Copy Rights IPs: Copy Commercia Idea Grant – S Entrepreneurs. 	paration. , Trademarks alization – Inno Geed Fund – A Publishing Hou	s, Pa ovatio Ange se, N	Itents on Ma	s, Geo arketir /entu	9 ographica ng. 9 re Fund Total:4
Reasons and ren Unit – IV Need for Inteller Indications, Trade Unit – V Startup Stages - Institutional Supp REFERENCES: 1. Gordon R 2. Sangeeta 3 Charanti	d BMC - difference and building blocks- BMC: Patterns nedies. Objectives of a Business Plan - Business Plannir IPR and Commercialization: ctual Property- Basic concepts - Different Types of e Secrets and Industrial Design– Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance ort to Entrepreneurs – Bank and Institutional Finance to E. & Natarajan K., "Entrepreneurship Development", 6 th E	 Design – Strate IPs: Copy Rights Inology Commercia Idea Grant – S Entrepreneurs. Edition, Himalaya F PHI Learning Pvt. 	Publishing Hou Ltd., New Delf	s, Pa ovatio Ange se, N	Itents on Ma I & Mumb	s, Geo arketir /entu pai, 20	9 ographica og. 9 re Fund Total:4

		UTCON tion of t		se, the st	udents	will be	able to							T Mappeo ghest Lev		
CO1	unc	derstand	the rela	tionship b	etween	innovati	on and	entrepre	eneurst	nip			Unde	erstanding	(K2)	
CO2	unc	derstand	and em	ploy desię	gn think	ing proce	ess durii	ng prod	uct des	ign and	develop	oment	Ar	alyzing (K	(4)	
CO3	dev	elop su	itable bu	siness mo	odels as	per the	requirer	ment of	the cus	tomers			Ar	alyzing (K	(4)	
CO4	pra	ctice the	e proced	ures for p	rotectio	n of their	ideas II	PR					Applying (K3)			
CO5	05 understand and plan for suitable type of venture and modes of finances													pplying (K	3)	
						Mappir	ng of CC	Ds with	POs a	nd PSO	S					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
СО	1	2	1				3	2	1	3	2		1	1		
CO	2	1	2			3	2	1						1		
CO	3	3	1	3			1							1		
CO	4	1	2				3							1		
CO	5	1	2				3							1		
1 – Slię	ght, 2	– Mode	erate, 3 -	Substant	ial, BT-	Bloom's	Taxono	omy								
Тоо	+ / DI	oom's	Bo	memberi	na	ASSES Jndersta	SMENT			THEOR Analyz		valuating			Tota	
	Catego		Re	(K1) %	ng v	(K2)		(K3)		(K4)		(K5) %	Creatin	g (K6) %	10ta %	
	CAT	1		40		40		20)						100	
	CAT	2		30		40)	30)						100	
	CAT	3		30		40		30)						100	
	ES	E		30		40)	30)						100	
* ±3%	may b	oe varie	d (CAT 1	,2,3 – 50	marks	& ESE –	100 ma	rks)							•	