KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE - 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI – 2022

(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted during 2022 - 2023 and onwards)

MASTER OF ENGINEERING DEGREE IN STRUCTURAL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

Kongu Engineering College, Perundurai, Erode – 638060, India

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE – 638060

(An Autonomous Institution Affiliated to Anna University)

REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

MASTER OF ENGINEERING (ME) / MASTER OF TECHNOLOGY (MTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into ME/MTech Degree programmes from the academic year 2022 – 2023 onwards.

1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Master of Engineering (ME) / Master of Technology (MTech) Degree programme
- iv. "Branch" means specialization or discipline of ME/MTech Degree programme, like Construction Engineering and Management, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Engineering Design Methodology, Machine Learning Techniques, etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.

Page 2

- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department" means Head of the Department concerned of the College.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch
	Structural Engineering
	VLSI Design
	Embedded Systems
	Computer Science and Engineering
MTech	Information Technology
INI TECH	Food Technology

3. ADMISSION REQUIREMENTS

Candidates seeking admission to the first semester of the ME/MTech Degree programme shall be required to have passed an appropriate qualifying Degree Examination of Anna University or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto, subject to amendments as may be made by the Anna University, Chennai from time to time. The candidates shall also be required to satisfy all other conditions of admission prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The ME / MTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester and project work, internship,etc that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Foundation Courses (FC)
- ii. Professional Core (PC) Courses
- iii. Professional Elective (PE) Courses
- iv. Open Elective (OE) Courses
- v. Employability Enhancement Courses (EC) like Innovative Project, Internship cum Project work in Industry or elsewhere, Project Work

4.2 Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1
2 Project Work Periods	1
40 Training /Internship Periods	1

The minimum number of credits to complete the ME/MTech programme is 72.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like innovative project, internship cum project work and project work during the programme to gain/exhibit the knowledge/skills.

4.3.1 Innovative Project

A candidate shall earn two credits by successfully completing the project by using his/her innovations in second semester during his/her programme.

4.3.2 Internship cum Project Work

The curriculum enables a candidate to go for full time projects through internship during the third semester and can earn credits through it for his/her academics vide clause 7.6 and clause 7.12. Such candidate shall earn the minimum number of credits as mentioned in the third semester of the curriculum other than internship by either fast track mode or through approved courses in online mode or by self

study mode. Such candidate can earn the number of credits for the internship same as that of Project Work in the third semester. Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.3.4 Project Work

A candidate shall earn nine credits by successfully completing the project work in fourth semester during the programme inside the campus or in industries.

4.4 One / Two Credit Courses / Online Courses / Self Study Courses

The candidates may optionally undergo One / Two Credit Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1** One / Two Credit Courses: One / Two Credit Courses shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of six credits through one / two credit courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance (up to second semester).
- **4.4.5** A candidate can earn a maximum of 15 credits through all one /two credit courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the second to fourth semesters the candidates have the option of registering for additional elective courses or dropping of already registered additional elective courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates. Total number of credits of such courses during the entire programme of study cannot exceed eight.

- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- **5.1** A candidate is normally expected to complete the ME / MTech Degree programme in 4 consecutive semesters (2 Years), but in any case not more than 8 semesters (4 Years).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8), earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.
- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The ME/MTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Innovative Project, Internship cum Project work and Project Work. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks
1.	Theory	40	60
2.	Theory cum Practical (The distribution of marks shall be	50	50
3.	Practical	60	40
4.	Project Work / Internship cum Project Work	50	50
5.	One / Two credit Course	The distribution of marks shall be	
6.	All other Courses	decided based on the credit weightage assigned	

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, innovative project and internships shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 40 marks and the end semester examination shall be for 60 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 50. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. Three tests shall be conducted for 50 marks each and reduced to 30 marks each. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

Sl. No.	Туре	Max. Marks	Remarks
1	Test - I	12.5	
1.	Test - II	12.5	

2.	Tutorial / Others (Tutorial/Problem Solving (or) Simulation (or) Simulation & Mini Project (or) Mini Project (or) Case Studies (or) Any other relevant to the course)	10	Type of assessment is to be chosen based on the nature of the course and to be approved by Principal
3.	Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	40	Rounded off to the one decimal place

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters of every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 50 marks and the end semester examination shall be for 50 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidate's records shall be maintained.

- **7.5.1** The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.
- **7.5.2** The end semester examination shall be conducted for a maximum of 100 marks for duration of 3 hours and reduced to 40 marks. The appointment of examiners and the schedule shall be decided by chairman of Board of Study of the relevant

board.

7.6 **Project Work**

- **7.6.1** Project work shall becarried out individually. Candidates can opt for full time internship (vide clause 7.7) in lieu of project work in third semester. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.
- **7.6.3** The continuous assessment and end semester examination marks for Project Work and the Viva-Voce Examination shall be distributed as below.

		Continuous (Max. 5	s Assessn 0 Marks)			End Sen (M	nester Ex ax. 50 M		on
Review I (Max)	10 Marks)	Review II (Max 201	Marks)	Review III (Max. 20 Marks))	Report Evaluation (Max. 20 Marks)	Viva - V (Max. 30)		
Rv. Com	Guide	Review Committee (excluding guide)	Guide	Review Committee (excluding guide)	Guide	Ext. Exr.	Guide	Exr.1	Exr.2
5	5	10	10	10	10	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. A candidate must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester. This applies to both Internship cum Project work and Project work.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** Every candidate shall, based on his/her project work, publish a paper in a reputed journal or reputed conference in which full papers are published after usual review. A copy of the full paper accepted and proof for that shall be produced at the time of evaluation.
- **7.6.7** The project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and guide of the project work.
- **7.6.8** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce

Kongu Engineering College, Perundurai, Erode – 638060, India

examination shall be conducted as per clause 7.6.7.

7.6.9 A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Internship cum Project Work

Each candidate shall submit a brief report about the internship undergone and a certificate issued from the organization concerned at the time of Viva-voce examination to the review committee. The evaluation method shall be same as that of the Project Work as per clause 7.6 excluding 7.6.6.

7.8 One / Two Credit Course

Two assessments shall be conducted during the value added course duration by the offering department concerned.

7.9 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.10 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.11 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of Registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SC (Successfully Completed). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

8. REQUIREMENTS FOR COMPLETION OF A SEMESTER

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
 - **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.
 - **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.

- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.
- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.
- **8.3** The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

10.1 A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.

- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.
- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.

11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.

- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- **11.6** If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.
- **12.3** For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements, but the grade awarded shall be only the lowest passing grade irrespective of the marks secured.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

15. AWARD OF LETTER GRADES

For all the passed candidates, the relative grading principle is applied to assign the letter grades.

Marks / Examination Status	Letter Grade	Grade Point
	O (Outstanding)	10
	A+ (Excellent)	9
Based on the relative	A (Very Good)	8
grading	B+ (Good)	7
	B (Average)	6
	C (Satisfactory)	5
Less than 50	U (Reappearance)	0
Successfully Completed	SC	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a course	SA	-

The Grade Point Average (GPA) is calculated using the formula:

$$GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum (course credits) \text{ for all courses in the specific semester}}$$

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

$$CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared

Kongu Engineering College, Perundurai, Erode – 638060, India

his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the ME / MTech Degree provided the candidate has

i. Successfully completed all the courses under the different categories, as specified in the

M.E.– Structural Engineering, Regulation, Curriculum and Syllabus – R2022

regulations.

- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2020 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- **17.1.1** A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the four semesters in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- **17.1.2** A candidate who joins from other institutions on transfer or a candidate who gets readmitted and has to move from one regulation to another regulation and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the four semesters in the **First Appearance** within four consecutive semesters excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all four semesters within six consecutive semesters excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 6.50

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the Kongu Engineering College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its ME / MTech programme.

M.E. STRUCTURAL ENGINEERING CURRICULUM-R2022 (For the students admitted from the academic year 2022-23 onwards)

Course	Course Title	Ηοι	Hours / Week			Maximum Marks			Cate
Code	Course Title	L	Т	Р	Credit	CA	ESE	Total	gory
Theory/The	ory with Practical								
22AMT11	Applied Mathematics for Structural Engineers	3	1	0	4	40	60	100	FC
22GET11	Introduction to Research	2	1	0	3	40	60	100	FC
22SET11	Advanced Structural Analysis	3	1	0	4	40	60	100	PC
22SET12	Design of Concrete Structures	3	0	0	3	40	60	100	PC
22SET13	Design of Steel Structures	3	0	0	3	40	60	100	PC
22SET14	Structural Dynamics	3	0	0	3	40	60	100	PE
Practical / E	mployability Enhancement		-						
22SEL11	Computer Aided Design and Drafting Laboratory I	0	0	2	1	60	40	100	PC
22SEL12	Advanced Structural Engineering Laboratory	0	0	2	1	60	40	100	PC
	Total Credits to be earn	ed			22				

SEMESTER	- 11								
Course	Course Title	Hours / Week			Credit	Maximum Marks			Cate
Code		L	Т	Р	Credit	CA	ESE	Total	gory
Theory/The	ory with Practical								
22SET21	Theory of Elasticity and Plasticity	3	1	0	4	40	60	100	PC
22SET22	Earthquake Analysis and Design of Structures	3	0	0	3	40	60	100	PC
22SET23	Design of Prestressed and Prefabricated Structures	3	0	0	3	40	60	100	PC
	Professional Elective - I	3	0	0	3	40	60	100	PE
	Professional Elective - II	3	0	0	3	40	60	100	PE
	Professional Elective - III	3	0	0	3	40	60	100	PE
Practical / E	mployability Enhancement								
22SEL21	Computer Aided Design and Drafting Laboratory II	0	0	2	1	60	40	100	PC
22SEL22	Structural Engineering Design Studio Laboratory	0	0	2	1	60	40	100	EC
	Total Credits to be earned	ed			21				

M.E.– Structural Engineering, Regulation, Curriculum and Syllabus – R2022

M.E. STRUCTURAL ENGINEERING CURRICULUM-R2022 (For the students admitted from the academic year 2022-23 onwards)

SEMESTER	- 111								
Course	Course Title	Но	Hours / Week			Maximum Marks			Cate
Code	Course Inte	L	Т	Р	Credit	СА	ESE	Total	gory
Practical / E	Employability Enhancement				-				
	Professional Elective - IV	3	0	0	3	40	60	100	PE
	Professional Elective - V	3	0	0	3	40	60	100	PE
	Professional Elective - VI	3	0	0	3	40	60	100	PE
22SEP31	Project Work - I			16	8	50	50	100	EC
	Total Credits to be earn	ned	•	-	17				

SEMESTER	SEMESTER – IV									
Course	Course Title	Hours / Week			Credit	Maximum Marks			Cate gory	
Code		L	т	Р	orount	СА	ESE	Total		
Practical /	Employability Enhancement									
22SEP41	Project Work - II	0	0	24	12	50	50	100	EC	
	Total Credits to be earned									

Total Credits: 72

	LIST OF PROFESSIONAL ELECTIVES	6				
Course	Course Title	Но	ours/W	eek	Credit	CBS
Code	Course little	L	Т	Р	Credit	CBS
	Semester II					
	Elective I					
22SEE01	Experimental Methods and Model Analysis	3	0	0	3	PE
22SEE02	Design of Substructures	3	0	0	3	PE
22SEE03	Theory of Structural Stability	3	0	0	3	PE
	Elective II					
22SEE04	Optimization of Structures	3	0	0	3	PE
22SEE05	Finite Element Analysis	3	0	0	3	PE
22SEE06	Design of Plates and Shells	3	0	0	3	PE
	Elective III					
22SEE07	Design of Industrial Structures	3	0	0	3	PE
22SEE08	Fracture Mechanics of Concrete Structures	3	0	0	3	PE
22SEE09	Mechanics of Composite Materials and Structures	3	0	0	3	PE
	Semester III					
	Elective IV					
22SEE10	Structural Health Monitoring	3	0	0	3	PE
22SEE11	Design of Bridges	3	0	0	3	PE
22SEE12	Design of Tall Structures	3	0	0	3	PE
	Elective V					
22SEE13	Design of Off Shore Structures	3	0	0	3	PE
22SEE14	Design of Steel Concrete Composite Structures	3	0	0	3	PE
22SEE15	Soil Structure Interaction	3	0	0	3	PE
22SEE16	Metro Transportation System and Engineering	3	0	0	3	PE
	Elective VI					
22SEE17	Energy Efficient Buildings	3	0	0	3	PE
22SEE18	Machine Foundations	3	0	0	3	PE
22SEE19	Maintenance and Rehabilitation of Structures	3	0	0	3	PE
22GET13	Innovation, Entrepreneurship and Venture Development	3	0	0	3	PE

Programme & Branch	ME- Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	FC	3	1	0	4
Preamble	This course is designed to provide the solid foundation estimation theory and multivariate analysis which engineering problems and also provides a broad spe transform method, calculus of variations and tenso structures.	form the ectrum of	basis for in mathematica	node al te	eling chnic	con lues	struction
Jnit – I	Random Variables:						9+3
	ematical expectation and Variance. Standard Probability bisson distribution – Continuous Distributions: Uniform c Parameter Estimation and Multivariate Analysis:						
Parameter Estim Sufficiency – Me	ation: Point Estimation – Characteristics of estimators – thods of point estimation – Method of moments –Method of lysis: Random vectors and Matrices – Mean vectors and	of Maximu	ım likelihood.		-		ciency ·
Jnit – III	Transform Techniques for Partial Differential Equat	ions:					9+3
equation – For	orm methods: Solution of one-dimensional wave equ urier transform methods: Solution of Diffusion equat tion of Laplace equation. Calculus of Variations:						
-unctionals depe	tion and its properties – Euler's equation – Functional dep endent on functions of several independent variables – Va blems – Direct methods – Ritz and Kantorovich methods.						
Jnit – V	Tensor Analysis:						9+3
	vention – Contravariant and covariant vectors – Contra product – Metric tensor – Christoffel symbols – Covarian			dient	- Di	verge	ence an
REFERENCES:							
1. Jay L. De 2016.	evore, "Probability and Statistics for Engineering and Sci				-		-
	C. and Kapoor V.K. "Fundamentals of Mathematical Stat						
2. Gupta S. 2022.	DA and Micharn D M/ "Annlied Multiveriate Otation"				earso	JN EO	11 IC STICK
2.Gupta S.0 2022.3.Johnson, New Jers		•	-				
2.Gupta S.I 2022.3.Johnson, New Jers4.Sankara Delhi, 201	ey, 2019. Rao K, "Introduction to Partial Differential Equations", 3 ^{rc} I1.	^d Edition,	PHI Learning	g Pri			
2.Gupta S.0 2022.3.Johnson, New Jers4.Sankara Delhi, 2005.Lev D.Els	ey, 2019. Rao K, "Introduction to Partial Differential Equations", 3 ^{rc}	^d Edition,	PHI Learning	9 Pri)7.	vate	Limit	ed, Ne

	RSE OUT		-	students will be abl	e to				BT Mapp (Highest Lo	
CO1	classify	rand	lom variables and	l apply suitable distri	ibutions in prac	ctical pr	oblem	S.	Applying (K3)
CO2	use a multiva			oute point estimate	and perform	explor	atory	analysis of	Applying (K3)
CO3				ansforms to solve in Partial Differential Eq		itial-bo	undary	value and	Applying (K3)
CO4	solve p disciplir		ems involving fu	nctional that occurs	s in various b	oranche	es of e	engineering	Applying (K3)
CO5	identify	varic	ous tensors that c	ccur in engineering	problems.				Applying (K3)
				Mapping o	of COs with P	Os				
COs	s/POs		PO1	PO2	PO3			PO4	PO5	
С	O1		3					1		
С	O2		2					2		
С	O3		3					3	3	
С	O4		3					3		
С	O5		3					3	2	
1 – SI	light, 2 –	Mode	erate, 3 – Substa	ntial, BT- Bloom's Ta	axonomy					
				ASSESSMENT		1		11		
	t / Bloom ategory*	ı's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %		yzing .) %	Evaluating (K5) %	Creating (K6) %	Total
	CAT1		10	20	70		-	-	-	100
	CAT2		10	20	70		-	-	-	100
	CAT3		10	20	70	-	-	-	-	100
	ESE		10	20	70		-	-	-	100
* ±3%	may be	varie	d (CAT 1,2,3 – 5) marks & ESE – 10	0 marks)					

	(Common to all ME / MTe	ch Branches & MC	Α)				
Programme& Branch	All ME/MTech branches & MCA	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	1/2	FC	2	1	0	3
Preamble	This course will familiarize the fundamental co patenting. Also will disseminate the process rewriting them in a presentable form using lates	involved in collecti					
Unit - I	Concept of Research: ignificance of Research: Skills, Habits and Attitudes for						6+3
Characteristics	t a Research is? - Types and Process of Rese of a Good Research Problem - Errors in Selecting a ation Study - Gap Analysis - Problem Formulation Tec Research Methods and Journals:	Research Problem -					
	Research Methods and Journals: Research - Need for Experimental Investigations	Data Callasting	Aathada Arri		Chai		
Research Limita	/ Methods - Measurement and Result Analysis - I ations. Journals in Science/Engineering - Indexing and to Read a Published Paper - Ethical issues Related to	d Impact factor of Jo	urnals - Citatio	ns - h In	ndex -		
Unit - III	Paper Writing and Research Tools:					Public	6+3
Unit - III Types of Resea Selection Methor Reviewer Come EndNote, Softw		mmunication/Case s Submitting the Res Hands on Training	Study - When a search Paper - related to Refe	and Whe - Reviev erence I	ere to v Proe Manag	cess gemen	sh? - Journa - Addressin It Software
Unit - III Types of Resea Selection Metho Reviewer Com EndNote, Softw Plagiarism.	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Co ods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - H vare for Paper Formatting like LaTeX/MS Office. Inter-	mmunication/Case S Submitting the Res Hands on Training roduction to Origin,	Study - When a search Paper - related to Refe	and Whe - Reviev erence I	ere to v Proe Manag	cess gemen	sh? - Journa - Addressin it Software detection o
Unit - III Types of Resea Selection Metho Reviewer Comit EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Co ods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - I	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotatio	Study - When a search Paper - related to Refe SPSS, ANOVA	and Whe - Review erence I A etc., S	ere to w Prod Manag Softwa ription	cess gemen ire for Spec	sh? - Journa - Addressin t Software detection o 6+3 ial Elements
Unit - III Types of Resea Selection Metho Reviewer Comit EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Colods. ayout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Harder For Paper Formatting like LaTeX/MS Office. Interfective Technical Thesis Writing/Presental Report - Language and Style - Format of Project Rep stract - Table of Contents - Headings and Sub-Heading	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotatio	Study - When a search Paper - related to Refe SPSS, ANOVA	and Whe - Review erence I A etc., S	ere to w Prod Manag Softwa ription	cess gemen ire for Spec	sh? - Journa - Addressin t Software detection o 6+3 ial Elements
Unit - III Types of Resea Selection Metho Reviewer Comit EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs Different Referent Unit - V Patents - Desig	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Co. ods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Horizer for Paper Formatting like LaTeX/MS Office. Intervare for Paper Formatting like LaTeX/MS Office. Intervare Effective Technical Thesis Writing/Presentar Report - Language and Style - Format of Project Rep stract - Table of Contents - Headings and Sub-Headin ence Formats. Presentation using PPTs.	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotation ogs - Footnotes - Tak	Study - When a search Paper - related to Refe SPSS, ANOVA ons - Method of oles and Figure chnological res	and Whe - Review erence I A etc., S - Transci s - Appe search -	ere to w Pro Manag Softwa ription endix - innov	cess gemen ire for Spec Biblic	sh? - Journa - Addressin at Software detection of 6+3 ial Elementa ography etc. 6+3
Unit - III Types of Resea Selection Metho Reviewer Comit EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs Different Referent Unit - V Patents - Desig	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Colods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Hvare for Paper Formatting like LaTeX/MS Office. Introduce for Paper Formatting like LaTeX/MS Office. Introduce Format - Language and Style - Format of Project Repstract - Table of Contents - Headings and Sub-Headingence Formats. Presentation using PPTs. Nature of Intellectual Property: gns - Trade and Copyright. Process of Patenting and	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotation ogs - Footnotes - Tak	Study - When a search Paper - related to Refe SPSS, ANOVA ons - Method of oles and Figure chnological res rocedure for gra	and Whe - Review erence I A etc., S - Transco s - Appe search - ants of p	ere to w Prod Manag Softwa ription endix - innov	cess gemen re for Spec Biblic vation	sh? - Journa - Addressin at Software detection of 6+3 ial Elementa ography etc. 6+3
Unit - III Types of Resea Selection Metho Reviewer Comi EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs Different Refere Unit - V Patents - Desig	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Colods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Hvare for Paper Formatting like LaTeX/MS Office. Interview of Paper Formatting like LaTeX/MS Office. Interview Contents - Language and Style - Format of Project Repstract - Table of Contents - Headings and Sub-Headingence Formats. Presentation using PPTs. Nature of Intellectual Property: gns - Trade and Copyright. Process of Patenting an International Scenario: International cooperation on International Cooperation on International Scenario: International Cooperation on International Cooperation Operation Operation Operation Operation Cooperation Operation Oper	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotation ogs - Footnotes - Tak	Study - When a search Paper - related to Refe SPSS, ANOVA ons - Method of oles and Figure chnological res rocedure for gra	and Whe - Review erence I A etc., S - Transco s - Appe search - ants of p	ere to w Prod Manag Softwa ription endix - innov	cess gemen re for Spec Biblic vation	sh? - Journ - Addressir It Software detection 6+3 ial Element ography etc. 6+3 - patenting
Unit - III Types of Resea Selection Mether Reviewer Comi EndNote, Softw Plagiarism. Unit - IV How to Write a Title Page - Abs Different Refere Unit - V Patents - Desig development. In REFERENCES	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Colods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Hvare for Paper Formatting like LaTeX/MS Office. Interview of Paper Formatting like LaTeX/MS Office. Interview Contents - Language and Style - Format of Project Repstract - Table of Contents - Headings and Sub-Headingence Formats. Presentation using PPTs. Nature of Intellectual Property: gns - Trade and Copyright. Process of Patenting an International Scenario: International cooperation on International Cooperation on International Scenario: International Cooperation on International Cooperation Operation Operation Operation Operation Cooperation Operation Oper	mmunication/Case S Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotation gs - Footnotes - Tak d Development: Tea ellectual Property. Pr	Study - When a search Paper - related to Refe SPSS, ANOVA ons - Method of oles and Figure chnological res rocedure for gra	and Whe - Review erence I A etc., S - Transci s - Appe search - ants of p cture: 30	ere to Wanag Softwa ription endix - innov eatents 0, Tute	cess - gemen ire for Spec Biblic vation s. orial:1	sh? - Journ - Addressir It Software detection 6+3 ial Element ography etc 6+3 - patenting 15, Total:4
Unit - III Types of Resea Selection Mether Reviewer Coming EndNote, Softward Plagiarism. Unit - IV How to Write a Title Page - Abs Different Refere Unit - V Patents - Desig development. In REFERENCES 1. DePoy, E Elsevier H	Paper Writing and Research Tools: arch Papers - Original Article/Review Paper/Short Co. iods. Layout of a Research Paper - Guidelines for ments. Use of tools / Techniques for Research - Horizer for Paper Formatting like LaTeX/MS Office. Introduction Effective Technical Thesis Writing/Presentar Report - Language and Style - Format of Project Report - Table of Contents - Headings and Sub-Heading ence Formats. Presentation using PPTs. Nature of Intellectual Property: gns - Trade and Copyright. Process of Patenting and international Scenario: International cooperation on International Scenario: International Scen	mmunication/Case Submitting the Res Hands on Training roduction to Origin, tion: ort - Use of Quotatic lgs - Footnotes - Tab d Development: Te ellectual Property. Pl earch-E-Book: Unde	Study - When a search Paper - related to Refe SPSS, ANOVA ons - Method of oles and Figure chnological res rocedure for gra	and Whe - Review erence I A etc., S - Transci s - Appe search - ants of p cture: 30	ere to Wanag Softwa ription endix - innov eatents 0, Tute	cess - gemen ire for Spec Biblic vation s. orial:1	sh? - Journ - Addressir It Software detection 6+3 ial Element ography etc 6+3 - patenting 15, Total:4

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	list the various stages in research and categorize the quality of journals.	Analyzing (K4)
CO2	formulate a research problem from published literature/journal papers	Evaluating (K5)
CO3	write, present a journal paper/ project report in proper format	Creating (K6)
CO4	select suitable journal and submit a research paper.	Applying (K3)
CO5	compile a research report and the presentation	Applying (K3)

		Mapping	of COs with POs	s and PSOs	
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1		
CO2	3	2	3		
CO3	3	3	1		
CO4	3	2	1		
CO5	3	2	1		
1 - Slight 2 -	Moderate 3 - 9	Substantial BT- Bloom's Tay	(onom)		

1 – Slight, 2 – Moderate, 3 – Substantial	, BT- Bloom's Taxonomy
---	------------------------

		ASS	SESSMENT PATTE	RN - THEORY	,		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying(K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		30	40	30			100
CAT2		30	40	30			100
CAT3			30	40	30		100
ESE		30	40	30			100
* ±3% may b	be varied (CAT 1,2	,3 – 50 marks & ESE -	- 100 marks)	L	L		I

22SET11 - ADVANCED STRUCTURAL ANALYSIS

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1	PC	3	1	0	4
Preamble	This course imparts knowledge on the analyze of s	structure using flevib	ility and stiffn	ase n	oatriv	moth	od
Unit – I	Fundamental Concepts:	Structure using liexib	inty and stime	555 11		meur	9+3
Introduction - Ford	ces and Displacement measurements - Principle of s pility matrices of the elements - A review.	superposition - Meth	ods of structu	ıral a	inaly	sis - E	
Unit – II	Transformation of Information:						9+3
lexibility - System	een element and system - Transformation of syste displacement to element displacement - Transform onal transformation.						
Choice of redunda set of redundant t Frames and grids.	Flexibility Method: Int - ill and well-conditioned equations - Automatic cho to another set - Thermal expansion - Lack of fit - A						s beams
Choice of redunda set of redundant t Frames and grids. Unit – IV Development of st	nt - ill and well-conditioned equations - Automatic cha	Application to pin-join	nted plane tru	iss -	Con	tinuou	tion of on s beams 9+3
set of redundant t Frames and grids. Unit – IV Development of st	nt - ill and well-conditioned equations - Automatic cho o another set - Thermal expansion - Lack of fit - A Stiffness Method: iffness method - Analogy between flexibility and stiffn	Application to pin-joir ness - Analysis for se and grids.	nted plane tru	iss -	Con	tinuou	tion of on s beams 9+3
Choice of redunda set of redundant t Frames and grids. Unit – IV Development of st fit - Application to p Unit – V Transfer Matrix M Substructure techr	int - ill and well-conditioned equations - Automatic cho co another set - Thermal expansion - Lack of fit - A Stiffness Method: iffness method - Analogy between flexibility and stiffn pin-jointed plane truss - Continuous beams - Frames a	Application to pin-join ness - Analysis for se and grids. ics: - Reanalysis techni	nted plane tru ettlement - Th que - Static ich - Applicati	uss - erma cond on to	Con al exp ensa o two	tinuou pansio tion T dimer	tion of on is beams 9+3 n - Lack o 9+3 echnique isional pir
Choice of redunda set of redundant t Frames and grids. Unit – IV Development of st fit - Application to p Unit – V Transfer Matrix M Substructure techr jointed trusses - Pl	Int - ill and well-conditioned equations - Automatic cho to another set - Thermal expansion - Lack of fit - A Stiffness Method: iffness method - Analogy between flexibility and stiffn pin-jointed plane truss - Continuous beams - Frames a Matrix Displacement Methods and Special Topi ethod - Symmetry and Anti symmetry of structures nique. Direct Stiffness Method: Discrete system - Di	Application to pin-join ness - Analysis for se and grids. ics: - Reanalysis techni	nted plane tru ettlement - Th que - Static ich - Applicati	uss - erma cond on to	Con al exp ensa o two	tinuou pansio tion T dimer	tion of on is beams 9+3 n - Lack o 9+3 echnique isional pir
Choice of redunda set of redundant t Frames and grids. Unit – IV Development of st fit - Application to p Unit – V Transfer Matrix M Substructure techr jointed trusses - Pl	Int - ill and well-conditioned equations - Automatic cho to another set - Thermal expansion - Lack of fit - A Stiffness Method: iffness method - Analogy between flexibility and stiffn pin-jointed plane truss - Continuous beams - Frames a Matrix Displacement Methods and Special Topi ethod - Symmetry and Anti symmetry of structures nique. Direct Stiffness Method: Discrete system - Di	Application to pin-join ness - Analysis for se and grids. ics: - Reanalysis techni irect stiffness approa	ettlement - Th que - Static ich - Applicati	uss - erma cond on to	Con al exp ensa o two	tinuou pansio tion T dimer	tion of on is beams 9+3 n - Lack o 9+3 echnique
Choice of redunda set of redundant t Frames and grids. Unit – IV Development of st fit - Application to p Unit – V Transfer Matrix M Substructure techr jointed trusses - Pl REFERENCES: 1. Mcguire ar	Int - ill and well-conditioned equations - Automatic cho to another set - Thermal expansion - Lack of fit - A Stiffness Method: iffness method - Analogy between flexibility and stiffn pin-jointed plane truss - Continuous beams - Frames a Matrix Displacement Methods and Special Topi ethod - Symmetry and Anti symmetry of structures nique. Direct Stiffness Method: Discrete system - Di lane frames - Grids.	Application to pin-join ness - Analysis for se and grids. ics: - Reanalysis techni irect stiffness approa	nted plane tru ettlement - Th que - Static ich - Applicati Lecture 015.	cond on to	Con al exp ensa two Tuto	tinuou pansio tion T dimer rial:1	tion of on is beams 9+3 n - Lack o 9+3 echnique nsional pir 5, Total:6

	SE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L	
CO1	apply the fund	amentals in the anal	ysis of structural me	embers			Applying	(K3)
CO2	analyze the str versa	ructural elements by	transferring the info	ormation from	system to eler	ment and vice-	Analyzing	(K4)
CO3	analyze the sti	ructural elements usi	ng flexibility method	b			Analyzing	(K4)
CO4	analyze the st	ructural elements usi	ng stiffness method	ł			Analyzing	(K4)
CO5	analyze and a stiffness method	pply solutions for stru od	uctural elements us	ing matrix dis	placement me	thod and direct	Analyzing	(K4)
			Mapping of CC	s with POs	and PSOs			
С	Os/POs	PO1	PO2	I	PO3	PO4	PO	5
	CO1	2	1		3	3		
	CO2	2	1		3	3		
	CO3	2	1		3	3		
	CO4	2	1		3	3		
	CO5	2	1		3	3		
1 – Sli	ght, 2 – Moderat	te, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	10	60	20			100
	CAT2	5	5	20	70			100
-	CAT3	5	5	20	70			100
	OATS							

		22SET12 - DESIGN OF CONCRETE STRUC (IS 456-2000, SP 16 & IS1893-2002 (Part-I) code bool						
		(13 430-2000, SF 16 & 13 1693-2002 (Part-1) code bool	ks are p	ermitted)				
Program Branch		M.E Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequ	uisites	NIL	1	PC	3	0	0	3
Preamb	ble	This course give the detailed concept to check the serviceability of design of the flat slab, grid floors, walls subjected to lateral load, de inelastic behavior of reinforced concrete structures.						
Unit – I		Design Concepts & Limit State of Serviceability:						9
method anchora Causes	- Review age requir of crackir	tionship for concrete and steel - Design Philosophies - Working stre of basic design of RC members under flexure, shear, combined she ements. Deflection - Calculation of short term deflection and long te ng - Factors influencing crack width - Mechanism of flexural cracking on of crack width.	ear and t erm defle	torsion, axial ection - Limits	com s on d	oress deflea	ion - I ction.	Bond and Cracking -
Unit – I	I	Design of slabs:						9
	of flat slat	 (IS methods) - Design of grid floors - Yield line theory and Hillerbo ons. 	orgs strip	method of de	esign	of sl	abs fo	or various
Unit – I	II	Design of RC walls and Deep Beams:						9
Design	of RC wa	lls - ordinary and shear walls. Design of deep beams						
Unit – ľ	V	Special RC Elements:						9
Design pilecaps		r Column - Strut and tie method of analysis and design for corbels -	- Design	of spandrel b	eam	s – D	esign	of
Unit – V	/	Design of Footings & Inelastic behavior of Concrete Structure	es:					9
		ed footing - Design of footing with eccentric column - Moment - Rot of RC beams - Moment redistribution	tation cu	rves – Conce	pt of	plast	ic hin	ges –
								Total:45
REFER	ENCES:							
1.	Subrama	nian N., "Design of Reinforced Concrete Structures", 1st Edition, O	xford Un	iversity Press	s, 20 ⁻	14.		
2.		nna Pillai and Devdas Menon, "Reinforced concrete Design", 3rd Ed v Delhi, 2006.	lition, Ta	ta McGraw H	ill Pu	ıblish	ers C	ompany
3.	Varghese	e P.C., "Advanced Reinforced Concrete Design", 2nd Edition, Prenti	ice Hall (of India, 2007				

·

	SE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L	
CO1	calculate the c	leflection and crack	width in the flexural	members			Analyzing	(K4)
CO2	design the flat	slabs, grid floors an	d conventional RC	slabs using y	ield line theory		Applying ((K3)
CO3	design the RC	walls, shear walls a	nd deep beams				Applying (K3)
CO4	design the sle	nder column, corbels	s, spandrel beams a	and pile caps			Applying (K3)
CO5	design footing	s and assess the ine	elastic behavior of c	oncrete struc	tures		Applying ((K3)
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	PO1	PO2		PO3	PO4	PO	5
	CO1	3			2	2	3	
	CO2	3			2	2	3	
	CO3	3			2	2	3	
	CO4	3			2	2	3	
	CO5	3			2	2	3	
1 – Sli	ght, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my	· ·			
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	5	10	55	30			100
	CAT2	5	10	85				100
	CAT3	5	10	85				100

22SET13 - DESIGN OF STEEL STRUCTURES (IS 800: 2007, IS 801, IS 811, IS 875 Part 3, IS 804, IS 805 & SP-06 are to be permitted)

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1	PC	3	0	0	3
Preamble	This course deals with the design of steel structur bending moment along with water tanks and chimn steel sections and pre-engineered buildings are als	neys were dealt in d					
Unit – I	Industrial Building:						9
	oof and side coverings - Design of truss elements - Design of truss elements - Design of industrial buildings - Introduction to the design o			earin	gs –	Desig	n of gable
Unit – II	Plastic Analysis of Structures:						9
	ape factor - Moment redistribution - Static, kinematic and tinuous beams and portal frame - Effect of axial force a				echar	nisms	- Analysis
		110 shear force on p		ι.			
	Design of Eccentric Connections:	ind shear force on p	lastic momen	ι.			9
Unit – III Bolted and welde					t cor	nectio	-
Unit – III Bolted and welde	Design of Eccentric Connections: ed connections - Types of connections for eccentric loa				t cor	inectio	-
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa	Design of Eccentric Connections: ad connections - Types of connections for eccentric loa ment resisting connections.	ading - Framed cor	nections - Br	acke			ons - Sea 9
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa	Design of Eccentric Connections: ed connections - Types of connections for eccentric loa ment resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel water	ading - Framed cor ater tank - Types of	nections - Br	acke			ons - Sea 9
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr	Design of Eccentric Connections: ed connections - Types of connections for eccentric loament resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was porting chimney (Lined).	ading - Framed cor ater tank - Types of ildings:	nections - Br	acke Com	oonei	nts of	ons - Sea 9 chimney 9
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr	Design of Eccentric Connections: ed connections - Types of connections for eccentric load ment resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was oporting chimney (Lined). Light Gauge Structures and Pre-Engineered Build med cross sections - Local buckling - Design of compresed	ading - Framed cor ater tank - Types of ildings:	nections - Br	acke Com	oonei	nts of	9 chimney 9 - Genera
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr	Design of Eccentric Connections: ed connections - Types of connections for eccentric load ment resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was oporting chimney (Lined). Light Gauge Structures and Pre-Engineered Build med cross sections - Local buckling - Design of compresed	ading - Framed cor ater tank - Types of ildings:	nections - Br	acke Com	oonei	nts of	ons - Sea 9 chimney 9
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr concept of pre-en	Design of Eccentric Connections: ed connections - Types of connections for eccentric load ment resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was oporting chimney (Lined). Light Gauge Structures and Pre-Engineered Build med cross sections - Local buckling - Design of compresed	ading - Framed cor ater tank - Types of ildings: ession and tension	nections - Br chimneys - C members - Do	acke Com esigr	oonei	nts of	9 chimney 9 - Genera
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr concept of pre-en REFERENCES: 1. Subramar	Design of Eccentric Connections: ad connections - Types of connections for eccentric loament resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was porting chimney (Lined). Light Gauge Structures and Pre-Engineered Buildings - Local buckling - Design of compresigneered buildings - Simple portal frame design.	ading - Framed cor ater tank - Types of ildings: ession and tension d University Press, I	nections - Br chimneys - (members - Do New Delhi, 20	acke Com essigr 15.	ooner	eams	9 chimney 9 - Genera
Unit – III Bolted and welde connections - Mor Unit – IV Water tanks - Wa Design of self-sup Unit – V Types of cold forr concept of pre-en REFERENCES: 1. Subramar 2. Duggal. S	Design of Eccentric Connections: ed connections - Types of connections for eccentric loament resisting connections. Water Tanks and Chimneys: ater pressure on tank walls - Design of pressed steel was porting chimney (Lined). Light Gauge Structures and Pre-Engineered Buildings - Local buckling - Design of compresigneered buildings - Simple portal frame design. nian N, "Design of Steel Structures", 2nd Edition, Oxford	ading - Framed cor ater tank - Types of ildings: ession and tension d University Press, I , McGraw Hill Privat	nections - Br chimneys - (members - Do New Delhi, 20 te Limited, Ne	acke Com essigr 15.	ooner	eams	9 chimney 9 - Genera

	RSE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L			
CO1	design the pur	lin and roof trusses					Analyzing	(K4)		
CO2	apply the know	vledge of plastic ana	lysis in steel design	l			Analyzing	(K4)		
CO3 analyse and design connection of members using weld and bolts							Analyzing (K4)			
CO4	design steel w	ater tank and chimne	әу				Analyzing (K4)			
CO5	evaluate the b	ehavior of light gaug	e steel members ar	nd pre-engine	eered structure	6	Analyzing (K4)			
			Mapping of CO	s with POs a	and PSOs					
С	Os/POs	PO1	PO2		PO3	PO4	PO	5		
	CO1	3			3	3	3			
	CO2	3			3	3	3			
	CO3	3			3	2	3			
	CO4	3			3	3	3			
	CO5	3			3	3	3			
1 – Sli	ight, 2 – Modera	e, 3 – Substantial, B	T- Bloom's Taxono	my	·		·			
			ASSESSMENT	PATTERN -	THEORY					
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %		
	CAT1	10	10	30	50			100		
	CAT2	10	10	30	50			100		
	CAT3	10	10	30	50			100		
	ESE	10	10	30	50			100		

22SET14 - STRUCTURAL DYNAMICS (IS 1893:2002, IS 13935:2009, IS 13920 :2016 & IS 4326:1993 codes are permitted)

Programme & Branch	M.E. Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1	PC	3	0	0	3
Preamble	To expose the students about the principles and meth prepare them for designing the structures for blast or ea					es and	to
Unit – I	Principles of Vibration Analysis:						9
	dels of single degree of freedom systems - Free and force al forms of excitation - Effect of damping - Transmissib						
Unit – II	Two Degree of Freedom Systems:						9
	dels of two degree of freedom systems - Free and forc vibration Applications.	ed vibrations	of two degre	e of	free	dom	systems
Unit – III	Multi-degree of Freedom Systems:						9
	dels of Multi-degree of freedom systems - Orthogonality of a systems - Mode superposition technique - Response spect			force	ed vit	oratio	ns of mult
Unit – IV	Continuous Systems:						9
Mathematical mo	dels of continuous systems - Free and forced vibration	n of continuou	s systems -	Ray	leigh	-Ritz	method
	Virtual Work Applications.						
Formulation using Unit – V	Response to General Dynamic Loading:						9
Formulation using Unit – V Fourier series ex	Response to General Dynamic Loading: pression for loading (blast or earthquake) - Duhamel.s h.s method - Earthquake response analysis of MDOF						method
Formulation using Unit – V Fourier series ex Improved Rayleig Idealization of mu	Response to General Dynamic Loading: pression for loading (blast or earthquake) - Duhamel.s h.s method - Earthquake response analysis of MDOF						method motion
Formulation using Unit – V Fourier series ex Improved Rayleig Idealization of mu	Response to General Dynamic Loading: pression for loading (blast or earthquake) - Duhamel.s h.s method - Earthquake response analysis of MDOF						method motion
Formulation using Unit – V Fourier series ex Improved Rayleig Idealization of mu storied frames. REFERENCES:	Response to General Dynamic Loading: pression for loading (blast or earthquake) - Duhamel.s h.s method - Earthquake response analysis of MDOF	systems subje	ected to earth	nqua	ke g		method motion
Formulation using Unit – V Fourier series ex Improved Rayleig Idealization of mustoried frames. REFERENCES: 1. Mari paz,	Response to General Dynamic Loading: spression for loading (blast or earthquake) - Duhamel,s h,s method - Earthquake response analysis of MDOF llti-	systems subje Kluwer academ	ected to earth	nqua	ke g		method
Formulation using Unit – V Fourier series ex Improved Rayleig Idealization of mustoried frames. REFERENCES: 1. Mari paz, 2. Anilk Cho	Response to General Dynamic Loading: spression for loading (blast or earthquake) - Duhamel,s h,s method - Earthquake response analysis of MDOF alti-	systems subje Kluwer academ 2007	ected to earth	nqua	ke g		method motion

	SE OUTCOMES	: course, the studen	ts will be able to				BT Mapp (Highest L				
CO1	explain the eff	ects of vibration and	damping on structu	ures			Analyzing (K4)				
CO2	determine the	response of two deg	ree of freedom sys	tems			Applying (K3)			
CO3	interpret the re	esponse of Multi Deg	ree of Freedom sys	stems			Applying (K3)				
CO4	analyze the co	ontinuous systems u	sing approximate m	nethods			Analyzing (K4)				
CO5	apply the appl	oximate method to s	olve complex probl	lems subjecte	ed to different lo	bading condition	Applying (K3)			
			Mapping of CO	s with POs a	and PSOs						
С	Os/POs	PO1	PO2	I	PO3	PO4	PO	5			
	CO1	3			3	2					
	CO2	3			3	2					
	CO3	3			3	2					
	CO4	3			3	2					
	CO5	3			3	2					
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my							
			ASSESSMENT	PATTERN -	THEORY						
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %			
	CAT1	20	40	40				100			
	CAT2	30	40	30				100			
	CAT3	30	40	30				100			
	ESE	30	40	30				100			

* ±3% may be varied (CAT 1,2,3 - 50 marks & ESE - 100 marks)

Progra Branc	amme &	M.ESTRUCTUR		Sem.	Category	L	т	Р	Credit		
	quisites	Engineering Dra	wing		1	PC	0	0	2	1	
Pream	nble	To gain knowledg	e on desigr	n and detailing of v rosoft Excel, AutoC			ste	el stru	ucture	es as pe	
LIST		IENTS / EXERCISE	S:								
1.	Design and detailing of continuous beams by developing the design spread sheet										
2.	Design and detailing of slabs by developing the design spread sheet										
3.	Analysis o	f a RCC building fra	mes for gra	vity load using STA	AD Pro						
4.	Design an	d detailing of beam	s by develop	oing the design spr	ead sheet						
5.	Design an	d detailing of short	columns by	developing the de	sign spread shee	t					
6.	Design an	d detailing of long	columns by	developing the des	ign spread sheet						
7.	Design an	d detailing of Isolat	ed footing b	y developing the d	esign spread she	et					
8.	Analysis o	f a RCC building fra	mes for late	eral load using STA	AD Pro						
9.	Analysis a	nd design of RCC v	ater tanks l	by developing the d	lesign spread she	eet					
10.	Analysis a	nd design of plane	russ using \$	STAAD Pro							
11.	Analysis and design of space truss using STAAD Pro										
12.	Analysis a	nd design of PEB s	ingle portal	frame using STAAI) Pro						
										Total:30	
REFE		ANUAL /SOFTWAF									
1.		a Pillai and Devda Ltd., New Delhi, 20		Reinforced concre	te Design", 3rd	Edition, Tata I	ИсG	raw I	Hill Pi	ublisher	
2.		ian N., "Design of F		oncrete Structures	", 1st Edition, Ox	ford University	Pre	ss, 20)14.		
COUR		MES						P	Г Мар	nod	
		the course, the st	udents will	be able to						Level)	
CO1	Prepare ex	cel spreadsheet to			d draft the detailir	ng using Auto		-	plying		
000	CAD.	f DCC atructures us		Dro						on (S2) J (K4),	
CO2	Analysis of RCC structures using STAAD Pro Manipulation (S										
CO3	Analysis a	nd design of steel s	tructures us	ing STAAD Pro				Analyzing (K4), Manipulation (S2)			
			Mappir	ng of Cos with PO	s and PSOs						
	COs/POs	S	PO1	PO2	PO3	PO4			Ρ	05	
	CO1		3	3	2	3	3			3	
	CO2		3	3	2	3				3	
	CO3		3	3	2	3				3	

	amme &	M.ESTRUCTU		FERING	Sem.	Category	L	т	Р	Credit		
Branc				EERING								
Prerec	quisites	Engineering D	rawing		1	PC	0	0	2	1		
Pream	ble			lge on the behavio ve testing procedui		nns and frame	es un	der v	ariou	s loading		
LIST C	OF EXPERI	MENTS / EXERCI	SES:									
1.	Fabrication, casting and testing of simply supported reinforced concrete beam for strength and deflection behavior											
2.	Testing of simply supported steel beam for strength and deflection behavior.											
3.	Fabricatio	n, casting and tes	ting of reinfor	ced concrete colur	nn subjected to c	oncentric and	ecce	ntric	loadir	ng		
	Dynamic	testing of cantileve	r steel beam									
4.		o determine the c of o evaluate the mo		icients for free vibr	ations.							
5.	Static cyclic testing of single bay two storied steel frames to evaluate (i) Drift of the frame. (ii) Stiffness of the frame. (iii) Energy dissipation capacity of the frame											
6.	Determination of in-situ strength and quality of concrete using (i) Rebound hammer (ii) Ultrasonic Pulse Velocity Test											
7.		oride Penetration										
8.	Accelerat	on Corrosion Test										
										Total:30		
REFE	RENCES/ M	ANUAL /SOFTW	ARE:									
1.	Laborator	y Manual										
	SE OUTCO	MES: the course, the	students will	l be able to					Г Мар hest	oped Level)		
CO1	evaluate t	he behavior of bea	ams					Evaluating (K5),				
										on (S2) g (K5),		
CO2	evaluate t	he behavior of the	frames							on (S2)		
CO3	assess the quality of reinforced concrete by non-destructive test								Evaluating (K5), Manipulation (S2)			
			Маррі	ng of Cos with PC	os and PSOs							
	COs/PO	s	PO1	PO2	PO3	PO4			P	905		
	CO1		3	3	3	2				2		
	CO2		3	3	3	2				2		
					1	2				2		

	22SET21 - THEORY OF ELASTICITY						
Programme & BranchME Structural EngineeringSem.CategoryLTP							Credit
Prerequis	ites NIL	2	PC	3	1	0	4
Preamble	To create an awareness about the research, model de	evelopment in the	elastic and p	lasti	c reg	ime	
Unit – I	Introduction to Elasticity	-			-		9+3
Differential	cepts of deformation of deformable bodies – Displacement – Str equations of equilibrium in two and three dimensions in Cartes Review of Engineering Failure Analysis- Modes of fracture failure	sian coordinates					
Unit – II	Two Dimensional Problems in Cartesian Coordinat	tes					9+3
Function -	ess and Plane Strain Problems – Airy's Stress Function – Poly Two Dimensional Problems in Cartesian Coordinates – Bendin er Uniform Loading.						
							0.0
	Two Dimensional Problems in Polar Coordinates						9+3
	of Equilibrium in Polar Coordinates - Two Dimensional Problen					Curve	
Equations Thick Cylir	of Equilibrium in Polar Coordinates – Two Dimensional Problen der under Uniform Pressure – Flat Plate subjected to in plane tra					Curve	
Equations Thick Cylin Unit – IV Torsion of	of Equilibrium in Polar Coordinates - Two Dimensional Problen	ction and Shear	with Circular I	Hole	-		d Beam 9+3
Equations Thick Cylin Unit – IV Torsion of	of Equilibrium in Polar Coordinates – Two Dimensional Problem der under Uniform Pressure – Flat Plate subjected to in plane tra- Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F	ction and Shear	with Circular I	Hole	-		d Beam · · · · · · · · · · · · · · · · · · ·
Equations Thick Cylin Unit – IV Torsion of Methods – Unit – V Strain Har	of Equilibrium in Polar Coordinates – Two Dimensional Problem der under Uniform Pressure – Flat Plate subjected to in plane trad Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems	Action and Shear Rectangular Sec Misses Yield Crit	with Circular I tion – Torsio	Hole n of	Thin	Tube	d Beam 9+3 s. Energ 9+3
Equations Thick Cylir Unit – IV Torsion of Methods – Unit – V Strain Har	of Equilibrium in Polar Coordinates – Two Dimensional Problem der under Uniform Pressure – Flat Plate subjected to in plane trad Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems Plastic Deformation: dening, Idealized Stress – Strain Curve, Yield Criteria – Von M	Action and Shear Rectangular Sec Misses Yield Crit	with Circular I tion – Torsio erion – Tresc	Hole n of ca Yi	Thin	Tube Criterio	9+3 s. Energ 9+3 on, Plasti
Equations Thick Cylin Unit – IV Torsion of Methods – Unit – V Strain Har	of Equilibrium in Polar Coordinates – Two Dimensional Problem Ider under Uniform Pressure – Flat Plate subjected to in plane tradi- Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems Plastic Deformation: dening, Idealized Stress – Strain Curve, Yield Criteria – Von M train Relations (Flow Rule), Plastic Problems of beams in Bending	Action and Shear Rectangular Sec Misses Yield Crit	with Circular I tion – Torsio erion – Tresc	Hole n of ca Yi	Thin	Tube Criterio	d Beam 9+3 s. Energ 9+3
Equations Thick Cylir Unit – IV Torsion of Methods – Unit – V Strain Har Stress – Si REFEREN	of Equilibrium in Polar Coordinates – Two Dimensional Problem Ider under Uniform Pressure – Flat Plate subjected to in plane tradi- Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems Plastic Deformation: dening, Idealized Stress – Strain Curve, Yield Criteria – Von M train Relations (Flow Rule), Plastic Problems of beams in Bending	Action and Shear Rectangular Sec Misses Yield Crit g and Torsion	with Circular I tion – Torsio erion – Tresc Lecture	Hole n of ca Yi	Thin	Tube Criterio	9+3 s. Energ 9+3 on, Plasti
Equations Thick Cylir Unit – IV Torsion of Methods – Unit – V Strain Har Stress – Si REFEREN 1. Ch	of Equilibrium in Polar Coordinates – Two Dimensional Problem Ider under Uniform Pressure – Flat Plate subjected to in plane trace Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems Plastic Deformation: dening, Idealized Stress – Strain Curve, Yield Criteria – Von M train Relations (Flow Rule), Plastic Problems of beams in Bending CES:	Action and Shear Rectangular Sec Misses Yield Crit g and Torsion shing Pvt. Ltd., C	with Circular I tion – Torsio erion – Tresc Lecture	Hole n of ca Yi	Thin	Tube Criterio	9+3 s. Energ 9+3 on, Plasti
Equations Thick Cylir Unit – IV Torsion of Methods – Unit – V Strain Har Stress – St REFEREN 1. Cr 2. Sa	of Equilibrium in Polar Coordinates – Two Dimensional Problem Ider under Uniform Pressure – Flat Plate subjected to in plane trace Torsion and Energy Theory Prismatic bars – Membrane Analogy of Torsion – Torsion of F Principle of Virtual Work – Energy Theorems Plastic Deformation: dening, Idealized Stress – Strain Curve, Yield Criteria – Von M train Relations (Flow Rule), Plastic Problems of beams in Bending CES: mandramouli P.N., "Theory of Elasticity", 1 st Edition, Yesdee Publis	Action and Shear Rectangular Sec Misses Yield Crit g and Torsion shing Pvt. Ltd., C 1988.	with Circular I tion – Torsio erion – Tresc Lecture hennai, 2017	Hole n of ca Yi	Thin	Tube Criterio	9+3 s. Energ 9+3 on, Plast

	SE OUTCOMES	S: course, the studer	ts will be able to				BT Mapp (Highest L	
CO1	calculate the s	tress and strain para	imeters				Analyzing(K4)	
CO2	O2 analyze the induced stress in the two dimensional problems in artesian coordinates						Analyzing	(K4)
CO3	interpret the in	duced stress in the t	wo dimensional pro	blems in pol	ar coordinates		Applying	(K3)
CO4	O4 apply the energy theorem and torsion to elastic problems						Analyzing	(K4)
CO5	determine the	physical behavior of	yield criteria of ma	terials			Understanding	g (K2)
			Mapping of Co	s with POs a	and PSOs			
C	Cos/POs	PO1	PO2	I	PO3	PO4	PO	5
	CO1	3	1		3	3		
	CO2	3	1		3	3		
	CO3	3	1		3	3		
	CO4	3	1		3	3		
	CO5	3	1		3	3		
1 – Sl	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my	I			
			ASSESSMENT	PATTERN -	THEORY			
-	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	20	25	25	30			100
	CAT2	15	25	25	35			100
	CAT3	15	25	25	35			100
	ESE	10	30	25	35			100

* \pm 3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

22SET22 - EARTHQUAKE ANALYSIS AND DESIGN OF STRUCTURES (IS 1893:2002, IS13935:2009, IS 13920:2016 & IS 4326:1993 codes are permitted)

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PC	3	0	0	3
Preamble	To study the effect of earthquakes, analysis and design of e	arthquake	resistant struc	ture	s		
Unit – I	Earthquakes and Strong Ground Motion:	annquarto			0.		9
	mology (Definitions, Introduction to Seismic hazard, Earthquake rong ground motion instrumentation – Lessons thquakes.	phenome	non), - Plate	tecto	nics ·	- Qua	ntification c
Unit – II	Characteristics of Earthquake:						9
Estimation of ear Earthquake forces	thquake parameters, Response spectra – Average response s s as per codal provisions – Seismic hazard analysis – Determina	spectra – [ition of pro	Design respor babilistic appr	nse s oach	spect les.	ra – E	valuation c
						9	
Behaviour of reint buildings, Causes earthquake resista	Earthquake Resistant Design of Masonry Structures: forced and unreinforced masonry buildings – Lessons learnt fro s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seism	ole of earth	nquake Resis	tant	desi	gn, Gι	s – Types c uidelines fo
Behaviour of rein buildings, Causes earthquake resista Unit – IV Mathematical na	forced and unreinforced masonry buildings – Lessons learnt fro s of damage, Planning considerations, Philosophy and princip	ble of earth ic strength - Earthqua	nquake Resis ening of mase ke resistant o	tant onry desig	desig buildi n of	gn, Gu ngs R.C.C	s – Types o uidelines fo 9
Behaviour of reint buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie	forced and unreinforced masonry buildings – Lessons learnt fro s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seism Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design -	ble of earth ic strength - Earthqua	nquake Resis ening of mase ke resistant o	tant onry desig	desig buildi n of	gn, Gu ngs R.C.C	s – Types o uidelines fo 9
Behaviour of reint buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam	forced and unreinforced masonry buildings – Lessons learnt fro s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seism Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames -	ele of earth ic strength - Earthqua - Shear wa Base isola	nquake Resis ening of maso ke resistant o II – Coupled s	tant onry desig	desig buildi n of wall.	gn, Gu ngs R.C.C	s – Types c uidelines fo 9 buildings 9
Behaviour of reint buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam	forced and unreinforced masonry buildings – Lessons learnt from s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seison Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames – Vibration Control: mpers – Principles and application – Basic concept of Seismic	ele of earth ic strength - Earthqua - Shear wa Base isola	nquake Resis ening of maso ke resistant o II – Coupled s	tant onry desig	desig buildi n of wall.	gn, Gu ngs R.C.C	s – Types c uidelines fo 9 buildings 9
Behaviour of reint buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam	forced and unreinforced masonry buildings – Lessons learnt from s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seison Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames – Vibration Control: mpers – Principles and application – Basic concept of Seismic	ele of earth ic strength - Earthqua - Shear wa Base isola	nquake Resis ening of maso ke resistant o II – Coupled s	tant onry desig	desig buildi n of wall.	gn, Gu ngs R.C.C	s – Types c uidelines fo 9 buildings 9 se studies
Behaviour of reinf buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam Computer Analys	forced and unreinforced masonry buildings – Lessons learnt from s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seison Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames – Vibration Control: mpers – Principles and application – Basic concept of Seismic	e of earth ic strength - Earthqua - Shear wa Base isola Is.	hquake Resis ening of maso ke resistant o II – Coupled s tion – Various	tant onry desig hear	desig buildi n of wall tems	gn, Gu ngs R.C.C	s – Types c uidelines fo 9 buildings 9 se studies
Behaviour of reinf buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam Computer Analys REFERENCES: 1. Duggal S	forced and unreinforced masonry buildings – Lessons learnt from s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seism Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames - Vibration Control: npers – Principles and application – Basic concept of Seismic is and design of Building systems subjected to Earthquake Load	De of earth ic strength - Earthqua - Shear wa Base isola Is. Dxford Univ	ening of mass ening of mass ke resistant of ll – Coupled s tion – Various	tant onry desig hear s sys	desig buildi n of wall. tems	gn, Gu ngs R.C.C – Ca	s – Types c uidelines fo 9 buildings 9 se studies Total:4
Behaviour of reinf buildings, Causes earthquake resista Unit – IV Mathematical na Material propertie Unit – V Tuned mass dam Computer Analys REFERENCES: 1. Duggal S 2. Pankaj 2006	forced and unreinforced masonry buildings – Lessons learnt from s of damage, Planning considerations, Philosophy and princip ant design of masonry buildings – Design consideration – Seism Earthquake Resistant Design of RC Structures: alyse r of multistoried RC buildings –Capacity based design - s – Lateral load analysis – Design and detailing – Rigid frames – Vibration Control: hpers – Principles and application – Basic concept of Seismic is and design of Building systems subjected to Earthquake Load	 Def of earth Earthqua Shear wa Base isola Is. Dxford Univ n of Struct 	hquake Resis ening of maso ke resistant of II – Coupled s tion – Various ersity Press, 3 tures", 3 rd Ed	tant onry desig hear s sys	desig buildi n of wall. tems	gn, Gu ngs R.C.C – Ca	s – Types o uidelines fo 9 buildings 9 se studies Total:4

	SE OUTCOME mpletion of the	S: e course, the studer	nts will be able to				BT Mapped (Highest Leve	
CO1	explain the el	lements of seismolog	У				Understanding	(K2)
CO2	02 assess the earthquake parameters using different methods						Applying (K3	5)
CO3	illustrate the nalyse r of masonry buildings subjected to earthquake loading Analyzing (K4)					4)		
CO4	nalyse the I	RC buildings subjecte	ed to earthquake loa	ading			Analyzing (K4	4)
CO5	205 apply various vibration control techniques on structures				Applying (K3	5)		
			Mapping of C	os with POs	and PSOs			
С	os/POs	PO1	PO2		PO3	PO4	PO5	
	CO1	3			2		1	
	CO2	3			2		1	
	CO3	3			2		1	
	CO4	3			2	1	1	
	CO5	3			2	1	1	
1 – Sli	ght, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMEN	FPATTERN	- THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota
	CAT1	20	40	40				100
	CAT2	30	40	30				100
	CAT3	30	40	30				100
	ESE	30	40	30				100

22SET23 - DESIGN OF PRESTRESSED AND PREFABRICATED STRUCTURES IS 1343-1980, IS 3370, IS 784-2001, IS 784-1959 & IS 15916-2010 code books are to be permitted

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Design of Concrete Structures	2	PC	3	0	0	3
Preamble	This course enables the students to design the pr	estressed and prefab	pricated Concr	ete S	Struct	ural e	elements
Unit – I	Design Concepts:						9
Member: Flexural flexure and shear erection of prestre Unit – II Design of tension	 sses by various concepts - Types of Losses and strength - Shear resistance - Web shear crack – Fl Design of slabs - Design of sleepers - Design of A essed girders. Tension and Compression Members: members - Design of compression members with an essed strength of the strengt of the strength of the strength of the	exure - shear cracks nchorage zone - IS r	s - Design prin nethod - Intro	ncipl ducti	es fo on to	r men Laur	nbers with aching and 9
			.ppea.e.		lesigi	i oi p	
	ssed concrete cylindrical water tanks. Design of Composite Structures:				lesigi		9
Unit – III Analysis for stru Members: Advant		nd shear strength If linear - Transform	of composit ations - Prima	e m ary r	nemb	ers. C	9 Continuous Secondary
Unit – III Analysis for stru Members: Advant moment - Resulta	Design of Composite Structures: esses - Estimate for deflections - Flexural ar ages - Methods of achieving continuity - Concept of	nd shear strength If linear - Transform	of composit ations - Prima	e m ary r	nemb	ers. C	9 Continuous Secondary
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere	Design of Composite Structures: esses - Estimate for deflections - Flexural ar ages - Methods of achieving continuity - Concept c int moment - Pressure or thrust line - Line of prestress	nd shear strength of linear - Transform - Concordant cable cation - Systems - Ma	of composit ations - Prima profile - Analy anufacturing r	e m ary r sis o netho	nemb nome f con	ers. C ent - S tinuou Equip	9 Continuous Secondary us beams. 9 oments for
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere construction - Dis	Design of Composite Structures: esses - Estimate for deflections - Flexural ar ages - Methods of achieving continuity - Concept of int moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types	nd shear strength of linear - Transform - Concordant cable cation - Systems - Ma	of composit ations - Prima profile - Analy anufacturing r	e m ary r sis o netho	nemb nome f con	ers. C ent - S tinuou Equip	9 Continuous Secondary us beams. 9 oments for
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere construction - Dist Unit – V Design of flexural	Design of Composite Structures: esses - Estimate for deflections - Flexural ar ages - Methods of achieving continuity - Concept of int moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types uniting of structures.	nd shear strength of linear - Transform - Concordant cable cation - Systems - Ma of members - Pref	of composit ations - Prima profile - Analy anufacturing n abricated cor	e m ary r sis o netho npor	nemb nome f con ods -	ers. C ent - S tinuou Equip - La	9 Continuous Secondary us beams. 9 oments for urge pane 9
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere construction - Dist Unit – V Design of flexural	Design of Composite Structures: esses - Estimate for deflections - Flexural ar rages - Methods of achieving continuity - Concept of int moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types uniting of structures. Design of Prefabricated Elements: member - Design of flat slab and hollow core slab- Design	nd shear strength of linear - Transform - Concordant cable cation - Systems - Ma of members - Pref	of composit ations - Prima profile - Analy anufacturing n abricated cor	e m ary r sis o netho npor	nemb nome f con ods -	ers. C ent - S tinuou Equip - La	9 Continuous Secondary us beams. 9 oments fo urge pane 9 rinciples o
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere construction - Dis Unit – V Design of flexural column - Joints fo	Design of Composite Structures: esses - Estimate for deflections - Flexural ar rages - Methods of achieving continuity - Concept of int moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types uniting of structures. Design of Prefabricated Elements: member - Design of flat slab and hollow core slab- Design	nd shear strength of linear - Transform - Concordant cable cation - Systems - Ma of members - Pref	of composit ations - Prima profile - Analy anufacturing n abricated cor	e m ary r sis o netho npor	nemb nome f con ods -	ers. C ent - S tinuou Equip - La	9 Continuous Secondary us beams. 9 oments foo urge pane 9 rinciples o
Unit – III Analysis for str Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ere construction - Dist Unit – V Design of flexural column - Joints fo	Design of Composite Structures: esses - Estimate for deflections - Flexural ar rages - Methods of achieving continuity - Concept of int moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types uniting of structures. Design of Prefabricated Elements: member - Design of flat slab and hollow core slab- Design	nd shear strength of linear - Transform - Concordant cable ration - Systems - Ma of members - Pref esign of Inverted -T b	of composit ations - Prima profile - Analy anufacturing r abricated cor	e n ary r sis o netho npor	nemb nome f con ods - nents	ers. C ent - S tinuou Equip - La	9 Continuous Secondary us beams. 9 oments for rge panel 9
Unit – III Analysis for str. Members: Advant moment - Resulta Unit – IV Principles - Types hoisting and ereconstruction - Dist Unit – V Design of flexural column - Joints fo REFERENCES: 1. Krishnara	Design of Composite Structures: esses - Estimate for deflections - Flexural ar ages - Methods of achieving continuity - Concept of ant moment - Pressure or thrust line - Line of prestress Prefabricated Elements: s of prefabrication - Modular Co-ordinate - Standardiz ction - Techniques for erection of different types uniting of structures. Design of Prefabricated Elements: member - Design of flat slab and hollow core slab- Design structural members.	ad shear strength of linear - Transform - Concordant cable ation - Systems - Ma of members - Pref esign of Inverted -T b aw Hill Publishing Co	of composit ations - Prima profile - Analy anufacturing n abricated cor eeam and L-be	e n ary r sis o netho npor	nemb nome f con ods - nents - Des 012.	ers. C ent - S tinuou Equip - La ign pr	9 Continuous Secondary us beams. 9 oments for urge pane 9 rinciples of Total:45

	SE OUTCOMES	S: course, the studer	its will be able to				BT Mapp (Highest L	
CO1	analyze and d	esign the flexural me	embers				Analyzing	(K4)
CO2	design the ten	sion and flexural me	mber				Analyzing	(K4)
CO3	analyze the co	mposites structure a	and continuous mer	nber			Analyzing	(K4)
CO4	enumerate the	e principles, manufac	ture and erection o	f prefabricate	d components		Analyzing	(K4)
CO5	formulate the	design procedure to	design the prefabrio	cated slabs a	nd beams		Analyzing	(K4)
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	P01	PO2	1	PO3	PO4	PO	5
	CO1	3			3	2	3	
	CO2	3			3	2	3	
	CO3	3			3	2	3	
	CO4	3			3	2	3	
	CO5	3			3	2	3	
1 – Sli	ght, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	20	70				100
	CAT2	10	20	70				100
	CAT3	10	20	70				100
		10	20	70			10	

22SEL21 - COMPUTER AIDED DESIGN AND DRAFTING LABORATORY II

Programme & Branch	M.E.: STRUCTURAL ENGINEERING	Sem.	Category	L	Т	Р	Credit
Prerequisites	Computer Aided Design and Drafting Laboratory I	2	PC	0	0	2	1
Preamble To gain knowledge on finite element modeling, design and detailing of various rein and steel structures as per IS codal provisions using ETABS.		s reinfo	orced	concrete			

List of Exercises / Experiments:

1.	Analysis and design of a continuous beam.
2.	Analysis and design of a continuous slab.
3.	Analysis and design of a single storey RCC building.
4.	Analysis and design of a multistorey RCC building for gravity loads.
5.	Analysis and design of a multistorey RCC building for wind loads.
6.	Analysis and design of a multistorey steel building for gravity loads.
7.	Analysis and design of a multistorey steel building for seismic loads.
8.	Analysis and design of shear wall.
9.	Analysis and design of circular elevated reinforced concrete water tank.
10.	Analysis and design of rectangular reinforced concrete water tank resting on ground.
11.	Analysis and design of reinforced concrete silos.
12.	Analysis and design of composite continuous beam.
	Total: 30

REFERENCES/MANUAL/SOFTWARE:

	Unnikrishna Pillai and Devdas Menon, "Reinforced concrete Design", 3rd Edition, Tata McGraw Hill Publishers Company Ltd., New Delhi, 2006.
2.	Subramanian N., "Design of Reinforced Concrete Structures", 1st Edition, Oxford University Press, 2014.

	SE OUTCOMES: npletion of the course, the st	udents will be able to			Mapped est Level)
CO1	Model, analyse and design		lying(K4), ulation (S2)		
CO2	Analyse and design RCC a	nd steel buildings using ETAE	3S.		/zing (K4), ulation (S2)
CO3	Design storage structures u	ising ETABS.			/zing (K4), ulation (S2)
		Mapping of COs with PC	Os and PSOs		
COs/PC	Os PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	CO3 3 2 3		3	3	
1 – Slig	ht, 2 – Moderate, 3 – Substa	antial, BT- Bloom's Taxonomy	,		

22SEL22 - STRUCTURAL ENGINEERING DESIGN STUDIO LABORATORY

Programme& Branch	M.ESTRUCTURAL ENGINEERING	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	2	PC	0	0	2	1
Preamble	This course imparts knowledge on the analysis, de of a building	sign ar	nd detailing o	of all s	tructur	al con	nponents

List of Exercises / Experiments:

1.	Planning analysis, design and detailing of a RC residential building
2.	Planning analysis, design and detailing of a RC commercial building
3.	Planning analysis, design and detailing of a Pre-Engineered Building
4.	Analysis, design and detailing of a roof truss

Total: 30

REFERENCES/MANUAL/SOFTWARE:

1.	ETABS
2.	STADD Pro
3.	AutoCAD
4.	Tekla Structures

	RSE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	Plan, Model, analyse, design and carry out complete detailing of RC building	Creating (K6), Manipulation (S2)
CO2	Plan, Model, analyse, design and carry out complete detailing of a PEB structure	Creating (K6) Manipulation (S2)
CO3	analyse, design and carry out complete detailing of a roof truss	Creating (K6) Manipulation (S2)

Mapping of COs with POs and PSOs										
COs/POs	PO1	PO2	PO3	PO4	PO5					
CO1	3	2	3	3	3					
CO2	3	2	3	3	3					
CO3	3	2	3	3	3					

22SEP31 – PROJECT WORK - I

Programme & Branch	M.E. &Structural Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	NIL	3	EC	0	0	16	8

	COURSE OUTCOMES: On completion of the course, the students will be able to			
CO1	identify the problem and formulate a problem statement	Applying (K3)		
CO2	summarize the literature review	Understanding (K2)		
CO3	develop a suitable methodology	Applying (K3		
CO4	carry out experimental and/or theoretical work as per the specified methodology / design and prepare detailed drawing for various structural components using computer software	Creating (K6)		
CO5	prepare and present the project report	Applying (K3)		

Mapping of COs with POs and PSOs										
COs/POs	PO1	PO2	PO3	PO4	PO5					
CO1	3	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					

22SEP41 - PROJECT WORK – II

Programme & Branch	M.E. &Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	4	EC	0	0	24	12

	COURSE OUTCOMES: On completion of the course, the students will be able to			
CO1	identify the problem and formulate a problem statement	Applying (K3)		
CO2	summarize the literature review	Understanding (K2)		
CO3	develop a suitable methodology	Applying (K3		
CO4	carry out experimental and/or theoretical work as per the specified methodology / design and prepare detailed drawing for various structural components using computer software	Creating (K6)		
CO5	prepare and present the project report	Applying (K3)		

Mapping of COs with POs and PSOs										
COs/POs	PO1	PO2	PO3	PO4	PO5					
CO1	3	3	3	3	3					
CO2	3	3	3	3	3					
CO3	3	3	3	3	3					
CO4	3	3	3	3	3					
CO5	3	3	3	3	3					
– Slight, 2 – Mode	rate, 3 – Substanti	al, BT- Bloom's Tax	onomy							

	22SEE01 - EXPERIMENTAL METHODS	AND MODEL ANA	LYSIS				
Programme & Branch	M.E. & STRUCTURAL ENGINEERING	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	2	PE	3	0	0	3
Preamble	This course discusses mainly on the various inst demonstrates about the significance of measurement			ous 1	estin	g me	thods and
Unit – I							9
Basic concept	n measurements - Measurement in displacement, stra	in pressure, force,	, torque etc.	- Ту	pe c	f stra	in gauge
(Mechanical, El	ectrical resistance, Acoustical etc.) - Load calibration of tes	sting machines- I.S	6. Code provis	ions			
Unit – II		-					9
Mechanical, Op	tical and Acoustical extensometers - Strain measuremer	nt - Electrical resis	tance strain g	gaug	es- F	Princip	ole, Types
Performance, L	ses- Strain Rosettes- Wheatstone Bridge- Electronic load	cells-Proving rings	- X Y Plotter -	Win	d Tu	nnels.	
Unit – III							9
Indication and	Recording - Static and Dynamic data recording-Data (Dig	ital and Analogue)) acquisition a	and p	oroce	ssing	systems
Strain analysis	nethods-Rosette analysis - Static and Dynamic testing tec	hniques					
Unit – IV							9
Nondestructive	testing techniques - Photo elasticity - Optics of photo	elasticity - Polaris	cope - Isocli	nics	and	Isoch	romatics
Methods of stre	ss separation - Holographic techniques.						
Unit – V							9
Laws of similitu	de-Model materials-Model testing- Necessity for Model ar	alysis – Advantag	es – Applicati	ons	- Тур	es of	similitude
Scale effect in	Nodels- Indirect model study-Direct model study-Limitatio	ons of model invest	tigations- Stru	ictura	al pro	blem	s that ma
demand model	studies - Usage of influence lines in model studies.						
							Total:4
REFERENCES							
1. Sadhu	Singh, "Experimental Stress Analysis", 2nd Edition, Khann	a Publishers, New	Delhi, 1990.				
	C.S., "Instrumentation – Devices and Systems", 2nd Edit print 2008.	· · · · · · · · · · · · · · · · · · ·		g Co	Ltd.	, New	Delhi,
2. 21st Re							

	SE OUTCOME	S: course, the studer	its will be able to				BT Mapp (Highest L		
CO1	identify the ba		Understanding	g (K1)					
CO2	apply the instr engineering	n in civil	Applying (K3)						
CO3	apply dynamic		Applying (K3)						
CO4	quantify the s		Applying (K3)						
CO5	explain the pr		Applying (K3)						
			Mapping of CO	s with POs	and PSOs				
С	Os/POs	PO1	PO2		PO3	PO4	PO	5	
	CO1	3	1		3				
	CO2	3	1		3				
	CO3	3	1		3				
	CO4	3	1		3				
	CO5	3	1		3				
1 – Sli	ight, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	20	80					100	
	CAT2	20	80					100	
	CAT3	20	80					100	

10 * ±3% may be varied (CAT 1,2 3 - 50 marks & ESE - 100 marks)

ESE

90

100

	22SEE02 - DESIGN OF S	UBSTRUCTURES								
	(IS 1904 - 1986, IS 6403-1981, IS 8009 – 1976 F IS 2911 Part 1 to 4 -2010, IS 2810-1979, IS 2974 -19				992)					
Programme& Branch	ME Structural Engineering	Sem.	Category	L	Т	Ρ	Credit			
Prerequisites	NIL	2	PE	3	0	0	3			
Preamble	This course makes the students to understand to gain knowledge of the design methods that ca			ngine	eering	g struc	ctures and			
Unit – I	Shallow Foundations:						9			
	tions and their specific applications – Depth of founda d-strip-rectangular -trapezoidal and combined footing			ent e	stima	ates –	Structura			
Unit – II	Pile Foundations:						9			
Types of piles an of under reamed	nd their applications – Load carrying capacity - Settle piles.	ments - Group action -	Design of pil	es ai	nd pil	e cap	s - Desigi			
Unit – III	Piers and caissons:						9			
	onstruction – advantages and disadvantages – desig - piers and caissons for bridges - Foundations for tow			s – p	neun	natic d	caissons ·			
Unit – IV	Machine Foundations:						9			
	requirements and design criteria – vibration analysis ciprocating machine - vibration isolation and control.	of machine foundation	 determinat 	ion c	f nati	ural fr	equency			
Unit – V	Tunnel and Conduits:						9			
	around tunnels – construction of earth tunnels – arch ojecting conduits – surface load on conduits – constru		underground	cond	duits	 ditc 	h, positiv			
							Total:4			
REFERENCES:										
1. Swamy	Saran, "Analysis and Design of substructures", 3rd Ec	dition, Oxford and IBH	Publishing Co	. Pv	t.Ltd.	, 2018	3			
2. Nayak N	I.V., "Foundation Design Manual for Practicing Engine	eers", 2nd Edition, Dha	npatrai and S	ons,	2012					
	Das "Principles of Foundations Engineering" 7th Fo	lition Cengage Learnin	ng 2011							
3. Braja M	Braja M. Das, "Principles of Foundations Engineering", 7th Edition, Cengage Learning, 2011.									

	SE OUTCOMES	S: course, the studen	ts will be able to				BT Mapp (Highest L	
CO1	analyze and d	esign different types	of shallow and raft	foundations			Analyzing	(K4)
CO2	calculate the lo	oad carrying capacity	of the piles and pi	le group and	design various	types of piles	Applying (K3)
CO3	design pier an	d caissons for tower,	bridges and chimr	neys			Applying (K3)
CO4	examine the s	tructural aspects of r	nachine foundation				Applying (K3)
CO5	explain the co	ncept of tunnel and c	onduits constructio	'n			Understandir	ng (K2)
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	PO1	PO2		PO3	PO4	POS	5
	CO1	3			3	2	3	
	CO2	3			3	2	3	
	CO3	3			3	2	3	
	CO4	3			3	2	3	
	CO5	3			3	2	3	
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my			I	
			ASSESSMENT	PATTERN -	THEORY			
-	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	4	60	20	16			100
	CAT2	4	60	20	16			100
	CAT3	4	60	20	16			100
	ESE	4	60	20	16			100

* \pm 3% may be varied (CAT 1,2 &3 – 50 marks & ESE – 100 marks)

22SEE03 - THEORY OF STRUCTURAL STABILITY

Program Branch	me &	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequi	sites	Nil	2	PE	3	0	0	3
Preamble)	To understand the basic concepts & terminolog for testing stability	y on structural stability	and describe	conc	eptua	al proc	cedures
Unit – I		Fundamental Concepts of Stability:						9
		of structures: strength, stability and stiffne Concepts of Equilibrium and Energy approache		stability, insta	bility	and	d bifu	rcation -
Unit – II		Buckling of Columns:						9
		ial equations – Higher order differential e fect column – eccentrically loaded column – Ra						
Unit – III		Buckling of Beam – Column and Frames:						9
		 columns: Buckling of Beam – columns with ling stiffness. Buckling of frames: Mode of bucklir 						Effect of
Unit – IV		Lateral and Torsional Buckling:						9
		s for lateral buckling – Lateral buckling of beal Thin Walled Open Sections: Introduction – Torsi					nply s	upported I
Unit – V		Stability of Plates and Inelastic Buckling:						9
		Ilar plates for various edge conditions – Finite d duced modulus) - Tangent modulus theory - S		duction to ine	astic	buc	kling	 Double
								Total:45
REFERE	NCES:							
1. C	Chajes A., "	Principles of Structural Stability Theory", 4th Edit	ion, Prentice Hall, 2008					
2. l	yengar N.G	R., "Structural Stabilityof Columns and Plates", A	Affiliated East West Pr	ess Pvt. Ltd.,	New	/ Dell	ni, 200)0.
3. E	Brush D.O.	and Almorth B.O., "Buckling of Bars, Plates and S	Shells", 2nd Edition, Mc	Graw Hill, 200)6.			

	SE OUTCOMES	S: course, the studer	its will be able to				BT Mapp (Highest L	
CO1	explain the co	ncepts of stability					Understanding	g (K2)
CO2	analyse the bu	uckling of columns wi	th various boundar	y conditions			Analyzing (K4)
CO3	analyze the bu	uckling of frames and	l plates				Analyzing (K4)
CO4	apply the cond	cept of lateral and tor	sional buckling				Applying (K3)	
CO5	identify the tor	sional, lateral and in	elastic buckling of p	olates			Applying (K3)	
			Mapping of CO	s with POs a	and PSOs			
C	Os/POs	PO1	PO2	I	PO3	PO4	PO	5
	CO1	3			3	3		
	CO2	3			3	3		
	CO3	3			3	3		
	CO4	3			3	3		
	CO5	3			3	3		
1 – Sli	ght, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my	I			
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	75	15				100
	CAT2	10	75	15				100
	CAT3	10	75	15				100
	ESE	10	75	15				100
* ±3%	may be varied (CAT 1,2 & 3 – 50 m	arks & ESE – 100 r	narks)				

	22SEE04 - OPTIMIZATION OF ST	RUCTURES					
Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	This course provides to present modern concepts of option optimization theory are developed with simple design experimentary of the second sec		structures. Ba	asic io	deas	from	
Unit – I	Basic Principles and Classical Optimization Technic	ques:					9
Differential calc Multiplier metho Unit – II	s – Design space – Feasible and infeasible – Convex and Co ulus –Optimality criteria – Single variable optimization – Mult d) – with inequality constraints (Khun – Tucker Criteria) Linear Programming: problems – Graphical solution – Analytical methods – Stand	tivariable optimi	zation with no	o cor	nstrai	nts- (Lagrang 9
	 Basic feasible solution – Simplex method – Two phase m 						
Unit – III	Non Linear Programming:						9
Unit – III One Dimension	Non Linear Programming: nal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method –						search
Unit – III One Dimension Dichotomous s	nal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method –						search
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu	nal minimization methods: One-dimensional – Unimodal	Interpolation n equations – Unc ty- Bellman's pr	constrained ar	nd co	raine	ained	search timizatio 9 problem
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu	hal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e lty – Concept of solving problems with one degree of difficult decision problem – Concept of sub-optimization problems usir	Interpolation n equations – Unc ty- Bellman's pr	constrained ar	nd co	raine	ained	search - timization 9 problems
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu of a multistage Unit – V Methods for opi weight design fi	hal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e lty – Concept of solving problems with one degree of difficult	Interpolation n equations – Unc ty- Bellman's pr ng classical and single storied Fr	nethods. Unc constrained ar inciple of opt tabular meth rames using p	nd co imali ods	raine onstra ty – I c the	ained Repre	search timizatio 9 problem sentatio 9 Minimur
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu of a multistage Unit – V Methods for opi weight design fi	nal minimization methods: One-dimensional Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e elty – Concept of solving problems with one degree of difficult decision problem – Concept of sub-optimization problems usir Structural Applications: imal design of structural elements – Continuous beams and so or truss members – Fully stressed Design – Optimization principation	Interpolation n equations – Unc ty- Bellman's pr ng classical and single storied Fr	nethods. Unc constrained ar inciple of opt tabular meth rames using p	nd co imali ods	raine onstra ty – I c the	ained Repre	search timizatio 9 problem sentatio 9 Minimur
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu of a multistage Unit – V Methods for opi weight design fi buildings, Wate	nal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e lty – Concept of solving problems with one degree of difficult decision problem – Concept of sub-optimization problems usir Structural Applications: imal design of structural elements – Continuous beams and so or truss members – Fully stressed Design – Optimization primer tanks and bridges	Interpolation n equations – Unc ty- Bellman's pr ng classical and single storied Fr	nethods. Unc constrained ar inciple of opt tabular meth rames using p	nd co imali ods	raine onstra ty – I c the	ained Repre	search timizatio 9 problem sentatio 9 Minimur multistor
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu of a multistage Unit – V Methods for opi weight design fi buildings, Wate	nal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e lty – Concept of solving problems with one degree of difficult decision problem – Concept of sub-optimization problems usir Structural Applications: imal design of structural elements – Continuous beams and so or truss members – Fully stressed Design – Optimization primer tanks and bridges	Interpolation m equations – Unc ty- Bellman's pr ng classical and single storied Fr ciples to design	nethods. Unc constrained ar inciple of opt tabular meth rames using p of R.C. struc	onst imali ods	raine	ained Repre ory –	search timizatio 9 problem sentatio 9 Minimur multistor Total:4
Unit – III One Dimension Dichotomous s Techniques Unit – IV Posynomial – d with zero difficu of a multistage Unit – V Methods for opi weight design fr buildings, Wate REFERENCES 1. Rao S.	hal minimization methods: One-dimensional – Unimodal earch – Fibonacci Method – Golden section method – Geometric and Dynamic Programming: egree of difficulty – reducing G.P.P to a set of simultaneous e lty – Concept of solving problems with one degree of difficult decision problem – Concept of sub-optimization problems usir Structural Applications: imal design of structural elements – Continuous beams and s or truss members – Fully stressed Design – Optimization prime r tanks and bridges	Interpolation m equations – Unc ty- Bellman's pr ng classical and single storied Fr ciples to design n, New Age Inte	ernational Pvt	onst imali ods	raine	ained Repre ory –	search timizatio 9 problem sentatio 9 Minimur multistor Total:4

	SE OUTCOMES	S: course, the studer	ts will be able to				BT Mappe (Highest Le	
CO1	explain the co	ncept of optimization					Applying (I	< 3)
CO2	analyze linear	programming					Analysis (ł	(4)
CO3	design the nor	nlinear programming					Applying (K3)
CO4	develop the ge	eometric and dynami	c programming				Analysis (K4)
CO5	apply optimiza	tion technique in stru	uctural problems				Applying (K3)
			Mapping of Cos	s with POs a	nd PSOs			
С	os/POs	P01	PO2		PO3	PO4	PO5	
	CO1	3						
	CO2	3				2		
	CO3	2			2	3	2	
	CO4	2	2		2	3	2	
	CO5	3	2		2	3	2	
1 – Slig	ght, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN –	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	To al %
	CAT1	20	70	10				100
	CAT2	10	80	10				100
	CAT3	10	80	10				100
			1					100

	22SEE05 – FINITE ELEMENT ANAL	YSIS		1		T	1
Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Р	Credi
Prerequisites	Strength of materials ,matrix algebra and structural analysis	2	PE	3	0	0	3
Preamble	To study the basics of the Finite Element Technique, a nume problems	erical tool f	or the solution	n of d	differ	ent cla	isses of
Unit – I	INTRODUCTION:042022:						9
Unit – II Natural Coordina Isoperimetric Forr ocal and natural	ess Matrix and Boundary Conditions ELEMENT PROPERTIES: es – Triangular Elements-Rectangular Elements – Lagrange nulation – Stiffness Matrix of Isoperimetric Elements – One dim coordinate systems, shape functions –Bar, beam and truss ele	ensional p	roblems -Co	ordin	ate s	ystem	ns –globa
Vector. Unit – III	TWO AND THREE DIMENSIONAL PROBLEMS:						9
Computation of S of Axisymmetric E	Triangle – Linear Strain Triangle – Rectangular Elements- tresses, Geometric Nonlinearity and Static Condensation – Axis lement – Finite Element Formulation for 3 Dimensional Element	symmetric	Element - Fi				ormulatio
Unit – IV	ANALYSIS OF FRAME STRUCTURES:			_			9
	Members-Analysis of Truss-Stiffness of Beam Members-Finition nalysis of Grid and Space Frame	te Elemen	t Analysis of	Cor	tinuc	us Be	eam-Plar
Unit – V	APPLICATIONS:						9
	or Elastic Stability- Finite Element Analysis of Thin Plate – F r, Vibration and Thermal Problems-Meshing and Solution						
							TOTAL.
REFERENCES:							Total.4
David Hu	tton, "Fundamentals of Finite Element Analysis", Tata McGra	w Hill Pub	lishing Comp	bany	Limi	ted, N	
1. David Hu 2015.	tton, "Fundamentals of Finite Element Analysis", Tata McGra .S.S, "Finite Element Analysis", New Age International Publisher		lishing Comp	bany	Limi	ted, N	
David Hu1.2015.2.Bhavikatt		rs, 2017					lew Dell
2015. 2. Bhavikatt 3. Chandrup	.S.S, "Finite Element Analysis", New Age International Publisher	rs, 2017 in Enginee	ering", Prentic				lew Del

	SE OUTCOMES mpletion of the	S: course, the studer	nts will be able to				BT Mapp (Highest L	
CO1	apply the conc	ept of Finite Elemen	t Analysis and App	roximate solu	itions technique	es	Understanding	g (K2)
CO2	execute finite	element analysis cor	ncept in one dimens	sional elemen	it problems		Applying (K3)	
CO3	apply the finite	element analysis c	oncept in two and th	hree dimensi	onal element p	roblems	Applying (K3)	
CO4	analyze the fra	amed structures					Applying (K3)	
CO5	solve the Nonl	inear, Vibration and	Thermal problems				Applying (K3)	
			Mapping of Co	s with POs a	and PSOs			
С	os/POs	P01	PO2	F	PO3	PO4	PO5	5
	CO1	3			3	2	3	
	CO2	3			3	2	3	
	CO3	3			3	2	3	
	CO4	3			3	2	3	
	CO5	3			3	2	3	
1 – Sli	ght, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	30	60				100
	CAT2	10	30	60				100
			1	1				100
	CAT3	10	30	60				100

		22SEE06 - DESIGN OF PLATES AND SH	IELLS	1	T	1	1	1
Progra Branch	imme & n	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prereq	uisites	Design of Concrete Structures & Design of Steel Structures	2	PE	3	0	0	3
Preamb	ole	To gain the knowledge on design tall buildings for earthor	quake, v	vind resistan	ce a	and s	tabili	ty
Unit – I	I	Bending of Long Rectangular Plates to a Cylindrical	Surface	:				9
Differer built in (for cylindrical bending of plates – Uniformly loaded rectangula	ar plates	with simple s	uppo	orted	edge	s and wit
Unit – I		Pure bending of plates						9
		s of bent plates – Relations between bending moments and curv ns. Symmetrical bending of circular plates: Differential equation –				Strai	n ene	rgy in pui
Unit – I		Simply supported rectangular plates under sinusoidal I	oading:					9
Naviers	s solution and	d its application to concentrated load – Levy's solution for uniform	nly distril	outed load or	hydr	ostat	ic pre	ssure.
Unit – I	IV	Introduction to Shells:						9
								-
Parame		ntation of a surface; The first quadratic form; Equation to the no					quad	-
Parame Principa	al curvatures	ntation of a surface; The first quadratic form; Equation to the no. , Gauss curvature, and lines of curvature; Some definitions; Clas					quad	Iratic form
Parame Principa Unit – V	al curvatures V	ntation of a surface; The first quadratic form; Equation to the no s, Gauss curvature, and lines of curvature; Some definitions; Clas Cylindrical shells	ssification	n of shell surf	aces	•	-	Iratic form
Parame Principa Unit – V	al curvatures V ane theory o	ntation of a surface; The first quadratic form; Equation to the no. , Gauss curvature, and lines of curvature; Some definitions; Clas	ssification	n of shell surf	aces	•	-	Iratic form
Parame Principa Unit – V	al curvatures V ane theory o	ntation of a surface; The first quadratic form; Equation to the no s, Gauss curvature, and lines of curvature; Some definitions; Clas Cylindrical shells f cylindrical shells; Bending theory of cylindrical shells loaded Sy	ssification	n of shell surf	aces	•	-	Iratic forn
Parame Principa Unit – N Membra method	al curvatures V ane theory o	ntation of a surface; The first quadratic form; Equation to the no s, Gauss curvature, and lines of curvature; Some definitions; Clas Cylindrical shells f cylindrical shells; Bending theory of cylindrical shells loaded Sy	ssification	n of shell surf	aces	•	-	ratic forr 9 Schorer
Parame Principa Unit – N Membra method	al curvatures V ane theory o d, Beam meth RENCES:	ntation of a surface; The first quadratic form; Equation to the no s, Gauss curvature, and lines of curvature; Some definitions; Clas Cylindrical shells f cylindrical shells; Bending theory of cylindrical shells loaded Sy	ssification	n of shell surf	aces	•	-	ratic forr 9 Schorer
Parame Principa Unit – M Membra method REFER 1.	al curvatures V ane theory o d, Beam meth RENCES: G.S.Rama	ntation of a surface; The first quadratic form; Equation to the no , Gauss curvature, and lines of curvature; Some definitions; Clas Cylindrical shells f cylindrical shells; Bending theory of cylindrical shells loaded Sy nod of analysis	rmmetrica	n of shell surf: ally–Approxin	aces	•	-	ratic form 9 Schorer
Parame Principa Unit – \ Membra method	al curvatures V ane theory o d, Beam meth RENCES: G.S.Rama Stephen Tiu	ntation of a surface; The first quadratic form; Equation to the no. Gauss curvature, and lines of curvature; Some definitions; Class Cylindrical shells f cylindrical shells; Bending theory of cylindrical shells loaded Synod of analysis aswamy, Design & Construction of Concrete Shell Roofs	rmmetrica IcGraw-H	n of shell surf: ally–Approxin ill, 2003.	nate	solut	ion by	Schorer Total:4

	SE OUTCOMES	S: course, the studer	ts will be able to				BT Mapp (Highest Le	
CO1	Apply the kn	owledge of Bendin	g of Long Rectan	gular Plates	to a Cylindric	al Surface	Applying (K3)	
CO2	Explain the p	principles of Pure b	ending of plates.				Applying (K3)	
CO3	Design Simpl	y supported rectang	ular plates in sinu	soidal loadin	g.		Applying (K3)	
CO4	Explain the p	principles of Shells					Applying (K3)	
CO5	Explain the c	concepts of cylindri	cal shells.				Applying (K3)	
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	PO1	PO2		PO3	PO4	PO5	5
	CO1	3	2		3	2	3	
	CO2	3	2		3	2	3	
	CO3	3	2		3	2	3	
	CO4	3	2		3	2	3	
	CO5	3	2		3	2	3	
1 – Sli	ight, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	90					100
	CAT2	10	90					100
	CAT3	10	90					100
	ESE	10	90					100

* ±3% may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

22SEE07 - DESIGN OF INDUSTRIAL STRUCTURES (IS 800: 2007, IS 801, IS 811, IS 875 Part 3 & SP-06 are to be permitted)

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To offer the design of steel structures as per limit sta IS: 800 – 2007. It aims at determination of safe as we framed structures.						
Unit – I	Planning and Functional Requirements:						9
	Industries and Industrial structures - Planning for Layout n against noise and vibration - Guidelines of Factories Act.		regarding lig	hting	j, ver	ntilatio	on and fire
Unit – IIO	Industrial Buildings – Steel:						9
	the crane system – Design forces - Gantry girders - For s - Components of bunkers - IS code specifications - Desig		der - Design	of g	antry	girde	ers - Stee
Unit – III	Industrial Buildings – Concrete:						9
Unit – III Loads on the co		esign of corbels	and nibs – C ations.	lass	ificati	ons o	-
Unit – III Loads on the co foundations - Var	Industrial Buildings – Concrete: brbel - Bearing stress - Evaluation of internal forces - De	esign of corbels	and nibs – C ations.	lass	ificati	ons o	-
Unit – III Loads on the co foundations - Var Unit – IV Components of c	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - De rious types of machine foundations - Analysis and design o	esign of corbels of machine founda	ations.				f Machine
Unit – III Loads on the co foundations - Var Unit – IV Components of c	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design o Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for	esign of corbels of machine founda design of concre crete chimney.	ations.				f Machine
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design of Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc	esign of corbels of machine founda design of concre crete chimney. ructures: uctures - Cooling	ations. ete bunkers - g Tower - Tr	Des	ign o	f conc	f Machine 9 crete silo 9
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design o Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc Power Plant Structures & Power Transmission Str power plants - Types of power plants - Containment structures	esign of corbels of machine founda design of concre crete chimney. ructures: uctures - Cooling	ations. ete bunkers - g Tower - Tr	Des	ign o	f conc	f Machine 9 crete silo 9 e towers
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design o Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc Power Plant Structures & Power Transmission Str power plants - Types of power plants - Containment structures	esign of corbels of machine founda design of concre crete chimney. ructures: uctures - Cooling	ations. ete bunkers - g Tower - Tr	Des	ign o	f conc	f Machine 9 crete silo 9
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p Configuration - D	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design o Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc Power Plant Structures & Power Transmission Str power plants - Types of power plants - Containment structures	esign of corbels of machine founda design of concre- crete chimney. ructures - Cooling and design of tow	ations. ete bunkers - g Tower - Tr ers.	Des	ign o	f conc	f Machine 9 crete silo 9 e towers
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p Configuration - D REFERENCES: 1. Subrama	Industrial Buildings – Concrete: brbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design on Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc Power Plant Structures & Power Transmission Structures of power plants - Types of power plants - Containment structures and tower height - Types of towers - Analysis and the structures and tower plants - Containment structures of tower plants - Containment structures and tower height - Types of towers - Analysis and tower plants - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Types of towers - Containment structures and tower height - Containment structures	esign of corbels of machine founda design of concre- crete chimney. ructures - Cooling and design of town	ations. ete bunkers - g Tower - Tr ers. New Delhi, 20	Des ansr	ign o nissic	f cond	f Machin 9 crete silo 9 e towers
Unit – III Loads on the co foundations - Var Unit – IV Components of c Types of chimney Unit – V Introduction to p Configuration - D REFERENCES: 1. Subrama 2. Duggal. \$	Industrial Buildings – Concrete: orbel - Bearing stress - Evaluation of internal forces - Derious types of machine foundations - Analysis and design o Concrete Bunkers & Chimney: concrete bunkers - IS code specifications - Procedure for ys - Loads on chimneys - Design aspects – Design of conc Power Plant Structures & Power Transmission Struetermination of tower height - Types of towers - Analysis and the structures anian N, "Design of Steel Structures", 2nd Edition, Oxford U	esign of corbels of machine founda r design of concre crete chimney. ructures: ructures - Cooling and design of town Jniversity Press, I AcGraw Hill Priva	ations. ete bunkers - g Tower - Tr ers. New Delhi, 20 te Limited, Ne	Des ansr 15.	ign o nissic	f cond	f Machin 9 crete silo 9 e towers

	SE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L	
CO1	classify and pla	anning the industrial	structures				Understandir	ng(K2)
CO2	design the gar	try girders, bunkers	and silos				Analyzing	(K4)
CO3	analyse and de	esign concrete indus	trial structures				Analyzing	(K4)
CO4	apply the desig	gn concepts of concr	ete bunkers and sil	os			Analyzing	(K4)
CO5	apply the desig	gn principles of trans	mission line towers	and power p	lant structures		Understandir	ng(K2)
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	PO1	PO2		PO3	PO4	POS	5
	CO1	3			3	2	3	
	CO2	3			3	2	3	
	CO3	3			3	2	3	
	CO4	3			3	2	3	
	CO5	3			3	2	3	
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1	10	30	60				100
	CAT2	10	30	60				100
	CAT3	10	30	60				100
	ESE	10	40	50				100
* ±3%		10 CAT 1, 2 & 3 – 50 m						

Programme& Branch	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To make the students knowledgeable in predicting the elastic plastic conditions and to compute the stress inte						elastic and
Unit – I	Unit Title: Introduction						9
Review of Eng Fracture tough	neering Failure Analysis- Modes of fracture failure, The Griness	iffith energy Ba	lance Approa	ach -	· Cra	ck tip	Plasticity
Unit – II	Unit Title: Linear elastic fracture Mechanics						9
Feddersen app	 b theory, Stress and displacement fields in isotropic elastic roach - Determination of R curve, Energy released rate for itical energy release rate. 						
Unit – III	Unit Title: Elastic Plastic Fracture Mechanics						9
	approach -Approximate shape and size of the plastic zone- E						
Crack tip ope between CTOD	hing displacement-Dugdale approach-Path independence, , K1 and G1 for small scale yielding.						elationship
Crack tip ope between CTOD Unit – IV	, K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth	Critical J integ	gral-Evaluatio	n of	СТ	DD-Re	elationship 9
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re	, K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crac	Critical J integ	gral-Evaluatio	n of -Par	CTO	DD-Re	elationship 9 ck closure
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re	, K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue,	Critical J integ	gral-Evaluatio	n of -Par	CTO	DD-Re	elationship 9 ck closure
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re stress intensity Unit – V Principles of cr	, K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crac -Variable amplitude service loading, Interaction effects.	Critical J integ , Fatigue crack ck growth test,	gral-Evaluatio propagation stress intensi	n of -Pari ty fac	CT(is lav	DD-Re	elationship 9 ck closure s affecting 9
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re stress intensity Unit – V Principles of cr	K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crack -Variable amplitude service loading, Interaction effects. Unit Title: Crack Arrest & Numerical methods ack arrest, crack arrest in practice, K-R Curves, Crack resist	Critical J integ , Fatigue crack ck growth test,	gral-Evaluatio propagation stress intensi	n of -Pari ty fac	CT(is lav	DD-Re	elationship 9 ck closure s affecting 9
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re stress intensity Unit – V Principles of cr	K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crace-Variable amplitude service loading, Interaction effects. Unit Title: Crack Arrest & Numerical methods ack arrest, crack arrest in practice, K-R Curves, Crack resistincs, Methods to determine fracture parameters.	Critical J integ , Fatigue crack ck growth test,	gral-Evaluatio propagation stress intensi	n of -Pari ty fac	CT(is lav	DD-Re	elationship 9 ck closure s affecting 9 roaches ir
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re stress intensity Unit – V Principles of cl Fracture Mecha REFERENCES	K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crace-Variable amplitude service loading, Interaction effects. Unit Title: Crack Arrest & Numerical methods ack arrest, crack arrest in practice, K-R Curves, Crack resistincs, Methods to determine fracture parameters.	Critical J integ , Fatigue crack ck growth test, stance curve, N	gral-Evaluatio propagation stress intensi lumerical Met	n of -Pari ty fac	CT(is law ctor, s and	OD-Re v-Crae factor	elationship 9 ck closure s affecting 9 roaches ir Total:4
Crack tip ope between CTOE Unit – IV Fatigue crack mechanism-Re stress intensity Unit – V Principles of ci Fracture Mecha REFERENCES	K1 and G1 for small scale yielding. Unit Title: Fatigue Crack Growth growth - methods to determine J1c mechanism of fatigue, sidual stresses at crack tip-Retardation effect on fatigue crace-Variable amplitude service loading, Interaction effects. Unit Title: Crack Arrest & Numerical methods ack arrest, crack arrest in practice, K-R Curves, Crack resistincs, Methods to determine fracture parameters.	Critical J integ , Fatigue crack ck growth test, stance curve, N	gral-Evaluatio propagation stress intensi lumerical Met	n of -Parity factor -Parity factor 	is lav ctor, s and	OD-Re v-Crae factor	elationship 9 ck closure s affecting 9 roaches ir Total:4

	SE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L		
CO1	articulate the f	racture failure param	neters				Understandir	ng (K2)	
CO2	determine the	linear elastic fracture	e mechanics proble	ems			Understanding (K2)		
CO3	interpret the co	oncept of elastic plas	stic fracture mechar	nics			Understanding (K2)		
CO4	D4 determine the residual life of fatigue crack growth in structure							(K3)	
CO5	find out suitabl	al methods	Applying ((K3)					
			Mapping of CO	s with POs a	and PSOs				
С	Os/POs	PO1	PO2		PO3	PO4	PO	5	
	CO1	2			2		3		
	CO2	2			3		3		
	CO3	2			3		3		
	CO4	2			3		3		
	CO5	2			3		3		
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	omy					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	20	80					100	
	CAT2	20	80					100	
	CAT3	20	80				100		
	ESE	20	80					100	
* ±3%	CAT3 ESE	20	80 80	marks)				_	

22SEE09 - MECHANICS OF COMPOSITE MATERIALS AND STRUCTURES

Programme& Branch	M.E. STRUCTURAL ENGINEERING	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PE	3	0	0	3
Preamble	To gain knowledge about analysis, failure, fracture ar	nd stress strain re	lations of com	iposi	te ma	aterial	s
Unit – I	Composite materials:						9
	of fibre reinforced composites, Advantages, properties of				used	fiber a	and matri
constituents, Comp Unit – II	posite construction, micro mechanics and macro mechan Processing of the Fibre reinforced composite stru						9
	act moulding, compression moulding methods, filame					ories	-
	tribution, average fibre stress, modulus and strength, rib			01100	, uic	01100	01 51105
Unit – III	Analysis of Laminated composite plates:						9
	essumptions, strain displacement relationship, stress-sti onfiguration, basic assumptions in classical laminate pla		ina stress an	d str	ain, d	coupli	ng effects
Unit – IV	Performance of Fiber composites:						9
	Factors influencing fatigue behaviour of composites, f isms, fiber breakage, fiber debonding, delamination crac		einforced com	npos	tes,	impac	t, energy
Unit – V	Experimental Characterization and Emerging Con		5:				9
	acterization, measurement of physical properties, mea		chanical prop	ertie	s, Na	ano-co	omposites
Carbon-carbon cor	nposites, bio-composites, composites in smart structure	S.					
							Total:4
REFERENCES:							
1. Mukhopad	hyay. M, "Mechanics of Composite Materials and Struct	ures", 1st Editior	n, University F	ress	, Indi	a, 200)4.
	I., "Mechanics of Composite Materials", McGraw - Hill, K	ogakusha Ltd., To	okvo. 1975.				
2. Jones R.M	i., Mechanics of Composite Materials, McGraw - Thii, N	eganaena <u>n</u> an, re					

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the composite materials and its applications	Understanding (K2)
CO2	summarize the contact moulding and short fibre composite.	Understanding (K2)
CO3	develop the strain displacement relationship, stress-strain relations	Applying (K3)
CO4	explain the fatigue damage and impact on composite materials.	Understanding (K2)
CO5	outline the measurement of physical and mechanical properties	Understanding (K2)
	Mapping of COs with POs and PSOs	L

		Mapping of COs w	ith POs and PSOs		
COs/POs	PO1	PO2	PO3	PO4	PO5
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3		3	2	3
CO2	2		3	2	3
CO3	3		3	2	3
CO4	2		3	2	3
CO5	2		3	2	3
			L		

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60					100
CAT2	20	60					100
CAT3	20	60					100
ESE	20	60					100
* ±3% may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)				

	22SEE10 - STRUCTURAL HEALTH M						
Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To monitor the health of the structures and to identify the	oroper solutio	on for the stru	cture	l nrol	hlems	
Unit - I	Introduction to Structural Health Monitoring (SHM):			orare			9
non destructive	structural health monitoring - structural health monitoring and s evaluation - emerging SHM technologies - sensors - piezoelectr of application potential of SHM.						
Unit - II	Application of SHM in Civil Engineering:						9
	notable applications of SHM - Civil engineering field applica ures, external post tension cables, historical buildings – capaciti						
Unit - III	Non Destructive Testing of Concrete Structures:						9
	IDT- Situations and contexts, where NDT is needed, classificat ial methods, schmidt rebound hammer test, resistivity mea						
testing, ultrasoni	c testing, infra-red thermography, ground penetrating radar, oth		ecii omagneii		othoc	io, ru	
testing, ultrasoni Unit - IV	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM:	er methods.				-	9
testing, ultrasoni Unit - IV Introduction to F	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness mati oping actuator and sensor influence matrix - estimating sensor	er methods. rix and eleme	ent mass mat	rix fo	r higł	n prec	9 Sision finite
testing, ultrasoni Unit - IV Introduction to F element - devel	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness mati oping actuator and sensor influence matrix - estimating sensor	er methods. rix and eleme	ent mass mat	rix fo	r higł	n prec	9 sision finite
testing, ultrasoni Unit - IV Introduction to F element - devel estimation for dif Unit - V Repair, rehabilitation, m	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness matr pping actuator and sensor influence matrix - estimating sensor ferent patches	rix and eleme or voltage - o e structures, nd design -Ir	ent mass mat damping - ca materials and	rix fo se st d me	r higi udy thods	n prec on pe	9 cision finite erformance 9 epairs and
testing, ultrasoni Unit - IV Introduction to F element - devel estimation for dif Unit - V Repair, rehabilitation, m	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness matri ping actuator and sensor influence matrix - estimating sensor ferent patches Rehabilitation and Retrofitting of Concrete Structure: ation & retrofitting of structures, damage assessment of concret odeling of repaired composite structure, structural analysis ar	rix and eleme or voltage - o e structures, nd design -Ir	ent mass mat damping - ca materials and	rix fo se st d me	r higi udy thods	n prec on pe	9 Sision finite erformance 9 epairs and secution of
testing, ultrasoni Unit - IV Introduction to F element - devel estimation for dif Unit - V Repair, rehabilitation, m	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness matri ping actuator and sensor influence matrix - estimating sensor ferent patches Rehabilitation and Retrofitting of Concrete Structure: ation & retrofitting of structures, damage assessment of concret odeling of repaired composite structure, structural analysis ar	rix and eleme or voltage - o e structures, nd design -Ir	ent mass mat damping - ca materials and	rix fo se st d me	r higi udy thods	n prec on pe	9 cision finite erformance 9 epairs and
testing, ultrasoni Unit - IV Introduction to F element - devel estimation for dif Unit - V Repair, rehabilitation, m rehabilitation stra REFERENCES:	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness matro ping actuator and sensor influence matrix - estimating sensor ferent patches Rehabilitation and Retrofitting of Concrete Structure: ation & retrofitting of structures, damage assessment of concret odeling of repaired composite structure, structural analysis ar ategy – Electromechanical impedance technique (EMI)- Case st Balageas, Claus - Peter Fritzen, Alfredo Guemes, "Structural He	rix and eleme or voltage - o re structures, nd design -Ir tudies.	ent mass mat damping - ca materials and nportance of	rix fo se st d me re-a	r higi tudy thods nalys	n prec on pe s for re sis, ex	9 sision finite formance 9 epairs and cecution of Total:45
testing, ultrasoni Unit - IV Introduction to F element - devel estimation for dif Unit - V Repair, rehabilitation, m rehabilitation stra REFERENCES: 1. Daniel E U.K. 200	c testing, infra-red thermography, ground penetrating radar, oth Vibration Control for SHM: E formulation - constitutive relationship - element stiffness matro ping actuator and sensor influence matrix - estimating sensor ferent patches Rehabilitation and Retrofitting of Concrete Structure: ation & retrofitting of structures, damage assessment of concret odeling of repaired composite structure, structural analysis ar ategy – Electromechanical impedance technique (EMI)- Case st Balageas, Claus - Peter Fritzen, Alfredo Guemes, "Structural He	er methods. rix and eleme or voltage - o re structures, nd design -Ir tudies.	ent mass mat damping - ca materials and nportance of	rix fo se si d me re-a	r higł udy thods nalys TE P	n prec on pe s for re sis, ex	9 sision finite formance 9 epairs and cecution of Total:45

	RSE OUTCOMES	S: course, the studen	ts will be able to				BT Mapp (Highest L		
CO1	adopt a prope	r health monitoring te	echnique				Applying (K3)		
CO2	analyze the va	rious health monitor	ing system and app	ly to the real	problems		Analyzing (K4)		
CO3	identify the ac	curate non-destructiv	ve technique for exi	sting structur	e		Applying (K3)		
CO4	O4 explain the vibration control systems in the construction							g (K2)	
CO5	CO5 suggest solution for the problems identified in the structures								
			Mapping of CO	s with POs a	and PSOs				
С	Os/POs	P01	PO2		PO3 PO4		PO	5	
	CO1	3			3	2			
	CO2	3			3	2			
	CO3	3			3	2			
	CO4	3		3		3			
	CO5	3			3	2			
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my	L				
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	10	30	40	20			100	
	CAT2	10	30	40	20			100	
	CAT3	10	30	40	20			100	
	ESE	10	30	40	20			100	
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)					

22SEE11 - DESIGN OF BRIDGES (IS456:2000, IS 458-1971,IRC 5-1998,IRC 6-2001,IRC 18-2000,IRC 21-2000,IRC 22-1986, IRC 24-2001,IRC 78-2000,IRC 83 Part 1-1989, IRC 83 Part 2-1987 codes are permitted)

Branch	ne&	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequis	sites	Design of Concrete Structures & Design of Steel Structures	3	PE	3	0	0	3
Preamble		This course offers the design of bridges such as RCC bridg concrete bridges, design principles of substructure and desig loadings standards, Indian Railway standards bridge rules safe as well as economical section using different kinds of mat	n of diff s and n	erent types c nost codes. It	f be aim	aring s at o	s as deterr	per IRC mination o mance.
Unit – I		Introduction:						9
		igations and planning-Choice of type-I.R.C. specifications for ro eneral design considerations	ad bridg	es-Standard I	ive l	oads,	othe	r forces
Unit – II		Short Span Bridges:						9
Load dist	ibution the	ories-Analysis and design of slab culverts-Tee beam and slab B	ridges.					
Unit – III		Long Span Girder Bridges:						9
Design pr	inciples of	continuous bridges -Box girder bridges-Balanced cantilever brid	ges.					
Unit – IV		Design of Prestressed Bridges:						9
Minimum Advantag	es of pres	Design of Prestressed Bridges: odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge.						d Block -
Minimum Advantag	es of pres	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre						d Block -
Minimum Advantag post tens Unit – V	es of pres ioned pres	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge.	essed co	oncrete slab	brid	lge c	leck -	d Block -Design c 9
Minimum Advantag post tens Unit – V Types of I	es of pres ioned pres	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge. Bearings and Substructures:	essed co	oncrete slab	brid	lge c	leck -	d Block - -Design c
Minimum Advantag post tens Unit – V Types of I	es of pres ioned pres pearings -E dations.	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge. Bearings and Substructures:	essed co	oncrete slab	brid	lge c	leck -	d Block -Design c 9 Iles of
Minimum Advantag post tens Unit – V Types of I deep four	es of pres ioned pres bearings -E dations.	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge. Bearings and Substructures:	bridge fo	oncrete slab	brid	lge c	leck -	d Block -Design c 9 Iles of
Minimum Advantag post tens Unit – V Types of I deep four REFEREI 1. P	es of pres ioned pres bearings -E dations. NCES: onnuswam	odules –Stress at transfer and service loads –Prestressing stressed concrete bridges –Design of post tensioned prestre stressed Tee beam and slab bridge. Bearings and Substructures: Design of masonry and concrete piers and abutments -Types of	bridge fo	oncrete slab	brid	n of p	rincip	d Block -Design d 9 les of Total:4

	SE OUTCOMES	S: course, the studer	its will be able to				BT Mapped (Highest Level)		
CO1	apply knowled	lge in IRC specificati	on				Applying (K3)	
CO2	analyze and d	esign the short span	bridges				Analyzing (K4)		
CO3	formulate the		Analyzing (K4)						
CO4	CO4 analyze and design the prestressed concrete bridges							(K4)	
CO5	cO5 simplify the stresses in sub-structure and design the piers and abutments							(K4)	
			Mapping of CO	s with POs a	and PSOs				
С	Os/POs	PO1	PO2	I	PO3	PO4	POS	5	
	CO1	3			3	2	3		
	CO2	3			3	2	3		
	CO3	3			3	2	3		
	CO4	3			3	2	3		
	CO5	3			3	2	3		
1 – Sli	ght, 2 – Moderat	te, 3 – Substantial, B	T- Bloom's Taxono	my					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	10	60	30				100	
	CAT2	10	60	30					
	CAT3	10	60	30				100	
	ESE	10	50	40				100	
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)					

	22SEE12 – DESIGN OF TALL STRUCT	URES					
Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Design of Concrete Structures & Design of Steel Structures.	3	PE	3	0	0	3
Preamble	To gain the knowledge on design the tall buildings for ea	arthquak	e, wind resi	stan	ce ai	nd sta	ability
Unit – I	Design Criteria:						9
lightweight co	ophy, loading, sequential loading, and materials – high perforncrete, design mixes. Loading and Movement: Gravity loadir act, Gravity loading, Construction loads						
Unit – II	Wind loading:						9
	namic approach, Analytical and wind tunnel experimentation odal analysis, combinations of loading, working stress design						
Unit – III	Behavior of Various Structural Systems:						9
· ·		m.					
Modeling for a system consid	Analysis and Design: pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an	ques, ar	nalysis of bu or member	uildir forc	ng as es;	total drift	9 structura and twis
system consid computerized	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses.	ques, ar	nalysis of bu or member	uildir forc	ng as es; i	total drift	structura
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an	ques, ar nalysis f econd o al, Torsi	or member rder effects onal instabi	forc of g lity,	ravit	drift a	structura and twis 9 oading, F
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses. Stability of Tall Buildings: ng analysis of frames, wall frames, approximate methods, se , simultaneous first order and P-Delta analysis, Transnational ember in stability, effect of foundation rotation. Structural e	ques, ar nalysis f econd o al, Torsi	or member rder effects onal instabi	forc of g lity,	ravit	drift a	structur and twis 9 oading, F im effect erties an
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m resisting capa	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses. Stability of Tall Buildings: Ing analysis of frames, wall frames, approximate methods, se , simultaneous first order and P-Delta analysis, Transnational ember in stability, effect of foundation rotation. Structural e sities, design, deflection, cracking, pre-stressing, shear flow.	ques, ar nalysis f econd o al, Torsi	or member rder effects onal instabi	forc of g lity,	ravit	drift a	structur and twis 9 oading, F im effect erties an
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m resisting capa	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses. Stability of Tall Buildings: Ing analysis of frames, wall frames, approximate methods, se , simultaneous first order and P-Delta analysis, Transnational ember in stability, effect of foundation rotation. Structural e sities, design, deflection, cracking, pre-stressing, shear flow.	ques, ar halysis f econd o al, Torsi lements	or member rder effects onal instabi : sectional	forc of g lity, sha	ravit out o pes,	drift a	structur and twis 9 oading, F Im effect erties ar Total:4
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m resisting capar REFERENCES	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses. Stability of Tall Buildings: Ing analysis of frames, wall frames, approximate methods, se , simultaneous first order and P-Delta analysis, Transnational ember in stability, effect of foundation rotation. Structural e bities, design, deflection, cracking, pre-stressing, shear flow.	ques, ar halysis f econd o al, Torsi lements	or member rder effects onal instabi : sectional //cGraw-Hill,	forc of g lity, sha Nev	ravit out o pes,	y of loof plu prop	structur and twis 9 oading, f m effect erties ar Total: 4
Modeling for a system consid computerized Unit – V Overall bucklin Delta analysis stiffness of m resisting capa REFERENCES 1. Tarana 2. Bungal and fra	pproximate analysis, accurate analysis and reduction technic lering overall integrity and major subsystem interaction, an general three dimensional analyses. Stability of Tall Buildings: Ing analysis of frames, wall frames, approximate methods, see , simultaneous first order and P-Delta analysis, Transnational ember in stability, effect of foundation rotation. Structural e cities, design, deflection, cracking, pre-stressing, shear flow. th B.S,"Structural Analysis and Design of Tall Buildings", 1 st E e S. Taranath "Structural Analysis and Design of Tall Buildings Steel	ques, ar halysis f econd o al, Torsi elements dition, N	or member rder effects onal instabi : sectional //cGraw-Hill, nposite Cons	forc of g lity, sha Nev truct	v De	y of loof plu prop	structur and twis 9 oading, I m effect erties ar Total: 988.

On completion of the course, the students will be able to	BT Mapped (Highest Leve		
CO1 Apply the knowledge of design and development of problem-solving skills.	Applying (K3)		
CO2 Explain the principles of strength and stability.	Applying (K3)		
CO3 Design and develop analytical skills.	Applying (K3)		
CO4 Summarize the behavior of various structural systems.	Applying (K3)		
CO5 Explain the concepts of P-Delta analysis.	Applying (K3)		
Mapping of Cos with POs and PSOs	I		

		mapping of 003 M			
Cos/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	3
CO2	3	2	3	2	3
CO3	3	2	3	2	3
CO4	3	2	3	2	3
CO5	3	2	3	2	3
		T. DI	•	•	±

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

U	Inderstanding	A second sector as				
(1) %	(K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
20	40	40				100
20	40	40				100
20	40	40				100
20	40	40				100
	20 20 20 20 20 20	20 40 20 40 20 40 20 40	20 40 40 20 40 40 20 40 40 20 40 40	20 40 40 20 40 40 20 40 40 20 40 40	20 40 40 20 40 40 20 40 40 20 40 40	20 40 40 11<

* ±3% may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

22SEE13 – DESIGN OF OFFSHORE STRUCTURES

Programn	ne& ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Branch		oem.	Category	-	•	•	oreun
Prerequis	tes Design of concrete structures and Design of steel structures	3	PE	3	0	0	3
Preamble	The objective is to get the wave theories, offshore structural m	nodeling	and design.				
Unit – I	Wind Effects:						9
Wind on S	ructures – Rigid Structures – Flexible Structures – Static and dynamic eff	fects.					
Unit – II	Wave Hydrodynamics:						9
Wave gen	eration and propagation small and finite amplitudes wave theories – Wave	e energy	and pressure	dist	ributio	on.	
Unit – III	Wave Loading:						9
Wave force	es on vertical-inclined-cylindrical structures - Environmental loadings - L	Jse of Mo	orrison equati	on.			
110:4 11/	Offehere Structure Medalling			••••			•
	Offshore Structure Modelling:						9
Different ty	pes of structures – Foundation modeling – Static methods of analysis – E				tures	– So	
Different ty application	pes of structures – Foundation modeling – Static methods of analysis – E				tures	– So	•
application	pes of structures – Foundation modeling – Static methods of analysis – D s.	Dynamics	of Offshore S	Struc			ftware
Different ty application Unit – V	pes of structures – Foundation modeling – Static methods of analysis – E s. Design of Offshore Structures:	Dynamics	of Offshore S	Struc			ftware 9
Different ty application Unit – V	pes of structures – Foundation modeling – Static methods of analysis – E s. Design of Offshore Structures: esign of platforms – Derricks – Helipads – Design principles and example	Dynamics	of Offshore S	Struc			ftware 9
Different ty applicatior Unit – V Loads – D REFEREN	pes of structures – Foundation modeling – Static methods of analysis – E s. Design of Offshore Structures: esign of platforms – Derricks – Helipads – Design principles and example	Dynamics s of Jack	of Offshore S et Towers – I	Struc	ing c	ables	ftware 9 Total:4
Different ty application Unit – V Loads – D REFEREN 1. Cl 2 Sr	pes of structures – Foundation modeling – Static methods of analysis – E s. Design of Offshore Structures: esign of platforms – Derricks – Helipads – Design principles and example CES:	Dynamics as of Jack	et Towers – I Mechanics F	Struc	ing catior	ables ns, 20	ftware 9 Total:4 03.

COURSE OUTCOMES: On completion of the course, the students will be able to								BT Mapped (Highest Level)		
CO1	Applying (K3)									
CO2	apply the conc	Applying (K3)								
CO3	analysis the fo	Analyzing (K4)								
CO4	formulate the o	Applying (K3)								
CO5	design the offs	Applying (K3)								
			Mapping of Co	s with POs a	and PSOs					
Cos/POs		P01	PO2	I	PO3	PO4	POS	5		
CO1		3			3	2	3			
	CO2	3			3	2	3			
CO3		3			3	2	3			
	CO4	3			3	2	3			
CO5		3			3	2	3			
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my						
			ASSESSMENT	PATTERN -	THEORY					
Test / Bloom's Category*		Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %		
	CAT1	20	30	50				100		
	CAT2	10	15	75				100		
	CAT3	10	15	75				100		
	ESE	10	15	75				100		
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)						

22SEE14 - DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES (IS: 800-2007, IS 11384-1985 & EURO code-4 are permitted)

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Design of Concrete Structures & Design of Steel Structures	3	PE	3	0	0	3
Preamble	To offer design and detailing of different types of composite m some case studies about the composite construction in building	iembers, igs were	trusses, type: dealt in detail	s of c	conne	ections	s and also
Unit – I	Theory of Composite Structures:						9
IS and Euro coda	eel – Concrete Composite Construction – Merits and demerits – T al provisions for steel concrete composites design – Local buck ors – Introduction to Steel – Concrete- Steel – Sandwich Construc	kling and					
Unit – II	Composite Beams:						9
Serviceability limit	 Types and load bearing mechanism of shear connectors – states – Types, merits and ehavior of profiled decking – Prop 	oped and	unpropped of	ondi			
	Design of simply supported and continuous composite beam (with		it prome deck).			
Unit – III	Composite Floors: mposite floors – Benefits – Sheeting parallel to span – Sheeting				1 – P	ondin	9 g effect -
Unit – III Introduction to cc Structural elemen Design of Compos	Composite Floors: proposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors.	ting perp	endicular to	span			g effect - noments -
Unit – III Introduction to cc Structural elemen Design of Compos Unit – IV	Composite Floors: omposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns:	ting perp ria – Ana	endicular to lysis of intern	span al fo	rces	and n	g effect - noments - 9
Unit – III Introduction to cc Structural elemen Design of Compos Unit – IV Introduction to co checks for structu section under com	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Prop adequacy – Resistance of encased composite column cross pression – Effective elastic flexural stiffness – Design of both end	ting perp ria – Ana posed des	endicular to lysis of intern sign method -	span al fo - De com	rces sign	and n param e colu	g effect – noments – 9 neters and umn cross
Unit – III Introduction to cc Structural elemen Design of Compos Unit – IV Introduction to co checks for structu section under com	Composite Floors: omposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Prop adequacy – Resistance of encased composite column cross	ting perp ria – Ana posed des	endicular to lysis of intern sign method -	span al fo - De com	rces sign	and n param e colu	g effect – noments – 9 neters and umn cross
Unit – III Introduction to cc Structural elemen Design of Compose Unit – IV Introduction to co checks for structu section under com compression, unia Unit – V Introduction – Loa members – Comp	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Proporal adequacy – Resistance of encased composite column cross pression – Effective elastic flexural stiffness – Design of both encurval bending and biaxial bending	ting perp ria – Ana posed des s sectior cased and cased and our and a	endicular to lysis of intern sign method - and infilled d infilled com	span al fo - De com posit	sign posit col	and n param e colu umn u e trus	g effect – noments – 9 neters and umn cross under axial 9 ss – Truss
Unit – III Introduction to cc Structural elemen Design of Compose Unit – IV Introduction to co checks for structu section under com compression, unia Unit – V Introduction – Loa members – Comp	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Proporal adequacy – Resistance of encased composite column cross pression – Effective elastic flexural stiffness – Design of both encural bending and biaxial bending Composite Trusses: ads and analysis of trusses – Configuration of trusses – Behaviorosite connections – Design consideration – Stud specifications –	ting perp ria – Ana posed des s sectior cased and cased and our and a	endicular to lysis of intern sign method - and infilled d infilled com	span al fo - De com posit	sign posit col	and n param e colu umn u e trus	g effect - noments - 9 neters and umn cross under axia 9 ss - Truss studies or
Unit – III Introduction to cc Structural elemen Design of Compose Unit – IV Introduction to co checks for structu section under com compression, unia Unit – V Introduction – Loa members – Comp steel – concrete c	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Proporal adequacy – Resistance of encased composite column cross pression – Effective elastic flexural stiffness – Design of both encural bending and biaxial bending Composite Trusses: ads and analysis of trusses – Configuration of trusses – Behaviorosite connections – Design consideration – Stud specifications –	ting perp ria – Ana posed des s sectior cased and cased and our and a	endicular to lysis of intern sign method - and infilled d infilled com	span al fo - De com posit	sign posit col	and n param e colu umn u e trus	g effect - noments - 9 neters and umn cross under axia 9 ss - Truss studies or
Unit – III Introduction to cc Structural elemen Design of Compose Unit – IV Introduction to co checks for structu section under com compression, unia Unit – V Introduction – Loa members – Comp steel – concrete c	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Proporal adequacy – Resistance of encased composite column cross pression – Effective elastic flexural stiffness – Design of both encural bending and biaxial bending Composite Trusses: ads and analysis of trusses – Configuration of trusses – Behaviorosite connections – Design consideration – Stud specifications –	ting perp ria – Ana posed des s sectior cased and our and a – Design	endicular to lysis of intern sign method - and infilled d infilled com application of of composite	span al fo - De com oosit - trus	rces sign posit posit ss – (and n param e colu umn u e trus Case	g effect – noments – 9 neters and umn cross inder axial 9 ss – Truss studies or Total:45
Unit – III Introduction to cc Structural elemen Design of Composition Unit – IV Introduction to co checks for structure section under compression, unite Unit – V Introduction – Loa members – Compression steel – concrete c REFERENCES: 1. Narayana 2. Johnson	Composite Floors: Imposite floors – Benefits – Sheeting parallel to span – Sheet ts – Bending resistance – Shear resistance – Serviceability criter site floors. Composite Columns: mposite columns and its types – Advantages – Materials – Propural adequacy – Resistance of encased composite column cross npression – Effective elastic flexural stiffness – Design of both encural bending and biaxial bending Composite Trusses: ads and analysis of trusses – Configuration of trusses – Behavior posite construction in buildings.	ting perp ria – Ana posed des ss sectior cased and our and a – Design uction", E	endicular to lysis of intern and infilled d infilled com application of of composite sevier, Applie	span al fo - De com oosit - trus ed So . 200	rces sign posit e colu nposit ss – (cienc	and n param e colu umn u e trus Case : e, UK	g effect – noments – 9 neters and umn cross under axial 9 ss – Truss studies or Total:45 , 1987.

	SE OUTCOMES	S: course, the studen	ts will be able to				BT Mapp (Highest Lo		
CO1	Understand th	e basic concepts of	steel concrete com	posite constru	uction		Understanding	(K2)	
CO2	analyze and d	esign composite bea	ms with or without	profile deckin	ig sheet		Analyzing (K4))	
CO3	design compo	site slabs with the pr	ovision of profile de	cking sheet			Analyzing (K4)		
CO4	design the end		Analyzing (K4)						
CO5	illustrate the d	esign of composite tr	usses and case stu	udies			Analyzing (K4)	1	
			Mapping of Co	s with POs a	and PSOs				
C	Cos/POs	P01	PO2	1	PO3	PO4	POS	5	
	CO1	3			3	2	3		
	CO2	3			3	2	3		
	CO3	3			3	2	3		
	CO4	3			3	2	3		
	CO5	3			3	2	3		
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
	CAT1	10	15	30	45			100	
	CAT2	10	15	30	45			100	
	CAT3	10	15	30	45			100	
	ESE	10	25	20	50			100	
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)	<u> </u>		-1		

			22SEE15 - S		CTURE IN	FERACTI	ION					
Prograr Branch	nme& ME	Structural Engi	ineering				Sem.	Category	L	т	Р	Credit
Prerequ	iisites Nil						3	PE	3	0	0	3
Preamb	case	provide an unde es of shallow for dels and interacti	undation and	pile foundation	ation. It als	so focuse	es on i	dealization of				
Unit – I	Intre	oduction To SS	61: 									9
	tion to SSI- Impor ness on soil behav		oplications and	d Example	s of SSI for	geotechr	nical er	ngineer- Effeo	ct of	struct	ure ro	oughness /
Unit – II		in Shallow Fou	indation:									9
structure	soil-structure inte e interaction for sh ent prediction from	nallow foundation	n, Fixed/ Flexi	ible base, I	Sneet piles Differential	, Mat/Raf foundatio	n settle	ement for hig	onta h rise	e buil	essure dings·	e and soil- Pressure-
Unit – II	I SSI	Models:										9
	continuum, Winkle inite and finite be s.											
Unit – I	/ Elas	stic Analysis of	Pile:									9
	analysis of single	pile. Theoretical		cottlomont	امامما ا	listribution	n, Anal	ysis of pile g	oup,	Inter	action	
	sinouton in group	s with rigid cap.	solutions for	Settlement	and load d	ISTIDUTIO					action	n analysis,
Load dis	<u> </u>	s with rigid cap.		Settlement								n analysis, 9
Load dis Unit – V Curved pressure	<u> </u>	s with rigid cap. in Retaining St heir utility and ar y friction circle n	r uctures: nalytical / grap nethod, Earth	phical pred	ictions from	n Mohr – n limited ,				circle	of str	9 ess, Earth
Load dis Unit – V Curved pressure	failure surfaces, the computations by	s with rigid cap. in Retaining St heir utility and ar y friction circle n	r uctures: nalytical / grap nethod, Earth	phical pred	ictions from	n Mohr – n limited ,				circle	of str	9 ess, Earth
Load dis Unit – V Curved pressure sheet pi	failure surfaces, the computations by les, braced excav	s with rigid cap. in Retaining St heir utility and ar y friction circle n	r uctures: nalytical / grap nethod, Earth	phical pred	ictions from	n Mohr – n limited ,				circle	of str	9 ess, Earth essure on
Load dis Unit – V Curved pressure sheet pi REFERI	failure surfaces, the computations by les, braced excav	s with rigid cap. in Retaining St heir utility and ar y friction circle n ations, Design o Desai, Mushar	ructures: nalytical / grap nethod, Earth f supporting s raf Zaman.	phical pred pressure system for e "Advance	ictions from on wall with excavations d Geotech	n Mohr – n limited , s. nical Enj	/ restra	nined deform	ation	circle s, Ea	of str rth pr	9 ess, Earth essure on Total:45
Load dis Unit – V Curved pressure sheet pi REFERI 1.	SSI failure surfaces, tl computations by les, braced excav ENCES: Chandrakant S.	s with rigid cap. in Retaining St heir utility and ar y friction circle n ations, Design o Desai, Mushar aterial Models".	ructures: nalytical / grap nethod, Earth f supporting s raf Zaman. 1st edition, Cf	phical pred pressure of system for e "Advance RC Press (ictions from on wall with excavations d Geotech Taylor and	n Mohr – n limited , s. nical Eng Francis g	/ restra gineeri group),	ng - Soil-St 2010.	ation	circle s, Ea	of str inth pr	9 ess, Earth essure on Total:45

	SE OUTCOMES	S: course, the studer	ts will be able to				BT Mapp (Highest L		
CO1	illustrate the o	verview of soil- struc	ture interactions				Applying (K3)	
CO2	analyze soil st	ructure interaction p	oblems in shallow t	foundation			Analyzing	(K4)	
CO3	demonstrate o	lifferent types of soil	structure models				Applying (K3)		
CO4	investigate so		Analyzing	(K4)					
CO5	analyze the so	oil structure interactio	n involved in retain	ing structures	3		Analyzing	(K4)	
			Mapping of CO	s with POs a	and PSOs				
С	Os/POs	PO1	PO2		PO3	PO4	PO	5	
	CO1	3			3				
	CO2	3			3				
	CO3	3			3	3			
	CO4	3			3				
	CO5	3			3				
1 – Sli	ight, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my	L				
			ASSESSMENT	PATTERN -	THEORY				
-	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	10	10	50	30			100	
	CAT2	10	10	40	40			100	
	CAT3	10	10	40	40			100	
	ESE	10	15	40	35			100	
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)					

Programme& Branch	22SEE16- METRO TRANSPORTATION S ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	This course is to impart knowledge on the basic el	lements of metro trar	nsportation sys	stem			·
Unit – I	Unit Title: General						9
Direction Traffic	ro transportation system - Need of Mass transport sys (PHPDT) demand studies and selection of suitable n DT - Train operation plan - prediction of Number of fit routing.	nass transport syste	m - Comparis	son (of Bu	s Ra	pid Transi
Unit – II	Unit Title: Alignment						9
elevation - Point	actors influencing the alignment - Land acquisition wit s and Crossing - Types of crossings - Loop line - Shu ehicle access (RRV).	thin right of way - ⊢ unting neck - Limiting	lorizontal and g train speed `	Ver Vs. a	tical alignn	Curve nent o	es - Supe curvature
11							
Cross passages methods - Risk	Unit Title: Tunnel, Ramp, At Grade and Elevate and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a	ned tunnel, Bored tur age assessment stud Ramp and At Grade	dies and Instr e corridor - Ty	ume /pes	ntatio of el	on & evate	Monitoring d corridor
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipment shafts in UG stations, Tunnel ventilation Fan, Power cuation methods as per NFPA standard - Fire and Ventilation	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under at operation room are er supply and SCAI ntilation system - Co	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me	rume /pes betw) sta ty of Size	ntatic of el een M tions OTE of st	on & evate Mono , Plat , UPI ation	g - type o Monitoring d corridor and Metro 9 form level E, Draugh based or
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipment shafts in UG stations, Tunnel ventilation Fan, Powe suation methods as per NFPA standard - Fire and Ven- tions - Cut and cover and Retaining wall system, Diaph	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under at operation room are er supply and SCAI ntilation system - Co	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me	rume /pes betw) sta ty of Size	ntatic of el een M tions OTE of st	on & evate Mono , Plat , UPI ation	g - type o Monitoring d corridor and Metro 9 form level E, Draugh based or er - ground
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta Unit – V Types of depot plant - Depot Co	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipment shafts in UG stations, Tunnel ventilation Fan, Power cuation methods as per NFPA standard - Fire and Ventilation	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under at operation room are er supply and SCAI ntilation system - Co aragm wall and Pile s e Shed, type of bog	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me ystems.) sta betw) sta ty of Size ethoo	tions of st tions of st of st of st of st	on & evate Mono , Plat , UPI ation Unde	g - type o Monitoring d corridor and Metro form level E, Draugh based or er - ground 9 based wash
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta Unit – V Types of depot plant - Depot Co	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipmen shafts in UG stations, Tunnel ventilation Fan, Powe uation methods as per NFPA standard - Fire and Ven tions - Cut and cover and Retaining wall system, Diaph Unit Title: Depot - Components of Depot - Stabling Yard - Infrastructure ontrol Center (DCC) and its operations, Integrated Com	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under at operation room are er supply and SCAI ntilation system - Co aragm wall and Pile s e Shed, type of bog	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me ystems.) sta betw) sta ty of Size ethoo	tions of st tions of st of st of st of st	on & evate Mono , Plat , UPI ation Unde	g - type o Monitoring d corridor and Metro form level E, Draugh based or er - ground 9 based wash
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta Unit – V Types of depot plant - Depot Co	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipmen shafts in UG stations, Tunnel ventilation Fan, Powe uation methods as per NFPA standard - Fire and Ven tions - Cut and cover and Retaining wall system, Diaph Unit Title: Depot - Components of Depot - Stabling Yard - Infrastructure ontrol Center (DCC) and its operations, Integrated Com	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under at operation room are er supply and SCAI ntilation system - Co aragm wall and Pile s e Shed, type of bog	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me ystems.) sta betw) sta ty of Size ethoo	tions of st tions of st of st of st of st	on & evate Mono , Plat , UPI ation Unde	g - type o Monitoring d corridor and Metro form level E, Draugh based or r - ground g pach wash tions, ASS
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta Unit – V Types of depot plant - Depot Cc and TSS - Water REFERENCES:	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipmen shafts in UG stations, Tunnel ventilation Fan, Powe uation methods as per NFPA standard - Fire and Ven tions - Cut and cover and Retaining wall system, Diaph Unit Title: Depot - Components of Depot - Stabling Yard - Infrastructure ontrol Center (DCC) and its operations, Integrated Com	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under nt operation room are er supply and SCAI ntilation system - Co magm wall and Pile s e Shed, type of bog trol Center (ICC) - T	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me ystems. ie wash, turn est track - Po	(pes petw) staty of Size table wer	Intatic of el een N OTE of st ds of e - A supp	n & evate Mono , Plat , UPI ation Unde uto co y sta	g - type o Monitoring d corridor and Metro form level E, Draugh based or r - ground g pach wash tions, ASS
Types of Tunnel Cross passages methods - Risk Construction me Rail system. Unit – IV Type of stations Concourse level relief and Vent emergency evac and Elevated sta Unit – V Types of depot plant - Depot Cc and TSS - Water REFERENCES: 1. Avishai	and various construction methods - Cut and cover, Mir and its requirements as per NFPA standard - Dama and mitigation measures of underground construction, thods of Viaduct, Portal and Girder system - Bearings a Unit Title: Stations - selection of type and its locations - Components of , Roof level, Paid & Unpaid areas, Public & Equipmen shafts in UG stations, Tunnel ventilation Fan, Powe uation methods as per NFPA standard - Fire and Ven tions - Cut and cover and Retaining wall system, Diaph Unit Title: Depot - Components of Depot - Stabling Yard - Infrastructure ontrol Center (DCC) and its operations, Integrated Con- r and Sewage Treatment plant.	ned tunnel, Bored tur age assessment stur Ramp and At Grade and movement joints elevated and under it operation room are er supply and SCAI ntilation system - Co aragm wall and Pile s e Shed, type of bog trol Center (ICC) - T	dies and Instr e corridor - Ty - Difference I - ground (UG eas - Necessi DA system. Sonstruction me ystems. ie wash, turn est track - Po	(pes petw) staty of Size table wer	Intatic of el een N OTE of st ds of e - A supp	n & evate Mono , Plat , UPI ation Unde uto co y sta	g - type o Monitoring d corridor and Metro form level E, Draugh based or r - ground g pach wash tions, ASS

	SE OUTCOME	S: course, the studen	ts will be able to				BT Mapp (Highest L		
CO1	summarize th	e various elements of	metro transportation	on system			Understanding	g (K2)	
CO2	explain the ali	gnments in metro tra	nsportation system				Understanding	g (K2)	
CO3	elaborate the	tunnel, ramp and elev	vated corridor used	l in metro trar	nsportation sys	tem	Applying (K3)		
CO4	classify the va	arious stations in met		Understanding	g (K2)				
CO5	classify the va	arious depot in metro		Understanding	g (K2)				
			Mapping of CO	s with POs a	and PSOs				
C	Os/Pos	PO1	PO2	I	PO3	PO4	PO	5	
	CO1	3			3				
	CO2	3			3				
	CO3	3			3				
	CO4	3			3				
	CO5	3			3				
1 – Sli	ight, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my	I				
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	15	70	15				100	
	CAT2	15	70	15				100	
	CAT3	15	70	15				100	
	ESE	15	70	15				100	

* $\pm 3\%$ may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

Programme Branch	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisite	es Nil	3	PE	3	0	0	3
Preamble	To learn the green buildings concepts applical systems in buildings	ble to alternate design ar	nd to incorpora	ate r	enew	able e	energy
Unit – I	Introduction:						9
	al versus Energy Efficient buildings – Historical perspo ign aspects – Criticality of resources and needs of mode		– IAQ requir	eme	ent ar	nalysi	s – Future
Unit – II	Landscape and Building Envelopes:						9
	sient Landscape design - Micro-climates – various m nvelope heat loss and heat gain and its evaluation, pain				g en	velope	e: Building
Unit – III	Heating, Ventilation and Air-Conditioning:						9
	tilation, Passive cooling and heating - Application of v /brid Methods – Energy Conservation measures, Therm			apor	ative	coolir	ng, radian
Unit – IV	Heat Transmission in Buildings:						9
	efficient: air cavity, internal and external surfaces, overa nfiltration, internal heat transfer; Solar temperature; De ds: Steady state method, network method, numerical me	crement factor; Phase la	g. Design of	dayli	ghtin	g; Es	timation o
building load	ildings and predicting performance.						out therma
building load design of bu	ildings and predicting performance. Passive Cooling & Renewable Energy in Be	uildings:					out therma
building load design of bu Unit – V Passive coo and cavity v		Application of wind, water al. Introduction of renewa					9 ing, paints
building load design of bu Unit – V Passive coo and cavity v	Passive Cooling & Renewable Energy in Building concepts: Evaporative cooling, radiative cooling; A walls for cooling; Roof radiation traps; Earth air-tunne	Application of wind, water al. Introduction of renewa					9 ing, paint
building load design of bu Unit – V Passive coo and cavity v heating, sma	Passive Cooling & Renewable Energy in Bu ling concepts: Evaporative cooling, radiative cooling; A walls for cooling; Roof radiation traps; Earth air-tunne all wind turbines, stand-alone PV systems, Hybrid syste	Application of wind, water al. Introduction of renewa					9 ing, paint olar wate
building load design of bu Unit – V Passive coo and cavity v heating, sma REFERENC	Passive Cooling & Renewable Energy in Bu ling concepts: Evaporative cooling, radiative cooling; A walls for cooling; Roof radiation traps; Earth air-tunne all wind turbines, stand-alone PV systems, Hybrid syste	Application of wind, water el. Introduction of renewa em – Economics.					9 ing, paint olar wate
building load design of bu Unit – V Passive coo and cavity v heating, sma REFERENC 1. Clar 2 Krist	Passive Cooling & Renewable Energy in Building concepts: Evaporative cooling, radiative cooling; A walls for cooling; Roof radiation traps; Earth air-tunne all wind turbines, stand-alone PV systems, Hybrid systems:	Application of wind, water el. Introduction of renewa em – Economics. Edition, Routledge, 2007	able sources	in b	uildin	igs, S	9 ing, paint olar wate Total:4

	SE OUTCOMES	S: course, the studer	nts will be able to				BT Mapp (Highest L		
CO1	explain the cli	mate responsive buil	ding design and co	ncepts			Understandir	ng (K2)	
CO2	explain the ba	sic terminologies rela	ated to buildings				Understandir	ng (K2)	
CO3	explain the pa	ssive (air) conditioni	ng techniques				Understanding (K2)		
CO4	summarize the	Immarize the performance of buildings						ng (K2)	
CO5	Outline the rer	Dutline the renewable energy systems in buildings						ng (K2)	
			Mapping of CO	s with POs a	and PSOs				
С	Os/POs	PO1	PO2		PO3	PO4	PO	5	
	CO1	3			3	2			
	CO2	3			3		3		
	CO3	3			3	3			
	CO4	3			3				
	CO5	3			3		3		
1 – Sli	ight, 2 – Modera	te, 3 – Substantial, B	T- Bloom's Taxono	my					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %	
	CAT1	35	65					100	
	CAT2	40	60					100	
	CAT3	40	60					100	
	ESE	40	60					100	

 * ±3% may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

22SEE18 - MACHINE FOUNDATIONS

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To design different types of machine foundations based or exposure on vibration isolation techniques	the dynami	c properties c	f soi	ls and	d to ge	et an
Unit – I	Theory of Vibration:						9
forced vibrations Pulsating loads -vi	re of dynamic loads –vibrations of single degree freedom s –viscous damping Transmissibility –Principles of vibration ibrations of multi degree freedom system.	ystem –free measuring	vibrations of instruments	spri effe	ng –r ct of	nass : Tran	sient an
Unit – II	Dynamic Soil Properties and Behavior:						9
	train characteristics –principles of measuring dynamic prope properties -Typical Values-Dynamic bearing capacity –Dynam			ues	–Fiel	d tests	s –Factor
Unit – III	Foundations for Reciprocating Machines:						-
Types of Machines	s and Foundations –General requirements –Modes of vibration						
Types of Machines Linear Elastic wei Provisions	s and Foundations –General requirements –Modes of vibration ightless spring method –Elastic half –space method –Ana						analysis
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation-	s and Foundations –General requirements –Modes of vibration ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria –	alog models	 Design of vibrator Ab 	Bloc	k fou ers -	Indatio	analysis on -Coda 9 In -Coda
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation- analysis –Dynamic	s and Foundations –General requirements –Modes of vibration ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation	alog models	 Design of vibrator Ab 	Bloc	k fou ers -	Indatio	analysis on -Coda 9 In -Coda
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation-s analysis –Dynamic Unit – V Mechanism of Liqu –use of spring and	s and Foundations –General requirements –Modes of vibratic ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – soil –structure –Interaction- Codal Provisions.	alog models ons –use of Loads on Tu	Design of vibrator Ab rbo Generato n SPT-force I	Bloc sorb or Fo solat	k fou ers - ounda	-desig tion –	analysis on -Coda n -Coda method c 9 n Isolatio renches
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation- s analysis –Dynamic Unit – V Mechanism of Liqu –use of spring and Pile Barriers –salie	s and Foundations –General requirements –Modes of vibratic ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – c soil –structure –Interaction- Codal Provisions. Influence of Vibration and Remediation: uefaction–Influencing factors-evaluation of liquefaction poter d damping materials –vibration control of existing machine fo	alog models ons –use of Loads on Tu	Design of vibrator Ab rbo Generato n SPT-force I	Bloc sorb or Fo solat	k fou ers - ounda	-desig tion –	analysis on -Coda n -Coda method c 9 n Isolatio
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation- s analysis –Dynamic Unit – V Mechanism of Liqu –use of spring and Pile Barriers –salie	s and Foundations –General requirements –Modes of vibratic ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – c soil –structure –Interaction- Codal Provisions. Influence of Vibration and Remediation: uefaction–Influencing factors-evaluation of liquefaction poter d damping materials –vibration control of existing machine fo	alog models ons –use of Loads on Tu	Design of vibrator Ab rbo Generato n SPT-force I	Bloc sorb or Fo solat	k fou ers - ounda	-desig tion –	analysis on -Coda n –Coda method o 9 n Isolatio renches
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation- analysis –Dynamic Unit – V Mechanism of Liqu –use of spring and Pile Barriers –salie	s and Foundations –General requirements –Modes of vibratic ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – c soil –structure –Interaction- Codal Provisions. Influence of Vibration and Remediation: uefaction–Influencing factors-evaluation of liquefaction poter d damping materials –vibration control of existing machine fo	alog models ons –use of Loads on Tu ntial based o undation –se	- Design of vibrator Ab rbo Generato n SPT-force I creening of vi	Bloc sorb or Fo solat brati	tion –	-desig tion – motio	analysis on -Coda n -Coda method o 9 n Isolatio renches Total:4
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis recommendation- s analysis –Dynamic Unit – V Mechanism of Liqu –use of spring and Pile Barriers –salie REFERENCES: 1. Swami Sa	s and Foundations –General requirements –Modes of vibratio ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – s soil –structure –Interaction- Codal Provisions. Influence of Vibration and Remediation: refaction–Influencing factors-evaluation of liquefaction poter d damping materials –vibration control of existing machine for int construction aspects of machine foundations	alog models ons –use of Loads on Tu ntial based o undation –so gotia publica	- Design of vibrator Ab rbo Generato n SPT-force I creening of vi	Bloc sorb pr Fo sola brati	ers - ounda tion - on - on - v Dell	-desig tion – motio open t	analysis on -Coda n -Coda method o 9 n Isolatio renches Total:4
Types of Machines Linear Elastic wei Provisions Unit – IV Dynamic analysis analysis – Dynamic Unit – V Mechanism of Liqu –use of spring and Pile Barriers – salie REFERENCES: 1. Swami Sa 2. Vaidyanat	s and Foundations –General requirements –Modes of vibratic ightless spring method –Elastic half –space method –Ana Foundation for Impact and Rotary Machines: of impact type machines –Design of Hammer foundation Special consideration for Rotary machines –Design criteria – e soil –structure –Interaction- Codal Provisions. Influence of Vibration and Remediation: uefaction–Influencing factors-evaluation of liquefaction poter d damping materials –vibration control of existing machine for ent construction aspects of machine foundations ran, Soil Dynamics and Machine Foundation, 1st edition, Galg	alog models ons -use of Loads on Tu ntial based o undation -so gotia publica	- Design of vibrator Ab rbo Generato n SPT-force I creening of vi	Bloc sorb pr Fo sola brati	ers - ounda tion - on - on - v Dell	-desig tion – motio open t	analysis on -Cod 9 n –Cod method 9 n Isolatic renches Total:4

	SE OUTCOME	ES: e course, the studer	ts will be able to				BT Mapp (Highest L	
CO1	compute the	single degree of freed	lom with free vibrat	ion.			Applying (K3)	
CO2	determine the	e dynamic soil propert	ies by stress –strai	n behavior			Applying (K3)	
CO3	design the fo	undations for reciproc	ating machines			Applying (K3)		
CO4	design the fo	undations for reciproc		Applying (K3)				
CO5	analyze the p	principle of vibration in	remediation works				Analyzing (K4))
			Mapping of CO	s with POs a	and PSOs			
С	Os/POs	PO1	PO2	I	PO3	PO4	PO	5
	CO1	3			3			
	CO2	3			3			
	CO3	3			3	3		
	CO4	3			3	3		
	CO5	3			3			
1 – Sli	ight, 2 – Moder	ate, 3 – Substantial, B	T- Bloom's Taxono	my				
			ASSESSMENT	PATTERN -	THEORY			
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
	CAT1		45	55				100
	CAT2		45	55				100
	CAT3		45	55				100

55

* \pm 3% may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

ESE

45

100

22SEE19 - MAINTENANCE AND REHABILITATION OF STRUCTURES

Programme & Branch	ME Structural Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PE	3	0	0	3
Preamble	To identify the services of deteriorstion and concess	wont modern rehabil	itation strates		ontim		
Fleamble	To identify the causes of deterioration and consec		itation strateg	/ at (Jpum	um co	551
Unit – I	General Aspects:						9
	construction materials and components in actual st due to climate, temperature, chemicals, wear and e						
Unit – II	Maintenance and Diagnosis of Failure:						9
	pair and rehabilitation, Facets of Maintenance, Imp edure for evaluating a damaged structure. Diagnosis c			asp	ects	of in	spection ·
Unit – III							
Special concretes cement - Fiber re repair for cracks	Materials and Techniques for Repair: s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars	concrete - Gunite an	d Shotcrete -	Epc	xy in	jectio	n - Morta
Special concretes cement - Fiber re	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum c	concrete - Gunite an	d Shotcrete -	Epc	xy in	jectio	ete - Ferro n - Mortai
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum c - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting:	concrete - Gunite an - Methods of corros	d Shotcrete - sion protection	Epc) - (oxy in corros	jectio sion i	ete - Ferro n - Mortai nhibitors - 9
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges.	- Methods of corros	d Shotcrete - ion protection ymers - ferroc	Epc) - (oxy in corros	jectio sion i d fibe	ete - Ferro n - Mortar nhibitors - 9 r concrete d buildings
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges. Post repair Maintenance of Structures:	oncrete - Gunite an - Methods of corros ir - application of pol underpinning - Retro	d Shotcrete - sion protection ymers - ferroc pfitting of earth	Epc) - (eme	nt an	jectio sion i d fibe fecteo	ete - Ferro n - Mortai nhibitors 9 r concrete buildings 9
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V Protection and M	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges.	ir - application of pol underpinning - Retro to all those structure	d Shotcrete - sion protection ymers - ferroc pfitting of earth	Epc) - (eme	nt an	jectio sion i d fibe fecteo	ete - Ferro n - Mortai nhibitors 9 r concrete buildings 9
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V Protection and M	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges. Post repair Maintenance of Structures: Iaintenance schedule against environmental distress	ir - application of pol underpinning - Retro to all those structure	d Shotcrete - sion protection ymers - ferroc pfitting of earth	Epc) - (eme	nt an	jectio sion i d fibe fecteo	ete - Ferro n - Morta nhibitors 9 r concrete buildings 9 ilitation o
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V Protection and M	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges. Post repair Maintenance of Structures: Iaintenance schedule against environmental distress	ir - application of pol underpinning - Retro to all those structure	d Shotcrete - sion protection ymers - ferroc pfitting of earth	Epc) - (eme	nt an	jectio sion i d fibe fecteo	ete - Ferro n - Morta nhibitors 9 r concrete buildings 9 ilitation o
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V Protection and M heritage structure REFERENCES:	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges. Post repair Maintenance of Structures: Iaintenance schedule against environmental distress	ir - application of pol underpinning - Retro to all those structures.	d Shotcrete - sion protection ymers - ferroc ofitting of earth res - Special	Epc) - (eme nqua care	nt an ke af	jectio sion i d fibe fecteo rehab	ete - Ferro n - Morta nhibitors 9 r concrete d buildings 9 ilitation o Total:4
Special concretes cement - Fiber re repair for cracks corrosion resistan Unit – IV Structural first aid as rehabilitation n - Retrofitting of br Unit – V Protection and M heritage structure REFERENCES: 1. Dayaratn 1997. 2. Denison 0 Longman	s and mortar - concrete chemicals - Expansive ceme einforced concrete - mortar and dry pack - vacuum of - rust eliminators and polymer coating for rebars at coatings. Modern Techniques of Retrofitting: I after a disaster – jacketing - use of chemicals in repa naterials - strengthening by prestressing - shoring and idges. Post repair Maintenance of Structures: Iaintenance schedule against environmental distress is - high rise buildings - bridges and other special struct	concrete - Gunite an - Methods of corros ir - application of pol underpinning - Retro to all those structure to all those structures ncrete Structures", 1s es, Materials, Mainte	d Shotcrete - sion protection ymers - ferroc ofitting of earth res - Special st Edition, Univ	Epc eme nqua care versi	xy in corros nt an ke af es in ty Pre	jectio sion i d fibe fected rehab	ete - Ferro n - Morta nhibitors 9 r concrete buildings 9 ilitation o Total:4

	SE OUTCOMES	S: course, the studen	ts will be able to				BT Mapp (Highest Le		
CO1	explain the cor	ncepts related to mai	ntenance manager	nent			Understandin	ig (K2)	
CO2	choose repair	and maintenance str	ategies for structur	es			Applying (K3)	
CO3	apply suitable	post repair technique	es for special struct	ures			Applying (K3)		
CO4	adopt appropri		Applying (K3)					
CO5	select the main	ntenance strategies f	or special structure	s			Applying (K3)	
			Mapping of CO	s with POs a	and PSOs				
C	Os/POs	P01	PO2	I	PO3	PO4	PO5	;	
	CO1	3			3	3			
	CO2	3			3	3			
	CO3	3			3	3			
	CO4	3			3	3			
	CO5	3			3	3			
1 – Sli	ight, 2 – Moderat	e, 3 – Substantial, B	T- Bloom's Taxono	my					
			ASSESSMENT	PATTERN -	THEORY				
	st / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota	
	CAT1	20	30	50				100	
	CAT2	20	30	50				100	
	CAT3	20	30	50				100	
	ESE	10	40	50				100	
* ±3%	may be varied (CAT 1, 2 & 3 – 50 m	arks & ESE – 100 r	narks)					

	(Common to ME/MTech and M	CA Programmes)														
Programme & Branch	All ME/MTech and MCA Programmes	Sem.	Category	L	T 0	P 0	Credit									
Prerequisites	Nil	3	PE	3			3									
Preamble	This course will direct the students on how to employee venture development.	oy their innovations	towards a suc	cess	sful er	ntrepr	eneurial									
Unit – I	Innovation and Entrepreneurship:	Innovation and Entrepreneurship:														
	novation – Types of innovation – challenges in innovatio hip - Role of Entrepreneurship in Economic Developme hip.															
Unit – II	Design Thinking and Product Design:						9									
tools: Analogies architecture –Mi	and Entrepreneurship – Design Thinking Stages: Empa – Brainstorming – Mind mapping. Techniques and to nimum Viable Product (MVP)- Product prototyping – too and techniques for user-product interaction.	ols for concept ger	neration, conc	ept e	evalu	ation	– Produc									
Unit – III	Business Model Canvas (BMC) and Business P	lan Preparation:					9									
	nd BMC - difference and building blocks- BMC: Patterns medies. Objectives of a Business Plan - Business Plann			-Bus	iness	mod	el failures									
Unit – IV	IPR and Commercialization:															
	ectual Property- Basic concepts - Different Types of															
	le Secrets and Industrial Design-Patent Licensing - Tec	hnology Commercia			Venture Planning and Means of Finance:											
	le Secrets and Industrial Design-Patent Licensing - Tec	hnology Commercia					9									
Indications, Trad Unit – V Startup Stages	le Secrets and Industrial Design-Patent Licensing - Tec	e – Idea Grant – S		Ange	el & \	/entu	_									
Indications, Trad Unit – V Startup Stages	le Secrets and Industrial Design- Patent Licensing - Tec Venture Planning and Means of Finance: - Forms of Business Ownership - Sources of Finance	e – Idea Grant – S		Ange	el & \	/entu	-									
Indications, Trad Unit – V Startup Stages	 le Secrets and Industrial Design – Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance port to Entrepreneurs – Bank and Institutional Finance to 	e – Idea Grant – S		Ange	el & \	/entu	re Fund									
Indications, Trad Unit – V Startup Stages Institutional Sup REFERENCES:	 le Secrets and Industrial Design – Patent Licensing - Tech Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance port to Entrepreneurs – Bank and Institutional Finance to 	e – Idea Grant – S DEntrepreneurs.	ieed Fund –				re Fund									
Indications, Trad Unit – V Startup Stages Institutional Sup REFERENCES: 1. Gordon	le Secrets and Industrial Design– Patent Licensing - Tec Venture Planning and Means of Finance: - Forms of Business Ownership - Sources of Finance port to Entrepreneurs – Bank and Institutional Finance to	e – Idea Grant – S Entrepreneurs. Edition, Himalaya F	eed Fund – Publishing Hou	ise, N	Mumb		re Fund									
Indications, Trad	 Le Secrets and Industrial Design – Patent Licensing - Tect Venture Planning and Means of Finance: Forms of Business Ownership - Sources of Finance port to Entrepreneurs – Bank and Institutional Finance to E. & Natarajan K., "Entrepreneurship Development", 6th 	e – Idea Grant – S Entrepreneurs. Edition, Himalaya F PHI Learning Pvt. I	eed Fund – Publishing Hou Ltd., New Delf	use, M ni, 20	Mumb)17.	oai, 20	Total:4									

COURSE OUTCOMES: On completion of the course, the students will be able to										BT Mapped (Highest Level)							
CO1	understand the relationship between innovation and entrepreneurship												Understanding (K2)				
CO2	understand and employ design thinking process during product design and development													Analyzing (K4)			
CO3	develop suitable business models as per the requirement of the customers													Analyzing (K4)			
CO4	practice the procedures for protection of their ideas IPR													Applying (K3)			
CO5	unc	understand and plan for suitable type of venture and modes of finances											Applying (K3)				
						Mappir	ng of CC	Ds with	POs a	nd PSO	S						
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1		2	1				3	2	1	3	2		1	1			
CO2		1	2			3	2	1						1			
CO3		3	1	3			1							1			
CO4		1	2				3							1			
CO	5	1	2				3							1			
1 – Slię	ght, 2	– Mode	erate, 3 –	Substant	tial, BT	Bloom's	Taxono	omy				ł		L			
						ASSES	SMENT	ράττι	FRN –		Y						
Test / Bloom's Category*		Re	memberi (K1) %	ng	Understanding (K2) %		Appl	pplying Analyzi K3) % (K4) %		ing E	valuating (K5) %	Creating (K6) %		Tota %			
CAT1			40		40		20		<i>_</i>					100			
CAT2			30		40		30							100			
CAT3			30		40		30							100			
ESE			30		40)	30							100			
±3%	may t	oe varie	d (CAT 1	,2,3 – 50	marks	& ESE –	100 ma	rks)			1						