KONGU ENGINEERING COLLEGE

(Autonomous Institution Affiliated to Anna University, Chennai)

PERUNDURAI ERODE - 638 060

TAMILNADU INDIA

REGULATIONS, CURRICULUM & SYLLABI – 2022

(CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION)

(For the students admitted during 2022 - 2023 and onwards)

BACHELOR OF ENGINEERING DEGREE IN AUTOMOBILE ENGINEERING

DEPARTMENT OF AUTOMOBILE ENGINEERING

INDEX

SI.No.	CONTENTS	Page No.
1	VISION AND MISSION OF THE INSTITUTE	3
2	QUALITY POLICY	3
3	VISION AND MISSION OF THE DEPARTMENT	3
4	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)	3
5	PROGRAM OUTCOMES (POs)	4
6	PROGRAM SPECIFIC OUTCOMES (PSOs)	5
7	REGULATIONS 2022	6
8	CURRICULUM BREAKDOWN STRUCTURE	23
9	CATEGORISATION OF COURSES	23
10	SCHEDULING OF COURSES	32
11	MAPPING OF COURSES WITH PROGRAM OUTCOMES	33
12	CURRICULUM OF BE – AUTOMOBILE ENGINEERING	37
13	DETAILED SYLLABUS	41

KONGU ENGINEERING COLLEGE PERUNDURAI ERODE – 638 060 (Autonomous)

INSTITUTE VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

INSTITUTE MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Provide value based quality education for the development of students as competent and responsible citizens.
- Contribute to the nation and beyond through research and development
- Continuously improve our services

DEPARTMENT OF AUTOMOBILE ENGINEERING

VISION

To be a centre of excellence for development and dissemination of knowledge in Automobile Engineering for the Nation and beyond.

MISSION

Department of Automobile Engineering is committed to:

- MS1: Establish an academic center to develop quality automotive engineers through professional teaching learning process.
- MS2: Develop research interest among the graduates through state of the art facilities.
- MS3: Promote innovation and industrial consultancy to meet the societal needs.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Automobile Engineering will

- PEO1: Pursue successful career in the domain of design, analysis, testing and diagnostics that meets the needs of global industries
- PEO2: Habituate continuous learning to carry out research and development activities for solving real time multi-disciplinary problems
- PEO3: Demonstrate entrepreneurial skills and contribute to the society as an ethical and responsible citizen

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	2
MS2	3	3	2
MS3	2	2	2

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

1 – Slight, 2 – Moderate, 3 – Substantial

	PROGRAM OUTCOMES (POs)
Gradua	tes of Automobile Engineering will:
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Gradua	ttes of Automobile Engineering will:					
PSO1	PSO1 Analyze the functioning of automotive engine, transmission, chassis and other mechanical					
	Systems					
PSO2	Examine the electrical and electronic systems related to various automotive applications					

PEO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
PEO1	3	3	3	3	3	3	3	2	2	3	2	3	3	3
PEO2	3	3	3	3	3	3	3	2	2	3	2	2	3	3
PEO3	2	2	2	2	3	3	3	3	3	3	3	2	3	3

MAPPING OF PEOs WITH POs AND PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

🖗 Kongu Engineering College, Perundurai, Erode – 638060, India

KONGU ENGINEERING COLLEGE, PERUNDURAI, ERODE - 638060

(Autonomous)

REGULATIONS 2022

CHOICE BASED CREDIT SYSTEM AND OUTCOME BASED EDUCATION

BACHELOR OF ENGINEERING (BE) / BACHELOR OF TECHNOLOGY (BTech) DEGREE PROGRAMMES

These regulations are applicable to all candidates admitted into BE/BTech Degree programmes from the academic year 2022 – 2023 onwards.

1. DEFINITIONS AND NOMENCLATURE

In these Regulations, unless otherwise specified:

- i. "University" means ANNA UNIVERSITY, Chennai.
- ii. "College" means KONGU ENGINEERING COLLEGE.
- iii. "Programme" means Bachelor of Engineering (BE) / Bachelor of Technology (BTech) Degree programme
- iv. "Branch" means specialization or discipline of BE/BTech Degree programme, like Civil Engineering, Information Technology, etc.
- v. "Course" means a Theory / Theory cum Practical / Practical course that is normally studied in a semester like Mathematics, Physics etc.
- vi. "Credit" means a numerical value allocated to each course to describe the candidate's workload required per week.
- vii. "Grade" means the letter grade assigned to each course based on the marks range specified.
- viii. "Grade point" means a numerical value (0 to 10) allocated based on the grade assigned to each course.
- ix. "Principal" means Chairman, Academic Council of the College.
- x. "Controller of Examinations (COE)" means authorized person who is responsible for all examination related activities of the College.
- xi. "Head of the Department (HOD)" means Head of the Department concerned.

2. PROGRAMMES AND BRANCHES OF STUDY

The following programmes and branches of study approved by Anna University, Chennai and All India Council for Technical Education, New Delhi are offered by the College.

Programme	Branch				
	Civil Engineering				
	Mechanical Engineering				
	Electronics and Communication Engineering				
	Computer Science and Engineering				
BE	Electrical and Electronics Engineering				
	Electronics and Instrumentation Engineering				
	Mechatronics Engineering				
	Automobile Engineering				
	Computer Science and Design				
	Chemical Engineering				
	Information Technology				
BTech	Food Technology				
	Artificial Intelligence and Data Science				
	Artificial Intelligence and Machine Learning				

3. ADMISSION REQUIREMENTS

3.1 First Semester Admission

The candidates seeking admission to the first semester of the eight semester BE / BTech Degree Programme:

Should have passed the Higher Secondary Examination (10 + 2) in the academic stream with Mathematics, Physics and Chemistry as three of the four subjects of study under Part-III subjects of the study conducted by the Government of Tamil Nadu or any examination of any other University or authority accepted by the Anna University, Chennai as equivalent thereto.

(OR)

Should have passed the Higher Secondary Examination of Vocational stream (Vocational groups in Engineering / Technology) as prescribed by the Government of Tamil Nadu.

They should also satisfy other eligibility conditions as prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

3.2 Lateral Entry Admission

The candidates who hold a Diploma in Engineering / Technology awarded by the State Board of Technical Education, Tamilnadu or its equivalent are eligible to apply for Lateral entry admission to the third semester of BE / BTech.

(OR)

The candidates who hold a BSc degree in Science(10+2+3 stream) with mathematics as one of the subjects at the BSc level from a recognised University are eligible to apply for Lateral entry admission to the third semester of BE / BTech. Such candidates shall undergo two additional Engineering course(s) in the third and fourth semesters as prescribed by the College.

They should also satisfy other eligibility conditions prescribed by the Anna University, Chennai and Directorate of Technical Education, Chennai from time to time.

4. STRUCTURE OF PROGRAMMES

4.1 Categorisation of Courses

The BE / BTech programme shall have a curriculum with syllabi comprising of theory, theory cum practical, practical courses in each semester, professional skills training/industrial training, project work, internship, etc that have been approved by the respective Board of Studies and Academic Council of the College. All the programmes have well defined Programme Outcomes (PO), Programme Specific Outcomes (PSO) and Programme Educational Objectives (PEOs) as per Outcome Based Education (OBE). The content of each course is designed based on the Course Outcomes (CO). The courses shall be categorized as follows:

- i. Humanities and Social Sciences (HS) including Management Courses, English Communication Skills, Universal Human Values and Yoga & Values for Holistic Development.
- ii. Basic Science (BS) Courses
- iii. Engineering Science (ES) Courses
- iv. Professional Core (PC) Courses
- v. Professional Elective (PE) Courses
- vi. Open Elective (OE) Courses
- vii. Employability Enhancement Courses (EC) like Project work, Professional Skills/Industrial Training, Comprehensive Test & Viva, Entrepreneurships/Start ups and Internship / In-plant Training in Industry or elsewhere
- viii. Audit Courses (AC)
- ix. Mandatory Courses (MC) like Student Induction Program and Environmental Science.
- x. Honours Degree Courses (HC)

4.2 Credit Assignment and Honours Degree

4.2.1. Credit Assignment

Each course is assigned certain number of credits as follows:

Contact period per week	Credits
1 Lecture / Tutorial Period	1
2 Practical Periods	1
2 Project Work Periods	1
40 Training / Internship Periods	1

The minimum number of credits to complete the BE/BTech programme is 168.

4.2.2 Honours Degree

If a candidate earns 18 to 20 additional credits in an emerging area, then he/she can be awarded with Honours degree mentioning that emerging area as his/her specialization. The respective board of studies shall recommend the specializations for honours degree and appropriate additional courses to be studied by the candidate which shall get approval from Academic Council of the institution. A candidate shall have not less than 7.5 CGPA and no history of arrears to opt for the honours degree and has to maintain the same during the entire programme.

Various specializations for various branches recommended by the respective boards of studies are given below:

SNo	Specializations for Honours degree in emerging areas	To be offered as Honours, Only for the following branches mentioned against the specialization
1.	Construction Technology	BE – Civil Engineering
2.	Smart Cities	BE – Civil Engineering
3.	Smart Manufacturing *	BE – Mechanical Engineering
4.	Computational Product Design *	BE – Mechanical Engineering
5.	Intelligent Autonomous Systems *	BE – Mechatronics Engineering
6.	E-Mobility *	BE – Automobile Engineering
7.	Artificial Intelligence and Machine Learning	BE – Electronics and Communication Engineering
8.	System on Chip Design *	BE – Electronics and Communication Engineering
9.	Electric Vehicles	BE – Electrical and Electronics Engineering
10.	Microgrid Technologies	BE – Electrical and Electronics Engineering
11.	Intelligent Sensors Technology *	BE – Electronics and Instrumentation Engineering
12.	Smart Industrial Automation *	BE – Electronics and Instrumentation Engineering
13.	Data Science	BE – Computer Science and Engineering
14.	Cyber Security	BE – Computer Science and Engineering
15.	Data Science	BTech – Information Technology
16.	Cyber Security	BTech – Information Technology
17.	Petroleum and Petrochemical Engineering *	BTech – Chemical Engineering
18.	Waste Technology *	BTech – Chemical Engineering
19.	Food Processing and Management *	BTech – Food Technology
20.	Virtual and Augumented Reality	BE- Computer Science and Design
21.	Data Science	BE- Computer Science and Design
22.	Internet of Things (IoT)	BTech – Artificial Intelligence and Data Science
23.	Blockchain	BTech – Artificial Intelligence and Data Science

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

Č,

Kongu Engineering College, Perundurai, Erode – 638060, India

24.	Internet of Things (IoT)	BTech – Artificial Intelligence and Machine Learning
25.	Blockchain	BTech – Artificial Intelligence and Machine Learning

*Title by KEC

The courses specified under Honours degree in the emerging area may include theory, theory cum practical, practical, project work, etc. under the particular specialization. A candidate can choose and study these specified courses from fourth semester onwards and he/she shall successfully complete the courses within the stipulated time vide clause 5. Total number of credits earned in each semester may vary from candidate to candidate based on the courses chosen. The registration, assessment & evaluation pattern and classification of grades of these courses shall be the same as that of the courses in the regular curriculum of the programme of the candidate vide clause 6, clause 7 and clause 15 respectively. A candidate can earn Honours degree in only one specialization during the entire duration of the programme.

4.3 Employability Enhancement Courses

A candidate shall be offered with the employability enhancement courses like project work, internship, professional skills training/industrial training, comprehensive test & viva, and entrepreneurships/start ups during the programme to gain/exhibit the knowledge/skills.

4.3.1 Professional Skills Training/ Indsutrial Training/Entrepreneurships/Start Ups/ Inplant Training

A candidate may be offered with appropriate training courses imparting programming skills, communication skills, problem solving skills, aptitude skills etc. It is offered in two phases as phase I in fourth semester and phase II in fifth semester including vacation periods and each phase can carry two credits.

(OR)

A candidate may be allowed to go for training at research organizations or industries for a required number of hours in fifth semester vacation period. Such candidate can earn two credits for this training course in place of Professional Skills Training course II in fifth semester. He/She shall attend Professional Skills Training Phase I in fourth semester and can earn two credits.

(OR)

A candidate may be allowed to set up a start up and working part-time for the start ups by applying his/her innovations and can become a student entrepreneur during BE/BTech programme. Candidates can set up their start up from fifth semester onwards either inside or outside of the college. Such student entrepreneurs may earn 2 credits in place of Professional Skills Training II. The area in which the candidate wants to initiate a start up may be interdisciplinary or multidisciplinary. The progress of the startup shall be evaluated by a panel of members constituted by the Principal through periodic reviews.

4.3.2 Comprehensive Test and Viva

The overall knowledge of the candidate in various courses he/she studied shall be evaluated by (i) conducting comprehensive tests with multiple choice questions generally with pattern similar to GATE and/or (ii) viva-voce examination conducted by a panel of experts assigned by the Head of the department. The members can examine the knowledge of the candidate by asking questions from various domains and the marks will be assigned based on their answers. This course shall carry two credits.

4.3.3 Full Time Project through Internships

The curriculum enables a candidate to go for full time project through internship during a part of seventh semester and/or entire final semester and can earn credits vide clause 7.6 and clause 7.11.

A candidate is permitted to go for full time projects through internship in seventh semester with the following condition: The candidate shall complete a part of the seventh semester courses with a total credit of about 50% of the total credits of seventh semester including Project Work-II Phase-I in the first two months from the commencement of the seventh semester under fast track mode. The balance credits required to complete the seventh semester shall be earned by the candidate through either approved One/Two Credit Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

A candidate is permitted to go for full time projects through internship during eighth semester. Such candidate shall earn the minimum number of credits required to complete eighth semester other than project through either approved One / Two Credit Courses /Online courses / Self Study Courses or Add/Drop courses as per clause 4.4 and clause 4.5 respectively.

Assessment procedure is to be followed as specified in the guidelines approved by the Academic Council.

4.3.4 A student shall go for in-plant training for duration of two weeks during the entire programme. It is mandatory for all the students.

4.4 One / Two Credit Courses / Online Courses / Self Study Courses

The candidates may optionally undergo One / Two Credit Courses / Online Courses / Self Study Courses as elective courses.

- **4.4.1 One / Two Credit Courses:** One / Two credit courses shall be offered by the college with the prior approval from respective Board of Studies. A candidate can earn a maximum of six credits through one / two credit courses during the entire duration of the programme.
- **4.4.2 Online Courses:** Candidates may be permitted to earn credits for online courses, offered by NPTEL / SWAYAM / a University / Other Agencies, approved by respective Board of Studies.
- **4.4.3** Self Study Courses: The Department may offer an elective course as a self study course. The syllabus of the course shall be approved by the respective Board of Studies. However, mode of assessment for a self study course will be the same as that used for other courses. The candidates shall study such courses on their own under the guidance of member of the faculty following due approval procedure. Self study course is limited to one per semester.
- **4.4.4** The elective courses in the final year may be exempted if a candidate earns the required credits vide clause 4.4.1, 4.4.2 and 4.4.3 by registering the required number of courses in advance.
- **4.4.5** A candidate can earn a maximum of 30 credits through all one / two credit courses, online courses and self study courses.

4.5 Flexibility to Add or Drop Courses

- **4.5.1** A candidate has to earn the total number of credits specified in the curriculum of the respective programme of study in order to be eligible to obtain the degree. However, if the candidate wishes, then the candidate is permitted to earn more than the total number of credits prescribed in the curriculum of the candidate's programme.
- **4.5.2** From the first to seventh semesters the candidates have the option of registering for additional elective/Honours courses or dropping of already registered additional elective/Honours courses within two weeks from the start of the semester. Add / Drop is only an option given to the candidates.
- **4.6** Maximum number of credits the candidate can enroll in a particular semester cannot exceed 30 credits.
- **4.7** The blend of different courses shall be so designed that the candidate at the end of the programme would have been trained not only in his / her relevant professional field but also would have developed to become a socially conscious human being.
- **4.8** The medium of instruction, examinations and project report shall be English.

5. DURATION OF THE PROGRAMME

- 5.1 A candidate is normally expected to complete the BE / BTech Degree programme in 8 consecutive semesters/4 Years (6 semesters/3 Years for lateral entry candidate), but in any case not more than 14 semesters/7 Years (12 semesters/6 Years for lateral entry candidate).
- **5.2** Each semester shall consist of a minimum of 90 working days including continuous assessment test period. The Head of the Department shall ensure that every teacher imparts instruction as per the number of periods specified in the syllabus for the course being taught.
- **5.3** The total duration for completion of the programme reckoned from the commencement of the first semester to which the candidate was admitted shall not exceed the maximum duration specified in clause 5.1 irrespective of the period of break of study (vide clause 11) or prevention (vide clause 9) in order that the candidate may be eligible for the award of the degree (vide clause 16). Extension beyond the prescribed period shall not be permitted.

6. COURSE REGISTRATION FOR THE EXAMINATION

- **6.1** Registration for the end semester examination is mandatory for courses in the current semester as well as for the arrear courses failing which the candidate will not be permitted to move on to the higher semester. This will not be applicable for the courses which do not have an end semester examination.
- **6.2** The candidates who need to reappear for the courses which have only continuous assessment shall enroll for the same in the subsequent semester, when offered next, and repeat the course. In this case, the candidate shall attend the classes, satisfy the attendance requirements (vide clause 8) and earn continuous assessment marks. This will be considered as an attempt for the purpose of classification.

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

Kongu Engineering College, Perundurai, Erode – 638060, India

- **6.3** If a candidate is prevented from writing end semester examination of a course due to lack of attendance, the candidate has to attend the classes, when offered next, and fulfill the attendance requirements as per clause 8 and earn continuous assessment marks. If the course, in which the candidate has a lack of attendance, is an elective, the candidate may register for the same or any other elective course in the subsequent semesters and that will be considered as an attempt for the purpose of classification.
- 6.4 A candidate shall register for the chosen courses as well as arrear courses (if any vide clause 6.2 and 6.3) from the list of courses specified under Honours degree.

7. ASSESSMENT AND EXAMINATION PROCEDURE FOR AWARDING MARKS

7.1 The BE/BTech programmes consist of Theory Courses, Theory cum Practical courses, Practical courses, Comprehensive Test and Viva, Project Work, Industrial Training /Professional Skills Training, Internship/In-plant Training and Entrepreneurships/ Start ups. Performance in each course of study shall be evaluated based on (i) Continuous Assessments (CA) throughout the semester and (ii) End Semester Examination (ESE) at the end of the semester except for the courses which are evaluated based on continuous assessment only. Each course shall be evaluated for a maximum of 100 marks as shown below:

Sl. No.	Category of Course	Continuous Assessment Marks	End Semester Examination Marks		
1.	Theory	40	60		
2.	Theory cum Practical (The distribution of marks shall be decided based on the credit weightage assigned to theory and practical components.)	50	50		
3.	Practical	60	40		
4.	Professional Skills Training / Comprehensive Test & Viva / Entrepreneurships / Start ups / Project Work I / Mandatory Course/Industrial Training/ Universal Human Values / Yoga and Values for Holistic Development	100			
5.	Project Work II Phase I / Project Work II Phase II / Internships	50	50		
6.	One / Two credit Course	The distribution of marks shall be			
7.	All other Courses	decided based on the credit weightage assigned			

kongu Engineering College, Perundurai, Erode – 638060, India

7.2 Examiners for setting end semester examination question papers for theory courses, theory cum practical courses and practical courses and evaluating end semester examination answer scripts, project works, internships and entrepreneurships/start ups shall be appointed by the Controller of Examinations after obtaining approval from the Principal.

7.3 Theory Courses

For all theory courses out of 100 marks, the continuous assessment shall be 40 marks and the end semester examination shall be for 60 marks. However, the end semester examinations shall be conducted for 100 marks and the marks obtained shall be reduced to 60. The continuous assessment tests shall be conducted as per the schedule laid down in the academic schedule. The total of the continuous assessment marks and the end semester examination marks shall be rounded off to the nearest integer.

7.3.1 The assessment pattern for awarding continuous assessment marks shall be as follows:

Sl. No.	Туре	Max. Marks	Remarks
1.	Test - I	20	
1.	Test - II	20	Average of best 2 tests
	Test - III	20	(20 marks)
2.	Tutorial: (Tutorial/Problem Solving (or) Simulation (or) Simulation & Mini Project (or) Mini Project (or) Case Studies (or) Any other relevant to the course)	15	Type of assessment is to be chosen based on the nature of the course and to be approved by Principal
3.	Others: Assignment / Paper Presentation in Conference / Seminar / Comprehension / Activity based learning / Class notes	05	To be assessed by the Course Teacher based on any one type.
	Total	40	Rounded off to the one decimal place

However, the assessment pattern for awarding the continuous assessment marks may be changed based on the nature of the course and is to be approved by the Principal.

- **7.3.2** A reassessment test or tutorial covering the respective test or tutorial portions may be conducted for those candidates who were absent with valid reasons (Sports or any other reason approved by the Principal).
- **7.3.3** The end semester examination for theory courses shall be for a duration of three hours and shall be conducted between November and January during odd semesters and between April and June during even semesters of every year.

7.4 Theory cum Practical Courses

For courses involving theory and practical components, the evaluation pattern as per the clause 7.1 shall be followed. Depending on the nature of the course, the end semester examination shall be conducted for theory and the practical components. The apportionment of continuous assessment and end semester examination marks shall be decided based on the credit weightage assigned to theory and practical components approved by Principal.

7.5 Practical Courses

For all practical courses out of 100 marks, the continuous assessment shall be for 60 marks and the end semester examination shall be for 40 marks. Every exercise / experiment shall be evaluated based on the candidate's performance during the practical class and the candidates' records shall be maintained.

- **7.5.1** The assessment pattern for awarding continuous assessment marks for each course shall be decided by the course coordinator based on rubrics of that particular course, and shall be based on rubrics for each experiment.
- **7.5.2** The end semester examination shall be conducted for a maximum of 100 marks for duration of 3 hours and reduced to 40 marks. The appointment of examiners and the schedule shall be decided by chairman of Board of Study of the relevant board.

7.6 Project Work II Phase I / Project Work II Phase II

- **7.6.1** Project work shall be assigned to a single candidate or to a group of candidates not exceeding 4 candidates in a group. The project work is mandatory for all the candidates.
- **7.6.2** The Head of the Department shall constitute review committee for project work. There shall be two assessments by the review committee during the semester. The candidate shall make presentation on the progress made by him/her before the committee.

7.6.3 The continuous assessment and end semester examination marks for Project Work II Phase I /Project Work II Phase II and the Viva-Voce Examination shall be distributed as below.

		End Semester Examination (Max. 50 Marks)							
Zeroth Review		Review I (Max 20 Marks)		Review II (Max. 30 Marks)		Report Evaluation (Max. 20 Marks)	Viva - Voce (Max. 30 Marks)		
Rv.	Super	Review	Super	Review	Super	Ext. Exr.	Super	Exr.1	Exr.2
Com	visor	Committee	visor	Committee	visor		visor		
		(excluding		(excluding					
		supervisor		supervisor)					
)							
0	0	10	10	15	15	20	10	10	10

- **7.6.4** The Project Report prepared according to approved guidelines and duly signed by the Supervisor shall be submitted to Head of the Department. The candidate(s) must submit the project report within the specified date as per the academic schedule of the semester. If the project report is not submitted within the specified date then the candidate is deemed to have failed in the Project Work and redo it in the subsequent semester.
- **7.6.5** If a candidate fails to secure 50% of the continuous assessment marks in the project work, he / she shall not be permitted to submit the report for that particular semester and shall have to redo it in the subsequent semester and satisfy attendance requirements.
- **7.6.6** The end semester examination of the project work shall be evaluated based on the project report submitted by the candidate in the respective semester and viva-voce examination by a committee consisting of two examiners and supervisor of the project work.
- **7.6.7** If a candidate fails to secure 50 % of the end semester examination marks in the project work, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted as per clause 7.6.6.
- **7.6.8** A copy of the approved project report after the successful completion of viva-voce examination shall be kept in the department library.

7.7 Project Work I / Industrial Training

The evaluation method shall be same as that of the Project Work II as per clause 7.6 excluding 7.6.3, 7.6.5, 7.6.6 and 7.6.7. The marks distribution is given below.

	Continuous Assessment (Max. 100 Marks)												
					Review III (Max. 50 Marks)								
Zeroth	Review	Review I (Max 20 M	larks)	Review II Max 30 Marks))	Report Evaluation (Max. 20 Marks)	Viva - V (Max.	/oce 30 Marks)					
Review Commi	Super visor	Review Committee	Super visor	Review Committee	Super visor	Review Committee	Super visor	Review Committee					
ttee	VISOI	(excluding supervisor)	VISOI	(excluding supervisor)	V150I	Committee	v150I	Committee					
0	0	10	10	15	15	20	10	20					

If a candidate fails to secure 50 % of the continuous assessment marks in this course, he / she shall be required to resubmit the project report within 30 days from the date of declaration of the results and a fresh viva-voce examination shall be conducted.

7.8 Professional Skills Training

Phase I training shall be conducted for minimum of 80 hours in 3rd semester vacation and during 4th semester. Phase II training shall be conducted for minimum of 80 hours in 4th semester vacation and during 5th semester. The evaluation procedure shall be approved by the board of the offering department and Principal.

7.9 Comprehensive Test and Viva

A candidate can earn 2 credits by successfully completing this course. The evaluation procedures shall be approved by the Principal.

7.10 Entrepreneurships/ Start ups

A start up/business model may be started by a candidate individually or by a group of maximum of three candidates during the programme vide clause 4.3.1. The head of the department concerned shall assign a faculty member as a mentor for each start up.

A review committee shall be formed by the Principal for reviewing the progress of the Start ups / Business models, innovativeness, etc. The review committee can recommend the appropriate grades for academic performance for the candidate(s) involved in the start ups. This course shall carry a maximum of two credits in fifth semester and shall be evaluated through continuous assessments for a maximum of 100 marks vide clause 7.1. A report about the start ups is to be submitted to the review committee for evaluation for each start up and the marks will be given to Controller of Examinations after getting approval from Principal.

7.11 In-Plant Training

Each candidate shall go for In-Plant training for a duration of minimum of two weeks during the entire programme of study and submit a brief report about the training undergone and a certificate issued from the organization concerned.

7.12 One / Twe Credit Courses

For all one/ two credit courses out of 100 marks, the continuous assessment shall be 50 marks and the model examination shall be for 50 marks. Minimum of two continuous assessments tests shall be conducted during the one / two credit course duration by the

Kongu Engineering College, Perundurai, Erode – 638060, India

offering department concerned. Model examination shall be conducted at the end of the course.

7.13 Online Course

The Board of Studies will provide methodology for the evaluation of the online courses. The Board can decide whether to evaluate the online courses through continuous assessment and end semester examination or through end semester examination only. In case of credits earned through online mode from NPTEL / SWAYAM / a University / Other Agencies approved by Chairman, Academic Council, the credits may be transferred and grades shall be assigned accordingly.

7.14 Self Study Course

The member of faculty approved by the Head of the Department shall be responsible for periodic monitoring and evaluation of the course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

7.15 Audit Course

A candidate may be permitted to register for specific course not listed in his/her programme curriculum and without undergoing the rigors of getting a 'good' grade, as an Audit course, subject to the following conditions.

The candidate can register only one Audit course in a semester starting from second semester subject to a maximum of two courses during the entire programme of study. Such courses shall be indicated as 'Audit' during the time of registration itself. Only courses currently offered for credit to the candidates of other branches can be audited.

A course appearing in the curriculum of a candidate cannot be considered as an audit course. However, if a candidate has already met the Professional Elective and Open Elective credit requirements as stipulated in the curriculum, then, a Professional Elective or an Open Elective course listed in the curriculum and not taken by the candidate for credit can be considered as an audit course.

Candidates registering for an audit course shall meet all the assessment and examination requirements (vide clause 7.3) applicable for a credit candidate of that course. Only if the candidate obtains a performance grade, the course will be listed in the semester Grade Sheet and in the Consolidated Grade Sheet along with the grade SC (Successfully Completed). Performance grade will not be shown for the audit course.

Since an audit course has no grade points assigned, it will not be counted for the purpose of GPA and CGPA calculations.

7.16 Mandatory Courses

A candidate joined in first semester shall attend and complete a mandatory course namely Student Induction Program of duration three weeks at the beginning of first semester. The candidates studying in second year shall attend and complete another one mandatory course namely Environmental Science. No credits shall be given for mandatory courses and shall be evaluated through continuous assessment tests only vide clause 7.1 for a maximum of 100 marks each. Upon the successful completion, these courses will be listed in the semester grade sheet and in the consolidated grade sheet with the grade "SC" (Successfully Completed). Since no grade points are assigned, these courses will not be counted for the purpose of GPA and CGPA calculations.

7.17 Universal Human Values (UHV) and Yoga and Values for Holistic Development (YVHD)

Courses YVHD shall be offered to all first year candidates of all BE/ BTech programmes to impart knowledge on yoga and human values. Course UHV shall be offered to all the second year BE/ BTech students. These courses shall carry a maximum of 100 marks each and shall be evaluated through continuous assessment tests only vide clause 7.1. The candidate(s) can earn 2 credits for UHV and 1 credit for YVHD by successfully completing these courses. Two continuous assessment tests will be conducted and the average marks will be taken for the calculation of grades.

8. **REQUIREMENTS FOR COMPLETION OF A SEMESTER**

- **8.1** A candidate who has fulfilled the following conditions shall be deemed to have satisfied the requirements for completion of a semester and permitted to appear for the examinations of that semester.
 - **8.1.1** Ideally, every candidate is expected to attend all classes and secure 100 % attendance. However, a candidate shall secure not less than 80 % (after rounding off to the nearest integer) of the overall attendance taking into account the total number of working days in a semester.
 - **8.1.2** A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to medical reasons (hospitalization / accident / specific illness) but has secured not less than 70 % in the current semester may be permitted to appear for the current semester examinations with the approval of the Principal on payment of a condonation fee as may be fixed by the authorities from time to time. The medical certificate needs to be submitted along with the leave application. A candidate can avail this provision only twice during the entire duration of the degree programme.

A candidate who could not satisfy the attendance requirements as per clause 8.1.1 due to his/her entrepreneurships/ start ups activities, but has secured not less than 60 % in the current semester can be permitted to appear for the current semester examinations with the recommendation of review committee and approval from the Principal.

- **8.1.3** In addition to clause 8.1.1 or 8.1.2, a candidate shall secure not less than 60 % attendance in each course.
- **8.1.4** A candidate shall be deemed to have completed the requirements of study of any semester only if he/she has satisfied the attendance requirements (vide clause 8.1.1 to 8.1.3) and has registered for examination by paying the prescribed fee.
- **8.1.5** Candidate's progress is satisfactory.
- **8.1.6** Candidate's conduct is satisfactory and he/she was not involved in any indisciplined activities in the current semester.
- **8.2.** The candidates who do not complete the semester as per clauses from 8.1.1 to 8.1.6 except 8.1.3 shall not be permitted to appear for the examinations at the end of the semester and not be permitted to go to the next semester. They have to repeat the incomplete semester in next academic year.

🥘 Kongu Engineering College, Perundurai, Erode – 638060, India

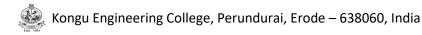
8.3 The candidates who satisfy the clause 8.1.1 or 8.1.2 but do not complete the course as per clause 8.1.3 shall not be permitted to appear for the end semester examination of that course alone. They have to repeat the incomplete course in the subsequent semester when it is offered next.

9. **REQUIREMENTS FOR APPEARING FOR END SEMESTER EXAMINATION**

- **9.1** A candidate shall normally be permitted to appear for end semester examination of the current semester if he/she has satisfied the semester completion requirements as per clause 8, and has registered for examination in all courses of that semester. Registration is mandatory for current semester examinations as well as for arrear examinations failing which the candidate shall not be permitted to move on to the higher semester.
- **9.2** When a candidate is deputed for a National / International Sports event during End Semester examination period, supplementary examination shall be conducted for such a candidate on return after participating in the event within a reasonable period of time. Such appearance shall be considered as first appearance.
- **9.3** A candidate who has already appeared for a course in a semester and passed the examination is not entitled to reappear in the same course for improvement of letter grades / marks.

10. PROVISION FOR WITHDRAWAL FROM EXAMINATIONS

- **10.1** A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any regular course or all regular courses registered in a particular semester. Application for withdrawal is permitted only once during the entire duration of the degree programme.
- **10.2** The withdrawal application shall be valid only if the candidate is otherwise eligible to write the examination (vide clause 9) and has applied to the Principal for permission prior to the last examination of that semester after duly recommended by the Head of the Department.
- **10.3** The withdrawal shall not be considered as an appearance for deciding the eligibility of a candidate for First Class with Distinction/First Class.
- **10.4** If a candidate withdraws a course or courses from writing end semester examinations, he/she shall register the same in the subsequent semester and write the end semester examinations. A final semester candidate who has withdrawn shall be permitted to appear for supplementary examination to be conducted within reasonable time as per clause 14.
- **10.5** The final semester candidate who has withdrawn from appearing for project viva-voce for genuine reasons shall be permitted to appear for supplementary viva-voce examination within reasonable time with proper application to Controller of Examinations and on payment of prescribed fee.


11. PROVISION FOR BREAK OF STUDY

- **11.1** A candidate is normally permitted to avail the authorised break of study under valid reasons (such as accident or hospitalization due to prolonged ill health or any other valid reasons) and to rejoin the programme in a later semester. He/She shall apply in advance to the Principal, through the Head of the Department, stating the reasons therefore, in any case, not later than the last date for registering for that semester examination. A candidate is permitted to avail the authorised break of study only once during the entire period of study for a maximum period of one year. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for the break of study.
- **11.2** The candidates permitted to rejoin the programme after break of study / prevention due to lack of attendance shall be governed by the rules and regulations in force at the time of rejoining.
- **11.3** The candidates rejoining in new Regulations shall apply to the Principal in the prescribed format through Head of the Department at the beginning of the readmitted semester itself for prescribing additional/equivalent courses, if any, from any semester of the regulations in-force, so as to bridge the curriculum in-force and the old curriculum.
- **11.4** The total period of completion of the programme reckoned from the commencement of the semester to which the candidate was admitted shall not exceed the maximum period specified in clause 5 irrespective of the period of break of study in order to qualify for the award of the degree.
- **11.5** If any candidate is prevented for want of required attendance, the period of prevention shall not be considered as authorized break of study.
- 11.6 If a candidate has not reported to the college for a period of two consecutive semesters without any intimation, the name of the candidate shall be deleted permanently from the college enrollment. Such candidates are not entitled to seek readmission under any circumstances.

12. PASSING REQUIREMENTS

- **12.1** A candidate who secures not less than 50 % of total marks (continuous assessment and end semester examination put together) prescribed for the course with a minimum of 45 % of the marks prescribed for the end semester examination in all category of courses vide clause 7.1 except for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course in the examination.
- **12.2** A candidate who secures not less than 50 % in continuous assessment marks prescribed for the courses which are evaluated based on continuous assessment only shall be declared to have successfully passed the course. If a candidate secures less than 50% in the continuous assessment marks, he / she shall have to re-enroll for the same in the subsequent semester and satisfy the attendance requirements.

12.3 For a candidate who does not satisfy the clause 12.1, the continuous assessment marks secured by the candidate in the first attempt shall be retained and considered valid for subsequent attempts. However, from the fourth attempt onwards the marks scored in the end semester examinations alone shall be considered, in which case the candidate shall secure minimum 50 % marks in the end semester examinations to satisfy the passing requirements.

13. REVALUATION OF ANSWER SCRIPTS

A candidate shall apply for a photocopy of his / her semester examination answer script within a reasonable time from the declaration of results, on payment of a prescribed fee by submitting the proper application to the Controller of Examinations. The answer script shall be pursued and justified jointly by a faculty member who has handled the course and the course coordinator and recommended for revaluation. Based on the recommendation, the candidate can register for revaluation through proper application to the Controller of Examinations. The Controller of Examinations will arrange for revaluation and the results will be intimated to the candidate concerned. Revaluation is permitted only for Theory courses and Theory cum Practical courses where end semester examination is involved.

14. SUPPLEMENTARY EXAMINATION

If a candidate fails to clear all courses in the final semester after the announcement of final end semester examination results, he/she shall be allowed to take up supplementary examinations to be conducted within a reasonable time for the courses of final semester alone, so that he/she gets a chance to complete the programme.

15. AWARD OF LETTER GRADES:

For all the passed candidates, the relative grading principle is applied to assign the letter grades.

Marks / Examination Status	Letter Grade	Grade Point
	O (Outstanding)	10
	A+ (Excellent)	9
Based on the relative	A (Very Good)	8
grading	B+ (Good)	7
	B (Average)	6
	C (Satisfactory)	5
Less than 50	U (Reappearance)	0
Successfully Completed	SC	0
Withdrawal	W	-
Absent	AB	-
Shortage of Attendance in a	SA	-

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

course

The Grade Point Average (GPA) is calculated using the formula:

$$GPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in the specific semester}}{\sum (course credits) \text{ for all courses in the specific semester}}$$

The Cumulative Grade Point Average (CGPA) is calculated from first semester (third semester for lateral entry candidates) to final semester using the formula

$$CGPA = \frac{\sum [(course credits) \times (grade points)] \text{ for all courses in all the semesters so far}}{\sum (course credits) \text{ for all courses in all the semesters so far}}$$

The GPA and CGPA are computed only for the candidates with a pass in all the courses.

The GPA and CGPA indicate the academic performance of a candidate at the end of a semester and at the end of successive semesters respectively.

A grade sheet for each semester shall be issued containing Grade obtained in each course, GPA and CGPA.

A duplicate copy, if required can be obtained on payment of a prescribed fee and satisfying other procedure requirements.

Withholding of Grades: The grades of a candidate may be withheld if he/she has not cleared his/her dues or if there is a disciplinary case pending against him/her or for any other reason.

16. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the BE / BTech Degree provided the candidate has

- i. Successfully completed all the courses under the different categories, as specified in the regulations.
- ii. Successfully gained the required number of total credits as specified in the curriculum corresponding to the candidate's programme within the stipulated time (vide clause 5).
- iii. Successfully passed any additional courses prescribed by the respective Board of Studies whenever readmitted under regulations other than R-2022 (vide clause 11.3)
- iv. No disciplinary action pending against him / her.

17. CLASSIFICATION OF THE DEGREE AWARDED

17.1 First Class with Distinction:

- 17.1.1. A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the First Appearance within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 8.50

(OR)

- 17.1.2 A candidate who joins from other institutions on transfer or a candidate who gets readmitted and has to move from one regulations to another regulations and who qualifies for the award of the degree (vide clause 16) and satisfies the following conditions shall be declared to have passed the examination in First class with Distinction:
 - Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the First Appearance within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
 - Submission of equivalent course list approved by the respective Board of studies.
 - Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
 - Should have secured a CGPA of not less than 9.00

17.2 First Class:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have passed the examination in First class:

- Should have passed the examination in all the courses of all eight semesters (six semesters for lateral entry candidates) within ten consecutive semesters (eight consecutive semesters for lateral entry candidates) excluding authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from the examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 6.50

🛞 Kongu Engineering College, Perundurai, Erode – 638060, India

17.3 Second Class:

All other candidates (not covered in clauses 17.1 and 17.2) who qualify for the award of the degree (vide clause 16) shall be declared to have passed the examination in Second Class.

17.4 A candidate who is absent for end semester examination in a course / project work after having registered for the same shall be considered to have appeared for that examination for the purpose of classification.

17.5 Honors Degree:

A candidate who qualifies for the award of the degree (vide clause 16) and who satisfies the following conditions shall be declared to have earned the BE/BTech degree with Honours (vide clause 16 and clause 4.2.2):

- Should have passed the examination in all the courses of all the eight semesters (six semesters for lateral entry candidates) in the **First Appearance** within eight consecutive semesters (six consecutive semesters for lateral entry candidates) excluding the authorized break of study (vide clause 11) after the commencement of his / her study.
- Withdrawal from examination (vide clause 10) shall not be considered as an appearance.
- Should have secured a CGPA of not less than 7.50

18. MALPRACTICES IN TESTS AND EXAMINATIONS

If a candidate indulges in malpractice in any of the tests or end semester examinations, he/she shall be liable for punitive action as per the examination rules prescribed by the college from time to time.

19. AMENDMENTS

Notwithstanding anything contained in this manual, the Kongu Engineering College through the Academic council of the College, reserves the right to modify/amend without notice, the Regulations, Curricula, Syllabi, Scheme of Examinations, procedures, requirements, and rules pertaining to its BE / BTech programme.

CURRICULUM BREAKDOWN STRUCTURE – R2022

Summary of Credit Distribution

Category				Sem	ester		-	-	Total number of credits	Curriculum Content (% of total number of credits of the program)
	I.	П	ш	IV	v	VI	VII	VIII		
HS									15	8.92
BS									20	11.9
ES									24	14.28
PC									58	34.52
PE					3	3	9	3	18	10.71
OE					4	4	3	3	14	8.33
EC				2	2	6	5	4	19	11.30
МС									0	0
Semester wise Total	23	24	22	22	24	23	20	10	168	100.00
				C	Categor	у				Abbreviation
Lecture hours p	er week									L
Tutorial hours p	er week									Т
Practical, Projec	ct work, I	nternsh	ip, Profe	essional	Skill Tra	ining, Ir	ndustrial	Training	g hours per wee	ek P
Credits										С

		CATEGORISATION OF COURSE	ES										
HU	HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT (HS)												
S. No.	Course CodeCourse NameLTPCSem												
1.	22EGT11	Communication Skills I	3	0	0	3	Ι						
2.	22VEC11	Yoga and Values for Holistic Development				1	I						
3.	22EGT21	Communication Skills II	3	0	0	3	П						
4.	22TAM01	Heritage of Tamils	1	0	0	1	П						
5.	22TAM02	Tamils and Technology	1	0	0	1	Ш						
6.	22EGL31	Communication Skills Development Laboratory	0	0	2	1	111						
7.	22GET31	Universal Human Values	2	0	0	2	VI						

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

8.	22GCT71	Engineering Economics and Management	3	0	0	3	VII
						15	

		BASIC SCIENCE (BS)					
S. No.	Course Code	Course Name	L	т	Р	С	Sem
1.	22MAC11	Matrices and Ordinary Differential Equations	3	1	2	4	I
2.	22PHT14	Physics for Automobile Engineering	3	0	0	3	I
3.	22PHL11	Physics Laboratory for Automobile Engineering	0	0	2	1	I
4.	22MAC22	Multivariable Calculus and Partial Differential Equations	3	1	2	4	II
5.	22CYT26	Chemistry for Automobile Engineering	3	0	0	3	П
6.	22CYL22	Chemistry Laboratory for Mechanical Systems	0	0	2	1	II
7.	22MAT41	Numerical Methods for Engineers	3	1	0	4	Ш
	T	otal Credits to be earned				20	

		ENGINEERING SCIENCE (ES)					
S. No.	Course Code	Course Name	L	т	Р	С	Sem
1.	22CSC11	Problem Solving and Programming in C	3	0	2	4	I
2.	22MET11	Engineering Drawing	3	0	0	3	I
3.	22MEL11	Engineering Practices Laboratory	0	0	2	1	Ι
4.	22CSC21	Fundamentals of Data Structures	3	0	2	4	П
5.	22AUT21	Automotive Engines	3	0	0	3	П
6.	22AUL21	Automotive Engines Laboratory	0	0	2	1	П
7.	22ITC32	Introduction To Python	3	0	2	4	IV
	Т	otal Credits to be earned				20	

		PROFESSIONAL CO	RE (PC)				
S. No.	Course Code	Course Name	L	т	Р	С	Sem	Domain/ Stream
1.	22AUT11	Statics and Dynamics	3	0	0	3	I	DSN
2.	22AUC21	Manufacturing Technology	3	0	2	4	Ш	MFG
3.	22AUC31	Basics of Electrical and Electronics Circuits	3	0	2	4	111	EE
4.	22AUT31	Mechanics of Deformable Bodies	3	1	0	4	Ш	DSN
5.	22AUT32	Thermodynamics and Thermal Science	3	1	0	4	Ш	TF
6.	22AUT33	Hydraulics and Pneumatics	3	0	0	3		DSN
7.	22AUT34	Automotive Fuels and Lubricants	3	0	0	3	111	TF
8.	22AUL31	Automotive Fuels and Lubricants Laboratory	0	0	2	1		TF
9.	22AUL32	Hydraulics and Pneumatics Laboratory	0	0	2	1	Ш	DSN
10.	22AUC41	Automotive Electrical Systems and Drives	3	1	0	4	IV	DSN
11.	22AUT42	Vehicle Components Design - I	3	0	0	3	IV	AUTO
12.	22AUT43	Automatic Transmission and Control System	3	0	0	3	IV	AUTO
13.	22AUL41	Computer Aided Design Laboratory	0	0	2	1	IV	DSN
14.	22AUL42	Automotive Chassis Components Laboratory	0	0	2	1	IV	AUTO
15.	22AUC51	Vehicle Dynamics	3	0	2	4	V	AUTO
16.	22AUT51	Automotive Sensors and Controllers	3	0	0	3	V	EE
17.	22AUT52	Mechanics of Machines	3	0	0	3	V	DSN
18.	22AUT53	Vehicle Components Design - II	3	0	0	3	V	AUTO
19.	22AUL51	Automotive Sensors and Controllers Laboratory	0	0	2	1	V	EE
20.	22AUL52	Computer Aided Analysis Laboratory	0	0	2	1	V	DSN
21.	22AUT61	Automotive Embedded Systems	3	0	0	3	VI	EE
22.	22AUT62	Modelling of Hybrid and Electric Vehicles	3	0	0	3	VI	AUTO
23.	22AUL61	Automotive Embedded Systems Laboratory	0	0	2	1	VI	EE
24.	22AUL62	Vehicle Maintenance Laboratory	0	0	2	1	VI	AUTO
	T	otal Credits to be earned				62		

	PROFESSIONAL ELECTIVE	S (PE	s)			
Course Code	Course Name	L	т	Р	С	Domain/ Stream
	Semester – V					
	Elective – I					
22AUE01	Two and Three wheeler Technology	3	0	0	3	AUTO
22AUE02	Diesel and Electric Locomotives	3	0	0	3	AUTO
22AUE03	Computer Integrated Manufacturing	3	0	0	3	MFG
22AUE04	Automotive Control System	3	0	0	3	AUTO
22AUE05	Machine Design	3	0	0	3	DSN
22AUE06	Principles of Farm Machineries	3	0	0	3	DSN
•	Semester – VI		•	•		
22411507		2	0	0	2	DSN
	_		-			EE
						AUTO
			0	0		MFG
22AUE11	Vehicle Maintenance	3	0	0	3	AUTO
22AUE12	Composite Materials	3	0	0	3	MFG
	Semester – VII					
	Elective – III					
22AUE13	CNC and Metrology	3	0	0	3	MFG
22AUE14	Computational Fluid Dynamics	3	0	0	3	TF
22AUE15	Machine Vision And Image Processing	3	0	0	3	AUTO
22AUE16	Automotive Pollution Control	3	0	0	3	AUTO
22AUE17	Total Quality Management	3	0	0	3	MFG
22AUE18	Automotive Noise, Vibration and Harshness	3	0	0	3	AUTO
	Elective – IV					
22GEE01	Fundamentals of Research	3	0	0	3	GE
22AUE19	Automotive HVAC	3	0	0	3	TF
22AUE20	Autonomous Vehicle Technology	3	0	0	3	EE
22AUE21	Value Engineering	3	0	0	3	MFG
	Code 22AUE01 22AUE02 22AUE03 22AUE03 22AUE03 22AUE03 22AUE07 22AUE07 22AUE07 22AUE07 22AUE10 22AUE10 22AUE11 22AUE12 22AUE13 22AUE13 22AUE14 22AUE13 22AUE14 22AUE15 22AUE14 22AUE15 22AUE16 22AUE17 22AUE18	Course CodeCourse NameSemester - VSemester - VElective - I22AUE01Two and Three wheeler Technology22AUE02Diesel and Electric Locomotives22AUE03Computer Integrated Manufacturing22AUE04Automotive Control System22AUE05Machine Design22AUE06Principles of Farm Machineries22AUE07Finite Element Method22AUE08In-Vehicle Networking22AUE09Vehicle Body Engineering22AUE09Vehicle Maintenance22AUE10Operations Research22AUE11Vehicle Maintenance22AUE12Composite Materials22AUE13CNC and Metrology22AUE14Computational Fluid Dynamics22AUE15Machine Vision And Image Processing22AUE16Automotive Pollution Control22AUE17Total Quality Management22AUE18Automotive Noise, Vibration and Harshness22AUE19Automotive Noise, Vibration and Harshness22AUE19Automotive Noise, Vibration and Harshness	Course CodeCourse NameLSemester - V22AUE01Two and Three wheeler Technology322AUE02Diesel and Electric Locomotives322AUE03Computer Integrated Manufacturing322AUE04Automotive Control System322AUE05Machine Design322AUE06Principles of Farm Machineries322AUE07Finite Element Method322AUE08In-Vehicle Networking322AUE09Vehicle Body Engineering322AUE10Operations Research322AUE11Vehicle Materials322AUE12Composite Materials322AUE13CNC and Metrology322AUE14Computational Fluid Dynamics322AUE15Machine Vision And Image Processing322AUE16Automotive Pollution Control322AUE17Total Quality Management322AUE18Automotive Noise, Vibration and Harshness322AUE19Fundamentals of Research322AUE11Automotive HVAC322AUE12Autonotive HVAC3	Code Course Name L I Semester – V Image: Semester – VI Image: Semester – VI	Course CodeCourse NameLTPSemester - VElective - I22AUE01Two and Three wheeler Technology30022AUE02Diesel and Electric Locomotives30022AUE03Computer Integrated Manufacturing30022AUE04Automotive Control System30022AUE05Machine Design30022AUE06Principles of Farm Machineries30022AUE07Finite Element Method30022AUE08In-Vehicle Networking30022AUE09Vehicle Body Engineering30022AUE10Operations Research30022AUE11Vehicle Maintenance30022AUE12Composite Materials30022AUE13CNC and Metrology30022AUE13CNC and Metrology30022AUE14Automotive Pollution Control30022AUE15Machine Vision And Image Processing30022AUE16Automotive Noise, Vibration and Harshness30022AUE17Total Quality Management30022AUE18Automotive Noise, Vibration and Harshness30022AUE19Automotive HVAC30022AUE19Automotive HVAC300	Course CodeCourse NameLTPCSemester - VElective - I22AUE01Two and Three wheeler Technology300322AUE02Diesel and Electric Locomotives300322AUE03Computer Integrated Manufacturing300322AUE04Automotive Control System300322AUE05Machine Design300322AUE06Principles of Farm Machineries300322AUE07Finite Element Method300322AUE08In-Vehicle Networking300322AUE09Vehicle Body Engineering3003322AUE10Operations Research3003322AUE11Vehicle Maintenance3003322AUE12Composite Materials3003322AUE13CNC and Metrology3003322AUE14Computational Fluid Dynamics3003322AUE15Machine Vision And Image Processing300333322AUE16Automotive Noise, Vibration and Harshness300333333333333333 <td< td=""></td<>

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

23. 22AUE22 Design of Engine Components	3	0	0	3	DSN						
24. 22AUE23 Mobile Robotics	3	0	0	3	EE						
Elective – V											
25. 22AUE24 Automotive Vehicle Safety	3	0	0	3	AUTO						
26. 22AUE25 Non Destructive Evaluation Techniques	3	0	0	3	MFG						
27. 22AUE26 Quality Assurance and Reliability	3	0	0	3	MFG						
28. 22AUE27 Advanced Materials for Green Vehicles	3	0	0	3	MFG						
29. 22AUE28 Automotive Testing	3	0	0	3	AUTO						
30. 22AUE29 Alternate Energy Sources for Automobiles	3	0	0	3	TF						
Semester – VIII											
Elective – VI											
31. 22AUE30 Road Transport Management	3	0	0	3	AUTO						
32. 22AUE31 Advanced Theory of IC Engines	3	0	0	3	TF						
33. 22AUE32 Automotive Product Life Cycle Management	3	0	0	3	DSN						
34. 22AUE33 Process Planning and Cost Estimation	3	0	0	3	MFG						
35. 22AUE34 Lean Methods for Automobile Engineers	3	0	0	3	MFG						
36. 22AUE35 Automotive Styling and Modeling	3	0	0	3	AUTO						
37. 22AUE36 Non-Traditional Machining Processes	3	0	0	3	MFG						
Total Credits to be earned				18							

* Domain/Stream Abbreviations: AUTO - Automobile, DSN - Design, EE – Electrical and Electronics, TF – Thermal and Fluid, MFG-Manufacturing, GE – General Engineering

	EM	PLOYABILITY ENHANCEMENT COU	RSE	S (E	C)		
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	22GCL41/ 22GCl41	Professional Skills Training I / Industrial Training I				2	IV
2.	22GCL51/ 22GCl51	Professional Skills Training II / Industrial Training II				2	V
3.	22AUP61	Project Work I	0	0	4	4	VI
4.	22GEP61	Comprehensive Test and Viva				2	VI
5.	22AUP71	Project Work II Phase I	0	0	8	5	VII
6.	22AUP81	Project Work II Phase II	0	0	14	4	VIII
	Т	otal Credits to be earned				19	

	MANDATORY COURSES (EC)											
S. No.	Course Code	Course Name	L	т	Р	С	Sem					
1.	22MNT11	Student Induction Program				0	I					
2.	22MNT31	Environmental Science	2	0	0	0	111					
	Т	otal Credits to be earned				00						

C	OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS (OE)									
S. No.	Course Code	Course Name	L	Т	Ρ	С	Sem			
1.	22AUX01	Automotive Engineering	3	0	2	4	IV			
2.	22AUO01	Automotive Electronics	3	1	0	4	V			
3.	22AUO02	Vehicle Maintenance	3	1	0	4	VI			
4.	22AUO03	Public Transport Management	3	0	0	3	VIII			
5.	22AUO04	Autonomous Vehicles	3	0	0	3	VIII			

	OPEN ELECTIVE COURSES OFFERED BY OTHER DEPARTMENTS (OE)							
S. No.	Course Code	Course Name	L	т	Ρ	С	OFFERED BY	
		SEMESTER V						
1.	22CEX01	Remote Sensing and its Applications	3	0	2	4	CIVIL	
2.	22MEX01	Renewable Energy Sources	3	0	2	4	MECH	
3.	22MTO01	Design of Mechatronics Systems	3	1	0	4	MTS	
4.	22MTX01	Data Acquisition and Virtual Instrumentation	3	0	2	4	MTS	
5.	22MTX02	Factory Automation	3	0	2	4	MTS	
6.	22AUX01	Automotive Engineering	3	0	2	4	AUTO	
7.	22ECX01	Basics of Electronics in Automation Appliances	3	0	2	4	ECE	
8.	22ECX02	Image Processing	3	0	2	4	ECE	
9.	22EEO01	Solar and Wind Energy Systems	3	1	0	4	EEE	
10.	22EEO02	Electrical Wiring and Lighting	3	1	0	4	EEE	
11.	22EEO03	Programmable Logic Controller and SCADA	3	1	0	4	EEE	

Eatd: 1964							
12.	22EEO04	Analog and Digital Electronics	3	1	0	4	EEE
13.	22EEO05	Power Electronics and Drives	3	1	0	4	EEE
14.	22EEO06	Sensors and Actuators	3	1	0	4	EEE
15.	22EIO01	Measurements and Instrumentation	3	1	0	4	EIE
16.	22EIO02	Biomedical Instrumentation and Applications	3	1	0	4	EIE
17.	22EIO03	Industrial Automation	3	1	0	4	EIE
18.	22CSX01	Fundamentals of Databases	3	0	2	4	CSE
19.	22CSX02	Data science for Engineers	3	0	2	4	CSE
20.	22CSX03	Enterprise Application Development Using Java	3	0	2	4	CSE
21.	22CSO01	Computational science for Engineers	3	1	0	4	CSE
22.	22CSO02	Formal Languages and Automata Theory	3	1	0	4	CSE
23.	22ITO01	Artificial Intelligence	3	1	0	4	IT
24.	22ITX01	Next Generation Databases	3	0	2	4	IT
25.	22GEX02	NCC Studies (Air Wing) - 1	3	0	2	4	IT
26.	22CDO01	Fundamentals of User Experience Design	3	1	0	4	CSD
27.	22ADO01	Data Warehousing and Data Mining	3	1	0	4	AIDS
28.	22ALO01	Business Intelligence	3	1	0	4	AIML
29.	22CHO01	Industrial Enzymology	3	1	0	4	CHEM
30.	22CHO02	Waste to Energy Conversion	3	1	0	4	CHEM
31.	22CHO03	Applied Nanotechnology	3	1	0	4	CHEM
32.	22FTX01	Baking Technology	3	0	2	4	FT
33.	22FTO01	Food Processing Technology	3	1	0	4	FT
34.	22MAO01	Mathematical Foundations for Machine Learning	3	1	0	4	MATHS
35.	22MAO02	Numerical Computing	3	1	0	4	MATHS
36.	22MAO03	Stochastic Processes and Queuing Theory	3	1	0	4	MATHS
37.	22MAO04	Statistics for Engineers	3	1	0	4	MATHS
38.	22PHO01	Thin Film Technology	3	1	0	4	PHYSICS
39.	22PHO02	High Energy Storage Devices	3	1	0	4	PHYSICS
40.	22PHO03	Structural and Optical Characterization of Materials	3	1	0	4	PHYSICS

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

	0001/001		_	4	~	4	
41.	22CYO01	Instrumental Methods of Analysis	3	1	0	4	CHEMISTRY
42.	22CYO02	Chemistry Concepts for Competitive Examinations	3	1	0	4	CHEMISTRY
43.	22CYO03	Organic Chemistry for Industry	3	1	0	4	CHEMISTRY
		SEMESTER VI					
44.	22CEO01	Disaster Management	3	1	0	4	CIVIL
45.	22MEX02	Design of Experiments	3	0	2	4	MECH
46.	22MTO02	Robotics	3	1	0	4	MTS
47.	22MTO03	3D Printing and Design	3	1	0	4	MTS
48.	22AUO01	Automotive Electronics	3	1	0	4	ECE
49.	22ECX03	PCB Design and Fabrication	3	0	2	4	ECE
50.	22EEO07	Energy Conservation and Management	3	1	0	4	EEE
51.	22EEO08	Microprocessors and Microcontrollers Interfacing	3	1	0	4	EEE
52.	22EEO09	Electrical Safety	3	1	0	4	EEE
53.	22EEO10	VLSI System Design	3	1	0	4	EEE
54.	22EEO11	Automation for Industrial Applications	3	1	0	4	EEE
55.	22EIO04	PLC Programming with High Level Languages	3	1	0	4	EIE
56.	22EIO05	Virtual Instrumentation	3	1	0	4	EIE
57.	22CSX04	Foundations of Machine Learning	3	0	2	4	CSE
58.	22CSX05	Web Engineering	3	0	2	4	CSE
59.	22ITX02	Advanced Java Programming	3	0	2	4	IT
60.	22ITO02	Internet of Things	3	1	0	4	IT
61.	22ITO03	Fundamentals of Software Development	3	1	0	4	IT
62.	22ITO04	Mobile Application Development	3	1	0	4	IT
63.	22CDX01	Fundamentals of User Interactive Design	3	0	2	4	CSD
64.	22ADX01	Data Visualization	3	0	2	4	AIDS
65.	22ALX01	Data Exploration and Visualization Techniques	3	0	2	4	AIML
66.	22CHO04	Air Pollution Monitoring and Control	3	1	0	4	CHEM
67.	22CHO05	Paints and Coatings	3	1	0	4	CHEM
68.	22CHO06	Powder Technology	3	1	0	4	CHEM
	22FTX02	Processing of milk and milk products	3	0	2	4	FT
		Deculation Curriculum and Cullaburg D20					

	22FTX03	Processing of Fruits and Vegetables	3	0	2	4	FT
69.	22MAO05	Graph Theory and its Applications	3	1	0	4	MATHS
70.	22MAX01	Data Analytics using R Programming	3	0	2	4	MATHS
71.	22MAO06	Operations Research	3	1	0	4	MATHS
72.	22MAO07	Number Theory and Cryptography	3	1	0	4	MATHS
73.	22PHO04	Synthesis, Characterization and Biological Applications of Nanomaterials	3	1	0	4	PHYSICS
74.	22PHO05	Techniques of Crystal Growth	3	1	0	4	PHYSICS
75.	22CYO04	Corrosion Science and Engineering	3	1	0	4	CHEMISTRY
76.	22CYO05	Chemistry of Cosmetics in Daily Life	3	1	0	4	CHEMISTRY
77.	22CYO06	Nanocomposite Materials	3	1	0	4	CHEMISTRY
		SEMESTER VII					
78.	22CEO02	Introduction to Smart Cities	3	0	0	3	CIVIL
79.	22CEO03	Environmental Health and Safety	3	0	0	3	CIVIL
80.	22MEO01	Fundamentals of Ergonomics	3	0	0	3	MECH
81.	22MEO02	Principles of Management and Industrial Psychology	3	0	0	3	MECH
82.	22MEO03	Waste Heat Recovery System and Storage	3	0	0	3	MECH
83.	22MTO04	Drone System Technology	3	0	0	3	MTS
84.	22AUO02	Vehicle Maintenance	3	0	0	3	AUTO
85.	22ECO01	Wearable Devices	3	0	0	3	ECE
86.	22ECX04	Electronic Hardware and Troubleshooting	2	0	2	3	ECE
87.	22EEO12	Electric Vehicle	3	0	0	3	EEE
88.	22EEO13	E-Waste Management	3	0	0	3	EEE
89.	22EEO14	Embedded System Design	3	0	0	3	EEE
90.	22EEO15	Energy Storage Systems and Controllers	3	0	0	3	EEE
91.	22EEO16	AI Techniques for Engineering Applications	3	0	0	3	EEE
92.	22EIO06	Introduction to Distributed Control Systems	3	0	0	3	EIE
93.	22EIO07	Instrumentation in Aircraft Navigation and Control	3	0	0	3	EIE
94.	22EIO08	Industry 4.0 with Industrial IoT	3	0	0	3	EIE
95.	22EIO09	Industrial Data Communication	3	0	0	3	EIE

			-				
96.	22EIO10	Wireless Instrumentation	3	0	0	3	EIE
97.	22EIO11	Instrumentation Techniques in Agriculture	3	0	0	3	EIE
98.	22CSO03	Nature Inspired optimization techniques	3	0	0	3	CSE
99.	22ITO05	Fundamentals of Cloud Computing	3	0	0	3	IT
100.	22CDO02	Introduction to Mobile Game Design	3	0	0	3	CSD
101.	22CDO03	Introduction to Graphics Design	3	0	0	3	CSD
102.	22ADO02	Neural Networks and Deep Learning	3	0	0	3	AIDS
103.	22ALO02	Industrial Machine Learning	3	0	0	3	AIML
104.	22CHO07	Hydrogen Energy	3	0	0	3	CHEM
105.	22CHO08	Rubber Technology	3	0	0	3	CHEM
106.	22FTO02	Principles of Food safety	3	0	0	3	FT
107.	22FTO03	Fundamentals of Food Packaging and Storage	3	0	0	3	FT
108.	22MAO08	Non-Linear Optimization	3	0	0	3	MATHS
109.	22MAO09	Optimization for Engineers	3	0	0	3	MATHS
110.	22CYO07	Waste and Hazardous Waste Management	3	0	0	3	CHEMISTRY
111.	22CYO08	Chemistry in Every day Life	3	0	0	3	CHEMISTRY
		SEMESTER VIII					
112.	22CEO04	Infrastructure Planning and Management	3	0	0	3	CIVIL
113.	22CEO05	Environmental Laws and Policy	3	0	0	3	CIVIL
114.	22MEO04	Safety Measures for Engineers	3	0	0	3	MECH
115.	22MEO05	Energy Conservation in Thermal Equipments	3	0	0	3	MECH
116.	22MEO06	Climate Change and New Energy Technology	3	0	0	3	MECH
117.	22MTO05	Micro and Nano Electromechanical Systems	3	0	0	3	MTS
118.	22AUO03	Public Transport Management	3	0	0	3	ECE
119.	22AUO04	Autonomous Vehicles	3	0	0	3	ECE
120.	22ECO02	Optical Engineering	3	0	0	3	EEE
121.	22EEO17	Smart Grid Technologies	3	0	0	3	EEE
122.	22EEO18	Biomass Energy Systems	3	0	0	3	EEE
123.	22EIO12	Environmental Sensors	3	0	0	3	EIE
124.	22EIO13	Pollution Control and Management	3	0	0	3	EIE

Eatd: 1984							
125.	22CSO04	Machine Translation	3	0	0	3	CSE
126.	22CSO05	Fundamentals of Blockchain	3	0	0	3	CSE
127.	22ITO06	Introduction to Ethical Hacking	3	0	0	3	IT
128.	22ITO07	Business Continuity Planning	3	0	0	3	IT
129.	22CDX02	Virtual Reality and Augmented Reality	3	0	0	3	CSD
130.	22ADO03	Business Analytics	3	0	0	3	AIDS
131.	22ALO03	Machine Learning for Smart Cities	3	0	0	3	AIML
132.	22CHO09	Industrial Accident Prevention and Management	3	0	0	3	CHEM
133.	22CHO10	Electrochemical Engineering	3	0	0	3	CHEM
134.	22CHO11	Smart and Functional Materials	3	0	0	3	CHEM
135.	22FTO04	Food Ingredients	3	0	0	3	FT
136.	22FTO05	Food and Nutrition	3	0	0	3	FT
137.	22CYO09	Chemistry of Nutrition for Women Health	3	0	0	3	CHEMISTRY

🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

SNo	Course Code	Course Title	L	т	Ρ	С	Offering Department	Semester
1.	22GEO01	German Language Level 1	4	0	0	4	ECE	ALL
2.	22GEO02	Japanese Language Level 1	4	0	0	4	ECE	ALL
3.	22GEO03	Design Thinking for Engineers	3	1	0	4	CSE	5
4.	22GEO04	Innovation and Business Model Development	3	1	0	4	MTS	6
5.	22GEO05	German Language Level 2	4	0	0	4	ECE	ALL
6.	22GEO06	German Language Level 3	3	0	0	3	ECE	ALL
7.	22GEO07	German Language Level 4	3	0	0	3	ECE	ALL
8.	22GEO08	Japanese Language Level 2	4	0	0	4	ECE	ALL
9.	22GEO09	Japanese Language Level 3	3	0	0	3	ECE	ALL
10.	22GEO10	Japanese Language Level 4	3	0	0	3	ECE	ALL
11.	22GEO11	French Language Level 1	4	0	0	4	ECE	ALL
12.	22GEO12	French Language Level 2	4	0	0	4	ECE	ALL
13.	22GEO13	French Language Level 3	3	0	0	3	ECE	ALL
14.	22GEO14	Spanish Language Level 1	4	0	0	4	ECE	ALL
15.	22GEO15	Spanish Language Level 2	4	0	0	4	ECE	ALL
16.	22GEO16	Spanish Language Level 3	3	0	0	3	ECE	ALL
17.	22GEO17	Entrepreneurship Development	3	0	0	3	MTS	7
18.	22GEX01	NCC Studies (Army Wing) - I	3	0	2	4	EEE	5/6
19.	22GEX02	NCC Studies (Air Wing) - 1	3	0	2	4	IT	5/6
20.	22MBO01	Cost Accounting for Engineers	3	1	0	4	MBA	5
21.	22MBO02	Economic Analysis for Decision Making	3	1	0	4	MBA	6
22.	22MBO03	Marketing Analytics	3	1	0	4	MBA	7

GENERAL OPEN ELECTIVE (Common to All BE/BTech branches)

KEC R2022: SCHEDULING OF COURSES – BE (Automobile Engineering) Total Credits: 168

						,		0 0/				1
Sem	Course1	Course2	Course3	Course4	Course5	Course6	Course7	Course8	Course9	Course10	Course11	СН
I	22EGT11 Communicati on Skills – I (3-0-0-3)	22MAC11 Matrices and Ordinary Differential Equations (3-1*-2*-4)	22PHT14 Physics for Automobile Engineering (3-0-0-3)	22AUT11 Statics and Dynamics (3-0-0-3)	22CSC11 Problem Solving and Programming in C (3-0-2-4)	22MET11 Engineering Drawing (2-1-0-3)	22MEL11 Engineering Practices Laboratory (0-0-2-1)	22PHL11 Physics Laboratory for Automobile Engineering (0-0-2-1)	22VEC11 Yoga and Values for Holistic Development (0-0-0-1)	22MNT11 Student Induction Program (0-0-0-0)		23
11	22EGT21 Communicati on Skills – II (3-0-0-3)	22MAC22 Multivariable Calculus and Partial Differential Equations (3-1*-2*-4)	22CYT26 Chemistry for Automobile Engineering (3-0-0-3)	22AUC21 Manufacturing Technology (3-0-2-4)	22CSC21 Fundamentals of Data Structures (3-0-2-4)	22AUT21 Automotive Engines (3-0-0-3)	22TAM01 Heritage of Tamils (1-0-0-1)	22AUL21 Automotive Engines Laboratory (0-0-2-1)	22CYL22 Chemistry Laboratory for Mechanical Systems (0-0-2-1)			24
	22AUC31 Basics of Electrical and Electronic Circuits (3-0-2-4)	22AUT31 Mechanics of Deformable Bodies (3-1-0-4)	22AUT32 Thermodynami cs and Thermal Science (3-1-0-4)	22AUT33 Hydraulics and Pneumatics (3-0-0-3)	22AUT34 Automotive Fuels and Lubricants (3-0-0-3)	22TAM02 Tamils and Technology (1- 0-0-1)	22AUL31 Automotive Fuels and Lubricants Laboratory (0-0-2-1)	22AUL32 Hydraulics and Pneumatics Laboratory (0-0-2-1)	22MNT31 Environmental Science (2-0-0-0)	22EGL31 Communication Skills Development Laboratory (0-0-2-1)		22
IV	22MAT41 Numerical Methods for Engineers (3-1-0-4)	22ITC32 Introduction to Python (3-0-2-4)	22AUC41 Automotive Electrical Systems and Drives (3-0-2- 4)	22AUT42 Vehicle Components Design - I (3-0-0-3)	22AUT43 Automatic Transmission and Control System (3-0-0-3)	22AUL41 Computer Aided Design Laboratory (0-0-2-1)	22AUL42 Automotive Chassis Components Laboratory (0-0-2-1)	22GCL41/22GCl41 Professional Skills Training I / Industrial Training I (0-0-0-2)				22
v	22AUC51 Vehicle Dynamics (3-0-2-4)	22AUT51 Automotive Sensors and Controllers (3-0-0-3)	22AUT52 Mechanics of Machines (3-0-0-3)	22AUT53 Vehicle Components Design - II (3-0-0-3)	Professional Elective I (3-0-0-3)	Open Elective (3-0/1-2/0-4)	22AUL51 Automotive Sensors and Controllers Laboratory (0-0-2-1)	22AUL52 Computer Aided Analysis Laboratory (0-0-2-1)	22GCL51/22GCI51P rofessional Skills Training II / Industrial Training I (0-0-0-2)			24
VI	22AUT61 Automotive Embedded Systems (3-0-0-3)	22AUT62 Modelling of Hybrid and Electric Vehicles (3-0-0-3)	Professional Elective – II (3-0-0-3)	Open Elective — II (3-1/0-0/2-4)	22AUL61 Automotive Embedded Systems Laboratory (0-0-2-1)	22AUL62 Vehicle Maintenance Laboratory (0-0-2-1)	22AUP61 Project Work I (0-0-4-4)	22GET31 Universal Human Values (2-0-0-2)	22GEP61 Comprehensive Test and Viva (0-0-0-2)			23
VII	22GCT71 Engineering Economics and Management (3-0-0-3)	Professional Elective – III (3-0-0-3)	Professional Elective – IV (3-0-0-3)	Professional Elective – V (3-0-0-3)	Open Elective – III (3-0-0-3)	22AUP71 Project Work II Phase I (0-0-8-5)						20
VIII	Professional Elective – VI (3-0-0-3)	Open Elective – IV (3-0-0-3)	22AUP81 Project Work II Phase II (0-0-14-4)									10

Kongu Engineering College, Perundurai, Erode – 638060, India MAPPING OF COURSES WITH PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
1	22EGT11	Communication Skills – I						✓			✓	✓	✓	✓		
1	22MAC11	Matrices and Ordinary Differential Equations	✓	✓	✓	✓	✓									
1	22PHT14	Physics for Automobile Engineering	✓	✓	✓						✓	✓		✓	✓	✓
1	22AUT11	Statics and Dynamics	✓	✓	✓	✓								✓	✓	
1	22CSC11	Problem Solving and Programming in C	✓	✓	✓	✓	✓					✓		✓		
1	22MET11	Engineering Drawing	✓	✓	✓		✓					✓		✓	✓	✓
1	22MEL11	Engineering Practices Laboratory	✓		✓	✓	✓	✓			~	✓		✓	✓	✓
1	22PHL11	Physics Laboratory for Automobile Engineering	✓	✓	✓	✓					~	✓		✓	✓	✓
1	22VEC11	Yoga and Values for Holistic Development						✓		✓	~					
1	22MNT11	Student Induction Program														
2	22EGT21	Communication Skills – II						✓			✓	✓	✓	✓		
2	22MAC22	Multivariable Calculus and Partial Differential Equations	~	✓	~		✓								~	
2	22CYT26	Chemistry for Automobile Engineering	✓	✓	~	✓									~	✓
2	22AUC21	Manufacturing Technology	✓	✓	✓			✓	✓		✓	✓		✓	✓	
2	22CSC21	Fundamentals of Data Structures	✓	✓	✓	✓										
2	22AUT21	Automotive Engines	✓	✓				✓	✓					✓	✓	
2	22AUL21	Automotive Engines Laboratory	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	
2	22CYL22	Chemistry Laboratory for Mechanical Systems	✓	✓	✓	✓			✓						✓	✓
3	22AUC31	Basics of Electrical and Electronic Circuits	✓	✓	✓					✓	~	✓		✓		✓
3	22AUT31	Mechanics of Deformable Bodies	✓	✓	✓	✓	~				~	✓		✓	✓	
3	22AUT32	Thermodynamics and Thermal Science	✓	✓	✓	✓		✓	~					✓	✓	
3	22AUT33	Hydraulics and Pneumatics	✓	✓	✓	✓	✓							✓	✓	✓
3	22AUT34	Automotive Fuels and Lubricants	✓	✓				✓	✓					✓	✓	
3	22AUL31	Automotive Fuels and Lubricants Laboratory	✓	✓	✓	✓	✓		✓		✓	✓		✓	✓	

🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
3	22AUL32	Hydraulics and Pneumatics Laboratory	✓	✓	✓		✓						✓	✓	✓	✓
3	22MNT31	Environmental Science	✓	✓	✓				✓							
3	22EGL31	Communication Skills Development Laboratory									✓	✓		✓		
4	22MAT41	Numerical Methods for Engineers	✓	✓	✓											
4	22ITC32	Introduction to Python	~	✓	~	✓										
4	22AUC41	Automotive Electrical Systems and Drives	✓	✓	✓					✓	1	1		✓	✓	✓
4	22AUT41	Vehicle Components Design – I	✓	✓	✓	✓		✓						✓	✓	
4	22AUT42	Automatic Transmission and Control System	✓	✓	✓									✓	✓	✓
4	22AUL41	Computer Aided Design Laboratory	✓	✓	✓		~				1	✓		✓	✓	
4	22AUL42	Automotive Chassis Components Laboratory	✓	✓		✓		✓	✓	✓	✓	✓		✓	✓	
4	22GCL41/22GCI41	Professional Skills Training I / Industrial Training I	~	✓				✓	✓	✓	✓	~	~	~	~	
5	22AUC51	Vehicle Dynamics	✓	✓	✓	✓	✓	✓		✓	✓	✓		✓	✓	
5	22AUT51	Automotive Sensors and Controllers	✓	✓	✓									✓	✓	✓
5	22AUT52	Mechanics of Machines	✓	✓	✓	✓								✓	✓	
5	22AUT53	Vehicle Components Design – II	✓	✓	✓	✓								✓	✓	
5	22AUL51	Automotive Sensors and Controllers Laboratory	~	~	~					~	~	~		~		~
5	22AUL52	Computer Aided Analysis Laboratory	~	✓	~	✓	~			✓	~	~		~	✓	
6	22AUT61	Automotive Embedded Systems	✓	✓	✓		✓							✓		✓
6	22AUT62	Modelling of Hybrid and Electric Vehicles	✓	✓	✓	✓		✓	~					✓	✓	✓
6	22AUL61	Automotive Embedded Systems Laboratory	✓	✓	✓		✓			1	✓	✓		✓		✓
6	22AUL62	Vehicle Maintenance Laboratory	✓	✓	✓		~	✓	✓	✓		✓	✓	✓	✓	
6	22AUP61	Project Work I	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓
6	22GET31	Universal Human Values						✓		✓						
6	22GEP61	Comprehensive Test and Viva	✓	✓	✓	✓					✓	✓	✓	✓	✓	✓

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
7	22GET71	Engineering Economics and Management	✓	✓	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓
7	22AUT71	Manufacturing of Automotive Components	✓	✓	✓										~	
7	22AUP71	Project Work II Phase I	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	~	✓
8	22AUP81	Project Work II Phase II	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	~	✓
		Professional Elective Courses														
5	22AUE01	Two and Three Wheeler Technology	✓	✓				✓	✓					✓	~	✓
5	22AUE02	Diesel and Electric Locomotives	✓	✓	✓		✓	✓						✓	~	✓
5	22AUE03	Computer Integrated Manufacturing	✓	✓	✓	✓								~	~	
5	22AUE04	Automotive Control System	✓	✓	✓	✓								✓	✓	✓
5	22AUE05	Machine Design	✓	✓	✓	✓			✓					✓	✓	
5	22AUE06	Principles of Farm Machineries	✓	✓				✓	✓					~	✓	
7	22AUE07	Finite Element Method	✓	✓	✓	✓	✓							✓	✓	
7	22AUE08	In-Vehicle Networking	✓	✓										✓		✓
7	22AUE09	Vehicle Body Engineering	✓	✓			✓	✓	✓					✓	✓	
7	22AUE10	Operations Research	✓	✓	✓	✓							✓	~	✓	
7	22AUT11	Vehicle Maintenance	✓	✓			✓		✓					✓	✓	✓
7	22AUE12	Composite Materials	✓	✓	✓	✓			✓					~	~	
7	22AUE13	CNC and Metrology	✓	✓	✓	✓	✓							✓	✓	
7	22AUE14	Computational Fluid Dynamics	✓	✓	✓	✓	✓							~	✓	✓
7	22AUE15	Machine Vision And Image Processing	✓	✓	✓	✓	✓							✓		✓
7	22AUE16	Automotive Pollution Control	✓	✓	✓	✓	✓	✓	✓					✓	✓	
7	22AUE17	Total Quality Management	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	~	
7	22GEE01	Fundamentals of Research														
7	22AUE18	Automotive Noise, Vibration and Harshness	✓	✓					✓					✓	~	
7	22AUE19	Automotive HVAC	✓	✓	✓			✓	✓					✓	✓	✓
7	22AUE20	Autonomous Vehicle Technology	✓	✓	✓	✓	✓	✓	✓					√	✓	✓

🎉 Kongu Engineering College, Perundurai, Erode – 638060, India

Sem.	Course Code	Course Title	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
7	22AUE21	Value Engineering	✓	✓	✓			✓	✓				✓	✓	✓	✓
7	22AUE22	Design of Engine Components	✓	✓	✓	✓								✓	✓	
7	22AUE23	Mobile Robotics	✓	✓	✓	✓	✓							✓	✓	✓
7	22AUE24	Automotive Vehicle Safety	✓	✓				✓	✓					✓	✓	✓
7	22AUE25	Non Destructive Evaluation Techniques	✓	✓	✓	✓									✓	
7	22AUE26	Quality Assurance and Reliability	✓	✓	✓		✓							✓	✓	
7	22AUE27	Advanced Materials for Green Vehicles	✓	✓	✓	✓		✓	✓					✓	✓	
7	22AUE28	Automotive Testing	✓	✓	✓	✓	✓	✓	✓					✓	✓	
7	22AUE29	Alternate Energy Sources for Automobiles	✓	✓	✓	✓		✓	✓					✓	✓	
8	22AUE30	Road Transport Management	✓	✓				✓	✓	✓				✓	✓	✓
8	22AUE31	Advanced Theory of IC Engines	✓	✓	✓	✓	✓	✓	✓					✓	✓	
8	22AUE32	Automotive Product Life Cycle Management	✓	✓			✓	✓	✓					✓	✓	✓
8	22AUE33	Process Planning and Cost Estimation	✓	✓	✓	✓			✓	✓				✓	✓	✓
8	22AUE34	Lean Methods for Automobile Engineers	✓	✓	✓	✓		✓	✓					✓	✓	
8	22AUE35	Automotive Styling and Modeling	✓	✓	✓	✓	✓	✓						✓	✓	
8	22AUE36	Non-Traditional Machining Processes	✓	✓					✓					✓	✓	
		General Open Elective														
5	22CEX01	Remote Sensing and its Applications	✓	✓	✓	✓		✓			✓			✓		
5	22MEX01	Renewable Energy Sources	✓		✓	✓	✓	✓	✓	✓	✓					
5	22MTO01	Design of Mechatronics Systems	✓	✓	✓	✓	✓							✓		
5	22MTX01	Data Acquisition and Virtual Instrumentation	✓	✓	✓	✓	✓							✓		
5	22MTX02	Factory Automation	✓	✓	✓	✓	✓				✓	✓		✓		
5	22AUX01	Automotive Engineering	✓	✓	✓			✓	✓		✓	✓		✓		
5	22ECX01	Basics of Electronics in Automation Appliances	✓	✓	✓	✓		✓	✓	✓			✓	✓		
5	22ECX02	Image Processing	✓	✓	✓	✓	✓				✓	✓		✓		
5	22EEO01	Solar and Wind Energy Systems	✓	✓	✓			✓	✓					✓		
5	22EEO02	Electrical Wiring and Lighting	✓	✓	✓	✓	✓			Ī				✓		

Sem.	Code	Engineering Collegeolese and Franker and Frode – 63806	0, 404 ia	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
5	22EEO03	Programmable Logic Controller and SCADA	✓	✓	✓	✓		✓			✓			✓		
5	22EEO04	Analog and Digital Electronics	✓	✓	✓	✓	✓							✓		
5	22EEO05	Power Electronics and Drives	✓	✓	✓	✓	✓	✓			✓					
5	22EEO06	Sensors and Actuators	✓	✓	✓			✓						✓		
5	22EIO01	Measurements and Instrumentation	✓	✓	✓	✓	✓									
5	22EIO02	Biomedical Instrumentation and Applications	✓	✓	✓	✓	✓	✓		✓						
5	22EIO03	Industrial Automation	✓	✓	✓	✓	✓									
5	22CSX01	Fundamentals of Databases	✓	✓	✓											
5	22CSX02	Data science for Engineers	✓	✓	✓	✓	✓									
5	22CSX03	Enterprise Application Development Using Java	✓	~	~	~	✓	✓	~	✓	✓	✓	✓	✓		
5	22CSO01	Computational science for Engineers	✓	~	✓											
5	22CSO02	Formal Languages and Automata Theory	✓	✓	✓											
5	22ITO01	Artificial Intelligence	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓			
5	22ITX01	Next Generation Databases	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
5	22CDO01	Fundamentals of User Experience Design	✓	✓	✓	✓	✓				✓	✓	✓			
5	22ADO01	Data Warehousing and Data Mining	✓	✓	✓											
5	22ALO01	Business Intelligence	✓	✓	✓											
5	22CHO01	Industrial Enzymology	✓	✓	✓							✓	✓	✓		
5	22CHO02	Waste to Energy Conversion	✓	✓												
5	22CHO03	Applied Nanotechnology	✓	✓	✓	✓	✓	✓	✓	✓				✓		
5	22FTX01	Baking Technology	✓	✓	✓	✓	✓	✓			✓	✓	✓	✓		
5	22FTO01	Food Processing Technology	✓	✓	✓	✓		✓				✓		✓		
5	22MAO01	Mathematical Foundations for Machine Learning	✓	~	~	~	~									
5	22MAO02	Numerical Computing	✓	✓	✓											
5	22MAO03	Stochastic Processes and Queuing Theory	✓	~	✓											
5	22MAO04	Statistics for Engineers	✓	~	✓											
5	22PHO01	Thin Film Technology	✓	✓	✓						✓	✓		✓		

Sem.	Code	Engineering Colleg eourse ritle rai, Erode – 63806	0,₽01 ia	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
5	22PHO02	High Energy Storage Devices	✓	✓	✓						✓	✓		✓		
5	22PHO03	Structural and Optical Characterization of Materials	~	✓	✓						✓	~		1		
5	22CYO01	Instrumental Methods of Analysis	~	✓	✓	✓										
5	22CYO02	Chemistry Concepts for Competitive Examinations	~	~	✓											
5	22CYO03	Organic Chemistry for Industry	✓	✓	✓	✓										
5	22MBO01	Cost Accounting for Engineers										✓	✓	✓		
6	22CEO01	Disaster Management	✓	✓	✓			✓	✓					✓		
6	22MEX02	Design of Experiments	✓	✓	✓	✓	✓				✓					
6	22GEO04	Innovation and Business Model Development	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
6	22MTO02	Robotics	✓	✓	✓	✓	✓							✓		
6	22MTO03	3D Printing and Design	✓	✓			✓							✓		
6	22AUO01	Automotive Electronics	✓	✓	✓	✓								✓		
6	22ECX03	PCB Design and Fabrication	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓		
6	22EEO07	Energy Conservation and Management	✓	✓	✓		✓		✓	✓	✓			✓		
6	22EEO08	Microprocessors and Microcontrollers Interfacing	~	~	~	~	✓	~	~	~		✓	~	~		
6	22EEO09	Electrical Safety	✓	✓	✓				✓	✓			✓	✓		
6	22EEO10	VLSI System Design	✓	✓	✓	✓	✓				✓		✓	✓		
6	22EEO11	Automation for Industrial Applications	✓	✓	✓	✓			✓		✓			✓		
6	22EIO04	PLC Programming with High Level Languages	✓	✓	✓	✓	✓									
6	22EIO05	Virtual Instrumentation	✓	✓	✓	✓	✓									
6	22CSX04	Foundations of Machine Learning	✓	✓	✓											
6	22CSX05	Web Engineering	✓	✓	✓											
6	22ITX02	Advanced Java Programming	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
6	22ITO02	Internet of Things	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓			
6	22ITO03	Fundamentals of Software Development	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓			
6	22ITO04	Mobile Application Development	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
6	22CDX01	Fundamentals of User Interactive Design	✓	✓	✓	✓										

Sem.	Code	Engineering Collegeo Perundurai, Erode – 63806), 404 ia	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
6	22ADX01	Data Visualization	~	~	✓											
6	22ALX01	Data Exploration and Visualization Techniques	~	~	~											
6	22CHO04	Air Pollution Monitoring and Control	✓	✓	✓			✓	✓							
6	22CHO05	Paints and Coatings	~	~	✓				✓							
6	22CHO06	Powder Technology	✓	✓	✓			✓	✓					✓		
6	22FTX02	Processing of milk and milk products	✓	✓	✓		✓	✓		✓	✓	✓		✓		
6	22FTX03	Processing of Fruits and Vegetables	✓	✓	✓		✓	✓		✓	✓	✓		✓		
6	22MAO05	Graph Theory and its Applications	✓	✓	✓											
6	22MAX01	Data Analytics using R Programming	✓	✓	✓	✓	✓									
6	22MAO06	Operations Research	✓	✓	✓											
6	22MAO07	Number Theory and Cryptography	✓	✓	✓		✓									
6	22PHO04	Synthesis, Characterization and Biological Applications of Nanomaterials	✓	~	~						✓	✓		1		
6	22PHO05	Techniques of Crystal Growth	✓	~	✓						✓	✓		✓		
6	22CYO04	Corrosion Science and Engineering	✓	✓	✓	✓										
6	22CYO05	Chemistry of Cosmetics in Daily Life	✓	✓	✓											
6	22CYO06	Nanocomposite Materials	✓	✓	✓	✓										
6	22MBO02	Economic Analysis for Decision Making					✓					✓	✓			
7	22CEO02	Introduction to Smart Cities	✓	✓	✓	✓	✓									
7	22CEO03	Environmental Health and Safety	✓	✓	✓			✓	✓							
7	22MEO01	Fundamentals of Ergonomics	✓	✓	✓	✓	✓	✓	✓					✓		
7	22MEO02	Principles of Management and Industrial Psychology	✓					✓				✓	✓			
7	22MEO03	Waste Heat Recovery System and Storage	✓	✓	✓	✓			✓							
7	22GEO05	Entrepreneurship Development	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
7	22MTO04	Drone System Technology	✓	✓	✓	✓	✓							✓		
7	22AUO02	Vehicle Maintenance	✓	✓			✓		✓					✓		
7	22ECO01	Wearable Devices	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓		
7	22ECX04	Electronic Hardware and Troubleshooting	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓		

Sem.	Code	Engineering Collegeolfsenfilerai, Erode – 63806	0, ₽0 4ia	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
7	22EEO12	Electric Vehicle	✓	✓	✓	✓		✓	✓		✓			✓		
7	22EEO13	E-Waste Management	✓	✓	✓	✓		✓	✓					✓		
7	22EEO14	Embedded System Design	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓		
7	22EEO15	Energy Storage Systems and Controllers	✓	✓	✓			✓			✓		✓	✓		
7	22EEO16	AI Techniques for Engineering Applications	✓	✓	✓	✓										
7	22EIO06	Introduction to Distributed Control Systems	✓	✓	✓	✓	✓			✓		✓				
7	22EIO07	Instrumentation in Aircraft Navigation and Control	✓	✓	✓	✓	✓									
7	22EIO08	Industry 4.0 with Industrial IoT	✓	✓	✓	✓	✓			✓						
7	22EIO09	Industrial Data Communication	✓	✓	✓	✓	✓	✓								
7	22EIO10	Wireless Instrumentation	✓	✓	✓	✓	✓		✓							
7	22EIO11	Instrumentation Techniques in Agriculture	✓	✓	✓	✓	✓									
7	22CSO03	Nature Inspired optimization techniques	✓	✓	✓											
7	22ITO05	Fundamentals of Cloud Computing	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
7	22ITO06	Introduction to Ethical Hacking	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
7	22CDO02	Introduction to Mobile Game Design	✓	✓	✓	✓										
7	22CDO03	Introduction to Graphics Design	✓	✓	✓	✓										
7	22ADO02	Neural Networks and Deep Learning	✓	✓	✓	✓										
7	22ALO02	Industrial Machine Learning	✓	✓	✓											
7	22CHO07	Hydrogen Energy	✓	✓										✓		
7	22CHO08	Rubber Technology	✓	✓				✓	✓					✓		
7	22FTO02	Principles of Food safety	✓	✓	✓			✓	✓	✓		✓		✓		
7	22FTO03	Fundamentals of Food Packaging and Storage	✓	✓	✓	✓	✓	✓		✓		✓		✓		
7	22MAO08	Non-Linear Optimization	✓	✓	✓											
7	22MAO09	Optimization for Engineers	✓	✓	✓											
7	22CYO07	Waste and Hazardous Waste Management	✓	✓	✓	✓			✓							
7	22CYO08	Chemistry in Every day Life	✓	✓	✓	✓										
7	22MBO03	Marketing Analytics										✓	✓	✓		
8	22CEO04	Infrastructure Planning and Management	✓	✓	✓		✓									

Sem.	Coukerigu Code	Engineering Colleg eolese नर्सा येक्या, Erode – 63806	0, 404 ia	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
8	22CEO05	Environmental Laws and Policy	✓	✓			✓									
8	22MEO04	Safety Measures for Engineers	✓					✓	✓	✓						
8	22MEO05	Energy Conservation in Thermal Equipments	✓		✓		✓	✓	✓					✓		
8	22MEO06	Climate Change and New Energy Technology	✓		✓			✓	✓	✓						
8	22MTO05	Micro and Nano Electromechanical Systems	✓	✓	✓	✓								✓		
8	22AUO03	Public Transport Management	✓	✓				✓	✓	✓				✓		
8	22AUO04	Autonomous Vehicles	✓	✓	✓	✓	✓	✓	✓					✓		
8	22ECO02	Optical Engineering	✓	✓	✓	✓		✓	✓	✓	✓			✓		
8	22EEO17	Smart Grid Technologies	✓	✓	✓	✓	✓			✓				✓		
8	22EEO18	Biomass Energy Systems	✓	✓	✓			✓	✓				✓	✓		
8	22EIO12	Environmental Sensors	✓	✓	✓	✓	✓		✓							
8	22EIO13	Pollution Control and Management	✓	✓	✓	✓	✓	✓		✓						
8	22CSO04	Machine Translation	✓	✓	✓											
8	22CSO05	Fundamentals of Blockchain	✓	✓	✓											
8	22ITO07	Business Continuity Planning	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓			
8	22CDX02	Virtual Reality and Augmented Reality	✓	✓	✓	✓										
8	22ADO03	Business Analytics	✓	✓	✓	✓										
8	22ALO03	Machine Learning for Smart Cities	✓	✓	✓	✓										
8	22CHO09	Industrial Accident Prevention and Management	~		✓	~		~	~	~	~	~	~	~		
8	22CHO10	Electrochemical Engineering	✓	✓	✓											
8	22CHO11	Smart and Functional Materials	✓	✓					✓	✓	✓			✓		
8	22FTO04	Food Ingredients	✓	✓	✓			✓		✓		✓		✓		
8	22FTO05	Food and Nutrition	✓	✓	✓			✓				✓		✓		
8	22CYO09	Chemistry of Nutrition for Women Health	✓	✓	✓											
		General Open Elective Courses														
ALL	22GEO01	German Language Level 1								✓	✓	✓		✓		
ALL	22GEO02	Japanese Language Level 1								✓	✓	✓		✓		
5	22GEO03	Design Thinking for Engineers	✓	✓	✓	✓		ĺ								

Sem.	Code	Engineering CollegeoResundurai, Erode – 638060	, Poq ia	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
6	22GEO04	Innovation and Business Model Development	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
ALL	22GEO05	German Language Level 2								✓	✓	✓		✓		
ALL	22GEO06	German Language Level 3								✓	✓	✓		✓		
ALL	22GEO07	German Language Level 4								✓	✓	✓		✓		
ALL	22GEO08	Japanese Language Level 2								✓	✓	✓		✓		
ALL	22GEO09	Japanese Language Level 3								✓	✓	✓		✓		
ALL	22GEO10	Japanese Language Level 4								✓	✓	✓		✓		
ALL	22GEO11	French Language Level 1								✓	✓	✓		✓		
ALL	22GEO12	French Language Level 2								✓	✓	✓		✓		
ALL	22GEO13	French Language Level 3								✓	✓	✓		✓		
ALL	22GEO14	Spanish Language Level 1								✓	✓	✓		✓		
ALL	22GEO15	Spanish Language Level 2								✓	✓	✓		✓		
ALL	22GEO16	Spanish Language Level 3								✓	✓	✓		✓		
7	22GEO17	Entrepreneurship Development	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
5/6	22GEX01	NCC Studies (Army Wing) - I	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓				
5/6	22GEX02	NCC Studies (Air Wing) - 1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓				
5	22MBO01	Cost Accounting for Engineers										✓	✓	✓		
6	22MBO02	Economic Analysis for Decision Making					✓					✓	✓			
7	22MBO03	Marketing Analytics										✓	✓	✓		

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2022-23)

SEMESTER – I

SEMESTER	- I				1	1			
Course Code	Course Title	Но	urs / V	Veek	Credit	Max	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
22EGT11	Communication Skills – I	3	0	0	3	40	60	100	HS
22MAC11	Matrices and Ordinary Differential Equations	3	1*	2*	4	50	50	100	BS
22PHT14	Physics for Automobile Engineering	3	0	0	3	40	60	100	BS
22AUT11	Statics and Dynamics	3	0	0	3	40	60	100	PC
22CSC11	Problem Solving and Programming in C	3	0	2	4	100	0	100	ES
22MET11	Engineering Drawing	2	1	0	3	40	60	100	ES
Practical / E	mployability Enhancement								
22MEL11	Engineering Practices Laboratory	0	0	2	1	60	40	100	BS
22PHL14	Physics Laboratory for Automobile Engineering	0	0	2	1	60	40	100	ES
22VEC11	Yoga and Values for Holistic Development				1	100	0	100	HS
22MNT11	Student Induction Program				0	100	0	100	MC
	Total Credits to be earned	•	•	•	23		•		

SEMESTER	- 11								
Course	Course Title	Но	urs / V	Veek	Credit	Мах	imum	Cate	
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ry with Practical								
22EGT21	Communication Skills – II	3	0	0	3	40	60	100	HS
22MAC22	Multivariable Calculus and Partial Differential Equations	3	1*	2*	4	50	50	100	BS
22CYT26	Chemistry for Automobile Engineering	3	0	0	3	40	60	100	BS
22AUC21	Manufacturing Technology	3	0	2	4	50	50	100	ES
22CSC21	Fundamentals of Data Structures	3	0	2	4	50	50	100	ES
22AUT21	Automotive Engines	3	0	0	3	40	60	100	PC
22TAM01	Heritage of Tamils	1	0	0	1	100	0	100	HS
Practical / E	mployability Enhancement								
22AUL21	Automotive Engines Laboratory	0	0	2	1	60	40	100	PC
22CYL22	Chemistry Laboratory for Mechanical Systems	0	0	2	1	60	40	100	BS
	Total Credits to be earned	•		•	24		•		

*Alternate weeks

B.E. - AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2022-23)

SEMESTER – III

SEMESTER	– 111								
Course Code	Course Title	Но	urs / V	Veek	Credit	Max	Cate		
Code		L	Т	Р	-	CA	ESE	Total	gory
Theory/Theo	ory with Practical								
22AUC31	Basics of Electrical and Electronic Circuits	3	0	2	4	50	50	100	PC
22AUT31	Mechanics of Deformable Bodies	3	1	0	4	40	60	100	PC
22AUT32	Thermodynamics and Thermal Science	3	1	0	4	40	60	100	PC
22AUT33	Hydraulics and Pneumatics	3	0	0	3	40	60	100	PC
22AUT34	Automotive Fuels and Lubricants	3	0	0	3	40	60	100	PC
22TAM02	Tamils and Technology	1	0	0	1	100	0	100	HS
Practical / E	mployability Enhancement								
22AUL31	Automotive Fuels and Lubricants Laboratory	0	0	2	1	60	40	100	PC
22AUL32	Hydraulics and Pneumatics Laboratory	0	0	2	1	60	40	100	PC
22MNT31	Environmental Science	2	0	0	0	100	0	100	MC
22EGL31	Communication Skills Development Laboratory	0	0	2	1	60	40	100	HS
	Total Credits to be earned				22				

Course	Course Title	Но	Hours / Week			Max	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
22MAT41	Numerical Methods for Engineers	3	1	0	4	40	60	100	BS
22ITC32	Introduction to Python	3	0	2	4	100	0	100	ES
22AUC41	Automotive Electrical Systems and Drives	3	0	2	4	50	50	100	PC
22AUT41	Vehicle Components Design – I	3	0	0	3	40	60	100	PC
22AUT42	Automatic Transmission and Control System	3	0	0	3	40	60	100	PC
Practical / E	mployability Enhancement								
22AUL41	Computer Aided Design Laboratory	0	0	2	1	60	40	100	PC
22AUL42	Automotive Chassis Components Laboratory	0	0	2	1	60	40	100	PC
22GCL41/ 22GCI41	Professional Skills Training I / Industrial Training I *				2	100	0	100	EC
	Total Credits to be earned				22				

* 80 Hours of training

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2022-23)

SEMESTER – V

Course Code	Course Title	Но	urs/V	Veek	Credit	Max	Cate gory		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22AUC51	Vehicle Dynamics	3	0	2	4	50	50	100	PC
22AUT51	Automotive Sensors and Controllers	3	0	0	3	40	60	100	PC
22AUT52	Mechanics of Machines	3	0	0	3	40	60	100	PC
22AUT53	Vehicle Components Design – II	3	0	0	3	40	60	100	PC
	Professional Elective – I	3	0	0	3	40	60	100	PE
	Open Elective – I	3	0/1	2/0	4	40/5 0	60/5 0	100	OE
Practical /	Employability Enhancement								
22AUL51	Automotive Sensors and Controllers Laboratory	0	0	2	1	60	40	100	PC
22AUL52	Computer Aided Analysis Laboratory	0	0	2	1	60	40	100	PC
22GCL51/ 22GCl51	Professional Skills Training II / Industrial Training I *				2	100	0	100	EC
	Total Credits to be earned	•	•	•	24				

*80 hours of training

Course	Course Title	Ηοι	urs / V	Veek	Credit	Max	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22AUT61	Automotive Embedded Systems	3	0	0	3	40	60	100	PC
22AUT62	Modelling of Hybrid and Electric Vehicles	3	0	0	3	40	60	100	PC
	Professional Elective – II	3	0	0	3	40	60	100	PE
	Open Elective – II	3	1/0	0/2	4	40/5 0	60/5 0	100	OE
Practical /	Employability Enhancement								
22AUL61	Automotive Embedded Systems Laboratory	0	0	2	1	60	40	100	PC
22AUL62	Vehicle Maintenance Laboratory	0	0	2	1	60	40	100	PC
22AUP61	Project Work I	0	0	8	4	50	50	100	EC
22GET31	Universal Human Values	2	0	0	2	100	0	100	HS
22GEP61	Comprehensive Test and Viva				2	100	0	100	EC
	Total Credits to be earned	1			23			1	

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2022-23)

SEMESTE	R – VII								
Course	Course Title	Но	Hours / Week			Мах	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22GCT71	Engineering Economics and Management	3	0	0	3	40	60	100	HS
	Professional Elective – III	3	0	0	3	40	60	100	PE
	Professional Elective – IV	3	0	0	3	40	60	100	PE
	Professional Elective – V	3	0	0	3	40	60	100	PE
	Open Elective – III	3	0	0	3	40	60	100	OE
Practical /	Employability Enhancement								
22AUP71	Project Work II Phase I	0	0	10	5	50	50	100	EC
	Total Credits to be earned	•	•	•	20		•		

SEMESTE	R – VIII								
Course	Course Title	Но	urs / V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		СА	CA ESE Total		gory
Theory/Th	eory with Practical								
	Professional Elective – VI	3	0	0	3	40	60	100	PE
	Open Elective – IV	3	0	0	3	40	60	100	OE
Practical /	Employability Enhancement								
22AUP81	Project Work II Phase II	0	0	8	4	50	50	100	EC
	Total Credits to be earned	·	•	•	10		•		

Total Credits : 168

	LIST OF PROFESSIONAL ELECTIVES (PEs) (2022-23 Batch)										
S. No.	Course Code	Course Name	L	т	Р	С	Domain/ Stream				
		Semester – V									
		Elective – I									
1.	22AUE01	Two and Three wheeler Technology	3	0	0	3	AUTO				
2.	22AUE02	Diesel and Electric Locomotives	3	0	0	3	AUTO				
3.	22AUE03	Computer Integrated Manufacturing	3	0	0	3	MFG				
4.	22AUE04	Automotive Control System	3	0	0	3	EE				
5.	22AUE05	Machine Design	3	0	0	3	DSN				
6.	22AUE06	Principles of Farm Machineries	3	0	0	3	DSN				
		Semester – VI									
		Elective – II		I	n	r	1				
7.	22AUE07	Finite Element Method	3	0	0	3	DSN				
8.	22AUE08	In-Vehicle Networking	3	0	0	3	EE				
9.	22AUE09	Vehicle Body Engineering	3	0	0	3	AUTO				
10.	22AUE10	Operations Research	3	0	0	3	MFG				
11.	22AUE11	Vehicle Maintenance	3	0	0	3	AUTO				
12.	22AUE12	Composite Materials	3	0	0	3	MFG				
		Semester – VII									
		Elective – III									
13.	22AUE13	CNC and Metrology	3	0	0	3	MFG				
14.	22AUE14	Computational Fluid Dynamics	3	0	0	3	TF				
15.	22AUE15	Machine Vision And Image Processing	3	0	0	3	AUTO				
16.	22AUE16	Automotive Pollution Control	3	0	0	3	AUTO				
17.	22AUE17	Value Engineering	3	0	0	3	MFG				
18.	22AUE18	Automotive Noise, Vibration and Harshness	3	0	0	3	AUTO				
		Elective – IV									
19.	22GEE01	Fundamentals of Research	3	0	0	3	GE				
20.	22AUE19	Automotive HVAC	3	0	0	3	TF				

Kongu Engineering College, Perundurai, Erode – 638060, India

21.	22AUE20	Autonomous Vehicle Technology	3	0	0	3	EE
22.	22GEE02	Total Quality Management	3	0	0	3	MFG
23.	22AUE22	Design of Engine Components	3	0	0	3	DSN
24.	22AUE23	Mobile Robotics	3	0	0	3	EE
		Elective – V					
25.	22AUE24	Automotive Vehicle Safety	3	0	0	3	AUTO
26.	22AUE25	Non Destructive Evaluation Techniques	3	0	0	3	MFG
27.	22AUE26	Quality Assurance and Reliability	3	0	0	3	MFG
28.	22AUE27	Advanced Materials for Green Vehicles	3	0	0	3	MFG
29.	22AUE28	Automotive Testing	3	0	0	3	AUTO
30.	22AUE29	Alternate Energy Sources for Automobiles	3	0	0	3	TF
		Semester – VIII					
		Elective – VI					
31.	22AUE30	Road Transport Management	3	0	0	3	AUTO
32.	22AUE31	Advanced Theory of IC Engines	3	0	0	3	TF
33.	22AUE32	Automotive Product Life Cycle Management	3	0	0	3	DSN
34.	22AUE33	Process Planning and Cost Estimation	3	0	0	3	MFG
35.	22AUE34	Lean Methods for Automobile Engineers	3	0	0	3	MFG
36.	22AUE35	Automotive Styling and Modeling	3	0	0	3	AUTO
37.	22AUE36	Non-Traditional Machining Processes	3	0	0	3	MFG
	Т	otal Credits to be earned				18	

* Domain/Stream Abbreviations: AUTO - Automobile, DSN - Design, EE – Electrical and Electronics, TF – Thermal and Fluid, MFG-Manufacturing, GE – General Engineering

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2023-24)

SEMESTER – I

SEMESTER ·	-1								
Course Code	Course Title	Но	urs / V	Veek	Credit	Max	Cate		
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ry with Practical								
22EGT11	Communication Skills – I	3	0	0	3	40	60	100	HS
22MAC11	Matrices and Ordinary Differential Equations	3	1*	2*	4	50	50	100	BS
22PHT14	Physics for Automobile Engineering	3	0	0	3	40	60	100	BS
22CSC11	Problem Solving and Programming in C	3	0	2	4	100	0	100	ES
22MET11	Engineering Drawing	2	1	0	3	40	60	100	ES
Practical / Er	mployability Enhancement								
22PHL14	Physics Laboratory for Automobile Engineering	0	0	2	1	60	40	100	BS
22GCL12	Foundation Laboratory - Electrical, IoT, Web	0	0	6	3	100	0	100	ES
22VEC11	Yoga and Values for Holistic Development				1	100	0	100	HS
22TAM01	Heritage of Tamils	1	0	0	1	100	0	100	HS
22MNT11	Student Induction Program				0	100	0	100	MC
	Total Credits to be earned	·			23				

Course Code	Course Title	Но	urs / V	Veek	Credit	Мах	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ry with Practical								
22EGT21	Communication Skills – II	3	0	0	3	40	60	100	HS
22MAC22	Multivariable Calculus and Partial Differential Equations	3	1*	2*	4	50	50	100	BS
22CYT26	Chemistry for Automobile Engineering	3	0	0	3	40	60	100	BS
22CSC21	Fundamentals of Data Structures	3	0	2	4	50	50	100	ES
22AUT11	Statics and Dynamics	3	0	0	3	40	60	100	PC
Practical / E	mployability Enhancement								
22CYL22	Chemistry Laboratory for Mechanical Systems	0	0	2	1	60	40	100	BS
22GCL11	Foundation Laboratory - Manufacturing, Design and Robotics	0	0	6	3	100	0	100	ES
22TAM02	Tamils and Technology	1	0	0	1	100	0	100	HS
	Total Credits to be earned	•		•	22				

*Alternate weeks

B.E. - AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2023-24)

SEMESTER - III

SEMESTER	– 111								
Course Code	Course Title	Но	urs/V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Theo	ory with Practical								
22AUC31	Basics of Electrical and Electronic Circuits	3	0	2	4	50	50	100	PC
22AUC32	Hydraulics and Pneumatics	3	0	2	4	50	50	100	PC
22AUT32	Thermodynamics and Thermal Science	3	1	0	4	40	60	100	PC
22AUT21	Automotive Engines	3	0	0	3	40	60	100	PC
22AUT34	Automotive Fuels and Lubricants	3	0	0	3	40	60	100	PC
Practical / E	mployability Enhancement								
22AUL21	Automotive Engines Laboratory	0	0	2	1	60	40	100	PC
22AUL31	Automotive Fuels and Lubricants Laboratory	0	0	2	1	60	40	100	PC
22MNT31	Environmental Science	2	0	0	0	100	0	100	MC
22EGL31	Communication Skills Development Laboratory	0	0	2	1	60	40	100	HS
	Total Credits to be earned				21				

SEMESTER - IV Hours / Week **Maximum Marks** Course Cate **Course Title** Credit Code gory L т Ρ CA ESE Total Theory/Theory with Practical 22MAT41 Numerical Methods for Engineers 3 1 0 4 40 60 100 BS 3 2 22ITC32 ES Introduction To Python 0 4 100 0 100 PC 22AUC41 3 0 2 4 Automotive Electrical Systems and Drives 50 50 100 22AUT31 Mechanics of Deformable Bodies 3 0 0 3 40 60 100 PC 22AUT41 3 0 0 3 PC 40 60 100 Vehicle Components Design – I **Practical / Employability Enhancement** 22AUL41 0 PC Computer Aided Design Laboratory 0 2 1 60 40 100 22AUL42 0 0 2 1 60 40 100 PC Automotive Chassis Components Laboratory 22GCL41/ Professional Skills Training I / 2 100 0 --100 HS ----22GCI41 Industrial Training I * 22 Total Credits to be earned

* 80 Hours of training

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2023-24)

SEMESTER – V

Course Code	Course Title	Но	urs/V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22AUC51	Vehicle Dynamics	3	0	2	4	50	50	100	PC
22AUT51	Automotive Sensors and Controllers	3	0	0	3	40	60	100	PC
22AUT53	Vehicle Components Design – II	3	0	0	3	40	60	100	PC
22AUT54	Theory of Machines	3	1	0	4	40	60	100	PC
	Professional Elective – I	3	0	0	3	40	60	100	PE
	Open Elective – I	3	0/1	2/0	4	40/5 0	60/5 0	100	OE
Practical /	Employability Enhancement								
22AUL51	Automotive Sensors and Controllers Laboratory	0	0	2	1	60	40	100	PC
22AUL52	Computer Aided Analysis Laboratory	0	0	2	1	60	40	100	PC
22GCL51/ 22GCl51	Professional Skills Training II / Industrial Training I *				2	100	0	100	EC
	Total Credits to be earned	•	•	•	25				

*80 hours of training

Course Code	Course Title	Ηοι	urs / V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22AUT61	Automotive Embedded Systems	3	0	0	3	40	60	100	PC
22AUT62	Modelling of Hybrid and Electric Vehicles	3	0	0	3	40	60	100	PC
	Professional Elective – II	3	0	0	3	40	60	100	PE
	Open Elective – II	3	1/0	0/2	4	40/5 0	60/5 0	100	OE
Practical /	Employability Enhancement								
22AUL61	Automotive Embedded Systems Laboratory	0	0	2	1	60	40	100	PC
22AUL62	Vehicle Maintenance Laboratory	0	0	2	1	60	40	100	PC
22AUP62	Project Work I	0	0	10	5	50	50	100	EC
22GET31	Universal Human Values	2	0	0	2	100	0	100	HS
22GEP61	Comprehensive Test and Viva				2	100	0	100	EC
	Total Credits to be earned			•	24			I	

B.E. AUTOMOBILE ENGINEERING CURRICULUM – R2022 (For the students admitted from the academic year 2023-24)

SEMESTE	R – VII								
Course	Course Title	Но	urs/V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
22GCT71	Engineering Economics and Management	3	0	0	3	40	60	100	HS
22AUT71	Manufacturing of Automotive Components	3	0	0	3	40	60	100	PE
	Professional Elective – III	3	0	0	3	40	60	100	PE
	Professional Elective – IV	3	0	0	3	40	60	100	PE
	Open Elective – III	3	0	0	3	40	60	100	OE
Practical /	Employability Enhancement								
22AUP72	Project Work II Phase I	0	0	12	6	50	50	100	EC
	Total Credits to be earned		•	-	21		•		

SEMESTE	R – VIII								
Course	Course Title	Но	urs / V	Veek	Credit	Max	imum	Marks	Cate
Code		L	Т	Р		CA	ESE	Total	gory
Theory/Th	eory with Practical								
	Professional Elective – V	3	0	0	3	40	60	100	PE
	Open Elective – IV	3	0	0	3	40	60	100	OE
Practical /	Employability Enhancement								
22AUP81	Project Work II Phase II	0	0	8	4	50	50	100	EC
	Total Credits to be earned	·	•	•	10		•	•	

Total Credits : 168

		LIST OF PROFESSIONAL ELECTIVE	S (PE	Es) (2	2023	-24 Ba	atch)
S. No.	Course Code	Course Name	L	т	Р	С	Domain/ Stream
		Semester – V					
		Elective – I					
1.	22AUE01	Two and Three wheeler Technology	3	0	0	3	AUTO
2.	22AUE02	Diesel and Electric Locomotives	3	0	0	3	AUTO
3.	22AUE03	Computer Integrated Manufacturing	3	0	0	3	MFG
4.	22AUE04	Automotive Control System	3	0	0	3	EE
5.	22AUE05	Machine Design	3	0	0	3	DSN
6.	22AUE06	Principles of Farm Machineries	3	0	0	3	DSN
		Semester – VI					
		Elective – II					
7.	22AUE07	Finite Element Method	3	0	0	3	DSN
8.	22AUE08	In-Vehicle Networking	3	0	0	3	EE
9.	22AUE09	Vehicle Body Engineering	3	0	0	3	AUTO
10.	22AUE10	Operations Research	3	0	0	3	MFG
11.	22AUE11	Vehicle Maintenance	3	0	0	3	AUTO
12.	22AUE12	Composite Materials	3	0	0	3	MFG
		Semester – VII					
		Elective – III					
13.	22AUE13	CNC and Metrology	3	0	0	3	MFG
14.	22AUE14	Computational Fluid Dynamics	3	0	0	3	TF
15.	22AUE15	Machine Vision And Image Processing	3	0	0	3	AUTO
16.	22AUE16	Automotive Pollution Control	3	0	0	3	AUTO
17.	22AUE17	Value Engineering	3	0	0	3	MFG
18.	22AUE18	Automotive Noise, Vibration and Harshness	3	0	0	3	AUTO
		Elective – IV					
19.	22GEE01	Fundamentals of Research	3	0	0	3	GE
20.	22AUE19	Automotive HVAC	3	0	0	3	TF

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

21.	22AUE20	Autonomous Vehicle Technology	3	0	0	3	EE
22.	22GEE02	Total Quality Management	3	0	0	3	MFG
23.	22AUE22	Design of Engine Components	3	0	0	3	DSN
24.	22AUE23	Mobile Robotics	3	0	0	3	EE
25.	22AUE24	Automotive Vehicle Safety	3	0	0	3	AUTO
26.	22AUE25	Non Destructive Evaluation Techniques	3	0	0	3	MFG
27.	22AUE26	Quality Assurance and Reliability	3	0	0	3	MFG
28.	22AUE27	Advanced Materials for Green Vehicles	3	0	0	3	MFG
29.	22AUE28	Automotive Testing	3	0	0	3	AUTO
30.	22AUE29	Alternate Energy Sources for Automobiles	3	0	0	3	TF
		Semester – VIII					
		Elective – V					
31.	22AUE30	Road Transport Management	3	0	0	3	AUTO
32.	22AUE31	Advanced Theory of IC Engines	3	0	0	3	TF
33.	22AUE32	Automotive Product Life Cycle Management	3	0	0	3	DSN
34.	22AUE33	Process Planning and Cost Estimation	3	0	0	3	MFG
35.	22AUE34	Lean Methods for Automobile Engineers	3	0	0	3	MFG
36.	22AUE35	Automotive Styling and Modeling	3	0	0	3	AUTO
37.	22AUE36	Non-Traditional Machining Processes	3	0	0	3	MFG
	Т	otal Credits to be earned				15	

* Domain/Stream Abbreviations: AUTO - Automobile, DSN - Design, EE – Electrical and Electronics, TF – Thermal and Fluid, MFG-Manufacturing, GE – General Engineering

LIS		I ELECTIVE COURSES OFFERED TO OT	HER	DE	PAR	TMEN	TS (OEs)
S. No.	Course Code	Course Name	L	т	Ρ	С	Sem
1.	22AUX01	Automotive Engineering	3	0	2	4	V
2.	22AUO01	Automotive Electronics	3	1	0	4	VI
3.	22AUO02	Vehicle Maintenance	3	1	0	4	VII
4.	22AUO03	Public Transport Management	3	0	0	3	VII
5.	22AUO04	Autonomous Vehicles	3	0	0	3	VIII

	22EGT11 - COMMUNICATION SKILLS	l					
	(Common to All Engineering and Technology Bra	anches)					
Programme & Branch	All B.E./B.Tech. Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	Ι	HS	3	0	0	3
Preamble	This course is designed to impart required levels of Communication necessary for different professional contexts.	n Skills a	and Proficiend	cy in E	nglisł	n lang	guage
Unit – I	Grammar, Vocabulary, Listening, Speaking, Reading & Writing	I					9
Negative - Gerund - Listening to shor Types of Reading	of speech - Tenses - Types of sentences: Assertive, Imperative s & Infinitives - Vocabulary: Affixes - Synonyms & Antonyms - Liste t talks - TV shows - Speaking : Verbal & Non-verbal communicatio - Intensive: scanning, word by word, survey - Writing: Dialogue wr	ening: T n - Pair iting, Inf	ypes of lister	ning - E n - Rol	arrie e pla	rs to y - F h wri	listening Reading: ting
Unit – II	Grammar, Vocabulary, Listening, Speaking, Reading & Writing - Impersonal passives - Vocabulary: Homonyms, Homophones		a a gran ha d	latanlı			9
listening - Lister	ning to announcements & radio broadcasts - Speaking: Persuas comprehension - Articles from Newspapers/Magazines - Cloze	sive & I	mpromptu ta	lks - N	Jarrat	ing a	a story -
Unit – III	Grammar, Vocabulary, Listening, Speaking, Reading & Writing itions - Vocabulary: Compound Nouns - Listening: Listening to						9
Unit – IV Grammar: Article Listening: Listeni	Seeking permission for Industrial visits & Inviting guests Grammar, Vocabulary, Listening, Speaking, Reading & Writing s & Determiners - Vocabulary: Technical Vocabulary - Analogy ng to conversations - Speaking: Tongue twisters - Skill Sharing ummarizing - Writing: Recommendations & Suggestions - Busin	- Unsci - N	lote-taking - I	Readir	ng: N	al rea lote i	making -
placing orders					-	-	
Unit – V	Grammar, Vocabulary, Listening, Speaking, Reading & Writing				<u> </u>		9
personalities - Sp	and effect expressions - Vocabulary: Abbreviations & acronyms beaking: Commonly mispronounced words - Welcome address, Chie ages - Writing: Preparing transcript for a speech - Interpreting news	ef guest	address & Vo	ote of t			
							Total:45
TEXT BOOK:							
1. Sanjay Ku	mar & Pushp Lata, "Communication Skills", 2 nd Edition, Oxford Unive	ersity Pr	ess, New Del	hi, 201	8.		
REFERENCES:							
1. Ashraf Riz	vi, "Effective Technical Communication", 2 nd Edition, McGraw-Hill Ind	dia, 201	7.				
2. S. P. Dhar Hyderabad	navel, "English and Communication Skills for Students of Science an	d Engin	eering", Orier	nt Black	kSwa	n Pu	blishers,
	chards and Chuck Sandy, "Passages" Student's Book 1, 3 rd Edition,	Cambri	dge Universit	y Press	s, Ne	w Yo	rk,

		OUTCON tion of t		the st	udents will be	e able	to					T Mappe ghest Le	
CO1	use	e langua	ge effectively	by ac	cquiring vocab	ulary a	nd syntax in o	context			Ap	oplying (k	(3)
CO2	liste	en and c	omprehend o	differe	nt spoken disc	courses	s from a varie	ty of situation	ons		Ap	oplying (k	(3)
CO3	spe	eak confi	dently in diffe	erent p	professional co	ontexts	and with pee	rs			Cı	reating (K	(6)
CO4	con	nprehen	d different ge	enres	of texts by add	pting v	various readin	g strategies	6		Unde	erstanding	g (K2)
CO5			and flawles	sly at	varied profess	ional c	ontexts profic	iently with a	appropria	ate choice	Cı	reating (K	(6)
					Марр	oing of	COs with P	Os and PS	Os				
COs/F	POs	PO1	PO2	PC	03 PO4	POS	5 PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	1						2			1	3	1	1
CO	2									2	3		1
CO	3									2	3		2
CO	4						1				3	1	1
CO	5										3		2
1 – Sli	ight, 2	2 – Mode	erate, 3 – Sul	ostant	ial, BT- Bloom	's Taxo	onomy			L.			
					ASSI	ESSME	INT PATTER	N – THEOF	RY				
	/ Blo atego	om's ry*	Remember (K1) %	-	Understand (K2) %	ing	Applying (K3) %	Analyzin (K4) %	-	/aluating (K5) %	Creating (K6) %	Тс	otal %
	CAT1				37		30				33		100
	CAT2	2			30		30				40		100
	CAT3	3			33		34				33		
	ESE				17		63				20		100
* ±3%	may	be varie	d (CAT 1,2,3	- 50	marks & ESE	– 100 ı	marks)						

		22MAC11 - MATRICES AND ORDINARY DIFFE						
		(Common to all Engineering and Techno	ology branc	hes)	1	1		Γ
Progra Branch	amme & h	All BE/BTech Branches	Sem.	Category	L	Т	Ρ	Credit
Prereo	luisites	Nil	1	BS	3	1*	2 *	4
Pream	ble	To provide the skills to the students for solving differential equations.	ent real time	e problems by	y ap	plyin	g ma	trices and
Unit –		Matrices:						9
Eigen Orthog quadra	vectors (wit	aracteristic equation – Eigen values and Eigen vectors on thout proof) – Cayley – Hamilton theorem (Statement rmation of a symmetric matrix to diagonal form – Quadrati anonical form by orthogonal transformation – Applications ne.	and applica ic form – Na	tions only) - ture of Quadr	Ort atic f	hogo forms	naln 8 - Re	natrices – duction of
Unit –	II	Ordinary Differential Equations:						9
		utions of First order differential equations: Exact differ n –Clairaut's equation - Applications: Law of natural growth			itz's	Line	ear E	quation –
Unit –		Ordinary Differential Equations of Higher Order:						9
		equations of second and higher order with constant coe						
		n – $e^{ax}x^{n}$, $e^{ax}sinbx$ and $e^{ax}cosbx - x^{n}sinax$ and $x^{n}cosax$ uation – Legendre's equation.	– Differentia	al Equations v	vith v	/arial	ole co	efficients:
Unit –		Applications of Ordinary Differential Equations:						9
		n of parameters – Simultaneous first order linear equat						
given).		ns: Simple harmonic motion – Electric circuits (Differentia						eed to be
given). Unit –	V	Laplace Transform:	al equations	and associate	ed co	onditi	ons n	eed to be
given). Unit – Laplace integra function	V e Transform Is of transfo ns. Inverse	· · ·	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol	V e Transform ls of transfo ns. Inverse lution theore	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of ele	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol	V e Transform ls of transfo ns. Inverse lution theore	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of ele prm (Statement only) – Applications: Solution of linear ODE	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST O	V e Transform ls of transfo ns. Inverse lution theore DF EXPERIN Introductio	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of ele hm (Statement only) – Applications: Solution of linear ODE IENTS / EXERCISES:	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST O 1.	V e Transform ls of transform ns. Inverse lution theore DF EXPERIN Introductio Computatio	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of ele transform (Statement only) – Applications: Solution of linear ODE IENTS / EXERCISES: n to MATLAB	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST O 1. 2.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computation Plotting an	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of ele m (Statement only) – Applications: Solution of linear ODE IENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST O 1. 2. 3.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computatio Plotting an Solving firs	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elementary em (Statement only) – Applications: Solution of linear ODE TENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST C 1. 2. 3. 4.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computatio Plotting an Solving firs Solution of	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elementary em (Statement only) – Applications: Solution of linear ODE TENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions et and second order ordinary differential equations	I equations functions – orm of unit s ementary fu	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST C 1. 2. 3. 4. 5.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computatio Plotting an Solving firs Solution of Solving se	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elementary em (Statement only) – Applications: Solution of linear ODE TENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions et and second order ordinary differential equations Simultaneous first order ODEs	I equations	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST C 1. 2. 3. 4. 5. 6.	V e Transform ls of transform ns. Inverse lution theore DF EXPERIN Introductio Computation Plotting an Solving firs Solution of Solving see Determinin	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elementary em (Statement only) – Applications: Solution of linear ODE TENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions et and second order ordinary differential equations Simultaneous first order ODEs cond order ODE by variation of parameters	I equations	and associate Basic prope step function nctions – Pa	ed co erties – Tr artial	onditi - E ansfo frac	Ons n Derivation	eed to be 9 tives and of periodic method –
given). Unit – Laplace integra function Convol LIST O 1. 2. 3. 4. 5. 6. 7. 8.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computatio Plotting an Solving firs Solution of Solving set Determinin Solution of	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elem (Statement only) – Applications: Solution of linear ODE MENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions st and second order ordinary differential equations Simultaneous first order ODEs cond order ODE by variation of parameters ig Laplace and inverse Laplace transform of basic function Second order ODE by employing Laplace transforms	I equations	and associate Basic prope step function nctions – Pa	ed cc erties – Tr urtial stant	onditional fraction	Derivation of ficien	eed to be 9 tives and f periodic method – ts.
given). Unit – Laplace integra function Convol LIST C 1. 2. 3. 4. 5. 6. 7.	V e Transform ls of transform ns. Inverse lution theore F EXPERIN Introductio Computatio Plotting an Solving firs Solution of Solving see Determinin Solution of	Laplace Transform: h: Conditions for existence – Transform of elementary prms –Transforms of derivatives and integrals – Transfor Laplace transform: Inverse Laplace transform of elem (Statement only) – Applications: Solution of linear ODE MENTS / EXERCISES: n to MATLAB on of eigen values and eigen vectors d visualizing single variable functions st and second order ordinary differential equations Simultaneous first order ODEs cond order ODE by variation of parameters ig Laplace and inverse Laplace transform of basic function Second order ODE by employing Laplace transforms	functions - functions - orm of unit s ementary fur of second o	Basic prope tep function nctions – Pa rder with cons	ed cc erties – Tr urtial stant	actic	Derivation of ficien	eed to be 9 tives and f periodic method — ts. , Total:60

1.	Krev	/szia E	, "Advan	ced Enai	neerina	Mathem	atics ".	10 th Ed	lition. Jo	ohn Wil	ey, New	Delhi, India	a, 2016.		
1.	-		-	0			-		-			For First	-	/P Toch"	Poprin
2.	Editi	ion 201	4, S.Cha	and and (Do., Nev	v Delhi.									
3.				ngataasa ation, Ne			Prakash	K. and	d Sure	sh M.,	"Engine	ering Math	ematics	- I", 2 nd	Edition
4.	Grev	wal B.S	S., "Highe	er Engine	ering M	athemat	ics" 44t	hEditior	n, Khan	na Pub	lishers, l	New Delhi,	2018.		
5.	MAT	LAB –	Laborat	ory Manu	al										
		UTCO tion of		rse, the s	studen	ts will b	e able t	0					(BT Mapı Highest L	
CO1	solv	e engir	neering p	roblems	which n	eeds ma	atrix cor	nputatio	ons.					Applying	(K3)
CO2	iden	tify the	appropr	iate meth	od for s	solving fi	rst orde	r ordina	ary diffe	erential e	equation	S.		Applying	(K3)
CO3	solv	e highe	er order li	inear diffe	erential	equatior	ns with o	constan	t and v	ariable	coefficie	nts.		Applying	(K3)
CO4			concept g probler		ary diff	erential	equatio	ns for	modeli	ng and	finding	solutions	to	Applying	(K3)
CO5			ace Tran		ind solu	utions of	Linear	Ordinar		ontial C	quations	_		Applying	(K3)
		• •					Lincar	Ordinar	y Diner	ential E	quations	5			
CO6				ics of MA					-		•	s pute Laplad		Applying (anipulatio	
	trans		the bas using M	ics of MA	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F	trans POs	sforms PO1	d the bas using M PO2	ics of MA ATLAB. PO3	ATLAB,	solve or	dinary o	different	tial equ	ations a	and com				n (S2)
COs/F	POs 1	sforms PO1 3	the bas using M. PO2 3	ics of MA ATLAB. PO3 2	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO	POs 1 2	PO1 3 3	the bas using M. PO2 3 3	ics of MA ATLAB. PO3 2 2	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO CO	trans POs 1 2 3	PO1 3 3 3	PO2 3 3 3 3	ics of MA ATLAB. PO3 2 2 2	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO CO CO	trans POs 1 2 3 4	PO1 3 3 3 3 3	PO2 3 3 3 3 3 3	ics of MAATLAB.	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO CO	trans POs 1 2 3 4 5	PO1 3 3 3	PO2 3 3 3 3	ics of MA ATLAB. PO3 2 2 2	TLAB,	solve or Mappin	dinary o g of CC	different Os with	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO CO CO CO	trans POs 1 2 3 4 5 6	PO1 3 3 3 3 3 3 3	PO2 3 3 3 3 3 3 3 3	ics of MAATLAB.	P04	Solve or Mappin PO5	g of CC PO6	bifferent Ds with PO7	tial equ POs ai	ations a	and com	pute Laplad	M	anipulatio	
COs/F CO CO CO CO CO	trans POs 1 2 3 4 5 6	PO1 3 3 3 3 3 3 3	PO2 3 3 3 3 3 3 3 3	ics of MAATLAB.	P04	Solve or Mappin PO5	g of CC PO6	bifferent DS with PO7 Nomy	POs ai POs ai	ations a nd PSO PO9	PO10	pute Laplad	M	anipulatio	n (S2)
COs/F CO CO CO CO CO 1 – Sli	trans POs 1 2 3 4 5 6 ight, 2	PO1 3 3 3 3 3 3 3 3 0 5 0000's	PO2 3 3 3 3 3 4 erate, 3	ics of MA ATLAB. 2 2 2 2 3 - Substan	PO4	Solve or Mappin PO5 3 - Bloom ASSES Indersta	g of CC PO6 's Taxo SMENT anding	nomy	POs ai POs ai PO8	nd PSO PO9	r PO10	PO11	P012	PSO1	PSO2
COs/F CO CO CO CO CO 1 – Sli	trans POs 1 2 3 4 5 6 ight, 2	PO1 3 3 3 3 3 - Mod - Mod	PO2 3 3 3 3 3 4 erate, 3	ics of MA ATLAB. PO3 2 2 2 2 3 - Substa memberi (K1) %	PO4	Solve or Mappin PO5 3 F- Bloom ASSES Indersta (K2)	dinary of g of CC PO6 's Taxo SMENT anding %	nomy PATTI Apply (K3)	POs ai POs ai PO8 ERN - 1 ying	ations a nd PSC PO9	r PO10	PO11	P012	PSO1	PSO2
COs/F CO CO CO CO CO 1 – Sli	trans POs 1 2 3 4 5 6 ght, 2 st / Blc catego CAT	PO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 7 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	PO2 3 3 3 3 3 4 erate, 3	ics of MA ATLAB. PO3 2 2 2 2 3 - Substa memberi (K1) % 10	PO4	ASSES Jndersta (K2) 20	dinary o g of CC PO6 's Taxo SMENT anding %	nomy PATTI Apply (K3)	POs ai POs ai PO8	nd PSO PO9	r PO10	PO11	P012	reating K6) %	PSO 2 PSO 2 Tota % 100
COs/F CO CO CO CO CO 1 – Sli	trans POs 1 2 3 4 5 6 ight, 2	PO1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO2 3 3 3 3 3 4 erate, 3	ics of MA ATLAB. PO3 2 2 2 2 3 - Substa memberi (K1) %	PO4	Solve or Mappin PO5 3 F- Bloom ASSES Indersta (K2)	dinary o g of CC PO6 's Taxo SMENT anding %	nomy PATTI Apply (K3)	POs ai POs ai PO8 PO8 PO8 PO8 PO8 PO8 PO8 PO8 PO8 PO8	nd PSO PO9	r PO10	PO11	P012	PSO1	n (S2) PSO2

*Alternate week

22PHT14 - PHYSICS FOR AUTOMOBILE ENGINEERING

Programme & Branch	BE-Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1	BS	3	0	0	3
Preamble	This course aims to impart the knowledge semiconductors and also select materials charact aforementioned topics in Automobile Engineering a	terization technique	s. It also des	cribe	es the	e appl	
Unit – I	Crystal Physics:	1					9
materials - Lat	Classification of solids – Space lattice – Crystal structur tice planes – Miller indices – Indices of crystal direction structure and c/a ratio – Symmetry – Symmetry eler	- Interplanar spaci	ng in cubic s	/ster	m – H	lexag	jonal close
Unit – II	Phase Diagram:						9
phase diagram	Phase rule – Phase equilibrium – Phase Diagram – Ty – Iron-Carbon phase diagram – Time-temperature-transf d relative amounts of phases present – Invariant reactio	formation diagrams	(TTT) – Lever				
Unit – III	Conducting Materials:						9
	Classical free electron theory of metals – Electrical cond r – Draw backs of classical free electron theory – Qu						
	tion and Effect of temperature on Fermi function – Dens						
distribution fund	ction and Effect of temperature on Fermi function – Dens Semiconducting Materials:	sity of energy states	- Carrier cor	ncen	tratio	n in m	netals. 9
distribution fund Unit – IV Intrinsic semico with temperatu	tion and Effect of temperature on Fermi function – Dens	sity of energy states n intrinsic semiconductors: Carrier	– Carrier cor uctor, Variatic concentratio	ncen on of n in	tratio intrir N-ty	n in m nsic c /pe a	netals. 9 onductivity
distribution fund Unit – IV Intrinsic semico with temperatu	tion and Effect of temperature on Fermi function – Dens Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in ar ire and determination of band gap – Extrinsic semic	sity of energy states n intrinsic semiconductors: Carrier	– Carrier cor uctor, Variatic concentratio	ncen on of n in	tratio intrir N-ty	n in m nsic c /pe a	netals. 9 onductivity
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra	tion and Effect of temperature on Fermi function – Dens Semiconducting Materials: Inductor: Intrinsic carrier concentration, Fermi level in ar are and determination of band gap – Extrinsic semic – Hall effect: Theory and experimental determination of	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and Scanning electron m	- Carrier cor uctor, Variatic concentratio Applications - icroscopes: p	ncen on of n in - Sol	tratio intrir N-ty ar Ce	n in m nsic c /pe a ell.	netals. 9 onductivity nd P-type 9 uction and
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic s – Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and Scanning electron m	- Carrier cor uctor, Variatic concentratio Applications - icroscopes: p	ncen on of n in - Sol	tratio intrir N-ty ar Ce	n in m nsic c /pe a ell.	netals. 9 onductivity nd P-type 9 uction and
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic s – Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and Scanning electron m	- Carrier cor uctor, Variatic concentratio Applications - icroscopes: p	ncen on of n in - Sol	tratio intrir N-ty ar Ce	n in m nsic c /pe a ell.	netals. 9 onductivity nd P-type 9 uction and m infrared
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra spectroscopy – TEXT BOOK:	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic s – Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and Scanning electron m in and working (qua	– Carrier cor uctor, Variatic concentratio Applications – icroscopes: p alitative) – Fo	ncen n of n in - Sol	intrir N-ty ar Ce ple, c	n in m nsic c vpe a ell. constr nsfor	netals. 9 onductivity nd P-type 9 uction and m infrared
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra spectroscopy – TEXT BOOK: 1. Hitendr 2 Avadha	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic s – Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction Raman spectroscopy.	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and . Scanning electron m in and working (qua dition McGraw-Hill E	– Carrier cor uctor, Variatic concentratio Applications – icroscopes: p alitative) – Fe	ncen on off n in - Sol rinci ourie	elhi, 2	n in m nsic c vpe a ell. constr nsfor	netals. 9 onductivity nd P-type 9 uction and m infrarec Total:45
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra spectroscopy – TEXT BOOK: 1. Hitendr 2 Avadha	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic a Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction Raman spectroscopy. ra K. Malik and A.K. Singh, "Engineering Physics", 2 nd Ecanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Tany Pvt. Ltd., New Delhi, 2019.	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and . Scanning electron m in and working (qua dition McGraw-Hill E	– Carrier cor uctor, Variatic concentratio Applications – icroscopes: p alitative) – Fe	ncen on off n in - Sol rinci ourie	elhi, 2	n in m nsic c vpe a ell. constr nsfor	netals. 9 onductivity nd P-type 9 uction and m infrarec Total:45
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra spectroscopy – TEXT BOOK: 1. Hitendr 2. Avadha Compa	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semic a Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – S nsmission electron microscope: principle, construction Raman spectroscopy. ra K. Malik and A.K. Singh, "Engineering Physics", 2 nd Ecanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Tany Pvt. Ltd., New Delhi, 2019.	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and a Scanning electron m in and working (qua dition McGraw-Hill E Fextbook of Enginee	 Carrier cor uctor, Variatic concentratio Applications - icroscopes: palitative) - For Education , Net ring Physics", 	ncen n of - Sol rrinci ourie	tratio intrir N-ty ar Ce ple, c ple, c er tra	n in m nsic c vpe a ell. constr nsfor	netals. 9 onductivity nd P-type 9 uction and m infrarec Total:45
distribution fund Unit – IV Intrinsic semico with temperatu semiconductors Unit – V Importance of r working – Tra spectroscopy – TEXT BOOK: 1. Hitendr 2. Avadha Compa REFERENCES 1. Gaur R	Semiconducting Materials: onductor: Intrinsic carrier concentration, Fermi level in arrive and determination of band gap – Extrinsic semices – Hall effect: Theory and experimental determination of Materials Characterization: materials characterization – X-ray diffraction analysis – Sensmission electron microscope: principle, construction Raman spectroscopy. ra K. Malik and A.K. Singh, "Engineering Physics", 2 nd Ecanulu M.N., Kshirsagar P.G. and Arun Murthy T.V.S., "A Tany Pvt. Ltd., New Delhi, 2019.	sity of energy states in intrinsic semiconductors: Carrier Hall coefficient and Scanning electron m in and working (qua dition McGraw-Hill E Fextbook of Enginee hanpat Rai and Sons	 Carrier cor uctor, Variatic concentratio Applications - icroscopes: p ilitative) - Fe Education , Ne ring Physics", s, New Delhi, 	ncen n of n in - Sol rrinci ourie ew D 11 th	tratio N-ty lar Ce ple, c elhi, c elhi, c 2	n in m nsic c /pe a ell. constr nsfor 2018 on, S	netals. 9 onductivity nd P-type 9 uction and m infrarec Total:45 . Chand &

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain seven crystal systems, interplanar spacing in cubic lattice, c/a ratio of HCP crystal structure, symmetry elements, reciprocal lattice and the types of crystal imperfections and their impacts.	Applying (K3)
CO2	apply phase rules to realize the concepts of unary and binary phase diagrams and also time- temperature-transformation diagrams.	Applying (K3)
CO3	apply the concepts of classical and quantum free electron theory of metals to compute the electrical and thermal conductivity of metals and to comprehend the effect of temperature on Fermi function and to compute the expressions for density of states and carrier concentration in metals.	Applying (K3)
CO4	use the concept of density of states to compute the carrier concentration, electrical conductivity and band gap of intrinsic semiconductors and to compute the carrier concentration of extrinsic semiconductors, and also to explain the phenomenon related to Hall Effect and the working of solar cell.	Applying (K3)
CO5	apply the concepts of X-ray diffraction, SEM, TEM, FTIR and Raman effect to analyze the properties of materials using the aforementioned appropriate characterization techniques.	Applying (K3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2	2	2
CO2	3	2	2						2	2		2	2	1
CO3	3	2	2						2	2		2	1	3
CO4	3	2	2						2	2		2		3
CO5	3	2	2						2	2		2	2	2
1 – Slight, 2	- Mode	rate, 3 -	Substant	ial, BT- I	Bloom's	Taxono	my							

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	10	50	40				100
* ±3% may be varied (CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)			·	

Programme &	22AUT11 – STATICS AN B.E – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Branch						-	
Prerequisites	Nil	1/2	PC	3	0	0	3
Preamble	This course provides knowledge to represent engequilibrium under static and dynamic conditions	gineering system as a	force system	and	solve	the s	system for
Unit – I	Statics of Particles:						9
Resultant of force	laws of mechanics - System of forces - Principle of t es in plane and space - Equilibrium of a particle in pla tant force acting on various automotive components.						
Unit – II	Statics of Rigid Bodies:						9
- Resultant mom hinges in doors a loads - Better pos	ple - Vectorial representation of moment and couple - ent and couple in plane and space - Equilibrium of ri and bonnet - Moment about fixed joint in foot rest - Lo sition to hold a spanner - Best position to mount hydra	gid bodies in plane ar ocation of door locks -	nd space. App Overturning	olicat	ions	- Mon	nent abou ifting large
Unit – III	Friction:						9
Introduction and friction - Belt frid Horizontal force r	laws of dry friction - Coefficient of friction - Angle of f ction - Wheel friction and rolling resistance. Applica required to overcome rolling resistance of a vehicle - N	tions - Coefficient of	friction requ	ired	to m	ove a	vehicle
Introduction and friction - Belt frid Horizontal force in torque in disc and Unit – IV First moment of theorem - Polar r	laws of dry friction - Coefficient of friction - Angle of f ction - Wheel friction and rolling resistance. Applica required to overcome rolling resistance of a vehicle - N	tions - Coefficient of Maximum load a vehic plane areas - Paralle	friction requ le can pull - 1 el axis theore	ired Tensi m ar	to m ion in nd pe	ove a V bel	t vehicle t - Braking 9 icular axis
Introduction and friction - Belt frid Horizontal force in torque in disc and Unit – IV First moment of theorem - Polar r	laws of dry friction - Coefficient of friction - Angle of f ction - Wheel friction and rolling resistance. Applica required to overcome rolling resistance of a vehicle - N d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal mod	tions - Coefficient of Maximum load a vehic plane areas - Paralle	friction requ le can pull - 1 el axis theore	ired Tensi m ar	to m ion in nd pe	ove a V bel	t vehicle t - Braking 9 icular axis
Introduction and friction - Belt frid Horizontal force in torque in disc and Unit – IV First moment of theorem - Polar r in a vehicle - Are Unit – V Equations of mo particles and rigid	laws of dry friction - Coefficient of friction - Angle of f totion - Wheel friction and rolling resistance. Applicate required to overcome rolling resistance of a vehicle - N d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal mode a moment of Inertia of chassis frame. Dynamics of Particles and Rigid Body: tion - Rectilinear motion of particles - Curvilinear in a body - Impulse - Momentum equations of particles and point a vehicle, acceleration and deceleration of a	ntions - Coefficient of Maximum load a vehic plane areas - Paralle ments of inertia of plan notion - Projectile mo notion - Projectile mo	friction required in the friction required is the friction required in the friction required is	ired Fension mar blicat e of dies.	to m ion in nd pe ions - work Appl	ve a V bel rpend Loca	t vehicle t - Braking icular axis tion of CO 9 energy o ns - Linea
Introduction and friction - Belt frid Horizontal force r torque in disc and Unit – IV First moment of theorem - Polar r in a vehicle - Are Unit – V Equations of mo particles and rigid and angular velo	laws of dry friction - Coefficient of friction - Angle of f totion - Wheel friction and rolling resistance. Applicate required to overcome rolling resistance of a vehicle - N d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal mode a moment of Inertia of chassis frame. Dynamics of Particles and Rigid Body: tion - Rectilinear motion of particles - Curvilinear in a body - Impulse - Momentum equations of particles and point a vehicle, acceleration and deceleration of a	ntions - Coefficient of Maximum load a vehic plane areas - Paralle ments of inertia of plan notion - Projectile mo notion - Projectile mo	friction required in the friction required is the friction required in the friction required is	ired Fension mar blicat e of dies.	to m ion in nd pe ions - work Appl	ve a V bel rpend Loca	vehicle t - Braking 9 icular axis tion of CC 9 energy o ns - Linea and force
Introduction and friction - Belt frid Horizontal force in torque in disc and Unit – IV First moment of theorem - Polar r in a vehicle - Are Unit – V Equations of mo particles and rigid and angular velo exerted by driver TEXT BOOK:	laws of dry friction - Coefficient of friction - Angle of f totion - Wheel friction and rolling resistance. Applicate required to overcome rolling resistance of a vehicle - N d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal mode a moment of Inertia of chassis frame. Dynamics of Particles and Rigid Body: tion - Rectilinear motion of particles - Curvilinear in a body - Impulse - Momentum equations of particles and point a vehicle, acceleration and deceleration of a	tions - Coefficient of Maximum load a vehic plane areas - Paralle ments of inertia of plan notion - Projectile mo nd rigid body - Impact vehicle, force transm	friction required in the can pull - 1 el axis theore in a areas. App otion. Principlit of elastic bo nitted due to	red rensi m ar plicat dies. vehi	to m ion in ions - work Appl cle in	ove a V bel rpend · Loca · Loca · and ication	yehicle t - Braking icular axis tion of CC 9 energy c ns - Linea and force Total:4
Introduction and friction - Belt frid Horizontal force in torque in disc and Unit – IV First moment of theorem - Polar r in a vehicle - Are Unit – V Equations of mo particles and rigid and angular velo exerted by driver TEXT BOOK:	laws of dry friction - Coefficient of friction - Angle of f tered overcome rolling resistance. Application d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal modiation a moment of Inertia of chassis frame. Dynamics of Particles and Rigid Body: tion - Rectilinear motion of particles - Curvilinear in d body - Impulse - Momentum equations of particles a city of a vehicle, acceleration and deceleration of a on seat belt. Ferdinand , Jr Russel Johnston , David F. Mazure, Phil	tions - Coefficient of Maximum load a vehic plane areas - Paralle ments of inertia of plan notion - Projectile mo nd rigid body - Impact vehicle, force transm	friction required in the can pull - 1 el axis theore in a areas. App otion. Principlit of elastic bo nitted due to	red rensi m ar plicat dies. vehi	to m ion in ions - work Appl cle in	ove a V bel rpend · Loca · Loca · and ication	vehicle t - Braking joular axis tion of CC 9 energy o ns - Linea and force Total:4
Introduction and friction - Belt frid Horizontal force r torque in disc and Unit – IV First moment of theorem - Polar r in a vehicle - Are Unit – V Equations of mo particles and rigid and angular velo exerted by driver TEXT BOOK: 1. P Beer F Engineer	laws of dry friction - Coefficient of friction - Angle of f tered overcome rolling resistance. Application d drum brakes. Properties of Surfaces and Solids: area and centroid of sections - Moment of inertia of noment of inertia and product of inertia - Principal modiation a moment of Inertia of chassis frame. Dynamics of Particles and Rigid Body: tion - Rectilinear motion of particles - Curvilinear in d body - Impulse - Momentum equations of particles a city of a vehicle, acceleration and deceleration of a on seat belt. Ferdinand , Jr Russel Johnston , David F. Mazure, Phil	tions - Coefficient of Maximum load a vehic plane areas - Paralle ments of inertia of plan notion - Projectile mo nd rigid body - Impact vehicle, force transm	friction required in the can pull - 1 al axis theore the areas. Appendices and the areas is the context of the areas is the context of the areas is a set of the context of the areas is a set of the	ired ensi m ar licat e of dies. vehi	to mining of the second	ove a V bel rpend Loca and ication pact	vehicle t - Brakin 9 icular axi tion of CC 9 energy c ns - Linea and forc Total:4

		UTCOM		se, the st	udents	s will be a	able to						(BT Mapp Highest L			
CO1	repr	esent th	ne forces	in vector	compo		th 2D a	nd 3D) a	and ap	oply equil	ibrium (conditions to		Applying			
CO2	calc	ulate th	e momer	nt produce	ed by v	arious for esigning a	ce syste			e rigid boo	dy probl	ems by	Applying (K3				
CO3		•	ws of dry a vehicle.		o calcu	late frictio	nal forc	e and to	orque i	in various	s autom	otive system	ems Applying (K				
CO4	calc	calculate the centroid and area moment of inertia for designing automotive chassis frame.													(K3)		
CO5	ana	lyze the	motion o	of particle	s and r	igid bodie	s using	various	princi	ples.				Analyzing	(K4)		
						Mappin	g of CO	s with	POs a	nd PSO:	S						
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CC	01	3	3	2	2								2	3			
CC)2	3	3	2	2								2	3			
CC)3	3	3	2	2								2	3			
CC)4	3	3	2	2								2	3			
CC)5	3	3	2	2								2	3			
1 – Sli	ight, 2	– Mode	rate, 3 –	Substant	ial, BT	- Bloom's	Taxono	my									
						ASSES	SMENT	PATTE	RN –	THEOR	(
	st / Bl Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)	•	Apply (K3)		Analyz (K4) 9	-	Evaluating (K5) %		reating (K6) %	Tota %		
	CAT	1		15		15		70)						100		
	CAT	2		15		15		70)						100		
	CAT	3		15		15		55	5	15					100		
	ESE	=		10		10		60)	20					100		

* \pm 3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

Drogra	(Co	mmon to All Engineering and Technology branches except	ot CSE. IT	. CSD. AIDS	& AI	ML)		
Branc	amme &	All BE/BTech Engineering & Technology branches , except CSE, IT, CSD, AIDS & AIML	Sem.	Category	L	т	Р	Credit
Prerec	quisites	Nil	1	BS	3	0	2	4
							I	1
Pream	ble	The course aims to provide exposure to problem-solvir fundamental concepts of C Programming. This course provid C	ng through des adequi	n programmir ate knowledge	ng. I e to s	t int solve	roduc probl	es all the ems using
Unit –	I	Introduction to C and Operators:						9
		C program – Compiling and executing C program – C Token Variables – constants – Input / Output statements – Operators		cter set in C	– Ke	eywo	rds –	identifiers
Unit –	II	Control Statements and Arrays:						9
		d looping statements, Arrays: Declaring, initializing and a and their operations.	ccessing a	rrays – oper	atior	ns or	arra	ys – Two
Unit –		Functions:						9
		on- Using functions, function declaration and definition – func	tion call –	return statem	ent -	- pas	sing p	arameter
		ata types and arrays – storage classes – recursive functions						
Unit –		Strings and Pointers:						9
manip		 operations on strings: finding length, concatenation, cons, Arrays of strings. Pointers : declaring pointer variables – p strings 						
Unit –	V	User-defined Data Types and File Handling:						9
enume	erated data type	ypes: Structure: Introduction – nested structures– arrays c be. File Handling : Introduction - opening and closing files – r seek(), ftell() and rewind()						
		ENTS / EXERCISES:						
1.	Programs for	or demonstrating the use of different types of format Specifiers	5					
2.	Programs for	or demonstrating the use of different types of operators like ari	thmetic, log	gical, relationa	al, ar	nd ter	nary o	perators
	Programs for							
3.	Drograma f	or demonstrating the use of using decision making statements						
3. 4.	Programs io	or demonstrating the use of using decision making statements or demonstrating the use of repetitive structures						
	•							
4.	Programs for	or demonstrating the use of repetitive structures						
4. 5.	Programs for Programs for	or demonstrating the use of repetitive structures	ons					
4. 5. 6.	Programs for Programs for Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays	ons					
4. 5. 6. 7.	Programs fo Programs fo Programs to Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays o demonstrate modular programming concepts using function						
4. 5. 6. 7. 8.	Programs fo Programs fo Programs to Programs to Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays o demonstrate modular programming concepts using function o demonstrate recursive functions.						
4. 5. 6. 7. 8. 9.	Programs for Programs for Programs to Programs to Programs to Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays o demonstrate modular programming concepts using function o demonstrate recursive functions.						
4. 5. 6. 7. 8. 9. 10.	Programs fo Programs fo Programs to Programs to Programs to Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays o demonstrate modular programming concepts using function o demonstrate recursive functions. o demonstrate strings (Using built-in and user-definedfunction o illustrate the use of pointers						
4. 5. 6. 7. 8. 9. 10. 11.	Programs fo Programs fo Programs to Programs to Programs to Programs to	or demonstrating the use of repetitive structures or demonstrating one-dimensional arrays or demonstrating two-dimensional arrays o demonstrate modular programming concepts using function o demonstrate recursive functions. o demonstrate strings (Using built-in and user-definedfunction o illustrate the use of pointers		Lecture:4	5, P	racti	cal:30), Total:7

REFE	RENC	ES/ MA	NUAL /	SOFTWA	RE:										
1.	Yas	havant	Kanetka	r, "Let us (C", 16	oth Edition,	BPB Pu	ublicatio	ns, 20	18.					
2.	Sum	nitabha	Das, "Co	omputer F	undar	nentals an	d C Pro	grammi	ng", 1s	t Edition	, McGra	w Hill, 2018	3.		
3.	Bala	agurusa	my E., "	Programm	ing in	ANSI C",	7th Editi	on, Mc	Graw ⊦	lill Educa	ation, 20	17.			
4.		rouz A. gage,20		an & Richa	rd F.(Gilberg, "C	omputer	Scienc	e A St	ructured	Prograr	nming Appr	roach Usi	ng C", 3 rd	Edition,
5.	https	s://www	.cprogra	mming.co	m/tute	orial/c-tuto	rial.html								
		UTCON												BT Map	
						ts will be							(Highest L Applying	
CO1		-			• ·	ut/output s								Precision	(S3)
CO2		itify the se stater		iate loopii	ng an	d control s	statemer	nts in C	and o	develop	applicati	ons using		Applying Precision	
CO3	deve	elop sim	nple C pi	rograms u	sing tl	he concep	ts of arra	ays and	modu	ar progra	amming			Applying Precision	(K3),
CO4	appl	ly the co	oncepts	of pointers	and	develop C	program	ns using	g string	s and po	ointers			Applying Precision	(K3),
CO5	mak	e use o	f user-d	efined data	a type	s and file o	concepts	s to solv	e give	n probler	ns			Applying Precision	(K3),
							-		POs a	nd PSOs					
COs/I	POs	PO1	PO2	PO3	РО	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	2	2	1				1	1		1		
CO	2	3	2	2	2	1				1	1		1		
CO	3	3	2	2	2	1				1	1		1		
CO	4	3	2	2	2	1				1	1		1		
CO		3	2	2	2					1	1		1		
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substant	ial, B⁻	T- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE		THEORY	,				
		oom's	Re	ememberi	ng	Underst	anding	Apply (K3)	ying	Analyz	ing	Evaluating		creating	Total %
Ľ	CAT	-		(K1) % 10		(K2) 30		(K3) 6((K4) 9	/0	(K5) %		(K6) %	100
	CAT			10		30		60							100
	CAT	3		10		30)	60)						100
	ESE	Ξ		10		30)	60)						100
* ±3%	may b	e varie	d (CAT ²	,2,3 – 50	mark	s & ESE –	100 mai	rks)			L				

	(Common to All Engineer	ing and Technology	Branches)				
Programme & Branch	All BE/BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	1/2	ES	2	1	0	3
Preamble	To impart knowledge on orthographic, isor solving different application oriented problem		ectional views	and deve	elopmen	t of su	rfaces by
Unit – I	General Principles of Orthographic Project	ction:					6+3
Orthographic Pro Located in the Fi Surface and Circ	Drawing Sheets - Lettering and Dimensioning ojection - First Angle Projection - Layout of Vie- irst Quadrant - Determination of True Lengths a ular Lamina Inclined to both Reference Planes.	ws - Projection of P	oints Located ir	n all Qua	drant ar	nd Strai	ght Line: Polygona
Unit – II	Projections of Solid:		<u>.</u>				6+3
Change of Posit	imple Solids Like Prisms, Pyramids, Cylinder ion Method.	and Cone when th	e Axis is inclir	ned to O	ne Refe	erence	Plane by
Unit – III	Sectioning of Solids:						6+3
	lids - Prisms, Pyramids, Cylinder and Cone in S ndicular to the other - Obtaining True Shape of S		ion by Cutting F	Planes in	clined to	o One F	Reference
Unit – IV	Development of Surfaces:						6+3
							Truncated
Development of	Lateral Surfaces of Simple Solids Like Prisms, Prisms, Pyramids, Cylinders and Cones.	Pyramids, Cylinders	s and Cones - D	Developm	ent of S	simple	ranoatot
Development of			s and Cones - E	Developm	ent of S	Simple	
Development of Solids Involving F Unit – V Principles of Iso	Prisms, Pyramids, Cylinders and Cones.	AutoCAD: Projections of Simp	le and Truncate	ed Solids	Like P		6+3
Development of Solids Involving F Unit – V Principles of Iso	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric	AutoCAD: Projections of Simp	le and Truncate - Introduction to	ed Solids	Like P D.	risms, I	6+3 Pyramids
Development of Solids Involving F Unit – V Principles of Iso	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric	AutoCAD: Projections of Simp	le and Truncate - Introduction to	ed Solids	Like P D.	risms, I	6+3 Pyramids
Development of Solids Involving F Unit – V Principles of Iso Cylinders and Co TEXT BOOK:	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric	AutoCAD: Projections of Simp hographic Projection	le and Truncate - Introduction to L	ed Solids AutoCA Lecture: 3	Like P D. 30, Tutc	risms, I prial:15	6+3 Pyramids
Development of Solids Involving F Unit – V Principles of Iso Cylinders and Co TEXT BOOK:	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric nes - Conversion of Isometric Projection into Ort	AutoCAD: Projections of Simp hographic Projection	le and Truncate - Introduction to L	ed Solids AutoCA Lecture: 3	Like P D. 30, Tutc	risms, I prial:15	6+3 Pyramids
Development of Solids Involving F Unit – V Principles of Iso Cylinders and Co TEXT BOOK: 1. Natar REFERENCES:	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric nes - Conversion of Isometric Projection into Ort	AutoCAD: Projections of Simp hographic Projection 35 th Edition, Dhanala	le and Truncate - Introduction to L kshmi Publisher	ed Solids AutoCA _ecture: : rs, Chenr	: Like P D. 30, Tutc ai, 2022	risms, prial:15	6+3 Pyramids , Total:4
Development of Solids Involving F Unit – V Principles of Iso Cylinders and Co TEXT BOOK: 1. Natar REFERENCES: 1. Venug	Prisms, Pyramids, Cylinders and Cones. Isometric Projection and Introduction to A metric Projection - Isometric Scale - Isometric nes - Conversion of Isometric Projection into Ort ajan.K.V. "A Textbook of Engineering Graphics",	AutoCAD: Projections of Simp hographic Projection 35 th Edition, Dhanala nics", 16 th Edition, Ne	le and Truncate - Introduction to L kshmi Publisher	ed Solids AutoCA _ecture: : rs, Chenr onal Publ	: Like P D. 30, Tutc ai, 2022	risms, prial:15	6+3 Pyramids , Total:4

COURSE On com			course, th	e studer	nts will I	oe able	to							Mapped	
CO1	interp plane		rnational s	tandards	s of draw	ings an	d sketch	the pro	jections	of points	s, lines an	d	Арр	lying (K3)
CO2	draw	the pro	jections of	3D prim	itive obje	ects like	prisms,	pyramic	ds, cylind	ders and	cones		Арр	olying (K3	i)
CO3	const	ruct the	various se	ectional	views of	solids li	ke prism	is, pyrai	mids, cyl	linders a	ind cones		Арр	lying (K3)
CO4	devel	op the l	ateral surf			Applying (K3)									
CO5			sometric p orthograp			nple and	d trunca	ted soli	ds and	convert	isometric		Арр	olying (K3	,)
					Ма	apping	of COs	with PC)s and F	SOs					
COs/P	os	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO	1	3	2			2					3		2		
CO	2	3	2	1		2					3		2		
CO	3	3	2	1		2					3		2		
CO	4	3	2	1		2					3		2		
CO	5	3	2	1		2					3		2		
1 – Sligh	t, 2 – M	oderate	, 3 – Subs	tantial, E	BT- Bloor	n's Tax	onomy								
					AS	SESSI		ATTERI	N – THE	ORY					
Test / Bl Categ			embering K1) %		erstandi K2) %	ng /	Applying (K3) %		Analyzir (K4) %		Evaluat (K5) %	•	Creatin (K6) %		otal %
CAT	[1		6		9		85								100
CAT	2		6		9		85								100
CAT	3		6		9		85								100
ESI	E		10		10		80								100
* ±3% m	ay be va	aried (C	AT 1,2,3 –	50 mark	ks & ESE	E – 100	marks)								

Credi													
ne Drilling r Tools. ng Moderr													
ne Drilling r Tools. ng Moderr ank that is													
ne Drilling r Tools. ng Moderr ank that is													
r Tools. ng Moderr ank that is													
r Tools. ng Moderr ank that is													
r Tools. ng Moderr ank that is													
ank that is													
/ Weldinį													
/ Weldinę													
volving Modern Power Tools. PART B – ELECTRICAL AND ELECTRONICS ENGINEERING													
Total:3													
pped													
t Level)													
(K6) on (S2)													
(K3) on (S2)													
perform house wiring and realize the importance of earthing Applying (K3), Manipulation (S2)													
soldering with simple electronics circuitsApplying (K3), Manipulation (S2)													
g (K3), tion (S2)													
Mapping of COs with POs and PSOs													
1 PSO2													
1 PSO2													
1 PS													
tic in la in la													

🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

CO5	3		3	2	1				2	2	3	3	2
1 – Slight, 2	2 – Mod	erate, 3	- Subs	stantial,	BT- Blo	oom's T	axonon	ıy					

												IGINEERIN	-			
Progra Branc	amme a	&	BE - /	Automo	bile En	igineeri	ing				Sem.	Category	L	т	Ρ	Credit
Prerec	quisites	5	Nil								1	BS	0	0	2	1
Pream		FRIM	thin fi modu altern	Im, spe lus, vel ating cu oping pi	cific resocity of a city o	sistance f ultraso nd knov	e, thern onic wa vledge	nal con aves, co on the v	ductivity omprese vorking	/, Ferm sibility (i energy of a liqu , and als	of paramete , band gap iid, Young's so to impart	, Hall s mod	coe ulus,	fficien frequ	t, rigidity Jency o
1.	-		tion of t			a thin f	ilm by s	air-wodo	lo arran	aement	•					
										-						
2.	Dete	rmina	tion of t	he spec	ific resi	stance	of a me	tallic wi	re using	g Carey-	-Foster's	bridge.				
3.						-					e's disc.					
4.			ition of t ucting m					er using	Wheat	tstone's	bridge /	Determinat	ion of	the b	and g	ap of a
5.	Dete	rmina	tion of t	he Hall	coefficie	ent of a	materia	al using	Hall eff	ect arra	ingemen	t / Observat	ion of	the I	-V	
6.	Dete	rmina	tion of t	he rigid	ity mod	ulus of a	a metall	ic wire (using to	rsional	pendulu	m.				
7.			ition of t interfere		city of u	Itrasoni	c wave	in a giv	en liquio	d and th	ne compr	essibility of	the liq	uid u	using	
8.	Dete	rmina	ition of t	he You	ng's mo	dulus of	f the ma	aterial o	f the giv	/en bea	m by un	iform bendir	ng met	hod.		
9.	Dete	rmina	ition of t	he frequ	uency o	falterna	ating cu	rrent us	ing elec	ctrically	vibrating	tuning fork	(Meld	e's a	ippara	itus).
10.	Writin	ng co	ding for	any on	e of the	above e	experim	nents / d	evelopi	ng a pro	oject / a	product.				
																Total:30
REFE	RENCE	S/ M	ANUAL	/SOFT	WARE:											
1.	Phys	ics La	aborator	y Manu	al / Rec	ord, De	partme	nt of Ph	ysics, 1	st Editic	on, 2020					
COUR	SE OU	тсо	MES:												Т Мар	
			the cou						sistance	o of o i	motallia	wire and th				
CO1			nductivi				the spe		SISLATICE	eorai	metanic		le		plying ecision	
CO2	coeff	icient	of a ma	aterial o	r the I-V	' charac	teristics	s of a U	JT.			ctor, the Ha			plying ecision	
CO3	veloc	ity of										material, th op a coding			plying ecisior	
						Маррі	ing of C	Cos wit	n POs a	and PS	Os					
COs/P	POs F	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	2 F	PSO 1	PSO2
CO	1	3	2	2	3					2	2		2		3	3
	2	3	2	2	3					2	2		2			3
CO2		3	2	2	3					2	2		2		3	3

	(Common to All Engineering a	and Technology Brand	shes)	•			
Programme & Branch	All B.E./B.Tech. Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1/2	HS	1	0	1	1
Preamble	Yoga or yogasanas are considered as art and sc harmony of body and mind for general wellbeing Indians for healthy living. Students in particular a	. Yoga is considered	as one of the	nt guru greate	ıs. It i əst gif	s me ts to	thod to bring the world by
Unit – I	Introduction:	E	~ ~ ~				2
Asanas - Classif	oga – Definitions - Concepts - Aims and objectives o fications of Yogasanas – Patanjali's Ashtanga Yog ns of Yoga – Modern Trends in yoga.						
Unit – II	Yoga and Mind:						2
	nd - Five Elements and the Mind - Meditation and the Disorders, Major Depressive Disorder, Cyclothymic		of the Mind - R	ole of	Yoga	a in P	sychologica
Unit – III	Yoga and Values, Diet:						2
	Social Values – Role of Yoga in Personality Integra Diet – Constructive Diet.	ation - Concepts of N	latural Diet - N	aturop	athy	Diet -	- Eliminativ
Unit – IV	Asanas:						2
	& Closing - Preparatory practices – Loosening ticing Asanas. Asanas: Standing – Sitting – Prone -			and C	bject	ives	of Asanas
Unit – V	Pranayama and Meditation:						2
	es for awareness - Definitions and Objectives of	Bronovomo Brinoir	les of Practici	na Pr	anava	ma	Dranavama
Breathing Practic	Kapalabathi – Sitali – Sitkari – Bhranari – Ujjayi – Re			ing i i	anaye	anna.	Pranayama
Breathing Practic			 Meditation. 	•			-
Breathing Practic			 Meditation. 	•			10, Total:20
Breathing Practic Nadi Shuddhi - K TEXT BOOK:		elaxation Techniques	– Meditation. Lecture	e: 10, I	Pract	ical:	
Breathing Practic Nadi Shuddhi - K TEXT BOOK: 1. Swami si	Kapalabathi – Sitali – Sitkari – Bhranari – Ujjayi – Re	elaxation Techniques	– Meditation. Lecture of yoga, 4 th Ec	e: 10, I	Pract	ical:	
Breathing Practic Nadi Shuddhi - K TEXT BOOK: 1. Swami si	Kapalabathi – Sitali – Sitkari – Bhranari – Ujjayi – Re atyananda saraswathi, "Asana pranayama mudra ba	elaxation Techniques	– Meditation. Lecture of yoga, 4 th Ec	e: 10, I	Pract	ical:	-
Breathing Practic Nadi Shuddhi - K TEXT BOOK: 1. Swami si 2. Swami m REFERENCES:	Kapalabathi – Sitali – Sitkari – Bhranari – Ujjayi – Re atyananda saraswathi, "Asana pranayama mudra ba	andha", Bihar school school of yoga, 4 th E	– Meditation. Lecture of yoga, 4 th Ec	e: 10, I	Pract	ical:	-

		COMES	-	the stude	ents will	be able t	0						lapped st Level)
CO1	reali	ze the im	portance	of yoga	in physic	al health.						Apply	ing (K3)
CO2	reali	ze the im	portance	of yoga	in menta	l health.						Apply	ing (K3)
CO3	reali	ze the ro	le of yoga	a in perso	onality de	evelopmer	nt and diet.					Apply	ing (K3)
CO4	do tł	he looser	ning pract	Applying (K3)									
CO5	do tl	he practio	ce of Prar	nayama,	meditatio	on and rea	alize its ber	nefits				Apply	ing (K3)
					Ма	pping of	COs with	POs ar	nd PSOs				
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							3		2	1			
CO2							3		2				
CO3							3		3				
CO4							3		2	3			
CO5							3		3				
1 – Sligh	t, 2 –	Moderate	e, 3 – Sul	ostantial,	BT- Bloo	om's Taxo	nomy	1					
					AS	SESSME		ERN – T	HEORY				
Test Bloom Catego	's		embering (1) %	g U	nderstar (K2) %		Applyin (K3) %		Analyzing (K4) %		luating <5) %	Creating (K6) %	Total %
CAT1	1		-		-		-		-		-	-	-
CAT2				-		-		-		-	-	-	
CAT	3		20		30	30 50					-	-	100
CAT	SE										1		

				((Comr	non te	o All E	Enginee	ering ar	nd Tech	nology	Branche	es)					
Programme & Branch		All B.	E./B.T	ech.								Sem.	Cate	gory	L	т	Ρ	Credi
Prerequisites	(Comr	nunic	ation	Skills	s I						2	н	5	3	0	0	3
Preamble										the nece		skills to I	isten, re	ad, w	rite a	ind sp	beak s	o as to
Unit – I	(Gram	mar, V	/ocab	ulary	y, Lis [.]	tening	g, Spea	aking,	Readin	g & W	riting						9
Grammar: Ser substitution - L Reading: Read	Lister	ning:	Spee	ches t	from	comp	oany (CEOs ·	- TV c	debates	Spea	king։ Ju						
Unit – II										Readin								9
Grammar: Cor Talking about texts/working p	celeb	rities	- Pr	acticir	ng Pr	ronun	ciatior	n throu	igh we	eb tools	- Re	eading:	Compa	any c	orres			
Unit – III		Gram	mar,	Vocal	bular	v. Iis	stonin	-		Roadir	ng & W	riting						9
company profile	est leo es, Bu	ctures isines Gram	- Sp s Plar mar, V	- Tr eakin is - W /ocab	ansit g: Te riting ulary	ional echni g: a d y, Lis	words cal & f ream j tening	ls and Non-teo job/com g, Spea	phrase chnical npany · aking ,	es - Vo I presen - Letter Readin	tations to the g & W	Editor – r iting	hop pre Biograph	sentat ny & A	tions Autob	- Rea biogra	ading phy - (: Repute Checklist 9
company profile Unit – IV Grammar: Deg Listening: Lis commentaries	est leo es, Bu grees stenino - Mov	ctures isines Gram of Co g to g	- Sp s Plar mar, V mparia	- Tr eakin hs - W /ocab son - I accen	ransit g: Te riting ulary Punct ts - lit	ional echni g: a d y, Lis tuatio stenir	words cal & I ream j tening ns – F ng to r	ls and Non-teo job/com g, Spea Fragme motivati	phrase chnical npany · aking, nts & r ional s	es - Vo I presen - Letter Readin run-ons speeche	tations to the g & W - Voca	- Works Editor – riting bulary: eaking:	hop pre Biograph British 8 Narratin	sentat ny & A A Ame g pers	tions Nutob ericar sona	• Rea biogra	ading phy - (elling estone:	: Repute Checklist 9 & words s - Sport
Listening to gue company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V	est leo es, Bu grees stening - Mov rts	ctures isines Gram of Co g to g ie En	- Sp s Plar mar, V mpari obal a actme	- Tr eakin ns - W /ocab son - I accen nt - F	ransit g: Te riting oulary Punct ts - lia Readi	ional echni g: a d y, Lis tuatio stenir ing: N	words cal & I ream j tening ons – F ng to r Narrati	Is and Non-teo job/com g, Spea Fragmen motivati ive pas	phrase chnical npany · aking, ints & r ional s sages	es - Vo I presen - Letter Readin run-ons speeche	tations to the g & W - Voca s - Sp ng: E r	- Works Editor – riting bulary: eaking: nail - Ag	hop pre Biograph British 8 Narratin	sentat ny & A A Ame g pers	tions Nutob ericar sona	• Rea biogra	ading phy - (elling estone:	: Repute Checklist 9 & words s - Sport
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical report	est lec es, Bu grees stening - Mov rts (rpose ample versati	ctures usines Gram of Co g to g ie En Gram and f HR I ons -	- Sp s Plar mar, V mparia obal obal actme mar, V function Giving	- Tr eakin hs - W /ocab son - I accen nt - F /ocab on - If ews - g feed	ransit g: Te riting Punct ts - lia Readi oulary claus Spea back	ional echni g: a d y, Lis tuatio stenir ing: N y, Lis se - E aking – De	words cal & I ream j tening ns – F ng to r Narrati tening Error c : Intro ebate –	s and Non-tec job/com Fragmer motivati ive pase g, Spea detectio oductior - Readi	phrase chnical npany · aking, ional s sages aking, on - Vo n to ph ing: Ke	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note	g & Wi g & Wi - Voca s - Sp ng: E r g & Wi ry: Cos s - Stre speec	- Works Editor – iting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne	hop pre- Biograph British & Narratin enda & Decodin nm & In ewspape	sentat ny & A Ame g pers Minute g - Al tonatio	tions autob ericar sona es of lphat on -	- Rea iogra	ading phy - (eelling stone: ting - st - L ded &	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv from journals W	est lec es, Bu grees stening - Mov rts (rpose ample versati	ctures usines Gram of Co g to g ie En Gram and f HR I ons -	- Sp s Plar mar, V mparia obal obal actme mar, V function Giving	- Tr eakin hs - W /ocab son - I accen nt - F /ocab on - If ews - g feed	ransit g: Te riting Punct ts - lia Readi oulary claus Spea back	ional echni g: a d y, Lis tuatio stenir ing: N y, Lis se - E aking – De	words cal & I ream j tening ns – F ng to r Narrati tening Error c : Intro ebate –	s and Non-tec job/com Fragmer motivati ive pase g, Spea detectio oductior - Readi	phrase chnical npany · aking, ional s sages aking, on - Vo n to ph ing: Ke	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note	g & Wi g & Wi - Voca s - Sp ng: E r g & Wi ry: Cos s - Stre speec	- Works Editor – iting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne	hop pre- Biograph British & Narratin enda & Decodin nm & In ewspape	sentat ny & A Ame g pers Minute g - Al tonatio	tions autob ericar sona es of lphat on -	- Rea iogra	ading phy - (eelling stone: ting - st - L ded &	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv from journals W	est lec es, Bu grees stening - Mov rts (rpose ample versati Vriting	ctures isines Gram of Co g to g ie En Gram and f HR I ons - g: Circ	- Sp s Plar mar, \ mparia obal a cobal a actme mar, \ function Giving culars	- Tr eakin is - W /ocab son - I accen nt - F /ocab on - If ews - g feed - Criti	ansiti g: Te riting ulary Punct ts - lii Readi ulary claus Spea back cal A	ional echni g: a d tuatio stenir ing: N y, Lis se - E aking – De pprec	words cal & I ream j tening ons – F ng to r Narrati tening Error c : Intro abate – siation	s and Non-tec job/com g, Spea Fragmen motivati ive pas: g, Spea detection oduction - Readi of a no	phrase chnical npany - aking, nts & r ional s sages aking, on - Vo n to ph ing: Ke on-deta	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note ailed tex	g & Wi g & Wi - Voca s - Sp ng: E r g & Wi ry: Ca s - Stre s - Stre	- Works Editor – riting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne nnical pr	hop pre- Biograph British & Narratin enda & Decodin nm & In wspape oposals	g - Al tonation	tions autob ricar sona es of phab on –	- Realingra	ading phy - (elling stones ting - st - L ded & t tech	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide nical text
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv from journals W	est lec es, Bu grees stening - Mov rts (rpose ample versati Vriting	ctures isines Gram of Co g to g ie En Gram and f HR I ons - g: Circ	- Sp s Plar mar, \ mparia obal a cobal a actme mar, \ function Giving culars	- Tr eakin is - W /ocab son - I accen nt - F /ocab on - If ews - g feed - Criti	ansiti g: Te riting ulary Punct ts - lii Readi ulary claus Spea back cal A	ional echni g: a d tuatio stenir ing: N y, Lis se - E aking – De pprec	words cal & I ream j tening ons – F ng to r Narrati tening Error c : Intro abate – siation	s and Non-tec job/com g, Spea Fragmen motivati ive pas: g, Spea detection oduction - Readi of a no	phrase chnical npany - aking, nts & r ional s sages aking, on - Vo n to ph ing: Ke on-deta	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note ailed tex	g & Wi g & Wi - Voca s - Sp ng: E r g & Wi ry: Ca s - Stre s - Stre	- Works Editor – iting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne	hop pre- Biograph British & Narratin enda & Decodin nm & In wspape oposals	g - Al tonation	tions autob ricar sona es of phab on –	- Realingra	ading phy - (elling stones ting - st - L ded & t tech	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide nical text
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv from journals W TEXT BOOK: 1. Sanjay	est lec es, Bu grees stening - Mov rts (rpose ample versati Vriting	ctures isines Gram of Co g to g ie En Gram and f HR I ons - g: Circ	- Sp s Plar mar, \ mparia obal a cobal a actme mar, \ function Giving culars	- Tr eakin is - W /ocab son - I accen nt - F /ocab on - If ews - g feed - Criti	ansiti g: Te riting ulary Punct ts - lii Readi ulary claus Spea back cal A	ional echni g: a d tuatio stenir ing: N y, Lis se - E aking – De pprec	words cal & I ream j tening ons – F ng to r Narrati tening Error c : Intro abate – siation	s and Non-tec job/com g, Spea Fragmen motivati ive pas: g, Spea detection oduction - Readi of a no	phrase chnical npany - aking, nts & r ional s sages aking, on - Vo n to ph ing: Ke on-deta	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note ailed tex	g & Wi g & Wi - Voca s - Sp ng: E r g & Wi ry: Ca s - Stre s - Stre	- Works Editor – riting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne nnical pr	hop pre- Biograph British & Narratin enda & Decodin nm & In wspape oposals	g - Al tonation	tions autob ricar sona es of phab on –	- Realingra	ading phy - (elling stones ting - st - L ded & t tech	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide nical text
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv from journals W TEXT BOOK: 1. Sanjay REFERENCES 1 Meen	est lec es, Bu grees stening - Mov rts (rpose ample versati Vriting / Kum S:	Ctures Isines Gram of Co g to g ie En And f HR I ons - g: Circ ar & F	- Sp s Plar mar, \ mpari: obal : actme mar, \ function function Giving culars Pushp	- Tr eakin bs - W /ocab son - I accen nt - F /ocab on - If ews - g feed - Criti Lata,	ansiti g: Te riting Punct ts - lii Readi ulary claus Spea back cal A "Corr	ional echni g: a d y, Lis tuatio stenir ing: N y, Lis se - E aking - De pprec	words cal & I ream j tening ons – F ng to r Narrati tening Error c : Intro ebate – ciation	s and Non-tec job/com g, Spea Fragmer motivati ive pase g, Spea detection oductior - Readi of a no	phrase chnical npany - aking, ints & r ional s sages aking, on - Vo n to ph ing: Ke on-deta	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note ailed tex	g & Wi g & Wi - Voca is - Spong: E r g & Wi ry: Co s - Stre speec t - Tecl Dxford	- Works Editor – riting bulary: eaking: nail - Ag riting oding & ess, rhyth hes - Ne nnical pr	hop pre- Biograph British & Narratin enda & Decodin m & In ewspape oposals	sentat ny & A a Ame g pers Minuta g - Al tonatio r repo	tions Autob ericar sona es of phat on – prts –	- Re: iiogra	ading phy - (elling stone: ting - st - L ded & t techi 18.	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide nical text Total:4
company profile Unit – IV Grammar: Deg Listening: Lis commentaries Technical repor Unit – V Grammar: Pur Listening to sa speeches/conv. from journals W TEXT BOOK: 1. Sanjay REFERENCES 1. Meen Unive	est lec es, Bu grees stening - Mov rts (rpose ample versati Vriting / Kum S: nakshi ersity	ctures usines Gram of Co g to g ie En and f HR I ons - g: Circ ar & F ar & F Ran Press	- Sp s Plar mar, V mpari- lobal - actme mar, V function function Giving culars Pushp han ar	- Tr eakin is - W /ocab son - I accen nt - F /ocab on - If ews - g feed - Criti Lata, Lata, d Sar Delhi	ansiti g: Te riting Punct ts - li: Readi ulary clau: Spea back cal A "Corr "Corr "geeta , 2022	ional echni g: a d y, Lis tuatio stenir ing: N y, Lis se - E aking - De pprec	words cal & I ream j tening ons – F ng to r Narrati tening Error c : Intro ebate – ciation ication	s and Non-teo job/com g, Spea Fragmer motivati ive pass g, Spea detectio boductior - Readi of a no	phrase chnical npany - aking, ints & r ional s sages aking, on - Vo n to ph ing: Ke on-deta	es - Vo I presen - Letter Readin run-ons speeche - Writin Readin ocabula honetics ey Note ailed tex	g & Wi g & Wi - Voca s - Sping: E r g & Wi ry: Ca s - Stre speec t - Tecl Dxford ication-	- Works Editor – iting bulary: eaking: nail - Ag riting oding & ess, rhytt hes - Ne nnical pr	hop pre- Biograph British & Narratin enda & Decodin m & In wspape oposals y Press, es and F	sentat y & A G Ame g pers Minuto g - Al tonatio r repo	tions Autob rricar sona es of phat on – Dell Dell	- Re: iogra i or Sp i n - Sp i mile f Mee f Mee oct te oc	ading phy - (relling stone: ting - st - L ded & t techi 18.	: Repute Checklist 9 & words s - Sport Special & 9 istening unguide nical text Total:4

COURSE On comp			e, the stud	ents will be	able to						lapped st Leve)
CO1	use fund	ctional gramr	nar for imp	proving comm	nunicatio	n skills				Apply	ing (K3)	
CO2	listen ar	nd comprehe	nd differer	it accents and	d infer ir	nplied me	anings			Apply	ing (K3)	
CO3	•	clearly, initia		ustain a dis	cussion	and neg	otiate usi	ng appr	opriate	Creat	ing (K6)	
004	read di evaluate	•	es of text	s, infer imp	lied mea	anings ar	nd criticall	y analyz	e and	Understa	anding (H	(2)
005	-	-	-	arrative, des evaluative w	-	expositor	y texts a	ind unde	erstand	Creat	ing (K6)	
				Mappin	g of COs	s with PO	s and PS	Os				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2			1	3	1	1
CO2									2	3		1
CO3									2	3		2
CO4						1				3	1	1
CO5										3		2
1 – Slight,	2 – Mo	derate, 3 – S	Substantial	, BT- Bloom's	s Taxono	my						
				ASSES	SMENT	PATTER	N - THEOF	RY				
Test / Blo Catego		Remember (K1) %	ing Un	derstanding (K2) %		lying 3) %	Analyzir (K4) %		aluating K5) %	Creating (K6) %	Тс	otal %
CAT	1			37	3	30				33		100
CAT	2			7	Ę	50				43		100
CAT	3			17	Ę	50				33		100
ESE				15	2	15				40		100

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

	(Common to Automobile and Chemical	branches	5)				
Programme & Branch	B.E - Automobile & BTech – Chemical Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	2	BS	3	1*	2 *	4
Preamble	To impart the knowledge of partial derivatives, evaluation and solving the partial differential equations related to engi		egrals, vector	calc	ulus	to the	e students
Unit – I	Functions of Several Variables:						9
	o or more variables – Partial derivatives – Total differential – xima and minima – Constrained maxima and minima – Lagran			ction	s of t	two v	ariables -
Unit – II	Multiple Integrals:						9
Double integration in car	on in cartesian coordinates – Change of order of integration – tesian coordinates – Volume as triple integrals.	- Applicatio	on: Area betv	veen	two	curve	s – Triple
Unit – III	Vector Calculus:						9
Solenoidal and	ative – Gradient of a scalar point function – Divergence o Irrotational vectors – Vector Integration: Introduction – Gree Verification of the above theorems and evaluation of integrals	en's, Stok	e's and Gau				
Unit – IV	Partial Differential Equations: Formation of partial differential equations by elimination of						9
coefficients. Unit – V	Applications of Partial Differential Equations:						9
dimensional hea	second order quasi linear partial differential equations – Solute equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equations – Solute equations – Steady state solution of two dimensional heat equations – Steady state solutions – Steady state solutions – Steady state equations – Steady state solutions – Steady state solutio						_
dimensional hea	t equation – Steady state solution of two dimensional heat equ						_
dimensional hea	t equation – Steady state solution of two dimensional heat equ						_
dimensional hea	t equation – Steady state solution of two dimensional heat equ						_
dimensional hea LIST OF EXPER 1. Finding 2. Computi	t equation – Steady state solution of two dimensional heat equ IMENTS / EXERCISES: ordinary and partial derivatives.						-
dimensional hea LIST OF EXPER 1. Finding 2. Computi 3. Evaluati	t equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equaterinary and partial derivatives. In the streme values of function of two variables.						-
dimensional hea LIST OF EXPER 1. Finding 2. Computi 3. Evaluati 4. Finding	t equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equation and partial derivatives. Ing extreme values of function of two variables. Ing double and triple integrals.						_
dimensional hea LIST OF EXPER 1. Finding of 2. Computi 3. Evaluation 4. Finding of 5. Computi	t equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equation and partial derivatives. Ingextreme values of function of two variables. Ing double and triple integrals. the area between two curves.						-
dimensional hea LIST OF EXPER 1. Finding of 2. Computi 3. Evaluation 4. Finding of 5. Computi 6. Solving of	t equation – Steady state solution of two dimensional heat equation – Steady state solution of two dimensional heat equation of text of the state of						-
dimensional heat LIST OF EXPER 1. Finding of 2. Computi 3. Evaluation 4. Finding of 5. Computi 6. Solving of 7. Solving of	t equation – Steady state solution of two dimensional heat equation IMENTS / EXERCISES: ordinary and partial derivatives. ng extreme values of function of two variables. ng double and triple integrals. he area between two curves. ng gradient, divergence and curl of point functions. second order partial differential equations. One dimensional wave equation. Two dimensional heat equation.	ation (exc	uding insulate		dges)). 	on – One
dimensional heat LIST OF EXPER 1. Finding of 2. Computi 3. Evaluati 4. Finding of 5. Computi 6. Solving of 7. Solving of 8. Solving of	t equation – Steady state solution of two dimensional heat equation IMENTS / EXERCISES: ordinary and partial derivatives. ng extreme values of function of two variables. ng double and triple integrals. he area between two curves. ng gradient, divergence and curl of point functions. second order partial differential equations. One dimensional wave equation. Two dimensional heat equation.	ation (exc			dges)). 	on – One
dimensional hea LIST OF EXPER 1. Finding of 2. Computi 3. Evaluation 4. Finding of 5. Computi 6. Solving of 7. Solving of 8. Solving of TEXT BOOK: 1 Ramana	t equation – Steady state solution of two dimensional heat equation IMENTS / EXERCISES: ordinary and partial derivatives. ng extreme values of function of two variables. ng double and triple integrals. he area between two curves. ng gradient, divergence and curl of point functions. second order partial differential equations. One dimensional wave equation. Two dimensional heat equation. Le B V, "Higher Engineering Mathematics", 1st Edition, Tata N	ation (excl	uding insulate	d Pr	actic	al:15	on – One
dimensional hea LIST OF EXPER 1. Finding 2. Computi 3. Evaluatii 4. Finding 5. Computi 6. Solving 7. Solving 8. Solving TEXT BOOK: 1. Ramana Delhi, 20	t equation – Steady state solution of two dimensional heat equation IMENTS / EXERCISES: ordinary and partial derivatives. ng extreme values of function of two variables. ng double and triple integrals. he area between two curves. ng gradient, divergence and curl of point functions. second order partial differential equations. One dimensional wave equation. Two dimensional heat equation. Le B V, "Higher Engineering Mathematics", 1st Edition, Tata N	ation (excl	uding insulate	d Pr	actic	al:15	on – One
dimensional heat LIST OF EXPER 1. Finding of 2. Computi 3. Evaluati 4. Finding of 5. Computi 6. Solving of 7. Solving of 8. Solving of TEXT BOOK: 1. Ramana Delhi, 20 REFERENCES/	t equation – Steady state solution of two dimensional heat equ IMENTS / EXERCISES: ordinary and partial derivatives. Ing extreme values of function of two variables. Ing double and triple integrals. the area between two curves. Ing gradient, divergence and curl of point functions. second order partial differential equations. Due dimensional wave equation. Two dimensional heat equation. Le B V, "Higher Engineering Mathematics", 1st Edition, Tata Matematics.	ation (excl	Uding insulate	d Pr Con	actic	al:15	on – Ond

3.				igataasal ation, Ne			rakash	K. and	Sures	sh M., "	Engine	ering Mathe	matics	– I ", 2 nd	Edition,
4.	Gre	wal B.S	s, "Highe	r Enginee	ering N	lathemati	cs" 44th	Edition	, Khar	nna Publ	ishers, I	New Delhi, 2	2018.		
5.	MA	TLAB -	Laborat	ory Manu	al										
		UTCO		rse, the s	studer	nts will b	e able t	0					(1	BT Map Highest L	
CO1	com	pute th	e total d	erivatives	and e	xtreme v	alues of	multiva	ariable	function	s.			Applying	(K3)
CO2	eva	luate m	ultiple in	tegrals a	nd app	ly them to	o compu	ute the a	area a	nd volun	ne of the	e regions.	Un	derstandi	ng (K2)
CO3		ly the plems.	concept	s of der	ivative	s and li	ne inte	grals o	f vec	tor funct	tions in	engineerin	g	Applying	(K3)
CO4	form	nulate a	nd solve	higher o	rder pa	artial diffe	erential e	equation	าร.					Applying	(K3)
CO5				s techniq ave equat		solving	one and	l two di	mensi	ional hea	at flow p	oroblems an	d	Applying	(K3)
CO6	dem	nonstra	te MATL	AB progr	ammin	ig to unde and solve						wo variable		Applying anipulatic	
						Mappin	g of CO	s with	POs a	and PSO	s				
COs/F	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	3	2											
CO		3	3	2											
CO		3	3												
CO		3	2	1											
		3	3	3		3									
		– Mod	erate, 3	– Substai	ntial, B	T- Bloom	ı's Taxo	nomy							
						VSSES				THEOR	v				
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)	anding	Apply (K3)	ying	Analyzi (K4) %	ing	Evaluating (K5) %		reating (K6) %	Total %
	CAT			10		30		60		-		-	•	-	100
	CAT	2		10		30		60)	-		-		-	100
	CAT	3		10		30		60)	-		-		-	100
	ESE	-		5		30		65	-	-		-		-	100

*Alternate Week

22CYT26 – CHEMISTRY FOR AUTOMOBILE ENGINEERING

Programme & Branch	B.E & Automobile Engineering	Sem.	Category	L	т	Ρ	Credi
Prerequisites	Nil	2	BS	3	0	0	3
Preamble	This course aims to emphasize the engineering s & batteries, fuel cells, fuels & combustion and the					hemis	try, cells
Unit – I	ELECTROCHEMISTRY						9
calculation of cell hydrogen electroc	s - types - representation of galvanic cell – electrode p EMF from single electrode potential – reference elec de, standard calomel electrode, glass electrode – EMF ometric titrations – mixture of weak and strong acid vs	trodes: construction, series and its applic	working and a	appli	catior	ns of s	standard
Unit – II	CELLS AND BATTERIES						9
series/ parallel co battery: lithium ior ion batteries by di	rging and charging of battery - characteristics of batter nnection of batteries – primary battery: silver button c n - advantages of Li-ion battery as an electrochemical irect cycling method - brief introduction of Na- ion batt ric vehicle applications.	ell - secondary batter energy system for el	y: Lead-acid, ectric vehicles	Ni-C s - re	d bat cyclii	ttery - ng of I	modern _ithium-
Unit – III	FUELS AND COMBUSTION						9
varieties – proxim petroleum – manu number, compres Bharat Stage Emi	ation of calorific value by Dulong's formula - flue gas a ate analysis – significance – metallurgical coke - Otto ufacture of synthetic petrol - hydrogenation of coal - be sion ignition engine - cetane number - power alcohol ission Standard (BSES) system.	-Hoffman byproduct r ergius process - knoc	method - liquio king: spark ig	d fue nitio	el - re [:] n eng	fining jine - (of octane stion of
Unit – IV	HYDROGEN FUEL AND FUEL CELLS						9
splitting), Biologica absorbing materia Fuel Cell: Introdu principle, compon	ntroduction - Hydrogen - technology for hydrogen gen al hydrogen - Hydrogen utilization - Hydrogen storage - als, Liquid storage, Underground storage - applications iction - Role of fuel, oxidant, electrolyte with example ents and applications of fuel cells: alkaline fuel cell, pi cid fuel cell, molten carbonate fuel cell, solid oxide fue	Compressed gas in s in hydrogen fuel cel - Importance and clas roton exchange mem	pressure vess lls. ssification of f brane fuel cel	sels, uel c I, dir	Hydr ells - ect m	ogen descr nethar	iption, iol fuel
Unit – V	CORROSION AND ITS CONTROL METHODS			3			9
 differential aera (wt. loss method c Control methods metallic coating 	duction - chemical corrosion – Pilling-Bedworth rule - e tion corrosion with examples - galvanic series - factor only). s – sacrificial anodic protection method - corrosion inh : electroplating, electroless plating and hot dipping (tir ic coating: paints, constituents and functions - cerami	s influencing rate of c ibitors - protective co nning and galvanizing	corrosion – me atings - pretre	easu eatm	reme ent o	nt of c f meta	corrosion
							Total:4
TEXT BOOK:							
1. Wiley Edi	itorial Board, "Wiley Engineering Chemistry", 2nd Edit	ion, Wiley India Pvt. L	_td, New Delh	i, Re	print	2019.	
REFERENCES:							
	amy P.N., Manikandan P., Geetha A., Manjula Rani k n Education, New Delhi, Revised Edition 2019.	•	-	Civil	Engi	neerir	ıg",
	S.S, "A Text book of Engineering Chemistry", S. Chang	d and company Ltd., 2	2021.				

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the principles of electrochemistry for various applications	Applying (K3)
CO2	employ the concepts of cells, batteries and its applications in automobiles.	Applying (K3)
CO3	apply the concepts of fuels and combustion for engineering applications	Applying (K3)
CO4	use the concepts of hydrogen fuel, fuel cells and its applications in automobiles.	Applying (K3)
CO5	make use of corrosion control methods to solve corrosion related issues.	Applying (K3)

					Mappin	g of CC	s with	POs an	d PSO:	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1									2	2
CO2	3	2	1	1									2	2
CO3	3	2	1	1									2	2
CO4	3	2	1	1									2	2
CO5	3	2	1	1									2	2
4 01:			Out stand			·								

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	25	35	40				100
ESE	25	35	40				100
* ±3% may be varied (CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)	· · · · · · · · · · · · · · · · · · ·			

Programme	<u>8</u>		AUC21 - MANUFACT							_
Branch	, u	B.E. – Automobile En	gineering		Sem.	Category	L	Т	Р	Credit
Prerequisit	es	NIL			2	PC	3	0	2	4
Preamble		This course provides metal forming, metal re parts								
Unit – I		Foundry Technology								9
Pattern mat	erials, t	ding and Casting - Mole /pes and allowances - (Castings, Investment Ca	Core making: types c	of core, core mate	erials, ma	aking of core				
Unit – II		Metal Forming Proce	sses:							9
of seamless	s tubing	ng process. Rolling: Roll and pipes - Cold and Hy al operations - and forgi	/drostatic Extrusion -	rations - Extrusion Drawing: hot and	: Forwar I Cold dra	d and Backw awing - Deep	ard e dra	extrus wing	sion - - Tub	Production e and wire
Unit – III		Metal Removal Proce	sses:							9
	omencla	arts and operations - sir ature - reaming and tapp perations.								
Unit – IV		Metal Joining Proces	ses:							9
Electron Be	am We Welding	lding Process - Fusion W ding - Laser Beam We - Explosive Welding - C cations.	Iding - Solid State W	/elding: Cold Wel	lding - U	Itrasonic We	lding	ı - Fr	riction	Welding -
Unit – V		Metal Finishing Proce	esses:							9
		/lethods of grinding - Typ g Machine: pull type ar								
LIST OF EX	PERIM	ENTS / EXERCISES:								
1. Lat	he opera	ations: Step turning, Tape	er turning and Knurlin	g						
2. Lat	he opera	ation: Thread Cutting								
3. Lat	he opera	ation: Eccentric turning								
4. Mill	ing mac	hine operation: Contour	Key way milling							
5. Mill	ing mac	hine operation: Spur gea	ır milling							
6. Sha	aper / pla	anner machine operation	: Key way / Dove tail	shape Cutting						
7. Dril	ling mad	hine operations: Drilling,	Reaming and Tappir	ng						
8. Gri	nding m	achine operations: Surfa	ce grinding and Cylind	drical grinding						
9. Pre	paratior	of mould for sand castir	ng using single piece /	split patterns						
10. Pra	ctice a b	outt / lap joint using the g	iven metal strips by A	rc / Gas welding						
!						Lecture:	45, P	racti	cal:30), Total:75
TEXT BOO	K:									
1. Kal	pakjian S	S. & Schmid R., "Manufa	cturing Engineering a	nd Technology". 7	th Editio	n, Pearson E	duca	ition,	India.	2013.
	-	•		6, 7					,	

1.	Kau	shish J.	P., "Ma	anufacturing	Proo	cesses", 2	2nd Editio	n, PHI l	_earnir	ng Pvt. Lt	d., 201	3.			
2.	Rao 201		'Manuf	acturing Te	chno	logy, Vol	ume I & I	II", 3rd	Editior	n, Tata N	/lcGrav	/ Hill Publish	ing Corr	npany, Ne	w Delhi
		UTCON ion of t	-	Irse, the st	uden	ts will be	able to						(BT Mapı Highest L	
CO1	illus		e vario					making	, mold	ing, cast	ing, me	elting furnace		derstandir Precision	
CO2	infe	r various	s formi	ng processe	es inv	olving bu	lk forming	and sh	leet me	etal opera	ations.			derstandir Precision	
CO3	dem	onstrat	e the m	netal remov	al pro	cesses a	ccording t	to the m	aterial	and geo	metrica	al design.		Applying Precision	(S3)
CO4	disc	uss the	metal	oining proc	esses	s based o	n the pro	perties	of the b	base met	al.			derstandir Precision	(S3)
CO5	des	cribe the	e vario	us metal fin	shing	process	es for sur	face fini	shing	operatior	IS.			derstandir Precision	
						Маррі	ing of CO	s with	POs a	nd PSOs	6				
COs/	POs	P01	PO2	PO3	РО	4 PO5	PO6	P07	PO8	PO9	P010	PO11	PO12	PSO1	PSO2
CC)1	3	1				2	1		2	2		2	3	
CC)2	3	1				2	1		2	2		2	3	
CC)3	3	1	1			3	1		2	2		2	3	
CC)4	3	1				2	1		2	2		2	3	
CC	95	3	1				2	1		2	2		2	3	
1 – Sli	ght, 2	– Mode	rate, 3	 Substant 	ial, B	T- Bloom	's Taxono	my							
						ASSE	SSMENT	PATTE	RN –	THEORY	,				
-	st / Blo Catego	oom's ory*	F	Rememberi (K1) %	ng		standing 2) %	Apply (K3)		Analyzi (K4) %		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		8	30								100
	CAT	2		20		6	60	20)						100
	CAT	3		20		8	30								100
			1					20			1		1		100

		(Common to Civil, Mechanical, Automob	ile. Chen	nical Bran	iches)			
Progra	mme & Branch	BE - Civil, Mechanical, Automobile &	Sem.	Categ		т	Р	Credit
		BTech – Chemical Engineering Branches		ory	L	_		Credit
Prerequ	uisites	Programming in C	2	PC	3	0	2	4
Preamb	ble	This course is indented to introduce the conce algorithms to novice learner from cross disciple						of
Unit – I		List:						9
		Data Types (ADT) - List ADT and Array Imple Linked List - Doubly Linked List- Insertion -Dele		on - Linkeo	d List- S	ingly Lin	ked List-	Insertion
Unit – I	I	Stack and Queues:						9
		inked List implementation of Stacks - Applica ueue ADT – Array and Linked List implementati					to Postf	ix - Postf
Unit – I		Trees:		<u> </u>	phoanon			9
		ary Trees –Binary Tree Traversals - The Searc ertion – Deletion- Expression Tree	ch Tree A	.DT – Bina	ary Sear	ch Irees	– Opera	tions : Fin
Unit – ľ		Graphs:						9
		aph Traversals: Breadth First Search – Depth Algorithm – Minimum Spanning Tree – Prim's					rithms: l	Jnweighte
Unit – \		Sorting and Hashing:						9
	 Preliminaries – In Addressing 	sertion Sort – Quicksort – Merge sort – Hashin	g – Gene	eral Idea –	Hash Fi	unction –	- Separat	te Chainin
LIST O	F EXPERIMENTS /	/ EXERCISES:						
1.	Implementation	of C programs using pointers						
2.	Implementation	of singly linked list and its operations						
3.	Implementation	of doubly linked list and its operations						
4.	Implementation	of Stack and its operations						
5.	Implementation	of Queue and its operations						
6.	Implementation	of Stack and Queue using Singly Linked List						
7.	Evaluate the Po	st-fix Expression using Stack ADT						
8.	Implementation	of Binary Search Tree traversals						
9.	Implementation	of Insertion sort and Quick sort						
10.	Implementation	of hash function						
					Lectur	e:45, Pra	actical:3	0, Total:7
ТЕХТ В	BOOK:							
1.	Weiss M. A., "D	ata Structures and Algorithm Analysis in C", 2n	d Edition,	, Pearson	Educatio	on Asia,	New Del	hi, 2016.
REFER	ENCES/ MANUAL	/ SOFTWARE:						
1.	Horowitz Sahni, Hyderabad, 201	Andreson Freed, "Fundamentals of Data Struc 1.	tures in C	C", 2nd Ed	ition, Un	iversities	s Press,	
itomoh	· · ·	Regulation, Curriculum and Syllabus – R20	22			Pag	e 88	

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

2.		ation, 20		stein J. a	and Tenen	baum A.	м., "Da	ata Stru	ctures us	sing C an	d C++", 2	nd Editio	n, Pearso	n
	SE OUTC		ourse, th	e stude	ents will b	e able to)						Mapped	
CO1	apply	List ADT	for solvi	ng the g	jiven probl	ems						Арр	olying (K3	5)
CO2	make	use of a	rrays and	l linked	lists to cre	ate Stack	and Q	ueue A	DTs.			App	olying (K3	3)
CO3	utilize	Tree AD	DT to dev	elop sin	ple applic	ation						App	olying (K3	5)
CO4	make	use of G	Graph AD	T for sta	indard pro	blems						App	olying (K3	5)
CO5	illustra	ate the u	se of star	ndard so	orting and	Hashing	Technie	ques				Арр	olying (K3	6)
					Маррі	ng of CC)s with	POs a	nd PSOs	5				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	РО 7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slig	jht, 2 – M	oderate,	3 – Subs	stantial,	BT- Bloom	ı's Taxon	omy							
					ASSE	SSMENT	PATT	ERN – ⁻	THEORY	,				
	Bloom's egory*	Remo	embering %	g (K1)	Underst (K2)			olying 3) %		lyzing (4) %	Evalua ting (K5) %	Cre	ating 6) %	Total %
	AT1		10		60)		30						100
	AT2		5		35	-		60						100
	AT3		5		35	-		60						100
	SE		5		3؛ rks & ESE		1	60						100

Programme & Branch	B.E – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2	PC	3	0	0	3
Preamble	This course provides knowledge on IC engines and automobiles	I its subsystems for	understandin	g the	ir role	e in	
Unit – I	Engine Fundamentals:						9
	Engines; IC. Engines - Types - Working of two stroke ar c Principles of Air Standard cycle - Otto Cycle - Diesel (gines – Port a	nd v	alve t	iming	diagram
Unit – II	Fuel Supply system and ignition system						9
Injection. Ignition	Fuel ratio, Simple Carburettor – Injection systems – S System - Battery Ignition System - Magneto Ignition S p - Distributor type fuel injection pump. Common rail dir	ystem - Electronic I	gnition Syste	ms. (CI En	gine:	
Unit – III	Combustion In SI Engines	, ,	,		71		•
Combustion proc	ess - Stages of combustion, Flame propagation - Flam						
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope s, factors controlling combustion chamber design. Emis Combustion in CI Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in CI engines – methods of controlling die	rating and design sion Formation in S ir mixing – Stages o sel knock. CI engin	variables on I engine. of combustion e combustion	coml – De chai	elay p	beriod s – Co	sure rise ombustio 9 – Factor ombustio
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in CI Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a	rating and design sion Formation in S ir mixing – Stages o sel knock. CI engin	variables on I engine. of combustion e combustion	coml – De chai	elay p	beriod s – Co	sure rise ombustion 9 – Factor
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion cham Unit – V	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem	erating and design sion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion	variables on I engine. of combustion e combustion chambers	– De chai - Air	elay p mbers cell	beriod s – Co chan	sure rise ombustio 9 – Factor ombustio nber – N 9
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion cham Unit – V Types of cooling	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem systems and its working, Properties of coolants. Cranl working - Properties of lubricants – Engine oil ratings	erating and design sion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion kcase ventilation. E	variables on I engine. of combustion e combustion chambers ngine lubricat	coml – De chai - Air ion - ging	elay p mbers cell Type – typ	period s – Co chan es of l pes -	sure rise ombustio – Factor ombustio nber – M 9 lubricatin working
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion chan Unit – V Types of cooling systems and its controlling metho	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem systems and its working, Properties of coolants. Cranl working - Properties of lubricants – Engine oil ratings	erating and design sion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion kcase ventilation. E	variables on I engine. of combustion e combustion chambers ngine lubricat	coml – De chai - Air ion - ging	elay p mbers cell Type – typ	period s – Co chan es of l pes -	sure rise ombustio – Factor ombustio nber – M 9 lubricatin
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion chan Unit – V Types of cooling systems and its controlling metho	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem systems and its working, Properties of coolants. Cranl working - Properties of lubricants – Engine oil ratings	erating and design asion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion kcase ventilation. E s. Supercharging an	variables on I engine. of combustion e combustion chambers ngine lubricat nd Turbochar	coml – De chai - Air ion - ging	elay p mbers cell Type – typ	period s – Co chan es of l pes -	sure rise ombustio 9 – Factor ombustio nber – 1 9 lubricatin working
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion cham Unit – V Types of cooling systems and its controlling metho	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem systems and its working, Properties of coolants. Cranl working - Properties of lubricants – Engine oil ratings ds.	erating and design asion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion kcase ventilation. E s. Supercharging an	variables on I engine. of combustion e combustion chambers ngine lubricat nd Turbochar	coml – De chai - Air ion - ging	elay p mbers cell Type – typ	period s – Co chan es of l pes -	sure rise ombustio 9 – Factor ombustio nber – M 9 lubricatin working
Combustion proc Cycle to cycle va chambers – Type Unit – IV Importance of air affecting delay pe chamber design Combustion cham Unit – V Types of cooling systems and its controlling metho TEXT BOOK: 1. Ganesan REFERENCES:	ess - Stages of combustion, Flame propagation - Flam ariation, Abnormal combustion - Effect of engine ope is, factors controlling combustion chamber design. Emis Combustion in Cl Engines motion – Swirl, squish and tumble – Swirl ratio. Fuel a eriod, Knock in Cl engines – methods of controlling die objectives – open and divided. Induction swirl, tur nber. Emission Formation in Cl engine. Engine Subsystem systems and its working, Properties of coolants. Cranl working - Properties of lubricants – Engine oil ratings ds.	erating and design sion Formation in S ir mixing – Stages of sel knock. CI engin bulent combustion kcase ventilation. E s. Supercharging an Graw Hill Education,	variables on I engine. of combustion e combustion chambers ngine lubricat nd Turbochar	- De chai - Air ion - Air ging L	bustic belay p mbers cell Type – typ ectu	period s – Co chan es of l pes - re :45	sure rise ombustio – Factor ombustio nber – 1 9 lubricatin working

		UTCOM		irse, the st	udent	s will be	able to						(BT Mapı Highest L	
CO1	des	cribe the	e const	ruction and	worki	ng of IC e	ngine ar	nd its cy	cle				Un	derstandi	ng (K2)
CO2	exp	lain the	various	s fuel syste	m, inje	ction syste	em and	ignition	systen	n used ir	SI and	CI engines	Un	derstandi	ng (K2)
CO3		orate th		bustion pro	cess ir	n SI Engin	e for un	derstan	ding th	e perforr	mance a	nd emissio	n Un	derstandi	ng (K2)
CO4		uss the racterist		istion proce	ess in (CI Engine	for unde	erstandi	ng the	performa	ance and	d emission	Un	derstandi	ng (K2)
CO5	sum	nmarize	the wo	rking of lub	ricatio	n, cooling	, Turboc	harging	and s	uperchar	ging sys	tems	Un	Iderstandi	ng (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	S				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CC)1	3	2				2	1					3	3	
CC)2	3	2				2	1					3	3	2
CC)3	3	2				2	1					3	3	
CC)4	3	2				2	1					3	3	
CC)5	3	2				2	1					3	3	
1 – Sli	ight, 2	– Mode	rate, 3	- Substant	tial, BT	- Bloom's	Taxono	my							1
						ASSES	SMENT	PATTE	RN –	THEOR	(
	st / Bl Catego	oom's ory*	F	Remember (K1) %	ing	Understa (K2)	•	Appl (K3)		Analyz (K4) 9	•	Evaluating (K5) %	-	reating (K6) %	Tota %
	CAT	1		20		80)								100
	CAT	2		20		80)								100
	CAT	3		20		80)								100
	ES			20		80)								100
* ±3%	may b	be varie	d (CAT	1,2,3 – 50	marks	& ESE -	- 100 ma	ırks)					·		·

	22TAM01 - தமிழர் (Common to All Engineering and T		es)				
Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1/2	HS	1	0	0	1
Preamble	தமிழர்களின் மொழி, இலக்கியம், ஒவிய வீர் விளையாட்டுக்கள், திணைக் கோட்ட பங்களிப்பைப் பற்றிய அறிவை வழங்குவ	ாடுகள், இந்திய	ப பண்பாட்	டிற்	த்த்	தமீ	கலைகள் 1ழர்களின்
୬ ରହ – ।	மொழி மற்றும் இலக்கியம் ழிக் குடும்பங்கள் – திராவிட மொழிக	கள் – தமிழ்		செம்			3
அறம் – திரு சமயங்களின் தமிழில் நவீன ஆகியோரின் ப		மிழ் காப்பியங்க மற்றும் நாயன் ப வளர்ச்சியில்	ள், தமிழச ரமார்கள் - பாரதியா	த்தி - சிர ர மர	ல் ச ற்றில ற்றுப	ம்ண லக்கி	பௌத்த பங்கள்
நடுகல் முதல் தயாரிக்கும் எ நாட்டுப்புறத் (மரபு – பாறை ஓவியங்கள் முதல் நவீன ஏ ப நவீன சிற்பங்கள் வரை – ஐம்பொன் கைவினைப் பொருட்கள், பொம்மைகள் – (தெய்வங்கள் – குமரிமுனையில் திருவள்ளு , யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக வெ	சிலைகள் – ட தோ செய்யும் வா் சிலை –	ழங்குடியில் கலை – இசைக் கடு	னர் சுடுப நவில	மற் மண் கள்	_ ந _ ந	அவர்கள் பங்கள் ருதங்கம்
	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளை கரகாட்டம், வில்லுப்பாட்டு, கணியான் வளரி, புலியாட்டம், தமிழாகளின் விளையா	கூத்து, ஒயில	றாட்டம், (தோ	ប់បារ	തഖദ്	3 கூத்து
புறக் கோட்பா கல்வியும் – ச	் தமிழர்களின் திணைக் கோட்பாடுகள் நாவரங்களும், விலங்குகளும் – தொல்காப்பிட டுகள் – தமிழர்கள் போற்றிய அறக்கோட்பா(ங்ககால நகரங்களும் துறை முகங்களும் – ாடுகளில் சோழர்களின் வெற்றி.	டு– சங்க கால	த்தில் தமி	।ਇੰਝੇ ਕੇ	தில்	តម្	,த்தறிவுப்
ைலை நி							
அலகு – v இந்திய விடு தாக்கம் – சுய	இந் திய தேசிய இயக்கம் மற்றும் இந்திய பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தில படிகள் – கமில்ப் பக்ககங்களின் அச்சு வரலா	தியாவின் பி <u>ர</u> ல் சித்த மருத்த	பகுதிகளில்	் த			
அலகு – v இந்திய விடு தாக்கம் – சுய	பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந்	தியாவின் பி <u>ர</u> ல் சித்த மருத்த	பகுதிகளில்	் த			ரபாட்டில் வட்டுகள்
அலகு – v இந்திய விடு தாக்கம் – சுய	் பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தில	தியாவின் பி <u>ர</u> ல் சித்த மருத்த	பகுதிகளில்	் த			ரபாட்டில் வட்டுகள்
அலகு – v இந்திய விடுத தாக்கம் – சுய கையெழுத்துப் TEXT BOOK:	் பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தில	தியாவின் பிற ல் சித்த மருத்த று.	பகுதிகளில்	் த			ரபாட்டில் வட்டுகள்
அலகு – V இந்திய விடுத தாக்கம் – சுய கையெழுத்துப் TEXT BOOK: 1. ஆ. பூப	பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தில படிகள் – தமிழ்ப் புத்தகங்களின் அச்சு வரலா	தியாவின் பிற ல் சித்த மருத்த று.	பகுதிகளில்	் த			 னபாட்டின்
அலகு – V இந்திய விடுத தாக்கம் – சுய கையெழுத்துப் TEXT BOOK: 1. ஆ. பூப REFERENCES: 1 தமிழக	பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தில படிகள் – தமிழ்ப் புத்தகங்களின் அச்சு வரலா	தியாவின் பிற ல் சித்த மருத்த று.	பகுதிகளில் துவத்தின் ப	் த பங்கு) – ł	හේ බ	गபாட்டில் வட்டுகள் Total: 1
அலகு – V இந்திய விடு தாக்கம் – சுய கையெழுத்துப் TEXT BOOK: 1. ஆ. பூப REFERENCES: 1. தமிழக கல்விய	பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தி படிகள் – தமிழ்ப் புத்தகங்களின் அச்சு வரலா ாலன், தமிழர் மரபு, VRB Publishers Pvt Ltd, 2022 வரலாறு- மக்களும் பண்பாடும்- கே கே பிள்ளை	தியாவின் பிற ல் சித்த மருத்த று. n (வெளியீடு தப	பகுதிகளில் துவத்தின் ப	் த பங்கு) – ł	හේ බ	गபாட்டிவ வட்டுகள் Total: 1
அலகு – V இந்திய விடு தாக்கம் – சுய கையெழுத்துப் TEXT BOOK: 1. ஆ. பூப REFERENCES: 1. தமிழக கல்விய 2. கணினி	பங்களிப்பு தலைப்போரில் தமிழர்களின் பங்கு – இந் மரியாதை இயக்கம் – இந்திய மருத்துவத்தி படிகள் – தமிழ்ப் புத்தகங்களின் அச்சு வரலா ாலன், தமிழர் மரபு, VRB Publishers Pvt Ltd, 2022 வரலாறு- மக்களும் பண்பாடும்- கே கே பிள்ளை பியல் பணிகள் கழகம்)	தியாவின் பிற ல் சித்த மருத்த று. n (வெளியீடு தப ரசுரம்)	பகுதிகளில துவத்தின் ப பிழ்நாடு பாட	ல் த பங்கு நூல	, – ه ن س ن	හේ බ	गபாட்டிவ வட்டுகள் Total: 1

		<mark>)UTCO</mark> மடித்த		, மாண	வர்கள்									BT Map (Highest	•
CO1		ிழ் பெ டியும்.	-	ற்றும் (இலக்கி	ியத்தில	ல் மதிட	ப்புமிக்	ቆ ቆጡ	த்துக்க	ണെ ഒ	பிளக்க	Unde	erstanding	g (K2)
CO2	தம	ிழர்க	றின் சி	ற்பம் மற்	றும் ச	அவர்கல	ரின் ஒ	வியங்	கள் பு	ற்றி வி	ளக்க பு	றடியும்.	Unde	erstanding	g (K2)
CO3		ிழர்க ற முடி		ட்டுப்புற) மற்ற	றம் தற்க	காப்புக்	ക്തல	കുണ	ப் பற்றி) சுருக்க	கமாகக்	Unde	erstanding	g (K2)
CO4	தமீ	ிழர்க	ரின் தி	ணைக் (கோட்ட	பாடுகன	ளப் பர	ற்றி வ	ிளக்க	முடிய	فا.		Unde	erstanding	g (K2)
CO5				இயக்கம் 1 விளக்க			திய பன்	ன்பாட்ட	டிற்கு	த் தமிழ	ர்களில்	T	Unde	erstanding	g (K2)
						Марр	ing of C	Os wit	h POs	and PS	Os				
COs/F	os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1						3		3	2	2		3		
CO	2						3		3	2	2		3		
CO	3						3		3	2	2		3		
CO	4						3		3	2	2		3		
CO	5						3		3	2	2		3		
1 – Sli	ght, 2	2 – Mod	erate, 3	 Substa 	ntial, B1	Γ- Bloom	's Taxor	nomy				· · ·			
						ASSE	SSMEN		FERN -	- THEO	RY				
	t / Bl ateg	oom's ory*	Re	member (K1) %	ing L	Jndersta (K2)	•	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		eating K6) %	Total %
	CAT	1		40		60									100
	CAT	2		40		60									100
	CAT	3		40		60									100
	ESI	E			·					NA					

	ZZTAMUT- HERITA	GE OF TAMILS					
	(Common to All Engineering ar	nd Technology Branch	es)				
Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	1/2	HS	1	0	0	1
Preamble	The objective of this course is to impart knowled arts, heroic games, doctrines, contribution of Ta		ige, literature	paint	tings,	sculp	otures, folk
UNIT I	Language and Literature						3
sangam literature buddhism & jaini literature in tamil	es in india - dravidian languages – tamil as a class e – distributive justice in sangam literature - mar ism in tamil land - bakthi literature azhwars and r - contribution of bharathiyar and bharathidhasan.	nagement principles ir nayanmars - forms of	h thirukural -	tamil	epic	s and	d impact c of moder
UNIT II	Heritage - Rock Art Paintings to Modern Art -	 Sculpture 					3
	m - role of temples in social and economic life of tar						
	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam		ilambattam –	valari	i - tig	er daı	3 nce - sport
Therukoothu – ka and games of tan	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils.		ilambattam –	valari	i - tig	er dar	-
Therukoothu – ka and games of tan UNIT IV Flora and fauna	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol peracy during sangam age - ancient cities and po	- leather puppetry – si Ikappiyam and sangar	n literature -	aran	n coi	ncept	nce - sport
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol peracy during sangam age - ancient cities and po	l - leather puppetry – si lkappiyam and sangar irts of sangam age - e	n literature - export and in	aran	n coi	ncept	nce - sport
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol reracy during sangam age - ancient cities and poist of cholas.	kappiyam and sangar rts of sangam age - e vement and Indian Cu fluence of tamils over	n literature - export and in ulture	aran nport	n coi durin	ncept ig sar ia – :	ace - sport 3 of tamils agam age 3 self-respec
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta movement - role	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol eracy during sangam age - ancient cities and poist of cholas. Contribution of Tamils to Indian National Moramils to indian freedom struggle - the cultural informational freedom struggle - the cultural informat	kappiyam and sangar rts of sangam age - e vement and Indian Cu fluence of tamils over	n literature - export and in ulture	aran nport	n coi durin	ncept ig sar ia – :	arce - sport
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta movement - role	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol reacy during sangam age - ancient cities and po est of cholas. Contribution of Tamils to Indian National Mor amils to indian freedom struggle - the cultural into of siddha medicine in indigenous systems of medici	 leather puppetry – since the second se	m literature - export and in ulture the other pa nuscripts – p	aran nport	n coi durin	ncept ig sar ia – :	of tamils of tamils ngam age 3 self-resper nil books.
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of t movement - role TEXT BOOK: 1. S.Muthu	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol eracy during sangam age - ancient cities and poist of cholas. Contribution of Tamils to Indian National Moramils to indian freedom struggle - the cultural informational freedom struggle - the cultural informat	 leather puppetry – since the second se	m literature - export and in ulture the other pa nuscripts – p	aran nport	n coi durin	ncept ig sar ia – :	of tamils of tamils ngam age 3 self-respen nil books.
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta movement - role TEXT BOOK: 1. S.Muthui REFERENCES:	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol eracy during sangam age - ancient cities and po est of cholas. Contribution of Tamils to Indian National Mor amils to indian freedom struggle - the cultural info of siddha medicine in indigenous systems of medici ramalingam, M.Saravanakumar, Heritage of Tamils,	 leather puppetry – si lkappiyam and sangar orts of sangam age - e vement and Indian Cu fluence of tamils over ine – inscriptions & ma , Yes Dee Publishing F 	m literature - export and in ulture the other pa nuscripts – p Pvt Ltd, 2023.	aran port arts o	n cor durin of ind story	ia – s	of tamils of tamils ngam age 3 self-respenil books. Total: 1
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta movement - role TEXT BOOK: 1. S.Muthua REFERENCES: 1. Historica Tamil Stu	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol eracy during sangam age - ancient cities and po est of cholas. Contribution of Tamils to Indian National Mor amils to indian freedom struggle - the cultural indices of siddha medicine in indigenous systems of medici ramalingam, M.Saravanakumar, Heritage of Tamils. I Heritage of the Tamils (Dr.S.V.Subatamanian, Dr. udies).	I - leather puppetry – si Ikappiyam and sangar orts of sangam age - e vement and Indian Cu fluence of tamils over ine – inscriptions & ma	m literature - export and in ulture the other pa nuscripts – p Pvt Ltd, 2023.	aran port arts o rint his	n cou durin of ind story	ia – : of tar	ace - sport of tamils agam age 3 self-respen nil books. Total: 1
Therukoothu – ka and games of tan UNIT IV Flora and fauna education and lit overseas conque UNIT V Contribution of ta movement - role TEXT BOOK: 1. S.Muthut REFERENCES: 1. Historica Tamil Str 2. The Con Studies).	Folk and Martial Arts aragattam - villu pattu - kaniyan koothu – oyillattam nils. Thinai Concept of Tamils of tamils & aham and puram concept from thol ieracy during sangam age - ancient cities and po ist of cholas. Contribution of Tamils to Indian National Monamils to indian freedom struggle - the cultural indiction of siddha medicine in indigenous systems of medici ramalingam, M.Saravanakumar, Heritage of Tamils, I Heritage of the Tamils (Dr.S.V.Subatamanian, Dr. udies). tribution of Tamil of the Tamils to Indian Culture(I - leather puppetry – si Ikappiyam and sangar orts of sangam age - e vement and Indian Cu fluence of tamils over ine – inscriptions & ma , Yes Dee Publishing F .K.D. Thirunavukarasu) (Dr.M.Valarmathi)(Pupl	m literature - export and in ulture the other pa nuscripts – p Pvt Ltd, 2023.) (Published b	aran aport arts o rint his by : In	n cou durin of ind story terna	ia – : of tar	ace - sport 3 of tamils agam age 3 self-respen nil books. Total: 1 Institute of te of Tam

		OUTCON tion of		urse, the s	student	s will be	able to)						BT Map (Highest	
CO1	exp	olain val	uable o	oncepts in	langua	age and	literature	e of tam	ils.				Und	erstanding	g (K2)
CO2	illus	strate al	pout the	e tamils sc	ulpture	and their	painting	gs.					Und	erstanding	g (K2)
CO3	sur	nmarize	about	the tamils	folk and	d martial	arts.						Und	erstanding	g (K2)
CO4	exp	plain the	thinai	concept of	tamils.								Und	erstanding	g (K2)
CO5	exp	plain the	contril	oution of Ta	amils to	the India	an Natio	nal Mov	vement	and Ind	lian cultu	re.	Und	erstanding	g (K2)
						Маррі	ng of C	Os witl	h POs	and PS	Os				
COs/F	os	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1						3		3	2	2		3		
CO	2						3		3	2	2		3		
CO	3						3		3	2	2		3		
CO	4						3		3	2	2		3		
CO	5						3		3	2	2		3		
1 – Sli	ght, 2	2 – Mode	erate, 3	8 – Substa	ntial, BT	- Bloom	's Taxor	nomy		-1	1			ł	·
						ASSE	SSMEN	Τ ΡΑΤΊ	ERN -	- THEOF	۲Y				
	st / B Categ	loom's jory*	F	emember (K1) %	ing l	Jndersta (K2)		Apply (K3)		Analyz (K4)		Evaluating (K5) %		eating K6) %	Total %
	CA	T1		40		60									100
	CA	T2		40		60									100
	CA	Т3		40		60									100
	ES	F			t					NA			I		

					22AUL	.21 - AL	ломот	TIVE E	NGINE	S LABO	RATOR	Y				
Progra Branc		e &	B.E	- Auton	nobile E	Inginee	ering				Sem.	Category	L	. т	P	Credit
Prerec	quisit	es	Nil								2/3	ES	0) (2	1
Pream	ble			ourse p			on expe	erience	about d	ismantli	ng cum a	assembling	of e	ngin	e and	
LIST C	OF EX	(PERIN	IENTS	EXER(CISES:											
1.	Dis	mantlin	g and a	ssembli	ng of fo	ur strok	e single	e cylinde	er IC en	gine						
2.	Dis	mantlin	g and a	ssembli	ng of fo	ur strok	e multi	cylinde	r IC eng	ine						
3.	Dis	mantlin	g and a	ssembli	ng of C	ooling a	ind Lubi	ricating	system							
4.	Dis	mantlin	g and a	ssembli	ng of Tu	urbocha	irger an	d Supe	rcharge	r						
5.	Val	ve timir	ng diagr	am for f	our stro	ke dies	el engin	ie & por	t timing	diagrar	n for stro	oke petrol e	ngin	е		
6.	Per	forman	ce test	on four	stroke c	liesel er	ngine us	sing edd	dy curre	nt dyna	momete	r				
7.	Hea	at balar	nce test	on four	stroke o	diesel e	ngines (using ea	ddy curr	ent dyn	amomet	er				
8.	Per	forman	ce test	on four	stroke c	liesel er	ngine by	/ mecha	anical lo	ading						
9.	Hea	at balar	nce test	on four	stroke o	diesel e	ngines l	by mech	nanical	loading						
10.	Em	ission t	est on E	Diesel a	nd Petro	ol engin	es using	g exhau	ist gas a	analyzei						
																Total:30
REFE	RENC	CES/ M	ANUAL	/SOFT	WARE:											
1.	Lat	oratory	/ Manua	ıl												
															BT Maj lighest	
CO1				u rse, th semble v					nonent	· C				A	pplying	ı (K3),
									-						Precisio recisior	, ,
CO2	ana	alyze pe	erformar	nce cha	racterist	ics of s	ingle cy	linder C	cl engin	Э.				Ma	nipulat	ion (S2)
CO3	ana	alyze er	nission	charact	eristics	of single	e cylind	er CI er	ngine.						nalyzin Precisio	
						Маррі	ng of C	os with	n POs a	nd PSC	Ds					
COs/P		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2
CO		3	2	1	1	2		1		3	1		1		3	
CO2		3	2	2	2	2	2	2		3	1		1		3	
CO		-		– Subs	-		, _		<u> </u>	3	1		1		3	

Programme & B.E - MECH, MTS & Automobile Sem. Category L T P Cree Branch NI 2 BS 0 0 2 1 Prerequisites NII space BS 0 0 2 1 Preamble This course aims to impart the basic concepts of volumetric, conductometric, complexometric apability to engineering students. It also aims to impart the knowledge on the estimation any term any term capability to engineering students. It also aims to impart the knowledge on the estimation of strength of an unknown solution using pH meter. 2. Analysis and comparison of the strength of acids in the given mixture using conductivity meter.				(Common to MI	ECH. MTS and		IOBILE	Branch	es)					
Preamble This course aims to impart the basic concepts of volumetric, conductometric, complexometric, adorimetric, pathentiometric, spectrophotometric experiments and thereby to improve analytical capability to engineering students. It also aims to impart the knowledge on the estimator Fe, Ni, S, Ca & Mg, DO, COD in mechanical applications. LIST OF EXPERIMENTS / EXERCISES:										L	т	Ρ	Credit	
calorimetric, p1 meteric, potentiometric, spectrophotometric experiments and thereby to improve analytical capability to engineering students. It also a ims to impart the knowledge on the estimation Fe, Ni, S, Ca & Mg, DO, COD in mechanical applications. LIST OF EXPERIMENTS / EXERCISES: 1. Determination of strength of an unknown solution using pH meter. 2. Analysis and comparison of the strength of acids in the given mixture using conductivity meter. 3. Potentiometric approach using a calomel electrode for the estimation of iron in the given sample. 4. Spectrophotometric method for the determination of Iron in steel. 5. Determination of molecular weight of a polymer / liquid by Ostwald viscometer. 6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of COD of the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Flectroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manu	Prerequ	uisites	Nil					2	BS	0	0	2	1	
Analysis and comparison of the strength of acids in the given mixture using conductivity meter. 3. Potentiometric approach using a calomel electrode for the estimation of iron in the given sample. 4. Spectrophotometric method for the determination of Iron in steel. 5. Determination of molecular weight of a polymer / liquid by Ostwald viscometer. 6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of GOD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: Mapped (Highert Leve) 2. analyze the amount of Fe, Ni, conductivity and PH of the given solution. Applying (K3), Precision (S3) Cool No PO2 PO3 </td <td></td> <td></td> <td>calorimetric, analytical ca Fe, Ni, S, Ca</td> <td>pH meteric, po bability to engin & Mg, DO, CO</td> <td>tentiometric, s</td> <td>pectroph s. It also</td> <td>notomet o aims t</td> <td>tric expe</td> <td>riments an</td> <td>d there</td> <td>by to</td> <td>, impr</td> <td>ove the</td>			calorimetric, analytical ca Fe, Ni, S, Ca	pH meteric, po bability to engin & Mg, DO, CO	tentiometric, s	pectroph s. It also	notomet o aims t	tric expe	riments an	d there	by to	, impr	ove the	
Antiperiod Potentiometric approach using a calomel electrode for the estimation of iron in the given sample. 3. Potentiometric approach using a calomel electrode for the estimation of iron in the given sample. 4. Spectrophotometric method for the determination of Iron in steel. 5. Determination of molecular weight of a polymer / liquid by Ostwald viscometer. 6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisarmy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: On completion of the course, the students will be able to Colspan= 2 Mapped (Highest Level (Highest Level (Highest Level (Highest Level (Highest Leve	1.	Determina	tion of strength	of an unknown	solution using	pH met	er.							
A. Spectrophotometric method for the determination of Iron in steel. 5. Determination of molecular weight of a polymer / liquid by Ostwald viscometer. 6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of GCD of the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: Mapped (Highest Level) Analyze the amount of Fe, Ni, conductivity and PH of the given solution. Applying (K3), Precision (S3) COURPOS Mapping of Cos with POs and PSOs PO1 PO1	2.	Analysis a	nd comparison	of the strength	of acids in the	given m	ixture ι	ising cor	ductivity m	eter.				
Note Determination of molecular weight of a polymer / liquid by Ostwald viscometer. 6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of COD of the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: Mapping of Cos with Pos ample. Applying (K3), Precision (S3) Applying of Cos with Pos and PSos Cos/POS Mapping of Cos with POs and PSOs Cos/POS Cos with POs and PSO	3.	Potentiom	etric approach	using a calome	l electrode for t	the estin	nation c	of iron in	the given s	ample.				
6. Quantitative analysis of nickel in steel by complexometric method. 7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of dissolved oxygen in the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: Mapped (Highest Level On completion of the course, the students will be able to Applying (K3), Precision (S3) CO2 Mapping of Cos with POs and PSOs Cos/POs Cos/PO3 PO4 PO5 Mapping of Cos with POs and PSOs Coo/2 3 2 1	4.	Spectroph	otometric meth	od for the deter	mination of Iro	n in stee	el.							
7. Estimation of sulphur present in fuel using electro-analytical techniques. 8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of dissolved oxygen in the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: On completion of the course, the students will be able to Course the hardness, DO and COD present in the given water sample. COURSE OUTCOMES: Mapping of Cos with POs and PSOs Colspan="2">Cosimeter for the determination of Molecular weight of polymer and sulphur content in coal. Mapping of Cos with POs and PSOs Cool A PO1 PO2 PO3 PO6	5.	Determina	tion of molecul	ar weight of a p	olymer / liquid	by Ostw	ald viso	cometer.						
8. Assessment of the given water sample for the suitability of drinking / industrial purpose by estimating the calcium magnesium and total hardness by EDTA method. 9. Determination of dissolved oxygen in the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: On completion of the course, the students will be able to Colspan="2">Applying (K3), Precision (S3) COUR estimate the hardness, DO and COD present in the given water sample. Applying (K3), Precision (S3) demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Mapping of Cos with POs and PSOs Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS	6.	Quantitativ	ve analysis of n	ickel in steel by	complexometi	ric metho	od.							
B magnesium and total hardness by EDTA method. 9. Determination of dissolved oxygen in the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. BT Mapped (Highest Level Concept) OURSE OUTCOMES: On completion of the course, the students will be able to COURSE OUTCOMES: On and COD present in the given water sample. Applying (K3), Precision (S3) CO2 Mapping of Cos with POs and PSOs Cos/POs Po1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS CO2 3 2 1 3 3 3 3 2	7.	Estimation	of sulphur pre	sent in fuel usin	ig electro-analy	/tical tec	hnique	s.						
9. Determination of dissolved oxygen in the given wastewater sample. 10. Determination of COD of the given wastewater sample. 11. Electroplating process (Demonstration). 12. Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. BT Mapped (Highest Level Anglagenapathy Publishers, Erode, 2022. COURSE OUTCOMES: On completion of the course, the students will be able to Applying (K3), Precision (S3) COUR estimate the hardness, DO and COD present in the given solution. Applying (K3), Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) Cos with POs and PSOs CO2 Mapping of Cos with POs and PSOs Co1 3 2 1 3 3 0 0 2 2 2 <td colspa<="" td=""><td>8.</td><td>Assessme</td><td>nt of the aiven</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>8.</td> <td>Assessme</td> <td>nt of the aiven</td> <td></td>	8.	Assessme	nt of the aiven										
Image: Description of the course, the students will be able to BT Mapped (Highest Level (Highest Level (Highest Level cost)) COURSE OUTCOMES: BT Mapped (Highest Level cost) Applying (K3), Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) CO3 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) CO3 2 1 3 3 2 2		magnesiu				of drink	king / in	dustrial	ourpose by	estima	ting t	he ca	lcium,	
Proximate analysis of Coal - determine moisture, volatile matter and ash content of a given sample coal. Total Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: BT Mapped (Highest Level On completion of the course, the students will be able to COURSE OUTCOMES: Mapped (Highest Level Applying (K3), Precision (S3) CO2 Mapping of Cos with Pos and PSOs Cos/Pos P01 P02 P03 P06 P07 P08 P01 P01 <th colspan<="" td=""><td></td><td></td><td>m and total har</td><td>dness by EDTA</td><td>method.</td><td></td><td></td><td>dustrial </td><td>ourpose by</td><td>estima</td><td>ting t</td><td>he ca</td><td>lcium,</td></th>	<td></td> <td></td> <td>m and total har</td> <td>dness by EDTA</td> <td>method.</td> <td></td> <td></td> <td>dustrial </td> <td>ourpose by</td> <td>estima</td> <td>ting t</td> <td>he ca</td> <td>lcium,</td>			m and total har	dness by EDTA	method.			dustrial	ourpose by	estima	ting t	he ca	lcium,
I2. coal. Total Total <th< td=""><td>9.</td><td>Determina</td><td>m and total har ation of dissolve</td><td>dness by EDTA ed oxygen in the</td><td>method. e given wastew</td><td>ater san</td><td></td><td>dustrial </td><td>ourpose by</td><td>estima</td><td>ting t</td><td>he ca</td><td>lcium,</td></th<>	9.	Determina	m and total har ation of dissolve	dness by EDTA ed oxygen in the	method. e given wastew	ater san		dustrial	ourpose by	estima	ting t	he ca	lcium,	
Total REFERENCES/ MANUAL /SOFTWARE: 1. Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: BT Mapped (Highest Level On completion of the course, the students will be able to COURSE OUTCOMES: On and COD present in the given water sample. CO1 estimate the hardness, DO and COD present in the given solution. Applying (K3), Precision (S3) CO2 Mapping of Cos with POs and PSOs Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS CO2 3 2 1 3 3 3 2 2 2	9. 10.	Determina Determina	m and total har ation of dissolve ation of COD of	dness by EDTA ed oxygen in the the given waste	method. e given wastew	ater san		dustrial	ourpose by	estima	ting t	he ca	lcium,	
Palanisamy P.N., Manikandan P., Geetha A. and Manjula Rani K., "Chemistry Laboratory Manual", 1st Edition, Rajaganapathy Publishers, Erode, 2022. COURSE OUTCOMES: On completion of the course, the students will be able to BT Mapped (Highest Level (Highest Level applying (K3), Precision (S3)) CO1 estimate the hardness, DO and COD present in the given water sample. Applying (K3), Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) CO3 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) Mapping of Cos with POs and PSOs Cos/POs PO1 PO12 PS01 PS CO1 3 2 1 3 3 4 2 2	9. 10. 11.	Determina Determina Electropla Proximate	m and total har ation of dissolve ation of COD of ting process (D	dness by EDTA ed oxygen in the the given waste emonstration).	method. e given wastew ewater sample.	ater san	nple.							
Rajaganapathy Publishers, Erode, 2022. BT Mapped (Highest Level (Highest Level (Highest Level (Highest Level (Applying (K3), Precision (S3) CO1 estimate the hardness, DO and COD present in the given water sample. Applying (K3), Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) CO3 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) Mapping of Cos with POs and PSOs COs/POS PO1 PO12 PSO1 PS CO1 3 2 2 CO2 3 2 2 CO1 PO2 PO3 PO6 PO7 PO8 PO10 PO11 PO12 PS01 2 2 CO2 3 3 3 2 2 2	9. 10. 11.	Determina Determina Electropla Proximate	m and total har ation of dissolve ation of COD of ting process (D	dness by EDTA ed oxygen in the the given waste emonstration).	method. e given wastew ewater sample.	ater san	nple.					n sa	mple o	
BT Mapped (Highest Level (Highest Level Applying (K3), Precision (S3) CO1 estimate the hardness, DO and COD present in the given water sample. Applying (K3), Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) CO3 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) Mapping of Cos with POs and PSOs Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS CO1 3 2 1 3 3 3 4 4 2 2	9. 10. 11. 12.	Determina Determina Electropla Proximate coal.	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE:	method. given wastew ewater sample. ine moisture,	ater san volatile	mple.	r and a	sh content	t of a	give	n sa	mple o Fotal:3(
On completion of the course, the students will be able to (Highest Level C01 estimate the hardness, DO and COD present in the given water sample. Applying (K3), Precision (S3) C02 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) C03 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) Mapping of Cos with POs and PSOs COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS C01 3 2 1 3 3 4 4 2 2	9. 10. 11. 12. REFERI	Determina Determina Electropla Proximate coal.	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth	method. given wastew ewater sample. ine moisture, a A. and Manju	ater san volatile	mple.	r and a	sh content	t of a	give	n sa	mple o Fotal:30	
CO1 estimate the hardness, DO and COD present in the given water sample. Precision (S3) CO2 analyze the amount of Fe, Ni, conductivity and pH of the given solution. Applying (K3), Precision (S3) CO3 demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal. Applying (K3), Precision (S3) Mapping of Cos with POs and PSOs COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS CO1 3 2 1 3 3 2 2 2 CO2 3 2 1 3 3 2 2 2	9. 10. 11. 12. REFER 1.	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika pathy Publisher	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth	method. given wastew ewater sample. ine moisture, a A. and Manju	ater san volatile	mple.	r and a	sh content	t of a	give	n sai 1 t Editi	mple o Fotal:3(on,	
CO2Applying (K3), Precision (S3)CO3demonstrate the viscometer for the determination of Molecular weight of polymer and sulphur content in coal.Applying (K3), Precision (S3)Mapping of Cos with POs and PSOsCOs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PSCO1321333222CO232133222	9. 10. 11. 12. REFER 1. COURS	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES:	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022.	method. given wastew ewater sample. ine moisture, a A. and Manju	ater san volatile	mple.	r and a	sh content	t of a Manua	give I", 1s BT	n sai 1 t Editi	mple o Fotal:3(on, ped	
demonstrate the viscometer for the determination of Molecular weight of polymer andApplying (K3), Precision (S3)Mapping of Cos with POs and PSOsCOs/POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PSCO132133344422CO232133344422	9. 10. 11. 12. REFER 1. COURS On com	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, th	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022.	method. e given wastew ewater sample. ine moisture, a A. and Manju	volatile	matter	r and a emistry l	sh content	t of a Manua	give I", 1s BT (High App	t Editi	mple o Fotal:3(on, ped _evel) (K3),	
COs/Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS CO1 3 2 1 3 3 2 2 2 CO2 3 2 1 3 3 2 <td< td=""><td>9. 10. 11. 12. REFER 1. COURS On com CO1</td><td>Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th</td><td>m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D</td><td>dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. He students will O and COD pre</td><td>method. e given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give</td><td>volatile ula Rani en water</td><td>matter K., "Ch</td><td>emistry l</td><td>sh content</td><td>t of a Manua</td><td>give I", 1s BT (High App Prec App</td><td>t Editi Mapp nest L lying cision</td><td>mple c Fotal:3(on, ped (K3), (K3), (K3),</td></td<>	9. 10. 11. 12. REFER 1. COURS On com CO1	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. He students will O and COD pre	method. e given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give	volatile ula Rani en water	matter K., "Ch	emistry l	sh content	t of a Manua	give I", 1s BT (High App Prec App	t Editi Mapp nest L lying cision	mple c Fotal:3 (on, ped (K3) , (K3), (K3),	
CO1 3 2 1 3 3 3 2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>	9. 10. 11. 12. REFER 1. COURS On com CO1 CO2	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th analyze th demonstra	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D e amount of Fe ate the viscome	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. e students wil O and COD pre	method. e given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give ty and pH of the	volatile ula Rani en water	mple. matter K., "Ch r sampl solutior	emistry l	sh content	t of a Manua	give I", 1s BT (High Prec App Prec App	t Editi Mapl nest L lying cision lying cision	mple o Fotal:3(on, ped _evel) (K3), (S3) (K3), (S3) (K3),	
CO2 3 2 1 3 3 2	9. 10. 11. 12. REFER 1. COURS On com CO1 CO2	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th analyze th demonstra	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D e amount of Fe ate the viscome	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. He students will O and COD pre- e, Ni, conductivit ter for the deter	method. e given wastew ewater sample. ine moisture, a A. and Manju a A. and Manju be able to esent in the give ty and pH of the rmination of Mo	volatile ula Rani en water e given s	mple. matter K., "Ch r sampl solutior weight o	emistry l	sh content	t of a Manua	give I", 1s BT (High Prec App Prec App	t Editi Mapl nest L lying cision lying cision	mple c Fotal:3 on, ped _evel) (K3), (S3) (K3), (S3) (K3),	
	9. 10. 11. 12. REFER 1. COURS Dn com CO1 CO2 CO3	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th analyze th demonstra sulphur co	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D e amount of Fe ate the viscome intent in coal.	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. Me students will O and COD pre e, Ni, conductivit ter for the deter Mappi	method. e given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give ty and pH of the rmination of Mo	volatile volatile ula Rani en water e given s blecular v h POs a	matter K., "Ch r sampl solutior weight o	emistry l e. a. of polym	sh content	Manua	give I", 1s BT (High Prec App Prec App Prec	t Editi	mple c Fotal:3 on, ped _evel) (K3), (S3) (K3), (S3)	
CO3 3 2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 a. b. cours cours cours con con<!--</td--><td>Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th analyze th demonstra sulphur co</td><td>m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D e amount of Fe ate the viscome intent in coal.</td><td>dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. Me students will O and COD pre e, Ni, conductivit ter for the deter Mappi PO4 PO5 3</td><td>method. given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give ty and pH of the rmination of Mo ing of Cos with PO6 PO7 3</td><td>volatile volatile ula Rani en water e given s blecular v h POs a</td><td>matter K., "Ch r sampl solutior weight o</td><td>emistry l e. a. of polym</td><td>sh content</td><td>Manua</td><td>give I", 1s BT (High Prec App Prec App Prec</td><td>t Editi Mapp nest L lying cision lying cision lying cision SO1 2</td><td>mple c Fotal:3 on, ped _evel) (K3), (S3) (K3), (S3) (K3), (S3) PSO 2</td>	Determina Determina Electropla Proximate coal. ENCES/ M Palanisam Rajaganap SE OUTCO npletion of estimate th analyze th demonstra sulphur co	m and total har ation of dissolve ation of COD of ting process (D analysis of ANUAL /SOFT by P.N., Manika bathy Publisher MES: the course, the ne hardness, D e amount of Fe ate the viscome intent in coal.	dness by EDTA ed oxygen in the the given waste emonstration). Coal - determ WARE: ndan P., Geeth s, Erode, 2022. Me students will O and COD pre e, Ni, conductivit ter for the deter Mappi PO4 PO5 3	method. given wastew ewater sample. ine moisture, a A. and Manju I be able to esent in the give ty and pH of the rmination of Mo ing of Cos with PO6 PO7 3	volatile volatile ula Rani en water e given s blecular v h POs a	matter K., "Ch r sampl solutior weight o	emistry l e. a. of polym	sh content	Manua	give I", 1s BT (High Prec App Prec App Prec	t Editi Mapp nest L lying cision lying cision lying cision SO1 2	mple c Fotal:3 on, ped _evel) (K3), (S3) (K3), (S3) (K3), (S3) PSO 2	

		2	ZGCL1	11 - FC	bunda		Laborato	All BE/BTe			h and Kol	DOTIC	S			
	amme&	١١٨	RF/RT	ech b	ranch	•	INOT LO A			Sem.	Catego	nv	L	т	Р	Credit
Branc			DC/DI		anci	162						лу				
Prerec	quisites	Nil								1/2	ES		0	0	6	3
Pream	nble	on	develo	ping a	proto	otype r	model wit	oundation th the bas Robotics a	c knowle	dge of C	omputer-a					
LIST		MENT	S/EX	ERCIS	SES:											
						PART	ΓA – Man	nufacturir	g (30 Ho	urs)						
1.	Selection	n of pro	duct, f	ree ha	nd sk	etching	g and det	tailing								
2.	Constructi	tion of	mode	using	Arc/T	rig/mi	G/Gas/Sp	pot welding	g operatio	ns						
3.	Enhancin	ng the	model	with sl	heet r	metal										
4.	Creating t	the pa	arts of	the mo	del us	sing la	the									
5.	Creating t	the pa	arts of	the mo	del us	sing m	illing and	drilling ma	achines							
				PAR	тв-	- Prod	luct Desig	gn and Do	evelopme	ent (30 H	ours)					
1.	Free hand	nd sket	ching	and de	tailing	g of the	e compon	nent								
2.	3D part m	modell	ng of t	he con	npone	ent usii	ng CAD s	software								
3.	Engineeri	ring Ar	alysis	of the	comp	onent	model									
4.	Generate	e the c	ompor	nent us	ing 3I	D print	ter									
5.	Value add	ddition	to the	e produ	uced	compo	onent usii	ing CNC I	nilling ma	achine, C	NC lase	cutt	ing	macl	nine a	and CNC
						PA	RT C – R	obotics	(30 Hour	s)						
1.	Design of	of elect	ronic c	ircuit a	nd its	s debu	gging									
2.	Interfacing	ng of s	ensors	, actua	ators a	and wi	reless cor	mmunion	modules	with micro	ocontrolle	r				
3.	Assembly	ly of Tr	acker	Robot	with a	access	ories									
4.	Developm	ment c	f contr	ol strat	tegies	s for m	otion cont	trol, path	lanning a	and obsta	cle avoida	ance				
5.	Demonstr	tration	and te	sting o	of Rob	oot in s	static envi	ironment								
																Total:90
	RENCES/ M			DFTWA	ARE:											
1.	Laboratory	ry Mar	iual													

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	3	PC	3	0	2	4
Preamble	This course deals with the basic knowledge of automoti	ive Electricals a	nd Electronic	s coi	mnon	ents	
reamble				5 001	npon		
Jnit – I	DC Circuits:						9
	ve devices - Examples –Resistor – Capacitor – Inductor – O k Reduction -Voltage and Current Division Rule - Mesh Ar						
Unit – II	AC Circuits:						9
	soidal) Voltage and Current, R.M.S and Average Value, Pov & RLC. Introduction to three phase Systems (Qualitative only					ctor -	AC Serie
Unit – III	Semi-Conductor Devices:						9
Diode - LED– P	niconductors and Insulators - Properties of Semiconductors noto diode - LDR- Transistors: Principle of Operation - Stat ction Linear IC - Opamp – IC555 Timer						
Unit – IV	Boolean Algebra and Logic gates :						9
3oolean Algebr 3oolean expres	 a - Number systems - Complements - Boolean postulates ions - Canonical forms - Logic Gates -Implementations of Lo 	and laws - De ogic Functions u	-Morgan"s Tl sing universa	neor I Ga	em - tes -	Minir Karna	nization c lugh map
Jnit – V	Combinational and Sequential circuits:						9
	ombinational circuits - Half adder – Full adder – Half subt der – Parity generator and checker - Magnitude comparator						
	Flip-flops – SR, JK, D, T Flip-flops			CIIC	uns –		162 – 1 11
	IMENTS / EXERCISES:						
1. Design	and implementation of voltage divider circuit for automotive a	pplications					
2. Charac	eristics of PN junction diode						
3. Charac	eristics of Zener diode						
4. Charac	eristics of LDR						
5. Linear (p-Amp circuits - Inverting and Non inverting Amplifiers						
6. Input ar	d output characteristics of transistor under CE configuration						
7. Verifica	ion of Boolean theorems using digital logic gates						
8. Design	and implementation of half adder and full adder using digital I	logic gates					
9. Design	and implementation of Multiplexer and demultiplexer using di	igital logic gate	S				
10. Design	and implementation of Flip-flop using digital logic gates						
			Lecture:4	5, P	racti	cal:30), Total:7
TEXT BOOK:	narya S.K., "Basic Electrical and Electronics Engineering", 2n 117 for Units I,II,III	nd Edition, Pear	son India Edu	icatio	on Se	ervice	s Pvt. Ltd
1. Bhattac India, 2			L: 0040 (nite	1/ 8. 1	v	
I. India, 2	lano M., "Digital Design", 6th Edition, Pearson Education Pvt	t. Ltd., New Del	ni, 2018 for U	into	IV Q	v	
1. Bhattac India, 2		t. Ltd., New Del	ni, 2018 for U			v	

2.		vahanaı ni, 2018		Arivazha	gan S.	, "Digital (Circuits a	and Des	ign", 4	th Editio	n, Vikas	Publishing	House P	vt. Ltd., Ne	ew
		UTCOM		sa tha st	uden	ts will be	able to						(BT Mapı Highest L	
CO1	1					urements		cuits fo	r autor	motive ap	plicatio	าร		Applying (Precision	(K3),
CO2	des	cribe AC	C circuits	in automo	otive a	application	IS							Applying Precision	(K3),
CO3	expl	ain the	operatio	n of semic	ondu	ctor device	es and th	neir app	lication	ns in auto	omobiles	3	Un	derstandir Precision	ng (K2), (S3)
CO4	app	ly boole	an law a	nd karnau	ıgh m	ap technic	ues for g	gate lev	el logi	c minimiz	zation.			Applying Precision	(K3), (S3)
CO5	illus	trate the	e operati	on of com	binati	onal and s	equentia	al logic o	circuits	s using th	e truth t	able	Un	derstandir Precision	
						Mappin	ng of CO	s with	POs a	nd PSO:	6				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC)1	3	2	2					1	3	2		2		3
CC)2	3	2	2					1	3	2		2		3
CO)3	3	2	1					1	3	2		2		3
CO)4	3	2	1					1	3	2		2		3
CO)5	3	2	1					1	3	2		2		3
1 – Sli	ght, 2	– Mode	rate, 3 -	Substant	ial, B1	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Underst (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		15		35	5	50)						100
	CAT	2		20		50)	30)						100
	CAT	3		15		35	5	50)						100
	0A1														

22AUT31 - MECHANICS OF DEFORMABLE BODIES

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Statics and Dynamics	3/4	PC	3	1	0	4
Preamble	This course provides knowledge to evaluate performance loads by analyzing stresses, strains and deformate		ng structure de	ue to	vario	ous ex	ternal
Unit – I	Stress, Strain and Deformation of Solids:						9+3
	aterial properties – Stress-strain curve for ductile and nstants and their relationship. Stresses and strains du rs. Strain energy.						
Unit – II	Analysis of Stresses in Two Dimensions:						9+3
shear stress - M	at a point - Normal and shear stresses on inclined p lohr's circle for biaxial stress with shear stress. Hoop in dimensions and volume.						
Unit – III	Loads and Stresses in Beams:	n Manant in haam	Cantilaus	:	an a la c		9+3
Unit – III Types of beams overhanging bea							orted and along the
Unit – III Types of beams overhanging bea length and section Unit – IV	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns:	ng - Bending and she	ear stress - S	Stres	s var	iation	orted and along the 9+3
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus.	beams - Double integ	ear stress - S ration method	Stres and	s var	iation aulay	orted and along the 9+3 's method
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging be	ng - Bending and she beams - Double integ Slenderness ratio – L	ear stress - S ration method	Stres and	s var	iation aulay	orted and along the 9+3 's method
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging bendin Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft -	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S	ear stress - S ration method imitations of I hear stress d	anc Euler	s var	aulay mula. - anç	orted and along the 9+3 s method 9+3 gle of twis
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio and torsional stif	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging bendin Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft -	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S	ear stress - S ration method imitations of I hear stress d	anc Euler istrib	Mac Mac s for	aulay mula. - ang stress	orted and along the 9+3 's method 9+3 gle of twis in spring
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio and torsional stif	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging bendin Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft -	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S	ear stress - S ration method imitations of I hear stress d ad - Maximu	anc Euler istrib	Mac Mac s for	aulay mula. - ang stress	orted and along the 9+3 's method 9+3 gle of twis in spring
Unit – III Types of beams overhanging bea length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio and torsional stif section including TEXT BOOK:	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging be Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft - fness. Closed coil helical spring - stresses and defl Wahl Factor.	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S lection under axial lo	ear stress - S ration method imitations of I hear stress d ad - Maximu Lecture: 4	anc Euler istrib m sl	Mac d's for bution hear	aulay mula. - ang stress	orted and along the 9+3 's method 9+3 gle of twis in spring 5, Total:6
Unit – III Types of beams overhanging bea- length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio and torsional stif section including TEXT BOOK: 1 Ferdinan	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging be Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft - fness. Closed coil helical spring - stresses and defl Wahl Factor.	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S lection under axial lo	ear stress - S ration method imitations of I hear stress d ad - Maximu Lecture: 4	anc Euler istrib m sl	Mac d's for bution hear	aulay mula. - ang stress	orted and along the 9+3 's method 9+3 gle of twis in spring 5, Total:6
Unit – III Types of beams overhanging beal length and section Unit – IV Slope and Deflec Columns Types - Unit – V Analysis of torsio and torsional stif section including TEXT BOOK: 1. Ferdinan Units-I,II, REFERENCES:	Loads and Stresses in Beams: - Supports and Loads - Shear force and Bendin ms - Point of contraflexure. Theory of simple bendin n of the beam - Section modulus. Deflection of Beams and Columns: tion of cantilever, simply supported and overhanging be Equivalent length – Euler's and Rankine's formulae - Torsion in Circular Shafts and Coiled Helical S n of circular solid and hollow shafts - stepped shaft - fness. Closed coil helical spring - stresses and defl Wahl Factor.	ng - Bending and she beams - Double integ Slenderness ratio – L Springs: - compound shaft - S lection under axial lo erials", 7th Edition, Mc	ear stress - S ration method imitations of f hear stress d ad - Maximu Lecture: 4 Graw Hill Edu	anc Euler istrib m sl	Mac d's for bution hear	aulay mula. - ang stress	orted an along th 9+3 's methoo 9+3 gle of twis in sprin 5, Total:6

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	analyze mechanical behavior of materials under simple tension or compression for varying cross sections.	Analyzing (K4)
CO2	calculate principal stresses and strains to analyze automotive components.	Analyzing (K4)
CO3	examine the theory of simple bending to design automotive chassis frame.	Analyzing (K4)
CO4	inspect beam and column strength with help of slope and deflection for various loads.	Analyzing (K4)
CO5	analyze shafts and springs based on torsional behavior.	Analyzing (K4)

					Mappin	g of CO	s with	POs ar	nd PSOs	5				
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2				1	1		2	3	
CO2	3	3	2	2	2				1	1		2	3	
CO3	3	3	2	2	2				1	1		2	3	
CO4	3	3	2	2	2				1	1		2	3	
CO5	3	3	2	2	2				1	1		2	3	
1 – Slight, 2	– Mode	erate, 3 –	Substant	ial, BT-	Bloom's	Taxono	my							
					ASSES	SMENT	PATTE	RN – T	HEOR	,				
Test / Bl Categ		Re	memberi (K1) %	ng l	Jndersta (K2)	5	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Total %
CAT	Г1		10		10		30)	50					100
CAT	Г2		10		10		30)	50					100

* ±3% may be varied (CAT 1,2,3 - 50 marks & ESE - 100 marks)

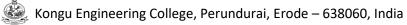
CAT3

ESE

Programme & Branch	B.E. Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PC	3	1	0	4
Preamble	This course provides the knowledge on basic co of water and air, working of air compressors, various heat transfer techniques.						
Unit – I	First Law of Thermodynamics:						9+3
transfer and wo	systems – closed, open and isolated systems. Zero rk transfer directions, first law of thermodynamics, Law applied to flow processes, Mass and Energy	Perpetual motion N	lachine Types	s, w	ork c	lone	in variou
Unit – II	Second Law of Thermodynamics:						9+3
and work done, Electrical heater	ement, Calusius Statement, Carnot cycle, Heat engin COP of refrigerator, COP of heat pump, combined re heat pump heating comparison.						
Unit – III	Properties of Water and Air:						9+3
phase change, heating, humidif	ollier chart, steam expansion, work done, sensible h solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h	hart, DBT, WBT, Re	lative Humidi	ity, p	proce	sses	 cooling
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h stric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre-	hart, DBT, WBT, Re heating-humidification essor, work done, inte	elative Humidi processes, c	ty, p cooli ssur	oroce ng lo e, cle	sses ad ca	 – cooling alculation: 9+3 ce volume
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h tric chart. Air Compressor, VCRS and VARS:	chart, DBT, WBT, Re neating-humidification essor, work done, inte efrigeration system (\	elative Humidi processes, c	ty, p cooli ssur	oroce ng lo e, cle	sses ad ca	 – cooling alculations 9+3 ie volume
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie systems (VARS) Unit – V	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- , Comparison of VCRS and VARS, Refrigerant selection Heat Transfer:	chart, DBT, WBT, Reneating-humidification essor, work done, interesting efrigeration system (Non.	elative Humidi processes, c ermediate pre /CRS), vapou	ty, p cooli ssur r ab	e, cle	sses bad ca baranc ion re	 cooling alculations 9+3 volume frigeration 9+3
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie systems (VARS) Unit – V Modes of heat efficiency, fin eff	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re , Comparison of VCRS and VARS, Refrigerant selection	chart, DBT, WBT, Re neating-humidification essor, work done, inte efrigeration system (Non. wall, cylinder, sphe ovection, Free convection	elative Humidi processes, o ermediate pres /CRS), vapou rical systems tion. Radiation	ity, p cooli ssure r ab . Ex n, bla	e, cle sorpti	sses pad ca paranc ion re ed su pody, g	 cooling alculations 9+3 e volume frigeration 9+3 rfaces, fir grey body
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie systems (VARS) Unit – V Modes of heat efficiency, fin eff shape factor of	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- comparison of VCRS and VARS, Refrigerant selection Heat Transfer: transfer, Conduction through plane wall, composite ectiveness, critical thickness of insulation. Forced com	chart, DBT, WBT, Re neating-humidification essor, work done, inte efrigeration system (Non. wall, cylinder, sphe ovection, Free convection	rical systems tion. Radiation	ity, p cooli ssure r ab . Ex n, bl ter f	tende ack b	sses pad ca aranc ion re ed su ody, g cross	 cooling alculation 9+3 e volume frigeratio 9+3 rfaces, fii grey body
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie systems (VARS) Unit – V Modes of heat efficiency, fin eff shape factor of exchangers.	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- comparison of VCRS and VARS, Refrigerant selection Heat Transfer: transfer, Conduction through plane wall, composite ectiveness, critical thickness of insulation. Forced com	chart, DBT, WBT, Re neating-humidification essor, work done, inte efrigeration system (Non. wall, cylinder, sphe ovection, Free convection	rical systems tion. Radiation	ity, p cooli ssure r ab . Ex n, bl ter f	tende ack b	sses pad ca aranc ion re ed su ody, g cross	 cooling alculation 9+3 e volume frigeratio 9+3 rfaces, fii grey body flow heat
phase change, heating, humidif using psychrome Unit – IV Reciprocating Co volumetric efficie systems (VARS) Unit – V Modes of heat efficiency, fin eff shape factor of exchangers.	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- comparison of VCRS and VARS, Refrigerant selection Heat Transfer: transfer, Conduction through plane wall, composite ectiveness, critical thickness of insulation. Forced com	chart, DBT, WBT, Reneating-humidification essor, work done, inter efrigeration system (Non. wall, cylinder, sphe nvection, Free convectinger, Types - parall	elative Humidi processes, o ermediate pres /CRS), vapou rical systems tion. Radiation el flow, count Lecture	ity, p cooli ssurr r ab . Ex n, bl: ter f : 45 ,	tende ack b	sses pad ca aranc ion re ed su ody, g cross	 cooling alculation 9+3 e volume frigeratio 9+3 rfaces, fi grey body flow heat
phase change, heating, humidif using psychrome Unit – IV Reciprocating Covolumetric efficies systems (VARS) Unit – V Modes of heat efficiency, fin efficiency, fin efficiency, fin efficiency. shape factor of exchangers. TEXT BOOK: 1. Nag P.K	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- re, Comparison of VCRS and VARS, Refrigerant selection Heat Transfer: transfer, Conduction through plane wall, composite ectiveness, critical thickness of insulation. Forced com- perpendicular planes. Fundamentals of Heat excha	chart, DBT, WBT, Reneating-humidification essor, work done, inter efrigeration system (Non. wall, cylinder, sphe nvection, Free convectinger, Types - parall	elative Humidi processes, o ermediate pres /CRS), vapou rical systems tion. Radiation el flow, count Lecture	ity, p cooli ssurr r ab . Ex n, bl: ter f : 45 ,	tende ack b	sses pad ca aranc ion re ed su ody, g cross	 cooling alculation 9+3 e volume frigeratio 9+3 rfaces, fi grey body flow heat
phase change, heating, humidif using psychrome Unit – IV Reciprocating Cd volumetric efficie systems (VARS) Unit – V Modes of heat efficiency, fin eff shape factor of exchangers. TEXT BOOK: 1. Nag P.K REFERENCES:	solid-liquid-vapour conversion heat. Psychrometric c ication, dehumidification, cooling-dehumidification, h etric chart. Air Compressor, VCRS and VARS: ompressor, Single stage and double stage air compre- ency, Free air delivery (FAD). Vapour compression re- re, Comparison of VCRS and VARS, Refrigerant selection Heat Transfer: transfer, Conduction through plane wall, composite ectiveness, critical thickness of insulation. Forced com- perpendicular planes. Fundamentals of Heat excha	chart, DBT, WBT, Re neating-humidification essor, work done, inte efrigeration system (Non. wall, cylinder, sphe nvection, Free convectinger, Types - parall McGraw Hill Education	elative Humidi processes, o ermediate pres /CRS), vapou rical systems tion. Radiation el flow, count Lecture	ity, p cooli ssurr r ab . Ex n, bl: ter f : 45 ,	tende ack b	sses pad ca aranc ion re ed su ody, g cross	 cooling alculation 9+3 e volume frigeratio 9+3 rfaces, fi grey body flow heat

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply first law of thermodynamics to solve and analyze thermal systems	Applying (K3)
CO2	solve second law of thermodynamics problems on heat engine, heat pump and refrigerator	Applying (K3)
CO3	make use of air and water properties for solving various engineering applications	Applying (K3)
CO4	explain the working of air compressors, VCRS and VARS	Understand (K2)
CO5	solve heat transfer problems related to conduction, convection, radiation and heat exchangers	Applying (K3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1		1	1					2	3	
CO2	3	3	2	1		1	1					2	3	
CO3	3	3	2	1		1	1					2	3	
CO4	3	3	2	1		1	1					2	3	
CO5	3	3	2	1		1	1					2	3	
1 Slight 2	Mode	vrato 2	Substant		Bloom's	Tayono	mu							


		ASSESSMENT	PATTERN –	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	50	-	-	-	100
CAT2	20	30	50	-	-	-	100
CAT3	20	30	50	-	-	-	100
ESE	10	20	70	-	-	-	100
* ±3% may be varied (CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)				

	22AUT33 - HYDRAULICS AI	ND PNEUMATICS			1		1
Programme & Branch	B.E – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PC	3	0	0	3
Preamble	To provide knowledge on hydraulic and pneumati field.	c components for low	cost automat	ion i	n the	autor	nobile
Unit – I	Hydraulic Pumps:						9
	nechanics - Basics of fluid power system - Advantages Gear, Vane, Screw pump, Lobe and Piston pumps, P						
Unit – II	Hydraulic Actuators:						9
	ers: single acting and double acting cylinders, Special inder force - Hydraulic Motors: Gear and vane motors.		ess, tandem a	nd T	eles	copic	Cylinders
Unit – III	Hydraulic Valves:						9
	valves: Pressure relief, Pressure Reducing, Counter					с _н	
valves and its typ	bes –Proportional Valves –Servo valves: Mechanical ty				valve	S –FI	i and the second se
valves and its typ Unit – IV Review of Gas la	Des –Proportional Valves –Servo valves: Mechanical ty Pneumatic Components: Invest and Compressor – Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear	vpe and Electro hydra ter Regulator and Lul	ulic servo valv	/es. Pneu	matic	silen	9 cers, Afte
valves and its typ Unit – IV Review of Gas la coolers, Air drye cylinders – Sizing Unit – V	Proportional Valves –Servo valves: Mechanical ty Pneumatic Components: www.and Compressor – Fluid conditioning Elements: Filit rs – Air control valves – Fluid power actuators: Linear g of Actuators. Industrial Circuits and Maintenance:	rpe and Electro hydra ter Regulator and Lul r and Rotary actuato	ulic servo valv pricator unit, F rs – types – (/es. Pneu Cush	matic	silen g med	9 cers, Afte chanism in 9
valves and its typ Unit – IV Review of Gas la coolers, Air drye cylinders – Sizing Unit – V Construction of H Accumulator circ Fluidics. Sealing	bes –Proportional Valves –Servo valves: Mechanical ty Pneumatic Components: www.and Compressor– Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear g of Actuators.	rpe and Electro hydra ter Regulator and Lul r and Rotary actuato circuit - Regenerativ hod - Sequence circu	ulic servo valv pricator unit, F rs – types – (e circuit - Pre it. Electro-pre	ves. Pneu Cush ssur	matic ionin e inte atic c	silen g med ensifie	9 cers, Afte chanism in 9 er circuits - Basics c
valves and its typ Unit – IV Review of Gas la coolers, Air drye cylinders – Sizing Unit – V Construction of H Accumulator circ Fluidics. Sealing	Proportional Valves –Servo valves: Mechanical ty Pneumatic Components: ws and Compressor – Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear g of Actuators. Industrial Circuits and Maintenance: Hydraulic circuits - Counter balance circuit - Fail safe uits. Construction of Pneumatic circuits: Cascade meth g devices: Types and materials – Safety aspects	rpe and Electro hydra ter Regulator and Lul r and Rotary actuato circuit - Regenerativ hod - Sequence circu	ulic servo valv pricator unit, F rs – types – (e circuit - Pre it. Electro-pre	ves. Pneu Cush ssur	matic ionin e inte atic c	silen g med ensifie	9 cers, Afte chanism i 9 er circuits - Basics c ance and
valves and its typ Unit – IV Review of Gas la coolers, Air drye cylinders – Sizing Unit – V Construction of H Accumulator circ Fluidics. Sealing troubleshooting c TEXT BOOK:	Proportional Valves –Servo valves: Mechanical ty Pneumatic Components: ws and Compressor – Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear g of Actuators. Industrial Circuits and Maintenance: Hydraulic circuits - Counter balance circuit - Fail safe uits. Construction of Pneumatic circuits: Cascade meth g devices: Types and materials – Safety aspects	rpe and Electro hydra ter Regulator and Lui r and Rotary actuato circuit - Regenerativ hod - Sequence circu in Fluid Power Sy	ulic servo valv pricator unit, F rs – types – (e circuit - Pre it. Electro-pne /stem, Install	ves. Pneu Cush ssur atior	matic ionin e inte atic ci n, Ma	silen g med ensifie	9 cers, Afte chanism i 9 er circuits - Basics c ance an
valves and its typ Unit – IV Review of Gas la coolers, Air drye cylinders – Sizing Unit – V Construction of H Accumulator circ Fluidics. Sealing troubleshooting c TEXT BOOK:	Proportional Valves – Servo valves: Mechanical ty Pneumatic Components: ws and Compressor – Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear g of Actuators. Industrial Circuits and Maintenance: Hydraulic circuits - Counter balance circuit - Fail safe uits. Construction of Pneumatic circuits: Cascade metly g devices: Types and materials – Safety aspects of Fluid Power systems.	rpe and Electro hydra ter Regulator and Lui r and Rotary actuato circuit - Regenerativ hod - Sequence circu in Fluid Power Sy	ulic servo valv pricator unit, F rs – types – (e circuit - Pre it. Electro-pne /stem, Install	ves. Pneu Cush ssur atior	matic ionin e inte atic ci n, Ma	silen g med ensifie	9 cers, Afte chanism i 9 er circuits - Basics c ance an
valves and its typ Unit – IV Review of Gas la coolers, Air dryer cylinders – Sizing Unit – V Construction of H Accumulator circ Fluidics. Sealing troubleshooting co TEXT BOOK: 1. Anthony REFERENCES:	Proportional Valves – Servo valves: Mechanical ty Pneumatic Components: ws and Compressor – Fluid conditioning Elements: Filt rs – Air control valves – Fluid power actuators: Linear g of Actuators. Industrial Circuits and Maintenance: Hydraulic circuits - Counter balance circuit - Fail safe uits. Construction of Pneumatic circuits: Cascade metly g devices: Types and materials – Safety aspects of Fluid Power systems.	rpe and Electro hydra ter Regulator and Lui r and Rotary actuato circuit - Regenerativ hod - Sequence circu in Fluid Power Sy Pearson Education Lt	ulic servo valv pricator unit, F rs – types – 0 e circuit - Pre it. Electro-pre ystem, Install d, New Delhi,	ves. Pneu Cush ssur euma atior 201	matic ionin e inte atic c n, Ma 3.	silen g med ensifie ircuit	9 cers, After chanism i 9 er circuits - Basics c ance an Total:4

		UTCOM tion of t		se, the st	udent	s will be	able to						(BT Mapp Highest L			
CO1	exp	lain the	working	s and sele	ection o	of hydraul	ic pumps	s for ind	ustrial	applicati	ons.		Un	Understanding (K2)			
CO2	exemplify the operation of hydraulic cylinders and motors.												Un	Understanding (K2)			
CO3	discuss the working of different types of hydraulic valves and their applications.												Un	Understanding (K2)			
CO4	illustrate the construction and working principles of various components in a pneumatic system.													Understanding (K2)			
CO5	design the hydraulic and pneumatic circuits for various applications and their maintenance.												Applying	(K3)			
						Mappin	g of CC	s with	POs a	nd PSOs	6						
COs/	Pos	P01	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO)1	3	3			2							1	3			
CO)2	3	3			2							1	3			
CO)3	3	3			2							1	3	2		
CO)4	3	3			2							1	3			
CO)5	3	3	2	2	2							1	3			
1 – Sli	ght, 2	- Mode	rate, 3 -	- Substant	tial, BT	- Bloom's	Taxono	my		·							
						ASSES	SMENT	PATTE	ERN - 1	THEORY	,						
	st / Bl Categ	oom's ory*	R	emember (K1) %	ing	Underst (K2)		Applying (K3) %		Analyzing (K4) %		Evaluating (K5) %		Creating (K6) %			
	CAT	[1		20		80)								100		
	CAT	2		20		80									100		
	CAT	T3		10		60)	30)						100		
	ESI	E		10		70)	20)						100		
* ±3%	may b	be varied	d (CAT	1,2,3 – 50	marks	& ESE -	- 100 ma	arks)	I		1		1		I		

Programr Branch	me &	B.E	- Autoi	mobile	Engin	eering				Sem.	Category	L	т	Р	Credit
Prerequis	sites	Nil								3	PC	3	0	2	4
Preamble		To p field		knowle	dge on	hydrauli	c and pn	neumatic c	componen	ts for low	cost automa	tion i	n the	autor	nobile
Unit – I Review of Pumping 1	Fluid me	echanic	aulic F - Basi	cs of flu	uid pow	/er syste	em - Adva Piston pu	antages a	nd applica	ations of F	Fluid power synamics	/sten	ns. H Sele	ydrau	9 lic pumps - Sizing c
pumps.		,	,							, , ,					55
Unit – II Hydraulic Calculatio		s: singl		and do	ouble a				pe cylinde	ers: Rodle	ss, tandem a	ind T	eles	copic	9 Cylinders
Unit – III	2		aulic V												9
Pressure	control va	alves:	ressur	e relief	, Press	sure Red	lucing, C	Counter ba	alance, S	equencing	e – Actuatio g and Unloac ulic servo val ^y	ling \			
Unit – IV		Pne	umatic	Comp	onents	:									9
	ir dryers	s – Air o	ontrol v								oricator unit, F s – types – (
Unit – V		Ind	strial C	\irouite											9
	ion of Hy	م (ابر معراب				laintena									-
	tor circuit	its. Cor device	circuits structior : Type	- Cou n of Pn s and	nter bal eumatio mater	lance cir c circuits	rcuit - Fa s: Casca	de metho	d - Seque	nce circu	e circuit - Pre it. Electro-pro stem, Instal	euma	atic ci	ircuit -	r circuits Basics c
Fluidics.	tor circuit Sealing of I poting of I	its. Cor device Fluid P	circuits structior : Type wer sys	- Cou n of Pn s and stems.	nter bal eumatio mater	lance cir c circuits	rcuit - Fa s: Casca	de metho	d - Seque	nce circu	it. Electro-pn	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho	tor circuit Sealing of Doting of F	its. Cor device Fluid P MENTS	circuits structior : Type wer system (EXER	- Count of Prices and stems.	nter bal eumatio mater	lance cir c circuits ials – \$	rcuit - Fa s: Casca Safety a	de metho	d - Seque n Fluid F	nce circu Power Sy	it. Electro-pro stem, Instal	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho	tor circuit Sealing of Doting of F EXPERIM Design	its. Cor device Fluid P MENTS n and te	circuits structior : Type wer sy EXER sting of	- Court n of Pn s and stems. CISES speed	nter bal eumatio mater	lance cir c circuits ials – S	rcuit - Fa s: Casca Safety a (Meter ir	de metho aspects ir	d - Seque n Fluid F out and Ble	Power Sy	it. Electro-pro stem, Instal	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E	tor circuit Sealing of Doting of f EXPERIM Design Design	its. Cor device Fluid P MENTS n and te	circuits struction : Type wer system EXER sting of sting of	- Cou n of Pn s and stems. CISES speed Electro	nter bal neumatio mater : : control p-hydra	lance cir c circuits ials – S l circuits ulic circu	rcuit - Fa s: Cascad Safety a (Meter ir uit with p	n, Meter o	d - Seque n Fluid F out and Bla equence v	nce circu Power Sy eed off cir valve	it. Electro-pro stem, Instal	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E 1. 2.	tor circuit Sealing of f EXPERIM Design Design Design	its. Cor device Fluid P MENTS n and te n and te n and te	circuits structior : Type wer sy 'EXER sting of sting of	- Coun n of Pn s and stems. CISES speed Electro Seque	nter bal eumatio mater : control p-hydra ential cir	lance cir c circuits ials – S l circuits ulic circu	rcuit - Fa s: Cascar Safety a (Meter ir uit with p	n, Meter o	d - Seque n Fluid F out and Bla equence v ol (with an	nce circu Power Sy eed off cir /alve d without	it. Electro-pn rstem, Instal cuits)	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E 1. 2. 3.	tor circuit Sealing of f EXPERIM Design Design Design	its. Cor device Fluid P MENTS n and te n and te n and te	circuits struction : Type wer sy ZEXER sting of sting of sting of	- Coun of Pn is and stems. CISES speed Electro Seque	nter bal eumatio mater control p-hydra ential cir p Pneur	lance cir c circuits ials – S l circuits ulic circu rcuit with matic see	rcuit - Fa s: Cascar Safety a (Meter ir uit with p n pneuma quential	n, Meter o pressure se	d - Seque n Fluid F out and Bla equence v ol (with an h limit swi	eed off cir valve d without	it. Electro-pro- rstem, Instal cuits) time delay)	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E 1. 2. 3. 4.	tor circuit Sealing of F EXPERIM Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te n and te n and te	circuits struction : Type wer sy ZEXER sting of sting of sting of sting of	- Coun of Pn s and stems. CISES speed Electro Seque Electro Pneun	nter bal eumatio mater control p-hydra ential cir p Pneur natic cir	lance cir c circuits ials – S l circuits ulic circu rcuit with matic see	rcuit - Fa s: Cascar Safety a (Meter ir uit with p n pneuma quential th logic c	n, Meter o pressure se atic contro	d - Seque n Fluid F out and Bla equence v ol (with an h limit swi AND valve	eed off cir valve d without tches e and OR	it. Electro-pro- rstem, Instal cuits) time delay)	euma	atic ci	ircuit -	r circuits Basics o
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5.	tor circuit Sealing of F EXPERIM Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te n and te n and te n and te	circuits struction : Type wer sy ZEXER sting of sting of sting of sting of nulation	- Count of Pn s and stems. CISES speed Electro Electro Pneun	nter bal eumatio mater control p-hydra ential cir p Pneur natic cir quentia	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit	rcuit - Fa Safety a (Meter ir uit with p pneuma quential th logic c	n, Meter o pressure se atic contro circuit with	d - Seque n Fluid F out and Bla equence v ol (with an h limit swi AND valvo cascade	eed off cir valve d without tches e and OR method	it. Electro-pro- rstem, Instal cuits) time delay)	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF B 1. 2. 3. 4. 5. 6.	tor circuit Sealing of Doting of F EXPERIM Design Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te n and te n and te n and te n and te n and te	circuits itruction : Type wer sy EXER sting of sting of sting of sting of sting of	- Count of Pn s and stems. CISES speed Electro Pneun n of Se Pneun	nter bal eumatio mater control p-hydra ential cir p Pneur natic cir quentia natic cir	lance cir c circuits ials – S l circuits ulic circu rcuit with matic see rcuits with	rcuit - Fa Safety a (Meter ir uit with p pneuma quential th logic c ower circ	n, Meter o pressure so atic contro circuit with controls – , cuits using	d - Seque n Fluid F equence v ol (with an h limit swi AND valve cascade rod less c	eed off cir valve d without tches e and OR method	it. Electro-pro- rstem, Instal cuits) time delay) valve	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5. 6. 7.	tor circuit Sealing of Design Design Design Design Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te	circuits struction : Type wer sy EXER sting of sting of sting of sting of sting of sting of	- Count of Pn s and stems. CISES speed Electro Pneun n of Se Pneun Hydrau	nter bal eumatio mater control p-hydra ential cir p Pneur natic cir quentia natic circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits with al fluid pc rcuit with F	rcuit - Fa Safety a (Meter ir uit with p pneuma quential th logic c ower circ vacuum Proportic	n, Meter o pressure se atic contro circuit with controls – . cuits using n cup and	d - Seque n Fluid F equence v ol (with an h limit swi AND valve cascade rod less c ol of Press	eed off cir valve d without tches e and OR method	it. Electro-pro- rstem, Instal cuits) time delay) valve	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF B 1. 2. 3. 4. 5. 6. 7. 8.	tor circuit Sealing of EXPERIM Design Design Design Design Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te	circuits struction : Type wer sy EXER sting of sting of sting of sting of sting of sting of sting of sting of	- Coun of Pn s and stems. CISES speed Electro Pneun n of Se Pneun Hydra seque	nter bal eeumatic mater control co-hydra o Pneur natic cir quentia natic cir ulic circ ntial circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit al fluid pc rcuit with cuit with F cuits usin	rcuit - Fa Safety a (Meter ir uit with p n pneuma quential th logic c ower circo n vacuum Proportic ng casca	n, Meter o pressure se atic contro circuit with controls – , cuits using n cup and pnal contro	d - Seque n Fluid F out and Ble equence v ol (with an h limit swi AND valve cascade rod less c ol of Press	eed off cir valve d without tches e and OR method cylinder sure and	it. Electro-pn rstem, Instal cuits) time delay) valve Flow	euma	atic ci	ircuit -	r circuits Basics c
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	tor circuit Sealing of F EXPERIM Design Design Design Design Design Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te	circuits struction : Type wer sy EXER sting of sting of sting of sting of sting of sting of sting of sting of	- Coun of Pn s and stems. CISES speed Electro Pneun n of Se Pneun Hydra seque	nter bal eeumatic mater control co-hydra o Pneur natic cir quentia natic cir ulic circ ntial circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit al fluid pc rcuit with cuit with F cuits usin	rcuit - Fa Safety a (Meter ir uit with p n pneuma quential th logic c ower circo n vacuum Proportic ng casca	n, Meter o pressure se atic contro circuit with controls – , cuits using n cup and onal contro ade metho	d - Seque n Fluid F out and Ble equence v ol (with an h limit swi AND valve cascade rod less c ol of Press	eed off cir valve d without tches e and OR method cylinder sure and	it. Electro-pn rstem, Instal cuits) time delay) valve Flow				r circuits Basics c ance and
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5. 6. 7. 8. 9.	tor circuit Sealing of F EXPERIM Design Design Design Design Design Design Design Design Design Design	its. Cor device Fluid P MENTS n and te n and te	circuits struction : Type wer sy EXER sting of sting of sting of sting of sting of sting of sting of sting of	- Coun of Pn s and stems. CISES speed Electro Pneun n of Se Pneun Hydra seque	nter bal eeumatic mater control co-hydra o Pneur natic cir quentia natic cir ulic circ ntial circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit al fluid pc rcuit with cuit with F cuits usin	rcuit - Fa Safety a (Meter ir uit with p n pneuma quential th logic c ower circo n vacuum Proportic ng casca	n, Meter o pressure se atic contro circuit with controls – , cuits using n cup and onal contro ade metho	d - Seque n Fluid F out and Ble equence v ol (with an h limit swi AND valve cascade rod less c ol of Press	eed off cir valve d without tches e and OR method cylinder sure and	it. Electro-pno rstem, Instal cuits) time delay) valve Flow				r circuits Basics c ance an
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. TEXT BO 1. A	tor circuit Sealing of F EXPERIM Design Design Design Design Design Design Design Design Design Cok: nthony Es	its. Cor device Fluid P MENTS In and te m and te	circuits struction : Type wer sy ZEXER sting of sting of	- Countries and stems. CISES speed Electron Pneum n of Se Pneum Hydran seque imulation	nter bal eeumatic mater control p-hydra ential cir p Pneur natic cir quentia natic circ ulic circ ntial circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit al fluid pc rcuit with F cuits usin ectro pne	rcuit - Fa Safety a (Meter ir uit with p n pneuma quential th logic c n vacuum Proportic ng casca eumatic	In, Meter of the spects in a spects in a spect of the spe	d - Seque n Fluid F out and Ble equence v ol (with an h limit swi AND valve cascade rod less o ol of Press od h timers a	eed off cir valve d without tches e and OR method cylinder sure and l	it. Electro-pno rstem, Instal cuits) time delay) valve Flow	euma atior	ractic		r circuits Basics c ance an
Fluidics. troublesho LIST OF E 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. TEXT BO	tor circuit Sealing of F EXPERIM Design Design Design Design Design Design Design Design Design Cok: nthony Es	its. Cor device Fluid P MENTS In and te m and te	circuits struction : Type wer sy ZEXER sting of sting of	- Countries and stems. CISES speed Electron Pneum n of Se Pneum Hydran seque imulation	nter bal eeumatic mater control p-hydra ential cir p Pneur natic cir quentia natic circ ulic circ ntial circ	lance cir c circuits ials – S l circuits ulic circu rcuit with matic sec rcuits wit al fluid pc rcuit with F cuits usin ectro pne	rcuit - Fa Safety a (Meter ir uit with p n pneuma quential th logic c n vacuum Proportic ng casca eumatic	In, Meter of the spects in a spects in a spect of the spe	d - Seque n Fluid F out and Ble equence v ol (with an h limit swi AND valve cascade rod less o ol of Press od h timers a	eed off cir valve d without tches e and OR method cylinder sure and l	it. Electro-pno rstem, Instal cuits) time delay) valve Flow ers Lecture:4	euma atior	ractic		r circuits Basics c ance an

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

2.			r, " Hydr dom, 20		l Pneu	umatics: A	Technic	cian's a	nd Eng	gineer's G	Guide ", S	3rd Edition,	Butterwo	orth-Heine	mann,
														BT Map	
On co CO1	-			-		t s will be a		s for ind	lustrial	applicati	ons		Un	Highest L	ng (K2),
001													lanipulatio	. ,	
CO2													Understanding (K2), Manipulation (S2)		
CO3	discuss the working of different types of hydraulic valves and their applications. Understand Manipulati														
CO4	illustrate the construction and working principles of various components in a pneumatic system. Understanding (K2) Manipulation (S2)														
CO5	design the hydraulic and pneumatic circuits for various applications and their maintenance. Applying (K: Precision (S														
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/	Pos	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12	PSO1	PSO2
CC	01	3	3			2							1	3	
CC)2	3	3			2							1	3	
CC)3	3	3			2							1	3	2
CC)4	3	3			2							1	3	
CC)5	3	3	2	2	2							1	3	
1 – Sli	ight, 2	– Mode	erate, 3 –	Substant	ial, B1	Γ- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN -	THEORY	,				
	st / Bl Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Appl (K3)		Analyzi (K4) %		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		80)								100
	CAT	2		20		80)								100
	CAT	3		10		60)	30	C						100
								1			1				

	22AUT34 – AUTOMOTIVE FUEL	S AND LUBRICANT	S				
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3	PC	3	0	0	3
Preamble	To understand the properties of fuels and lubrican	ts for the design and o	operation of th	ne I.C	C enç	jines.	
Unit – I	Manufacture of Fuels and Lubricants:						9
	leum - Refining process of fuels - Thermal cracking, c						
Unit – II	Theory of Lubrication:						9
	ntroduction - Total engine friction - Effect of engin prication - Boundary lubrication - Bearing lubrication - stem.						
Unit – III	Lubricants:						9
	hthetic lubricants - Classification of lubricating oils - F operties & Testing.	Properties of lubricatir	ng oils - Test	s on	lubri	cants	. Grease
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo	perties & Testing.	density - Calorific val	ue - Distillatio	on ai	nd va	pour	9 pressure
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test	perties & Testing.	density - Calorific val	ue - Distillatio	on ai	nd va	pour	9 pressure
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test Unit – V SI Engine: Flam Cl Engine: Mecha	perties & Testing. Properties and Testing of Fuels: y of fuels - Properties and testing of fuels - Relative of pontaneous ignition temperature - Viscosity - Pour po- etc.	density - Calorific val int - Flammability & i combustion - Knockin g - Fuel requirements.	ue - Distillatio gnitability - D g - Octane ra	on ai iese	nd va I inde - Fu	pour x - A el req	9 pressure PI gravity 9 uirements uirement
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test Unit – V SI Engine: Flam Cl Engine: Mecha	Properties & Testing. Properties and Testing of Fuels: y of fuels - Properties and testing of fuels - Relative of the second se	density - Calorific val int - Flammability & i combustion - Knockin g - Fuel requirements.	ue - Distillatio gnitability - D g - Octane ra	on ai iese	nd va I inde - Fu	pour x - A el req	9 pressure PI gravity 9 uirements
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test Unit – V SI Engine: Flam Cl Engine: Mecha of an additive - P TEXT BOOK:	Properties & Testing. Properties and Testing of Fuels: y of fuels - Properties and testing of fuels - Relative of the second se	density - Calorific val int - Flammability & i combustion - Knockin g - Fuel requirements. s.	ue - Distillatio gnitability - D g - Octane ra Additives: Me	on ar iese ating echa	nd va I inde - Fu	pour x - A el req	9 pressure PI gravity 9 uirements uirement
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test Unit – V SI Engine: Flam Cl Engine: Mecha of an additive - P TEXT BOOK:	perties & Testing. Properties and Testing of Fuels: y of fuels - Properties and testing of fuels - Relative of ontaneous ignition temperature - Viscosity - Pour poetc. Combustion and Fuel Rating: ne propagation - Mechanism of combustion - Normal anism of combustion - Diesel knocking - Cetane rating betrol and Diesel fuel additives – Specifications of fuels	density - Calorific val int - Flammability & i combustion - Knockin g - Fuel requirements. s.	ue - Distillatio gnitability - D g - Octane ra Additives: Me	on ar iese ating echa	nd va I inde - Fu	pour x - A el req	9 pressure PI gravity 9 uirements uirement
Classification, Pro Unit – IV Thermo-chemistry Flash point - Spo Aniline point Test Unit – V SI Engine: Flam Cl Engine: Mecha of an additive - P TEXT BOOK: 1. Ganesan REFERENCES:	perties & Testing. Properties and Testing of Fuels: y of fuels - Properties and testing of fuels - Relative of ontaneous ignition temperature - Viscosity - Pour poetc. Combustion and Fuel Rating: ne propagation - Mechanism of combustion - Normal anism of combustion - Diesel knocking - Cetane rating betrol and Diesel fuel additives – Specifications of fuels	density - Calorific val int - Flammability & i combustion - Knockin g - Fuel requirements. s. -Hill Publishing Co., N	ue - Distillatio gnitability - D g - Octane ra Additives: Me	on an iese ating echa	nd va I inde - Fu	pour x - A el req	9 pressure PI gravity 9 uirements uirement

		UTCON		se, the st	udents	will be a	able to						(BT Mapp Highest L	
CO1	sum	nmarize	the man	ufacturing	proces	s involve	d in fue	ls and Iu	ubricar	its			Ur	Iderstandii	ng (K2)
CO2			different omobile.	mechanis	m invo	lved in lu	bricatior	n and dif	ferent	types of	lubricati	ng systems	³ Ur	derstandi	ng (K2)
CO3	des	cribe the	e propert	ies and re	quirem	ents of lu	bricants	5					Ur	Iderstandii	ng (K2)
CO4	disc	cuss the	various	properties	of fuel	s used in	automo	bile					Ur	Iderstandii	ng (K2)
CO5	ехр	lain the	combust	ion and fu	el ratin	g of conv	entional	SI and	CI fue	ls			Ur	derstandii	ng (K2)
						Mappin	g of CO	s with I	POs a	nd PSOs	5				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2				2	2					1	3	
CO	2	3	2				2	2					1	3	
СО	3	3	2				2	2					1	3	
СО	4	3	2				2	2					1	3	
СО	5	3	2				2	2					1	3	
1 – Sli	ght, 2	– Mode	erate, 3 –	Substant	al, BT-	Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN – ⁻	THEORY	,				
	st / Bl Categ	loom's ory*	Re	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	Г1		20		80									100
	CAT	Г2		20		80									100
	CAT	ГЗ		20		80									100
	ES	E		15		85									100

	(Common to All Engineering and Techr	nology Bra	nches)				
Programme & Branch	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	2/3	HS	1	0	0	1
முன்னுரை	தமிழ் கலாச்சாரத்தோடு ஒன்றிய தொழில் ந	jட்பங்கனை க	ள பற்றிப் எ	டுத்	துை	ரத்த	ຈ່
ച്ചായ – I	நெசவு மற்றும் பானை தொழில்நுட்பம்						3
சங்க காலத்தில் கீறல் குறியீடுக	் நெசவு தொழில் – பானைத் தொழில்நுட்பம் ள்	கருப்பு சீ	ிவப்பு பான்	⊺டங்	1 க ள்	- UI	ாண்டகளில
ച്ച രക്ര – 11	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பட	מ					3
அமைப்பு பற் பெருங்கோயில் மாதிரிகட்டமை	சங்க காலத்தில் கட்டுமான பொருட்களும் றிய விவரங்கள் – மாமல்லபுரச்சிற்பங்களு கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் ப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்ப _டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்ன	ம், கோ – நா மன் ஆல	வில்களும் ாயக்கா் க லயம் மற்று	– ாலக் ம் த	சே 5 (திருப	சாழர் கோய மலை	காலத்த பில்கள் ல நாயக்க
அலகு – III	உற்பத்தித் தொழில்நுட்பம்	ல்ல் இந்	தா-சாவராவ	0 6011	თთ	СЦС	<u>-0 00000.</u> 3
	ாறுகளாக செம்பு மற்றும் தங்க நாணயங்கள						
உருவாக்கும் ஹே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள்	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாடி ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந எங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற	ட மணிக லப்பதிகார ட்பம் ா முக்கிய ளாண்மை	ள் – சுடும த்தில் மணி பத்துவம் – 1 மற்றும்	ண் களி கால் வே	மன ன் எ லநன பளா	னிக வகை நட ட ண்ன	ள் – சங்(கள். 3 ராமரிப்பு ஹ சார்ந்
உருவாக்கும் ஹே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள்	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாட ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந வாங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற பு – அறிவுசார் சமூகம்.	ட மணிக லப்பதிகார ட்பம் ா முக்கிய ளாண்மை	ள் – சுடும த்தில் மணி பத்துவம் – 1 மற்றும்	ண் களி கால் வே	மன ன் எ லநன பளா	னிக வகை நட ட ண்ன	ள் – சங்(கள். 3 ராமரிப்பு ஹ சார்ந்
உருவாக்கும் வே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கள்	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாடி ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந எங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை ரம் முத்த பிழ் நூல்	ள் — சுடும த்தில் மணி பத்துவம் — ப மற்றும் பக்குளித்தல் களை மின்ப	ுண் களி கால் – வே	மன ன் எ லநன பளா பெரு பு ெ	னிக வகை றட ட ண்ன ,ங்கட	ள் – சங்கு கள். பராமரிப்பு நம சார்ந் _ல் குறித் _ல் – தமி
உருவாக்கும் ஹே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கள்	நொழிற்சாலைகள் – கல்மணிகள் – கண்ணாட ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற வு – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தம ற் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை ரம் முத்த பிழ் நூல்	ள் — சுடும த்தில் மணி பத்துவம் — ப மற்றும் பக்குளித்தல் களை மின்ப	ுண் களி கால் – வே	மன ன் எ லநன பளா பெரு பு ெ	னிக வகை றட ட ண்ன ,ங்கட	ள் – சங்கு கள். பராமரிப்பு நம சார்ந் _ல் குறித் _ல் – தமி
உருவாக்கும் ஹே மணிகள் – எலு அலகு – 1 V அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கள தமிழ் அகராதிக	நொழிற்சாலைகள் – கல்மணிகள் – கண்ணாட ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற வு – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தம ற் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை ரம் முத்த பிழ் நூல்	ள் — சுடும த்தில் மணி பத்துவம் — ப மற்றும் பக்குளித்தல் களை மின்ப	ுண் களி கால் – வே	மன ன் எ லநன பளா பெரு பு ெ	னிக வகை றட ட ண்ன ,ங்கட	ள் – சங்டு கள். பராமரிப்பு நம சார்ந் _ல் குறித் _ ல் – தமி நணயத்தில
உருவாக்கும் ஹே மணிகள் – எலு அலகு – 1 V அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ பண்டைய அறிவ வலகு – V அறிவியல் தமி மென்பொருட்கள தமிழ் அகராதிக TEXT BOOK:	நொழிற்சாலைகள் – கல்மணிகள் – கண்ணாட ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற வு – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தம ற் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக	ட மணிக லப்பதிகார ட்பம் ா முக்கிய ளாண்மை ரம் முத்த மிழ் நூல் கம் – தமி ா (வெளிய	ள் – சுடும த்தில் மணி பத்துவம் – ப மற்றும் பக்குளித்தல் களை மின் நிழ் மின் நூ பீடு தமிழ்நா	லன் களி கால ட பதிப் லக	மன்ன் ல்நன பளா பெரு பு ெ ட	னிகவ பசை நட ட ண்ன ,ங்கட சய்த இல	ள் – சங்டு கள். பராமரிப்பு நம சார்ந் _ல் குறித் _ல் – தமி நணயத்தில
உருவாக்கும் ஹே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ பண்டைய அறிவ பண்டைய அறிவ வலகு – V அறிவியல் தமி மென்பொருட்கள தமிழ் அகராதிக TEXT BOOK: 1. தமிழக வர கல்வியில்	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாம ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந வாங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற பு – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தம ள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக ள் சொற்குவைத் திட்டம்.	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை பம முத்த மிழ் நூல் கம் – தமி ா (வெளிய னம், சென்	ள் – சுடும த்தில் மணி பத்துவம் – ப மற்றும் பக்குளித்தல் களை மின் நிழ் மின் நூ பீடு தமிழ்நா	லன் களி கால ட பதிப் லக	மன்ன் ல்நன பளா பெரு பு ெ ட	னிகவ பசை நட ட ண்ன ,ங்கட சய்த இல	ள் – சங்கு கள். பராமரிப்பு நம் சார்ந் _ல் குறித் _ல் – தமி நணயத்தில
உருவாக்கும் ஹே மணிகள் – எலு அலகு – 1V அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கள நமிழ் அகராதிக TEXT BOOK: 1. தமிழக வர கல்வியில் 2. கணினித்த	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாம ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற டி – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தட ள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக ள் சொற்குவைத் திட்டம்.	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை பம முத்த மிழ் நூல் கம் – தமி ா (வெளிய னம், சென்	ள் – சுடும த்தில் மணி பத்துவம் – ப மற்றும் பக்குளித்தல் களை மின் நிழ் மின் நூ பீடு தமிழ்நா	லன் களி கால ட பதிப் லக	மன்ன் ல்நன பளா பெரு பு ெ ட	னிகவ பசை நட ட ண்ன ,ங்கட சய்த இல	ள் – சங் கள். 1ராமரிப்பு நம சார்ந் _ல் குறித் 3 ல் – தமி தையத்தில் Total:1
உருவாக்கும் ஹே மணிகள் – எலு அலகு – IV அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கத தமிழ் அகராதிக TEXT BOOK: 1. தமிழக வர கல்வியில் 2. கணினித்த REFERENCES:	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாம ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற டி – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தட ள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக ள் சொற்குவைத் திட்டம்.	ட மணிக பப்பதிகார பட்பம் ா முக்கிய ளாண்மை பம் முத்த ம் முத்த ம் தம் நடி தம் 1 (வெளிய னம், சென் 2016	ள் — சுடும த்தில் மணி பத்துவம் — ப மற்றும் பக்குளித்தல் களை மின் ந களை மின் நூ வீடு தமிழ்நா னை, 2002	லன் களி கால் கோல் கோல் கோல் கை	மன்ன் ல் நன பளா பெரு பட ப ப ப ப ப ப ட ட ட	னிகவ பசை நட ட ண்ன ,ங்கட சய்த இல	ள் – சங் கள். 1ராமரிப்பு நம சார்ந் _ல் குறித் 3 லல் – தமி தையத்தில் Total:'
உருவாக்கும் வேணிகள் – எலு அலகு – 1V அணை, ஏரி, கு கால்நடைகளுக் செயல்பாடுகள் பண்டைய அறிவ அலகு – V அறிவியல் தமி மென்பொருட்கள தமிழ் அகராதிக TEXT BOOK: 1. தமிழக வர கல்வியில் 2. கணினித்த REFERENCES:	தொழிற்சாலைகள் – கல்மணிகள் – கண்ணாம ம்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சில வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில்ந ளங்கள், மதகு – சோழர்கால குமிழித் தூம்பின் காக வடிவமைக்கப்பட்ட கிணறுகள் – வே – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்ற டி – அறிவுசார் சமூகம். அறிவியல் தமிழ் மற்றும் கணினித்தமிழ் ழின் வளர்ச்சி – கணினிதத்தமிழ் வளர்ச்சி – தம ள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழக ள் சொற்குவைத் திட்டம்.	ட மணிக பப்பதிகார ட்பம் ா முக்கிய ளாண்மை பம் முத்த பிழ் நூல் கம் – தமி 1 (வெளிய னம், சென் 2016 ால்லியல்	ள் — சுடும த்தில் மணி பத்துவம் — ப மற்றும் பக்குளித்தல் களை மின் ந களை மின் நூ வீடு தமிழ்நா னை, 2002	லன் களி கால் கோல் கோல் கோல் கை	மன்ன் ல் நன பளா பெரு பட ப ப ப ப ப ப ட ட ட	னிகவ பசை நட ட ண்ன ,ங்கட சய்த இல	ள் – சங் கள். 1ராமரிப்பு ம சார்ந் _ல் குறித் _ல் – தமி ஹையத்தி Total:

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

4.	Social Life	of the T	amils – T	he Classi	cal Per	iod (Dr.S	.Sigara	avelu) (Pu	blished	d by: Inte	rnationa	al Institut	e of Tam	il Studies	s).
5.	Historical H Tamil Studi		of the Ta	mils (Dr.S	3.V.Sub	atamania	an, Dr.I	K.D. Thiru	navuk	arasu) (F	Publishe	d by : In	ternation	al Institut	te of
6.	The Contrib	oution of	the Tam	il to India	n Cultu	re (Dr.M.	Valarm	nathi) (Pup	olished	l by Inter	national	Institute	of Tamil	Studies).
7.	Keeladi – 'S Tamilnadu									lished by	: Depar	tment of	Archaed	ology &	
8.	Studies in t	he Histo	ory of Indi	ia with Sp	ecial R	eference	to Tan	nilnadu (D	r.K.K.I	Pillay) (P	ublishe	d by: The	e Author)		
9.	Porunai Civ Corporation			Published	l by: De	epartment	t of Arc	haeology	& Tarr	nilnadu T	extbool	and Ed	ucational	Service	S
10.	Journey of	Civilizat	ion Indus	to Vaigai	(R.Bal	akrishna	n) (Pub	lished by	RMRI	L) – Refe	erence E	Book.			
	RSE OUTC(பை முடித்தவ		ாணவர்க	ள்									(BT Map Highest	
CO1	_{தமிழ்} சு தொழில்	லாச்ச நுட்பம்	,		தமிழ் ஷயும்.	ዓ ርቦ ዎ ፭	ந்தினு	டைய	நெச	வ ம	ற்றும்	பால	ឆា Un	derstand	ling (K2)
CO2	தமிழர்கள் முடியும்.	0	F F			கட்டிட	த் தெ	தாழில்ந	انا	ஆற்றவ	ல் பற்	றി ഖിണം	^{க்க} Un	derstand	ling (K2)
CO3	தமிழர்கள்	ின் உற்	பத்தித்	தொழில்	்நுட்ப	ம் பற்றி க	சுருக்கப	மாகக் கூற	արժո	பும்.			Un	derstand	ling (K2)
								<u> </u>			• •		Lin	doretand	line at (140)
CO4	தமிழர்கள்	ன் வெ	ണ്ടഞ്ഞ	மை மற	றமந	пипъе	ளத் ெ	தாழில்ந	படபம) பற்றி வ	ிளக்க மு	ஷயும்.	UI	uerstanu	iing (KZ)
CO4 CO5	தமிழர்கள் தமிழர்கள்				, r		<i>r</i>	,	-		Ų			derstand	
	, ,				மற்று	ம் கணி	னித்த	தமிழ் பற்	- றி வி)ளக்க பு	Ų				
CO5	தமிழர்கள்	ின் அற்	றிவியல்	தமிழ்	மற்று Mapp	ம் கணி ping of (னித்த COs w	ith POs	றி ഖി and F)ளக்க பு PSOs	ற்டியும்	ם. ו	Un	derstand	ling (K2)
CO5	தமிழர்கள் Os/POs				மற்று	ம் கணி	னித்த	ith POs	- றி வி)ளக்க (ப PSOs PO9	بەلماليان PO10		Un PO12		ling (K2)
CO5	தமிழர்கள்	ின் அற்	றிவியல்	தமிழ்	மற்று Mapp	ம் கணி ping of (ற்றித்த COs w PO6	ith POs	ற്നി ഖി and F PO8)ளக்க பு PSOs	ற்டியும்	ם. ו	Un	derstand	ling (K2)
CO5	தமிழர்கள் Os/POs CO1	ின் அற்	றிவியல்	தமிழ்	மற்று Mapp	ம் கணி ping of (னித்த COs w PO6 3	ith POs	ற്ற	ிளக்க (ப PSOs PO9 2	۵۹۲۲ РО10 2	ם. ו	Un PO12 3	derstand	ling (K2)
CO5	தமிழர்கள் Os/POs CO1 CO2	ின் அற்	றிவியல்	தமிழ்	மற்று Mapp	ம் கணி ping of (னித்த COs w PO6 3 3	ith POs	ന്റി ഖി and F PO8 3 3)ளக்க (ப PSOs PO9 2 2	۵۹۲۲ ۵۲ ۵۲ ۵۲ ۵۲ ۵۲ ۵۲ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲	ם. ו	Un PO12 3 3 3	derstand	ling (K2)
CO5	தமிழர்கள் Os/POs CO1 CO2 CO3	ின் அற்	றிவியல்	தமிழ்	மற்று Mapp	ம் கணி ping of (ணித்த COs w PO6 3 3 3	ith POs	ന്നി ബി and F PO8 3 3 3	Р SOs Р O9 2 2 2 2	<mark>РО10</mark> 2 2 2	ם. ו	Un PO12 3 3 3 3	derstand	ling (K2)
CO5	தமிழர்கள் Os/POs CO1 CO2 CO3 CO4	ின் அற PO1	றிவியல் PO2	PO3	Mapr PO4	ம் கணி ping of (PO5	னித்த COs w PO6 3 3 3 3 3 3	ith POs	ന്നി ബി and F PO8 3 3 3 3	РО9 2 2 2 2 2 2	рцци РО10 2 2 2 2	ם. ו	Un PO12 3 3 3 3 3 3	derstand	ling (K2) ling (K2) PSO2
CO5	தமிழர்கள் Ds/POs CO1 CO2 CO3 CO4 CO5	ின் அற PO1	றிவியல் PO2	PO3	марр РО4 Г- Bloo	ம் கணி ping of (PO5 m's Taxo	னித்த COs w PO6 3 3 3 3 3 3 3	ith POs	ற்றி வி and F PO8 3 3 3 3 3	2 2 2 2 2 2 2 2 2	рцци РО10 2 2 2 2	ם. ו	Un PO12 3 3 3 3 3 3	derstand	ling (K2)
CO5 C(1 – S	தமிழர்கள் Ds/POs CO1 CO2 CO3 CO4 CO5	ின் அற PO1	றிவியல் PO2 3 – Subs	PO3	Mapp PO4 F- Bloo	ம் கணி ping of (PO5 m's Taxo	の引換更 COs w PO6 3 3 3 3 3 NT PA ding	vith POs PO7	pm ຄາ and F PO8 3 3 3 3 3 3 THEO g Ar	2 2 2 2 2 2 2 2 2	рццці РО10 2 2 2 2 2 2 2 2	ם. ו	Un PO12 3 3 3 3 3 3	derstand PSO1	PSO2
CO5 C(1 – S	தமிழர்கள் Ds/POs <u>CO1</u> <u>CO2</u> <u>CO3</u> <u>CO4</u> <u>CO5</u> light, 2 – Mc	ின் அற PO1	றிவியல் PO2 3 – Subs	PO3 tantial, B ⁻	Mapp PO4 F- Bloo	山 あணう ping of (PO5 m's Taxo SESSME nderstan	の引換更 COs w PO6 3 3 3 3 3 NT PA ding	rith POs PO7 PO7 TTERN –	pm ຄາ and F PO8 3 3 3 3 3 3 THEO g Ar	PO9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	рццці РО10 2 2 2 2 2 2 2 2	PO11	Un PO12 3 3 3 3 3 3 Creat	derstand PSO1	PSO2
CO5 C(1 – S	தமிழர்கள் 	ின் அற PO1	றிவியல் PO2 3 – Subs	PO3 PO3 tantial, B ⁻	Mapp PO4 F- Bloo	ഥ あணੀ ping of (PO5 m's Taxo SESSME nderstan (K2) %	の引換更 COs w PO6 3 3 3 3 3 NT PA ding	rith POs PO7 PO7 TTERN –	pm ຄາ and F PO8 3 3 3 3 3 3 THEO g Ar	PO9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	рццці РО10 2 2 2 2 2 2 2 2	PO11	Un PO12 3 3 3 3 3 3 Creat	derstand PSO1	PSO2
CO5 C(1 – S	தமிழர்கள் தமிழர்கள் Os/POs CO1 CO2 CO3 CO4 CO5 light, 2 – Mc / Bloom's C CAT1	ின் அற PO1	றிவியல் PO2 3 – Subs	PO3 PO3 tantial, B ⁻ tantial, B ⁻	Mapp PO4 F- Bloo	iù あணî ping of (PO5 m's Taxo SESSME nderstan (K2) % 60	の引換更 COs w PO6 3 3 3 3 3 NT PA ding	rith POs PO7 PO7 TTERN –	pm ຄາ and F PO8 3 3 3 3 3 3 THEO g Ar	PO9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	рццці РО10 2 2 2 2 2 2 2 2	PO11	Un PO12 3 3 3 3 3 3 Creat	derstand PSO1	PSO2

		22TAM02 - TAMILS AND TECHNO						
		(Common to All Engineering and Technolo	ogy Branc	hes)	1			[
Prog Bran	ramme & ch	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prere	equisites	Nil	2/3	HS	1	0	0	1
Prea	mble	This course aims to impart the essential knowledge on the tamil of	culture and	related techno	loav			
UNIT								3
		y during Sangam Age – Ceramic technology – Black and Red War	e Potteries	(BRW) – Graf	fiti on	Potte	ries.	
UNIT		DESIGN AND CONSTRUCTION TECHNOLOGY		()				3
stone Temp	es of Sanga	Structural construction House & Designs in household materials am age – Details of Stage Constructions in Silappathikaram – S las and other worship places – Temples of Nayaka Period – Typ - Chetti Nadu Houses, Indo – Saracenic architecture at Madras dur	Sculptures pe study (and Temples Madurai Meena	of Ma	amall	apura	am – Grea
UNIT	' — III	MANUFACTURING TECHNOLOGY						3
Minti	ng of Coins	ding – Metallurgical studies – Iron industry – Iron smelting, steel – Beads making – industries Stone beads – Glass beads –Terrace n stone types described in Silappathikaram.						
UNIT	[.] – IV	AGRICULTURE AND IRRIGATION TECHNOLOGY						3
Agric		ds, Sluice, Significance of Kumizhi Thoompu of Chola Period, A Agro Processing – Knowledge of Sea – Fisheries – Pearl – Conche						
UNIT	- V	SCIENTIFIC TAMIL & TAMIL COMPUTING						3
2	lonmont of		-					
		Scientific Tamil – Tamil computing – Digitalization of Tamil Book il Digital Library – Online Tamil Dictionaries – Sorkuvai Project.	ks – Deve	opment of Tan	nil Sot	ftwar	e – T	amil Virtua
		Scientific Tamil – Tamil computing – Digitalization of Tamil Book il Digital Library – Online Tamil Dictionaries – Sorkuvai Project.	(s – Deve	opment of Tan	nil Sot	ftwar	e – T	
Acad			ks – Deve	opment of Tan	nil Sot	ftwar	e – T	
Acad	emy – Tam F BOOK:			- 	nil Sot	ftwar	e – T	
Acad	emy – Tam F BOOK: Social Life	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project.	MRL – (in	print)				Total:1
Acad TEX 1. 2.	emy – Tam F BOOK: Social Life	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R	MRL – (in	print)				Total:1
Acad TEX 1. 2.	emy – Tam T BOOK: Social Life Social Life ERENCES: தமிழக எ	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R	MRL – (in by: Interna யீடு தமி	print) ational Institute	of Ta	mil S	tudies	Total:1
Acad TEX 1. 2. REFI 1.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள்	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published வரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி	MRL – (in by: Interna யீடு தமி	print) ational Institute	of Ta	mil S	tudies	Total:1
Acad TEXT 1. 2. REFI 1. 2.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published வரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை,	MRL – (in by: Interna யீடு தமி 2002	print) ational Institute ழ்நாடு பாடந	of Ta தால் ப	mil S	tudies	Total:1
Acad TEXT 1. 2. REFI 1. 2. 3.	emy – Tam T BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கீழடி னை	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published வரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016	MRL – (in by: Interna யீடு தமி 2002 லியல் துஎ	print) ational Institute ழ்நாடு பாடந	of Ta தால் ப	mil S	tudies	Total:1
Acad TEXT 1. 2. REFI 1. 2. 3. 4.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கணினித கணினித கணினி	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published பரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி ் கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016 வகை நதிக்கரையில் சங்ககால நகர நாகரிகம்.(தொல்ல	MRL – (in by: Interna யீடு தமி 2002 லியல் துஎ ந	print) ational Institute ழ்நாடு பாடர றை வெளியீடு	of Ta ஹல் ப தி	mil S	tudies பம் க	Total:1 ຣ). ເວັເລີາໃແກີເວັ
Acad TEXT 1. 2. REFI 1. 2. 3. 4. 5.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கேனினித கேழடி வை பொருனை Historical H Studies)	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published பரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016 வகை நதிக்கரையில் சங்ககால நகர நாகரிகம்.(தொல்லி ந ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீ(MRL – (in by: Interna யீடு தமி 2002 லியல் துஎ நி irasu) (Put	print) ational Institute ழ்நாடு பாடர றை வெளியீ(plished by : Inte	of Ta தால் ப தி) rnatio	mil S றற்ற nal Ir	tudies பம் க	Total:1 ຣ). ເວັດລາມແກດນັ e of Tamil
Acad TEXT 1. 2. REFI 1. 2. 3. 4. 5. 6.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கணினித கேழடி எை பொருனை Historical H Studies) The Contri Keeladi – '	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published பரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016 வகை நதிக்கரையில் சங்ககால நகர நாகரிகம்.(தொல்லி ந ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீ(Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavuka	MRL – (in by: Interna யீடு தமி 2002 வியல் துஎ ந irasu) (Put by Interna	print) ational Institute ழ்நாடு பாடர றை வெளியீ(plished by : Inte	of Ta ຫຼາல່ ມ ລາ) rnatio of Tar	mil S றற்ற nal Ir nil St	tudies	Total:1 ຣ). ຣ່າລິມານີ ເວັ e of Tamil).
Acad TEXT 1. 2. REFI 1. 2. 3. 4. 5. 6. 7.	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கேழடி கை பொருனை Historical H Studies) The Contri Keeladi – ' Text Book	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published பரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016 வகை நதிக்கரையில் சங்ககால நகர நாகரிகம்.(தொல்லி ந ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீ(Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavuka bution of the Tamils to Indian Culture (Dr.M.Valarmathi)(Puplished Sangam City Civilzation on the banks of river Vaigai; (Jointly Publis	MRL – (in by: Interna யீடு தமி 2002 வியல் துஎ ந arrasu) (Put by Interna shed by: D	print) ational Institute ந்நாடு பாடர றற வெளியீ(plished by : Inte tional Institute	of Ta தால் ப ராatio of Tar Archae	mil S	tudies	Total:1 ຣ). ຣ່າລິມານີ ເວັ່ e of Tamil).
Acad TEX 1. 2. REFI	emy – Tam F BOOK: Social Life Social Life ERENCES: தமிழக எ பணிகள் கணினித கேணினித கேழடி எை பொருனை Historical H Studies) The Contri Keeladi – ' Text Book Studies in Porunai Ci	il Digital Library – Online Tamil Dictionaries – Sorkuvai Project. of Tamils (Dr.K.K.Pillay) A joint Publication of TNTB & ESC and R of the Tamils – The Classical Period (Dr.S.Sigaravelu) (Published பரலாறு - மக்களும் பண்பாடும் - கே கே பிள்ளை (வெளி கழகம்), உலகத் தமிழாராய்ச்சி நிறுவனம், சென்னை, த்தமிழ் முனைவர் இல. சுந்தரம், விகடன் பிரசுரம், 2016 வகை நதிக்கரையில் சங்ககால நகர நாகரிகம்.(தொல்லி ந ஆற்றங்கரை நாகரிகம் (தொல்லியல் துறை வெளியீ(Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavuka bution of the Tamils to Indian Culture (Dr.M.Valarmathi)(Puplished Sangam City Civilzation on the banks of river Vaigai; (Jointly Publis and Educational Services Corporation, Tamilnadu)	MRL – (in by: Interna யீடு தமி 2002 பியல் துஎ ந irasu) (Put shed by: D illay) (Pub	print) ational Institute ழ்நாடு பாடர றற வெளியீடு blished by : Inte tional Institute pepartment of A ished by : The	of Ta ລູກຄັບ ມ ດ້າງ rnatio of Tar Archae Autho	mil S pற்ற nal Ir nil St eolog r)	tudies பட் க nstitut udies y & T	Total:1 ຣ). ເຈັດລີໃແກີເຈັ e of Tamil). amilnadu

		OUTCO etion of	MES: the cours	se, the st	udents v	vill be abl	e to						(1	BT Map Highest I	
CO1	exp	olain we	aving and	ceramic	technolog	gy in tamil	culture	and tamil	society.				Un	derstand	ing (K2)
CO2	Illu	strate a	bout the d	esign and	d construe	ction techi	nology.						Un	derstand	ing (K2)
CO3	sur	nmarize	e about the	e manufa	cturing te	chnology.							Un	derstand	ing (K2)
CO4	exp	plain the	e agricultui	re and irri	gation teo	chnology.							Un	derstand	ing (K2)
CO5	exp	plain the	e significar	nce of tan	nil in scier	ntific and o	computir	ng.					Un	derstand	ing (K2)
						Mapping	g of CO	s with PC)s and P	SOs					
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1						3		3	2	2		3		
CO2	2						3		3	2	2		3		
CO3	3						3		3	2	2		3		
CO4	1						3		3	2	2		3		
CO5	5						3		3	2	2		3		
1 – Slię	ght, 2	2 – Moc	lerate, 3 –	Substant	tial, BT- B	lloom's Ta	axonomy	1							
						ASSES	SMENT	PATTER	N – THE	ORY					
Test / Cate	Bloc egor		Rememt (K1)	•		standing 2) %		plying K3) %		alyzing (4) %		uating 5) %	Crea (K6		Total %
С	AT1		40		6	60									100
С	AT2		40		6	60									100
С	AT3		40		(60									100
E	ESE								NA						
* ±3%	may	be var	ied (CAT	1,2,3 – 50) marks)										

			2		-		-	-	-	-	TS LAB	ORATORY				
Progr		e &	B.E			Enginee	-	enny a		nology	Sem.	Category	L	т	Р	Credit
Branc Prere		es		notive		-					3	PC	0	0	2	1
Prean					-		s on ex	operien	ce for t	estina		d lubricant		-		
			prope							J						-
LIST	OF E)	(PERIN	IENTS /	EXER	CISES:											
1.	Stu	dy of Ir	nternatio	nal and	Nation	al stand	ards for	fuels a	nd lubri	cants						
2.	Stu	dy of C	ctane n	umber a	and Cet	ane nur	nber of	fuels								
3.	Det	termine	calorific	value o	of gase	ous fuel										
4.	Det	termine	calorific	value o	of liquid	fuel										
5.	Ide	ntify fla	sh and f	ire poin	ts of pe	trol and	diesel									
6.	Det	termine	viscosi	y for the	e given	fuel and	l lubrica	int								
7.	Ide	ntify dro	op point	of grea	se											
8.	Co	nduct m	nechanio	cal pene	etration	test of g	rease									
9.	Me	asure v	apour p	ressure	for gas	oline fu	el									
10.	Me	asure c	arbon re	esidue f	or liquic	l fuel										
11.	Co	nduct c	orrosion	test for	liquid f	uel and	lubricar	nt								
12.	Ide	ntify clo	oud and	pour po	oint for li	quid fue	and lu	ıbricant								
																Total:30
REFE	RENC	CES/ M	ANUAL	/SOFT	WARE:											
1.	Lat	ooratory	/ Manua	I												
		UTCO													Т Мар	
	1		the cou					e to					A		ing (K	Level)
CO1	det	ermine	the prop	perties of	of fuels	and lubi	ricants.						Ν	lanip	ulation	n (S2)
CO2	ide	ntify the	e flow pr	operties	s of fuel	s and lu	bricants	6.							ing (K3 ulatior	
CO3	ana	alyze th	e quality	of fuel	s and lu	bricants	6.								ing (K3 ulatior	
						Маррі	ng of C	os with	n POs a	nd PSC	Ds					
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1	2 I	PSO1	PSO
CO		3	2	1	1	3		1		3	3		2		3	
CO		3	2	1	1	2		1		3	3		2		3	
CO		3	2 erate, 3	1	1	2	, .	1		3	3		2		3	

Progr Branc		e &	B.E	- Autom	obile E	inginee	ring				Sem.	Category	L	т	Р	Credit
Prere		es	Fluid	Mecha	nics an	d Thern	nodyna	mics			3	PC	0	0	2	1
Pream	nble			ourse p urized fl		knowle	dge and	d skill to	genera	ite, cont	trol and	transmissior	n of po	wer	using	
LIST	OF EX	PERIN	IENTS /	EXER	CISES:											
1.	Des	sign and	d testing	g of spe	ed conti	ol circu	its (Met	er in, M	eter out	and Bl	eed off o	circuits)				
2.	Des	sign an	d testing	g of Elec	tro-hyd	raulic ci	rcuit wi	th press	sure sec	luence	valve					
3.	Des	sign an	d testing	g of Seq	uential	circuit w	ith pne	umatic	control	(with an	id withou	ıt time delay	')			
4.	Des	sign an	d testing	g of Elec	tro Pne	umatic	sequen	tial circ	uit with	limit swi	itches					
5.	Des	sign and	d testing	g of Pne	umatic	circuits	with log	jic contr	ols – Al	ND valv	e and O	R valve				
6.	Des	sign and	d simula	ation of \$	Sequen	tial fluid	power	circuits	using c	ascade	method					
7.	Des	sign and	d testing	g of Pne	umatic	circuit w	ith vac	uum cu	o and ro	d less o	cylinder					
8.	Des	sign and	d testing	g of Hyd	raulic c	rcuit wit	th Prop	ortional	control	of Pres	sure and	I Flow				
9.	Des	sign and	d testing	g of seq	uential o	circuits u	using ca	ascade	method							
10.	Des	sign, te	sting an	d simula	ation of	electro	pneuma	atic circ	uit with	timers a	and coun	iters				
11.	Pro	file Tra	cking of	an Eleo	ctrohydr	aulic Se	ervo Sys	stem								
12.	Pos	sition co	ontrol of	an Elec	tro pne	umatic \$	Servo S	System								
																Total:30
REFE	RENC	ES/ M	ANUAL	/SOFT	WARE:											
1.	Lab	oratory	Manua	1												
		UTCO													Т Мар	
				urse, th										· ·	ghest l plying	
CO1				ower co			-				-					(N3), on (S2)
CO2		0		and test t autom		power	circuits	with p	neumati	c, elect	trical, Pl	_C and logi			plying ipulatio	(K3), on (S2)
CO3		elop a		nulate	fluid po	ower c	ircuits	using	simulat	on sof	tware f	or industria	al	Ap	plying	
					1	Маррі	ng of C	os with	n POs a	nd PSC	Ds					
COs/F		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	2	PSO1	PSO2
CO		2	2	2		1						2	2		2	2
CO		2	3	3		3						2	2		3	3
CO	3	2	2	3		3		1				2	2		3	3

						(Comm	non to A	AII BE/B	Tech bran	nches)								
Progr Branc	amme & ch	A	I B.E/E	3.Tech	Brar							Sem.	Categ	ory	L	т	Ρ	Cre	dit
Prere	quisites	Ν										3/6	МС		2	0	0	0)
Pream	nble	р	ollution	contro	ol&r	monito	oring n	nethod	ls for su	tand the vustainable cal science	e life and								
Unit –	-1								Resourc									5	5
	uction to Env			Scienc	ce – u	uses, o	over-e	xploitat	tion and	l conserva	ation of 1	orest,	water, r	niner	al, fo	ood, e	energy	/ and I	an
Unit -			cosyst	em an	d Bio	diver	sity											5	;
Food	vstems: conce web only). Bi conservation of	Biodive	ersity: I	htrodu	ction -	– Clas													
Unit –	- 111	E	nviron	nenta	I Poll	ution												5	5
	onmental Pol ain, ozone la																		
					αισι μ	onunc	on (c) ះ	Soil pol	llution -	Role of ar	n individ	uariirp	nevenuo		r • •				<i>.</i> .
Unit -			nviron	nenta	l Mon	nitorin	ng											5	;
Sustai	- IV inability -thre oduction to E ention and co	ee pill EIA - ontrol	ars of : object of pollu	menta sustain ives o ition) a	I Mon nability of EIA act.	nitorin y- fact x - en	ng tors aff ivironm	fecting nent pr	environ	imental su	ustainabi	lity-ap	proache	s for	sust	ainab	ole de on) ac	5 velopn	i ner
Sustai - Intro (preve Unit –	inability -thre oduction to E ention and co	ee pill EIA - ontrol	ars of s object of pollu troduc	menta sustain ives o ition) a	I Mon hability of EIA act. o Biol	nitorin y- fact x - en logica	ng tors aff ivironm al Scie	fecting nent pr	environ rotection	nmental su n act – ai	ustainabi ir (preve	lity-ap	proache and cor	s for trol	sust	ainab ollutic	on) ao	5 velopn ct – w 5	ner ate
Sustai - Intro (preve Unit – Functi nucleu	inability -thre oduction to E ention and co	ee pill EIA - ontrol In pohyd	ars of s object of pollu troduc rates, I DNA - o	mental sustain ives o ition) a tion to ipids, p organiz	I Mon nability of EIA act. D Biol protei zation	itorin y- fact - en logica	ng tors aff avironm al Scie ad nucl NA in c	fecting nent pr ence leic aci cells - (environ rotection ids - Ce	nmental su n act – ai ells and its	ustainabi ir (preve s organe	lity-ap ention	proache and cor plasma	s for trol merr	sust of p	ainab ollutic ne, m	itocho	5 velopn ct – w 5 ondria	ner ate
Sustai - Intro (preve Unit – Functi nucleu	inability -thre oduction to E ention and co - V ions of Carbo us- Heredity	ee pill EIA - ontrol In pohyd	ars of s object of pollu troduc rates, I DNA - o	mental sustain ives o ition) a tion to ipids, p organiz	I Mon nability of EIA act. D Biol protei zation	itorin y- fact - en logica	ng tors aff avironm al Scie ad nucl NA in c	fecting nent pr ence leic aci cells - (environ rotection ids - Ce	nmental su n act – ai ells and its	ustainabi ir (preve s organe	lity-ap ention	proache and cor plasma	s for trol merr	sust of p	ainab ollutic ne, m	itocho	5 velopn ct – w 5 ondria	i ate an osi
Sustai - Intro (preve Unit – Functi nucleu & meio	inability -thre oduction to E ention and co - V ions of Carbo us- Heredity	ee pill EIA - ontrol In pohyd	ars of s object of pollu troduc rates, I DNA - o	mental sustain ives o ition) a tion to ipids, p organiz	I Mon nability of EIA act. D Biol protei zation	itorin y- fact - en logica	ng tors aff avironm al Scie ad nucl NA in c	fecting nent pr ence leic aci cells - (environ rotection ids - Ce	nmental su n act – ai ells and its	ustainabi ir (preve s organe	lity-ap ention	proache and cor plasma	s for trol merr	sust of p	ainab ollutic ne, m	itocho	5 velopn ct – w 5 ondria on- mit	i ate an osi
Sustai - Intro (preve Unit – Functi nucleu & meio	inability -thre oduction to E ention and co - V ions of Carbo us- Heredity a osis - Cell cy	ee pill EIA - ontrol In pohyd and l ycle a Kausł	ars of s object of pollu troduc rates, I DNA - o nd mol	menta sustain ives o ition) a tion to ipids, p organiz ecules	I Mon nability of EIA act. D Biol protei zation that c shik	hitorin y- fact - en logica ins an of DN contro	tors aft vironm al Scie nd nucl NA in c ol cell c "Envi	fecting nent pr leic aci cells - C cycle.	environ rotection ids - Ce Genes a ntal Sci	amental su a act – ai ells and its and chrom	ustainabi ir (preve s organe iosomes	ention ention elles - - Cell	proache and cor plasma division	s for trol mem Type	sust of p nbrar es of	ainab ollutio ne, m cell	on) ao itocho divisio	velopn ct – w ondria on- mit Tota	ner ate an osi
Sustai - Intro (preve Unit – Functi nucleu & meio	BOOK: Anubha K	ElA - ontrol In pohyd and l ycle a Kaust nal P SC, "C	ars of s object of pollu rates, I DNA - (nd mol ik, an t. Ltd., ells an	mental sustain ives o ition) a tion to ipids, p organiz ecules d Kau New I	I Mon nability of EIA act. D Biol protei zation that of shik Delhi,	hitorin y- fact - en logica ins an of DN contro C.P., 2018,	al Scie al Scie ad nucl NA in c ol cell c "Envi , for Un	fecting nent pr leic aci cells - (cycle. ronmer nit-I, II,	environ rotection ids - Ce Genes a ntal Sci III, IV.	imental su n act – ai ells and its and chrom	ustainabi ir (preve s organe nosomes d Engin	ention elles - - Cell eering	proache and cor plasma division ', 6th M	s for trol mem Type	sust of p nbrar es of	ainab ollutic ne, m cell o	itocho divisio	5 velopn ct – w 5 ondria on- mit Tota	ner ate an osi I:2
Sustai - Intro (preve Unit – Functi nucleu & meio TEXT 1. 2.	BOOK: Anubha K Internation	ElA - ontrol In pohyd and l ycle a Kaust nal P SC, "C	ars of s object of pollu rates, I DNA - (nd mol ik, an t. Ltd., ells an	mental sustain ives o ition) a tion to ipids, p organiz ecules d Kau New I	I Mon nability of EIA act. D Biol protei zation that of shik Delhi,	hitorin y- fact - en logica ins an of DN contro C.P., 2018,	al Scie al Scie ad nucl NA in c ol cell c "Envi , for Un	fecting nent pr leic aci cells - (cycle. ronmer nit-I, II,	environ rotection ids - Ce Genes a ntal Sci III, IV.	imental su n act – ai ells and its and chrom	ustainabi ir (preve s organe nosomes d Engin	ention elles - - Cell eering	proache and cor plasma division ', 6th M	s for trol mem Type	sust of p nbrar es of	ainab ollutic ne, m cell o	itocho divisio	5 velopn ct – w 5 ondria on- mit Tota	ner ate an osi I:2
Sustai - Intro (preve Unit – Functi nucleu & meio TEXT 1. 2.	BOOK: Anubha K Internation	ee pill EIA - ontrol In pohyd and l ycle a Kaust nal P SC, "C Unit-\ Unit-\	ars of s object of pollu rates, I DNA - (nd mol ik, an t. Ltd., ells an t.	mental sustain ives o ition) a tion to ipids, p organiz ecules d Kau New I d Mole	I Mon nability of EIA act. D Biol protei zation that c shik Delhi, ecular	C.P., 2018, 8 Biolo	al Scie al Scie ad nucl NA in c cl cell c "Envi , for Un pgy", 2 ^t	fecting nent pr ence leic aci cells - C cycle. ronmer nit-I, II,	environ rotection ids - Ce Genes a ntal Sci III, IV.	imental su n act – ai ells and its and chrom ience and	ustainabi ir (preve s organe nosomes d Engin Age Inte	elles - - Cell eering	proache and cor plasma division ', 6th M nal (P) L	s for trol mem Type	sust of p nbrar es of olou	ainab ollutic ne, m i cell (r Edi ublish	itocho divisio tion, ers, N	velopn ct – w pndria pn- mit Tota New D	an an os I:2

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the various natural resources and role of individual for its conservation	Understanding (K2)
CO2	elaborate the features of ecosystem and biodiversity to find the need for conservation.	Understanding (K2)
CO3	manipulate the sources, effects and control methods of various environmental pollution.	Applying (K3)
CO4	make use of the knowledge of EIA and environmental legislation laws towards sustainability.	Applying (K3)
CO5	explain the functions of carbohydrates, lipids, proteins, nucleic acids, Cells and its organelles	Understanding (K2)

	Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	2	1					3								
CO2	2	1					3								
CO3	3	2	1				3								
CO4	3	2	1				3								
CO5	3	1													
1 – Slight, 2	- Mode	rate, 3 –	Substant	ial, BT- l	Bloom's	Taxono	my								

	ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	25	35	40				100							
CAT2	25	35	40				100							
CAT3	NA													
ESE	NA													
* ±3% may be varied (CAT 1, 2 – 50 marks	3)												

			(0	Common to	o All Engin	eering and	Technolog	y Branch	es)				
Program Branch	ime &	All B.E.	./B.Tech B	ranches		-	Se	m.	Category	L	т	Р	Credit
Prerequi	isites	Nil					3 /	/ 4	HS	0	0	2	1
Preamble	e		urse is desi ional comm			ssary skills	to listen, s	peak, rea	d and write	in order	r to ob	tain be	tter
LIST OF	EXPERIN	IENTS / E	XERCISES	:									
1.	Self I	ntroductio	n & Mock II	nterview									
2.	Job	Applicatio	n letter with	Resume									
3.	Pres	entation: A	Technical	topic / Pro	ject report	& a Case	study						
4.	Situa	tional Dial	ogues / Tel	ephonic C	conversatio	ons							
5.	Grou	p Discussi	ion										
6.	Read	ling Aloud											
7.	Liste	ning Comp	prehension										
8.	Writin	ng Compa	ny Profiles										
9.	Prep	aring revie	ews of a bo	ok/produc	. /:								
				onpiouuc	t/movie								
10. REFERE		unciation											Total: :
REFERE 1.	NCES/ M	ANUAL /S	Test OFTWARE anual	: :									Total: :
REFERE	NCES/ M	unciation T ANUAL /S oratory Ma	Test GOFTWARE	: :									Total: 3
REFERE 1. 2. COURSE	NCES/ MA	ANUAL /S oratory Ma Il Digital L MES:	Test C OFTWARE anual anguage La	E: ab Softwar	'e							apped	
REFERE 1. 2. COURSE	E OUTCOI	ANUAL /S oratory Ma II Digital L MES: the cours	Test OFTWARE anual	ab Softwar	re be able to					(H Und	lighes lerstar	st Leve	I) <2),
REFERE 1. 2. COURSE On comp	NCES/ MA Lab Ore E OUTCOI pletion of enha	ANUAL /S oratory Ma II Digital L MES: the cours nce effecti	Test COFTWARE anual anguage La se, the stuc	E: ab Softwar lents will g and read	'e be able to ing skills		education			(H Und I A	lighes lerstar mitatic Applyir	st Leve	I) (2),
REFERE 1. 2. COURSE On comp CO1	NCES/ M/ Lab Ore COUTCOI Diletion of enha acqu	ANUAL /S oratory Ma II Digital L MES: the cours nce effecti ire profess	Test COFTWARE anual anguage La se, the stuc ive listening	E: ab Softwar lents will g and read required fo	re be able to ing skills or workplac	ce/higher e				(H Und I A Nat	lighes lerstar mitatio Applyir turaliza Applyir	nding (Hong (Hong (K3) ng (K3)	I) (2), (55)
REFERE 1. 2. COURSE On comp CO1 CO2	NCES/ M/ Lab Ore COUTCOI Diletion of enha acqu	ANUAL /S oratory Ma II Digital L MES: the cours nce effecti ire profess	Test COFTWARE anual anguage La se, the stuc ive listening sional skills	E: ab Softwar lents will g and read required for s effective	re be able to ing skills or workplaa ly in variou	ce/higher e				(H Und I A Nat	lighes lerstar mitatio Applyir turaliza Applyir	t Leve nding (H on (S1) ng (K3) ation (S ng (K3)	<2), , , , , , , , , , , , , , , , , , ,
REFERE 1. 2. COURSE On comp CO1 CO2	NCES/ M/ Lab Ore COUTCOI Diletion of enha acqu	ANUAL /S oratory Ma II Digital L MES: the cours nce effecti ire profess	Test COFTWARE anual anguage La se, the stuc ive listening sional skills	E: ab Softwar lents will g and read required for s effective	re be able to ing skills or workplaa ly in variou	ce/higher e	S	60s	PO9	(H Und I A Nat	lighes lerstar mitatio Applyir turaliza Applyir rticulat	t Leve nding (H on (S1) ng (K3) ation (S ng (K3)	I) (2), (55)
REFERE 1. 2. COURSE On comp CO1 CO2 CO3 CO3	ENCES/ M/ Lab Ore EOUTCOI Detion of enha acqu use E	ANUAL /S oratory Ma Il Digital L MES: the cours nce effecti ire profess English lan	Test OFTWARE anual anguage La se, the stuc ive listening sional skills nguage skill	E: ab Softwar lents will g and read required for s effective Ma	re be able to ing skills or workpla ly in variou pping of C	ce/higher e is situation COs with P	s P Os and P \$		PO9 2	(H Und I A Nat A	lighes lerstar mitatio Applyir turaliza Applyir rticulat	st Leven nding (Kon (S1) ng (K3) ation (S ng (K3) tion (S4	I) (2), (55) (4)
REFERE 1. 2. COURSE On comp CO1 CO2 CO3 CO3 COs/ POs	ENCES/ M/ Lab Ore EOUTCOI Detion of enha acqu use E	ANUAL /S oratory Ma Il Digital L MES: the cours nce effecti ire profess English lan	Test OFTWARE anual anguage La se, the stuc ive listening sional skills nguage skill	E: ab Softwar lents will g and read required for s effective Ma	re be able to ing skills or workpla ly in variou pping of C	ce/higher e is situation COs with P	s P Os and P \$			(H Und A Nat A A P010	lighes lerstar mitatio Applyir turaliza Applyir rticulat	st Leven nding (Kon (S1) ng (K3) ation (S ng (K3) tion (S4	I) (2), (5) (4) PO1

	(0.	22MAT41- NUMERICAL METHODS FOR E			.			
_	•	mmon to Civil, Mechanical, Mechatronics, Automobile and	d Food I	echnology E	sran	ches	5)	
Progra Branch	mme & ז	BE - Civil, Mechanical, Mechatronics, Automobile and BTech - Food Technology Branches	Sem.	Category	L	Т	Р	Credit
Prereq	uisites	Nil	4	BS	3	1	0	4
Pream	ble	To impart knowledge in interpolation, numerical differentiation numerical algorithms to identify roots of algebraic and transf equations, ordinary and partial differential equations.						
Unit –	I	Solution to Algebraic and Transcendental Equations:						9+3
methoo methoo	ds: Gauss ds.	 Method of false position – Newton-Raphson method – So elimination method and Gauss – Jordan method – Iterative 						
Unit –	II	Interpolation:						9+3
formula	ae: Gauss f	equal intervals: Newton's forward and backward difference orward and backward interpolation formulae – Interpolation w s divided difference formula.						
Unit –	111	Numerical Differentiation and Integration:						9+3
Differer	ntiation usi	ng Newton's forward, backward and divided difference formul	ae – Nur	nerical integr	atior	n: Tra	apezo	idal rule -
		e – Simpsons 3/8th rule – Double integrals using Trapezoidal a					•	
Unit –		Numerical Solution of First order Ordinary Differential E						9+3
		ds: Taylor series method - Euler method - Modified Euler r	۔ ام مائد ما					
	ep method	s: Milne's predictor corrector method – Adam's Bashforth method		- Fourth orde	r Ru	nge-	Kutta	method -
Unit –				- Fourth orde	r Ru	nge-	Kutta	method – 9+3
Unit – Solutio	V n of one of	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence	nod. relation	– Crank – 1	Vicol	son		9+3
Unit – Solutio	V n of one of	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE:	nod. relation	– Crank – 1 f Poisson equ	Vicol Jatio	son n.	meth	9+3
Unit – Solutio	N n of one o sional wave	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence	nod. relation	– Crank – 1 f Poisson equ	Vicol Jatio	son n.	meth	9+3 od – One
Unit – Solution dimens	N of one	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence	relation Solution o	– Crank – N f Poisson equ Lecture: 4	Nicol Jatio 15, T	son n. ⁻ utor	meth ial:15	9+3 od – One
Unit – Solutio dimens TEXT E	N of one	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence equation – Solution of two dimensional Laplace equations – S	relation Solution o	– Crank – N f Poisson equ Lecture: 4	Nicol Jatio 15, T	son n. ⁻ utor	meth ial:15	9+3 od – One
Unit – Solutio dimens TEXT E	V n of one o sional wave BOOK: Veeraraja RENCES:	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence equation – Solution of two dimensional Laplace equations – S n T, Ramachandran T., "Numerical Methods", 1 st Edition, McG Rao. K., "Numerical Methods for Scientists and Engineers", 3	relation Golution o	– Crank – N <u>f Poisson eq</u> u Lecture: 4 Education, Ch	Nicol uatio 15, T enna	son n. `utor ai, 20	meth ial:15	9+3 od – One 5, Total:60
Unit – Solution dimens TEXT E 1. REFER	V n of one of sional wave BOOK: Veeraraja RENCES: Sankara F Delhi, 200 Steven C. 2014.	s: Milne's predictor corrector method – Adam's Bashforth method Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence equation – Solution of two dimensional Laplace equations – S n T, Ramachandran T., "Numerical Methods", 1 st Edition, McG Rao. K., "Numerical Methods for Scientists and Engineers", 3 7. Chapra, Raymond P. Canale., "Numerical Methods for Er	relation Solution o raw Hill E r rd Edition	– Crank – N <u>f Poisson equ</u> Lecture: Education, Ch , Prentice Ha , 7 th Edition,	Nicol uatio 45, T enna all of McC	son n. Tutor ai, 20 India Graw	meth ial:15 019.	9+3 od – One 5, Total:60 . Ltd, New
Unit – Solution dimens TEXT E 1. REFER 1.	V n of one of sional wave BOOK: Veeraraja RENCES: Sankara F Delhi, 200 Steven C. 2014.	s: Milne's predictor corrector method – Adam's Bashforth meth Solutions of Boundary Value Problems in PDE: dimensional heat equation – Bender –Schmidt recurrence equation – Solution of two dimensional Laplace equations – S n T, Ramachandran T., "Numerical Methods", 1 st Edition, McG Rao. K., "Numerical Methods for Scientists and Engineers", 3 7.	relation Solution o raw Hill E r rd Edition	– Crank – N <u>f Poisson equ</u> Lecture: Education, Ch , Prentice Ha , 7 th Edition,	Nicol uatio 45, T enna all of McC	son n. Tutor ai, 20 India Graw	meth ial:15 019.	9+3 od – One 5, Total:60 . Ltd, New

		OUTCO tion of		irse, the s	studen	ts will b	e able t	0					(BT Mapp Highest L	
CO1	арр	ly vario	us num	erical tech	niques	to solve	algebra	ic and t	ransce	endenta	l equatio	ons.		Applying	(K3)
CO2	per	form int	erpolatio	on on give	en data	using sta	andard r	numeric	al tech	niques.				Applying	(K3)
CO3	und	lerstand	d the cor	ncepts of r	numeri	cal differe	entiatior	and in	tegrati	on				Applying	(K3)
CO4	com	npute th	ne soluti	on of first	order c	ordinary o	lifferenti	al equa	tions b	y nume	rical tec	hniques		Applying	(K3)
CO5	app	ly vario	ous num	erical tech	niques	for solvi	ng part	ial diffe	rential	equatio	ns.			Applying	(K3)
						Mappin	g of Co	s with	POs a	nd PSO	S				
Cos/F	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1											
CO	2	3	2	2											
CO	3	3	3	2											
CO	4	3	2	1											
CO	5	3	3	3											
1 – Sli	ight, 2	2 – Mod	lerate, 3	– Substa	ntial, B	T- Bloom	ı's Taxo	nomy							
						ASSES	SMENT	ΡΔΤΤΡ	RN _	THEOR	Y				
	st / Bl ateg	oom's	Re	memberi (K1) %	ng	Jndersta (K2)	anding	Apply (K3)	/ing	Analyz (K4)	ing	Evaluating (K5) %		reating (K6) %	Tota %
U	CAT			10		10		80		-	/0	-	\	-	100
	CAT			10		10		80		-		-		-	100
	CAT			10		10		80		-				_	100
	ESE			10		10		80		-		-		-	100
* +3%			ed (CAT	1,2,3 – 5	0 mark	-					1				

	(Common to Civil, Mechanical, Chemic	al & Automobile	Engineering l	oranc	hes)		
Programme &	BE- Civil, Mechanical, Automobile &	Sem.	Category	L	Т	Р	Credit
Branch Prerequisites	BTech – Chemical Engineering branches Problem Solving and Programming in C	3/4	ES	3	0	2	4
Terequisites	Troolem Solving and Trogramming in C	5/4	Lo		v	-	•
Preamble	This course deals with core python programming. It gives a constructs and libraries.	comprehensive in	troduction to p	oroble	m sol	ving usi	ng python
Unit – I	Introduction:						9
types – input opera	rategies – program design tools – Types of errors – Testing and I tion – comments – reserved words – indentation – Operators and action – conditional statement – iterative statements – Nested Lo	Expressions – De	cision Control				
Unit – II	Lists, Tuples and Dictionary:						9
assignments, return	ate, nested, cloning, operations, methods, comprehensions, loc ning multiple values, nested tuples, index and count method -1 shods -1 st vs tuple vs dictionary.						
Unit – III	Strings and Regular Expressions:						9
	tion, append, multiply on strings – Immutable – formatting op ors – comparing – iterating – string module – Regular Expres						
Unit – IV	Functions and Modules:						9
	ction – definition – call – variable scope and lifetime – return sta ing practices recursive function- Modules: Modules – packages						uocumentati
Unit – V	Object Orientation:				1:		9
	Class and objects – class methods and self – constructor – class a NumPy Arrays – Computation on NumPy Arrays. Matplotlib : L			– pub	lic an	a privai	e data
	IMENTS / EXERCISES:						
	using conditional and looping statements						
2. Implemen	tation of list and tuple operations						
3. Implemen	atation of dictionary operations						
4. Perform v	arious string operations						
5. Use regul	ar expressions for validating inputs						
6. Demonstr	ation of different types of functions and parameter passing						
7. Develop j	programs using classes and objects						
Q Doutours	omputation on Numpy arrays						
8. Perform c	omputation on rampy analys						
	erent types of plots using Matplotlib						
			Le	cture	:45, P	ractica	ıl:30, Total:
9. Draw diff TEXT BOOK:		3 rd impression, Ox					
9. Draw diff TEXT BOOK: 1. Reema Th	erent types of plots using Matplotlib	3 rd impression, Ox					
9. Draw diff TEXT BOOK: 1. 1. Reema Therefore REFERENCES/ Note	erent types of plots using Matplotlib nareja., "Python Programming using problem solving approach",	• • •	ford Universit				

2.		Vander on, 2016		Python D	ata Scier	nce Han	dbook E	ssential	Tools	for Worl	king with	Data", O'	Reilly Pu	blishers,	1 st
		TCOM n of the		the studen	ts will b	e able to								BT Maj (Highest l	
CO1	use b	asic Pyt	hon const	tructs to bu	ild simp	le progra	ms							Applying Precision	
CO2	apply	/ list, tuj	ple, and d	ictionary to	o handle	a variety	of data.							Applying Precision	
CO3	apply	/ strings	and regu	lar express	ions for s	searching	g and reti	rieval						Applying Precision	
CO4	solve	the pro	blems usi	ng functio	ns and m	odules.								Applying Precision	
CO5	apply	v object-	-oriented of	concepts a	nd perfor	m basic o	data scie	nce oper	ations u	ising Pytł	ion			Applying Precision	
						Maj	pping of	Cos wit	h POs	and PSO	s				
Cos/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1	1										
CO	2	3	2	1	1										
CO	3	3	2	1	1										
CO	4	3	2	1	1										
CO	5	3	2	1	1										
1 – Slig	ght, 2 –	Modera	ate, 3 – Su	bstantial,	BT- Bloo	om's Taxo	onomy								
-						ASSE	SSMEN	T PAT	FERN -	- THEOI	RY				
	t / Bloo Categoi	~	Re	memberin (K1) %	ig U	Inderstan (K2)		Apply (K3)		Analyzii (K4) 9	0	Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		10		15		75	5						100
	CAT	2		10		15		75							100
	CAT			10		15		75							100
	ESE			10		15		75	5						100

22AUC41- AUTOMOTIVE ELECTRICAL SYSTEMS AND DRIVES

Brand	ramme & ch	В.	E. – Aut	omobile	e Engine	ering			Sem	-	Category	L	т	Ρ	Credit
	quisites	Ва	sics of	Electric	al and E	Electronic	: Circuits		4		PC	3	0	2	4
									I				1		1
Prear	nble		is cours ategies.	e provid	es know	ledge on a	automobile	e wiring, ch	arging and	sta	rting system	s wi	h var	ious (control
Unit -	-1	EI	ectrical	Wiring	and Cor	nponents	:								9
– DOI	uction – Elec L Starter – M w circuit and	ctrical 1CB –	wiring, te Fuses –	erminals - Timer	and swi - Counte	itching de	vices. Out								
Unit -	- 11	C	arging	and Sta	rting Sy	vstem:									9
starte	irements of c r motor- type: ing and troub	es – Ir	egrated												
Unit -		1	nition S	ystem:											9
	eto coil ignition ce and retard	ion sy	stem - E	Battery of						Dis	tributor less	igni	tion s	syster	ns - Spar
Unit -					Devices										9
and s	ept of Power witching char R – DIAC – T	racter	stics of	Power c											
Unit -	- V														
Introd AC in	uction - DC t duction moto and control -	to DC or and	convert control	otor Dri ers – Bo - BLDC	oost con contor	and contr	ol - Plug i	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	9 Onvertors rol - Serv
Introd AC in Motor LIST	uction - DC t duction moto and control - OF EXPERIN	to DC or and - Perr MENT	convert control nanent M	otor Dri ers – Bo - BLDC lagnet S RCISES	bost con motor Synchror	and contr nous Moto	ol - Plug i	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor LIST 1.	uction - DC t duction moto and control - OF EXPERIN Design an	to DC or and - Perr MENT nd dev	convert control nanent M S / EXE elopmer	otor Dri ers – Bc - BLDC 4agnet S RCISES at of ligh	bost con c motor Synchror : ting circu	and contr nous Moto	ol - Plug i r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor LIST 1. 2.	uction - DC t duction moto and control - OF EXPERIN Design an Design an	to DC or and - Perr MENT nd dev nd dev	convert control nanent M 6 / EXE elopmer elopmer	otor Dri ers – Bc - BLDC lagnet S RCISES at of ligh at of hor	bost con c motor Synchror : ting circu	and contr nous Moto uits and tuning	ol - Plug i r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in <u>Motor</u> LIST 1. 2. 3.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Design an	to DC or and - Perr MENT nd dev nd dev nd imp	convert control nanent M 6 / EXE elopmer elopmer	otor Dri ers – Bc - BLDC lagnet S RCISES at of ligh at of horn tion of w	bost con control contr	and contr nous Moto uits and tuning tor circuit	ol - Plug i r and conf	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor LIST 1. 2. 3. 4.	uction - DC t duction moto and control - OF EXPERIN Design an Design an	to DC or and - Perr MENT nd dev nd dev nd imp	convert control nanent M 6 / EXE elopmer elopmer ementa mentatio	otor Dri ers – Bc - BLDC Magnet S RCISES at of ligh at of horn tion of w on of por	bost con motor Synchror ting circu n circuit viper mot wer winc	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor 1. 2. 3. 4. 5. 6.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Design an Hardware	to DC or and - Perr MENT nd dev nd dev nd imple imple	convert control nanent M S / EXE elopmer ementa mentatio ementa	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of horn tion of w on of pov tion of c	bost con motor Synchror ting circu n circuit viper mot wer winc	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7.	uction - DC t duction moto and control - OF EXPERIM Design an Design an Hardware Design an Performan Speed cor	to DC or and - Perr MENT nd dev nd dev nd imp e imple nd imp nce te ntrol o	convert control hanent M S / EXE elopmer elopmer ementation ementation bar f DC mc	otor Dri ers – Bc - BLDC Aagnet S RCISES at of ligh at of horn tion of wo on of pow tion of c teries tor	bost con construction construct	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8.	uction - DC t duction moto and control - OF EXPERIM Design an Design an Hardware Design an Performan Speed cor Speed cor	to DC or and - Perr MENT nd dev nd dev nd imp e imple nd imp nce te ontrol control of	convert control hanent M S / EXE elopmer elopmer ementation ementation f DC mo f Inducti	otor Dri ers – Bc - BLDC Aagnet S RCISES at of ligh at of horn tion of wo on of pow tion of c teries tor on moto	bost con construction construct	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor	to DC or and - Perr MENT nd dev nd imp imple imple nd imp nce te introl c introl c	convert control aanent M S / EXE elopmer elopmer ementation ementation ementation f DC mod f Inducti f BLDC	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of hom tion of wo on of poor tion of c teries tor on moto motor	oost con Synchror ting circut n circuit viper mot wer winc entral loo	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor	and	Cont	onvertors
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9.	uction - DC t duction moto and control - OF EXPERIM Design an Design an Hardware Design an Performan Speed cor Speed cor	to DC or and - Perr MENT nd dev nd imp imple imple nd imp nce te introl c introl c	convert control aanent M S / EXE elopmer elopmer ementation ementation ementation f DC mod f Inducti f BLDC	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of hom tion of wo on of poor tion of c teries tor on moto motor	oost con Synchror ting circut n circuit viper mot wer winc entral loo	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper Motors	lotor and		Cont	onvertors rol - Serv
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor	to DC or and - Perr MENT nd dev nd imp imple imple nd imp nce te introl c introl c	convert control aanent M S / EXE elopmer elopmer ementation ementation ementation f DC mod f Inducti f BLDC	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of hom tion of wo on of poor tion of c teries tor on moto motor	oost con Synchror ting circut n circuit viper mot wer winc entral loo	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper N	lotor and		Cont	onvertors rol - Serv
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor	to DC or and - Perr MENT nd dev nd imp imple imple nd imp nce te introl c introl c	convert control aanent M S / EXE elopmer elopmer ementation ementation ementation f DC mod f Inducti f BLDC	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of hom tion of wo on of poor tion of c teries tor on moto motor	oost con Synchror ting circut n circuit viper mot wer winc entral loo	and contr nous Moto uits and tuning tor circuit low circuit	ol - Plug r and cont	in battery of	charger des	ign	. Stepper Motors	lotor and		Cont	onvertors rol - Serv
Introd AC in Motor LIST 1. 2. 3. 4. 5. 5. 6. 7. 3. 3. 9. 10. TEXT	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor Speed cor Speed cor BOOK: Tom Dento	to DC or and - Perr MENT nd dev nd dev nd imple imple imple imple imple nce te introl c introl c introl c	convert control anent N S / EXE elopmer elopmer ementation ementation ementation f DC mo f Inducti f BLDC f Self Re utomobi	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of horn tion of w on of pov tion of c teries tor on moto motor eluctanc	cost con construction construct	and contr nous Moto and tuning tor circuit low circuit cking circu	ol - Plug i r and cont g uit c Systems	in battery of trol and Sw	on, Routled	ge,	. Stepper M nce Motors	lotor and 	and contro raction , 201	Cont bl. cal:3	Divertors rol - Serv D, Total:7 Unit I,II,III
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. TEXT 1.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor Speed cor Speed cor BOOK: Tom Dento	to DC or and - Perr MENT nd dev nd dev nd imple imple imple imple imple nce te introl c introl c introl c	convert control anent N S / EXE elopmer elopmer ementation ementation ementation f DC mo f Inducti f BLDC f Self Re utomobi	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of horn tion of w on of pov tion of c teries tor on moto motor eluctanc	cost con construction construct	and contr nous Moto and tuning tor circuit low circuit cking circu	ol - Plug i r and cont g uit c Systems	in battery of trol and Sw	on, Routled	ge,	Lecture:4	lotor and 	and contro raction , 201	Cont bl. cal:3	D, Total:7
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. TEXT 1. 2.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Hardware Design an Performan Speed cor Speed cor Speed cor Speed cor BOOK: Tom Dento Rashid M.	to DC or and - Perr MENT nd dev nd dev nd imp mod imp nce te ontrol co ntrol co ntrol co ntrol co ntrol co	convert control aanent M S / EXE elopmer ementationementationementation ementationementationementation f DC mcc f Inductif f BLDC f Self Ro f Self Ro utomobio	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of hom tion of wo on of por tion of c teries tor on moto motor eluctanc	e motor e motor r circal and circuit	and contr nous Moto and tuning tor circuit low circuit cking circu	ol - Plug i r and cont g uit c Systems	in battery of trol and Sw	on, Routled	ge,	. Stepper M nce Motors	lotor and 	and contro raction , 201	Cont bl. cal:3	Divertors rol - Serv D, Total:7 Unit I,II,III
Introd AC in Motor 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. TEXT 1. 2.	uction - DC t duction moto and control - OF EXPERIN Design an Design an Design an Hardware Design an Performan Speed cor Speed cor Speed cor Speed cor BOOK: Tom Dento Rashid M.I Unit IV,V	to DC or and - Perr MENT nd dev nd dev nd imple imple imple imple imple introl co introl co intr	convert control hanent M S / EXE elopmer elopmer ementation ementation f DC mod f Inducti f BLDC f Self Re utomobil ower Elo	otor Dri ers – Bc - BLDC Aggnet S RCISES at of ligh at of horn tion of wo tion of co teries tor on moto motor eluctanc le Electri ectronics	e motor r circal and circuit circuit ciper motor r circal and circuit ciper motor	and contr nous Moto uits and tuning tor circuit low circuit cking circuit cking circuit cking circuit cking circuit cking circuit cking circuit	ol - Plug i r and cont g uit c Systems and Appl	in battery of trol and Sw	on, Routled	ge,	. Stepper M nce Motors	lotor and is, P	and contro raction , 201' New	Cont bl. cal:30 7 for Delhi	Divertors rol - Serv D, Total:7 Unit I,II,III

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design and implement electrical circuits for automotive applications	Applying (K3), Precision (S3)
CO2	illustrate the circuit diagram for the starting and charging systems with the characteristics of the starter motor and alternator.	Understanding (K2), Precision (S3)
CO3	explain the various ignition systems with advance and retard mechanisms.	Understanding (K2), Precision (S3)
CO4	describe various power electronic devices with their characteristics and functions.	Understanding (K2), Precision (S3)
CO5	demonstrate different types of electric motors with different control strategies.	Applying (K3), Precision (S3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1					1	3	2		2	1	3
CO2	3	3	1					1	3	2		2	1	3
CO3	3	3	1					1	3	2		2	1	3
CO4	3	3	1					1	3	2		2	1	3
CO5	3	3	1					1	3	2		2	1	3

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	80					100
CAT3	20	50	30				100
ESE	10	55	35				100

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

Dreasamme º	22AUT41 – VEHICLE COMPO	NENIS DESIGN - I		1	1		
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	22AUT11 - Statics and Dynamics	4	PC	3	0	0	3
Preamble	This course provides knowledge on construction, w	vorking and design of	chassis and	its s	ub sy	stems	5.
Unit – I	Chassis and Frames:						9
	vehicles. Frame construction – conventional - integral assis construction - Types of chassis layout based on		e - material -	load	d acti	ng - s	election c
Unit – II	Suspension System:						9
	orung weight – Functions of suspension system – Type ock absorbers - Mono tube - twin tube - Independe ension system.						
Unit – III	Design of Vehicle Frame and Suspension:						9
	resses on frame members – Design of frame for com of torsion bar.	nmercial vehicles – [Design of leat	f spr	ings ·	- Des	ign of co
spring – Design o Unit – IV	of torsion bar. Front axle and Steering system:		-		0		9
spring – Design o Unit – IV Front axle and s Mechanism. Uno	of torsion bar.	I wheel balancing. S	teering geom	etry	- Acl	kerma	9 n steering
spring – Design o Unit – IV Front axle and s Mechanism. Uno power steering.	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and	I wheel balancing. S	teering geom	etry	- Acl	kerma	9 n steering
spring – Design o Unit – IV Front axle and s Mechanism. Uno power steering. Unit – V Bearing load on	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and lersteer and oversteer – Factors affecting understeer	I wheel balancing. S r and oversteer. Ste ections of front axle	teering geom ering gearbo – Design of	etry xes	- Acl – Typ	kerma Des –	9 n steering Hydraulio 9
spring – Design o Unit – IV Front axle and s Mechanism. Uno power steering. Unit – V Bearing load on	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and lersteer and oversteer – Factors affecting understeel Design of front axle and Steering system: the front axle – Moments and stresses at different si	I wheel balancing. S r and oversteer. Ste ections of front axle	teering geom ering gearbo – Design of	etry xes	- Acl – Typ	kerma Des –	9 n steering Hydraulio 9
spring – Design o Unit – IV Front axle and s Mechanism. Uno power steering. Unit – V Bearing load on	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and lersteer and oversteer – Factors affecting understeel Design of front axle and Steering system: the front axle – Moments and stresses at different si	I wheel balancing. S r and oversteer. Ste ections of front axle	teering geom ering gearbo – Design of	etry xes	- Acl – Typ	kerma Des –	9 n steering Hydraulio 9 n. Turning
spring – Design o Unit – IV Front axle and s Mechanism. Uno power steering. Unit – V Bearing load on Circle Radius– A TEXT BOOK:	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and lersteer and oversteer – Factors affecting understeer Design of front axle and Steering system: the front axle – Moments and stresses at different s ckermann linkage Geometry – Analytical Solution – Steer I Singh, "Automobile Engineering Volume 1 ", 14th Edi	I wheel balancing. S r and oversteer. Ste ections of front axle eering Gear box – De	teering geom ering gearbo – Design of termination o	front	- Acl – Tyl t axle ar Ra	kerma bes – bean tio.	9 n steerinş Hydraulio 9 n. Turninş Total:4
spring – Design of Unit – IV Front axle and s Mechanism. Unc power steering. Unit – V Bearing load on Circle Radius– A TEXT BOOK: 1. Dr. Kirpa Units-I,II	of torsion bar. Front axle and Steering system: tub axle – Types. Importance of wheel alignment and lersteer and oversteer – Factors affecting understeer Design of front axle and Steering system: the front axle – Moments and stresses at different s ckermann linkage Geometry – Analytical Solution – Steer I Singh, "Automobile Engineering Volume 1 ", 14th Edi	I wheel balancing. S r and oversteer. Ste ections of front axle pering Gear box – De tion, Standard Publis	teering geom ering gearbo – Design of termination o	front f Ge ors,	- Acl – Tyl t axle ar Ra	kerma bes – bean tio.	9 n steerin Hydrauli 9 n. Turnin Total:4
spring – Design of Unit – IV Front axle and s Mechanism. Uncopower steering. Unit – V Bearing load on Circle Radius– A TEXT BOOK: 1. Dr. Kirpa Units-I,II 2. Giri N.K.	Front axle and Steering system: Interfere to the system of the	I wheel balancing. S r and oversteer. Ste ections of front axle pering Gear box – De tion, Standard Publis	teering geom ering gearbo – Design of termination o	front f Ge ors,	- Acl – Tyl t axle ar Ra	kerma bes – bean tio.	9 n steerin Hydrauli 9 n. Turnin Total:4
spring – Design of Unit – IV Front axle and s Mechanism. Unc power steering. Unit – V Bearing load on Circle Radius– A TEXT BOOK: 1. Dr. Kirpa Units-I,II 2. Giri N.K. REFERENCES:	Front axle and Steering system: Interfere to the system of the	I wheel balancing. S r and oversteer. Ste ections of front axle eering Gear box – De tion, Standard Publis tions, New Delhi, 202	teering geom ering gearbo – Design of termination o hers Distribut 20. Units-III,V	front f Ge ors,	- Acl – Tyl t axle ar Ra	kerma bes – bean tio.	9 n steerin Hydrauli 9 n. Turnin Total:4

		UTCON		se, the stu	udent	s will be a	ble to						(BT Mapp Highest L	
CO1	sum	nmarize	the cons	truction ar	nd sele	ection of c	ross sec	ction for	chassi	s frame.			Ur	Iderstandi	ng (K2)
CO2	exp	lain the	construc	tion and w	orking	of suspe	nsion sy	stems a	and the	ir types.			Ur	derstandi	ng (K2)
CO3	des	ign of cl	nassis fra	ame and s	uspen	sion spring	gs of an	automo	bile.					Applying	(K3)
CO4	Illus	strate co	onstructio	n and wor	king o	f front axle	e and ste	eering s	ystem.				Ur	derstandi	ng (K2)
CO5	des	ign fron	t axle an	d steering	syster	m of an au	tomobil	e.						Applying	(K3)
						Mapping	g of CO	s with I	POs ar	nd PSOs	5				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2				1						2	3	
CO	2	3	2				1						2	3	
CO	3	3	3	3	2		1						2	3	
CO	4	3	2				1						2	3	
CO	5	3	3	3	2		1						2	3	
1 – Slig	ght, 2	– Mode	erate, 3 -	Substanti	al, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN - T	HEORY					
	st / Bl Categ	oom's ory*	Re	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyzi (K4) %	•	Evaluating (K5) %		reating (K6) %	Total %
	CAT	۲1		20		80									100
	CAT	[2		20		20		60)						100
	CAT	ГЗ		20		40		40)						100
	ES	E		10		60		30)						100

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	4	PC	3	0	0	3
			I				L
Preamble	This course provides knowledge about the concept automobiles	pts of control sys	ems and aut	oma	tic tra	ansmi	issions for
Unit – I	Mathematical Modeling of Systems						9
	osed loop systems - System poles and zeros – order and Electro mechanical systems - Block diagram reduc						
Unit – II	System Response and Stability Analysis						9
plots - Frequency	 Response for step, ramp and impulse signals. Second domain specifications - Bode plot – System stability - F actions - Tuning rules 						
Unit – III	Hydrodynamic and Hydrostatic Transmissions						9
various types of n	ydrostatic systems and their applications – Principles c					andli	
Construction and v Unit – IV Continuously Vari structure and pulle system. Dual Clut	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key compor eys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a	nents – Types an - VBS based cont	d operations rol system – S	of a Serv	typi o me	cal C chani	9 VT – Belt sm control
Construction and v Unit – IV Continuously Vari structure and pulle	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key compor eys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a	nents – Types an - VBS based cont	d operations rol system – S	of a Serv	typi o me	cal C chani	9 VT – Belt sm control
Construction and v Unit – IV Continuously Vari structure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key comporelys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a ons.	nents – Types an - VBS based cont applications - Dry I V transmissions: Archit	d operations rol system – S Dual Clutch T Automatic ge ectures of hy	of a Serv rans arbo	typi o me missi ox ba elect	cal C chani ons - ised ric dr	9 VT – Belt sm control Wet Dual Wet Dual 9 two-speed ivetrains - ive trains.
Construction and v Unit – IV Continuously Vari structure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key compore eys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a ons. EV and HEV Transmissions s: Single-speed EV transmission - Multiple ratio EV Planet gear based two-speed transmission. HEV transmission	nents – Types an - VBS based cont applications - Dry I V transmissions: Archit	d operations rol system – S Dual Clutch T Automatic ge ectures of hy	of a Serv rans arbo	typi o me missi ox ba elect	cal C chani ons - ised ric dr	9 VT – Belt sm control Wet Dual wet Dual 9 two-speed ivetrains - ive trains.
Construction and v Unit – IV Continuously Vari structure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and Series hybrid elect TEXT BOOK:	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key compore eys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a ons. EV and HEV Transmissions s: Single-speed EV transmission - Multiple ratio EV Planet gear based two-speed transmission. HEV transmission	nents – Types an - VBS based cont applications - Dry I / transmissions: nsmissions: Archit pupling and Speed	d operations rol system – S Dual Clutch T Automatic ge actures of hy coupling of hy	of a Serv rans arbc brid vbrid	a typi o me missi ens ba elect elect	cal C chani ions - ised ric dr tric dr	9 VT – Belt sm control Wet Dual 9 two-speed ivetrains - ive trains. Total: 45
Construction and v Unit – IV Continuously Varistructure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and Series hybrid elect TEXT BOOK: 1. Salivahan	Working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key comporences cVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a ons. EV and HEV Transmissions s: Single-speed EV transmission - Multiple ratio EV Planet gear based two-speed transmission. HEV transmission tric drive - Parallel hybrid electric drivetrains - Torque-complexity	nents – Types an - VBS based cont applications - Dry I V transmissions: nsmissions: Archit pupling and Speed-	d operations rol system – S Dual Clutch T Automatic ge ectures of hy coupling of hy ring. Pearson,	of a Serv rans arbc brid /brid 201	t typi o me missi x ba elect elect	cal C chanic ions - ised ric dr tric dr	9 VT – Belt sm control Wet Dual 9 two-speed ivetrains - ive trains. Total: 45
Construction and v Unit – IV Continuously Varistructure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and Series hybrid elect TEXT BOOK: 1. Salivahan 2. Yi Zhang	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key comporences cys - CVT control system design and operation control ch Transmissions (DCT) - Layouts, components and a ons. EV and HEV Transmissions s: Single-speed EV transmission - Multiple ratio EV Planet gear based two-speed transmission. HEV transtric drive - Parallel hybrid electric drivetrains - Torque-co an, S., R. Rengaraj, and G. R. Venkatakrishnan. Control	nents – Types an - VBS based cont applications - Dry I V transmissions: nsmissions: Archit pupling and Speed-	d operations rol system – S Dual Clutch T Automatic ge ectures of hy coupling of hy ring. Pearson,	of a Serv rans arbc brid /brid 201	t typi o me missi x ba elect elect	cal C chanic ions - ised ric dr tric dr	9 VT – Belt sm control Wet Dual 9 two-speed ivetrains - ive trains. Total: 45
Construction and v Unit – IV Continuously Varistructure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and Series hybrid elect TEXT BOOK: 1. Salivahan 2. Yi Zhang REFERENCES/ M 1 Mehrdad	working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key comporences able Transmission (CVT) – Layouts and operation control ch Transmissions (DCT) - Layouts, components and a ons. EV and HEV Transmissions s: Single-speed EV transmission - Multiple ratio EV Planet gear based two-speed transmission. HEV transtric drive - Parallel hybrid electric drivetrains - Torque-co an, S., R. Rengaraj, and G. R. Venkatakrishnan. Contro and Chris Mi, "Automotive Power Transmission Systems IANUAL / SOFTWARE: Ehsani, Uimin Gao and Ali Emadi, "Modern Electric, Hybrid	nents – Types an - VBS based cont applications - Dry I / transmissions: Archit pupling and Speed- ol systems enginee s ", 1st Edition, Joh	d operations rol system – S Dual Clutch T Automatic ge ectures of hy coupling of hy ring. Pearson,	of a Serv rans arbc brid /brid 201 ns, 2	a typi o me missi elect elect 5. Ur	cal C chani ons - ised ric dr tric dr nits-I,I	9 VT – Belt sm control Wet Dual two-speed ivetrains - ive trains. Total: 45
Construction and v Unit – IV Continuously Varistructure and pulle system. Dual Clut Clutch Transmission Unit – V EV Transmission and Series hybrid elect TEXT BOOK: 1. Salivahan 2. Yi Zhang and REFERENCES/M 1. Mehrdad and Theory and	Working of typical Janny hydrostatic drive. CVT and DCT Transmissions able Transmission (CVT) – Layouts and key comporently of the component of t	nents – Types an - VBS based cont applications - Dry I / transmissions: Archit bupling and Speed- l systems enginee s ", 1st Edition, Joh prid Electric and Fu	d operations rol system – S Dual Clutch T Automatic ge ectures of hy coupling of hy ring. Pearson, in Wiley & Son	of a Serv rans arbc brid /brid 201 ns, 2	a typi o me missi elect elect 5. Ur	cal C chani ons - ised ric dr tric dr nits-I,I	9 VT – Belt sm control Wet Dual two-speed ivetrains - ive trains. Total: 45

		UTCON		se, the st	uden	ts will be a	able to						(BT Mapp Highest L	
CO1	app	ly the m		tical mode		linear time		nt syste	ms of c	lifferent	sub syste	ems in		Applying	
CO2	_				se and	d stability f	or linear	automo	otive sy	/stems				Applying	(K3)
CO3	outl	ine the v	various I	nydrodyna	mic a	nd hydrost	atic driv	es for a	utomot	oiles.			Un	Iderstandi	ng (K2)
CO4	disc	uss the	system	types, co	ntrol o	of CVT and	I DCT tra	ansmiss	sion sys	stems.			Un	Iderstandi	ng (K2)
CO5	des	cribe the	e constr	uction and	opera	ating princi	ples of	EV and	HEV tr	ansmiss	ions.		Un	Iderstandi	ng (K2)
						Mappin	g of CO	s with	POs ar	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CC	01	3	3	2									2	2	2
CC)2	3	3	2									2	2	2
CC)3	3	2	2									2	3	
CC)4	3	2	2									2	3	
CC)5	3	2	2									2	2	2
1 – Sli	ight, 2	– Mode	erate, 3 -	- Substant	ial, B	T- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN - 1	HEORY	,				
	st / Bl Catego	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9	-	Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		10		30)	60	0						100
	CAT	2		10		70		20)						100
	CAT	3		20		80									100
	ESE	Ξ		10		55		35	5						100
* ±3%	may t	be varie	d (CAT	1,2,3 – 50	mark	s & ESE –	100 ma	ırks)							

22AUL41 - COMPUTER AIDED DESIGN LABORATORY

Progr Branc		8 &	B.E	Autom	obile E	Inginee	ring				Sem.	Category	L	ТР	Credit				
Prere	quisite	es	Engin	eering	Drawin	g					4	PC	0	0 2	1				
Pream	nble			ourse p CAD pa		hands	on expe	erience	to desig	n and n	nodel va	rious autom	otive c	ompone	nts by				
LIST	OF EX	PERIN	IENTS /	EXER	CISES:														
1.	Stud	dy the	two dim	ensiona	l (2D) d	rafting t	ools in	CAD pa	ckages										
2.	Exp	lore the	e three o	dimensi	onal (3E	D) draftii	ng tools	s in CAE) packa	ges									
3.	Арр	ly 2D a	and 3D o	drafting	tools to	model a	automo	bile con	nponent	s like C	Cylinder	block, Pisto	n and (Connecti	ng rod.				
4.			n of 3D view and			Connect	ing rod	cum Pi	ston as	sembly	to 2D di	rawing - diff	erent v	iews, se	ctions,				
5.	Des	ign vel	nicle cha	assis fra	me usir	ng CAD	tools												
6.	Dev	elop 3	D Part n	nodeling	g of Flar	nge cou	pling ar	nd Knud	ckle join	t									
7.	Des	ign sin	nple gea	r trains	using C	AD too	ls												
8.	Мос	del disc	brake a	assemb	y using	CAD to	ols												
9.	Dev	elop 3	BD Part I	modelin	g of aut	omotive	Leaf s	pring											
10.	Dev	elop th	e indep	endent	suspens	sion sys	tem us	ing CAE) Tools										
11.	Мос	del Auto	o car bo	dy usin	g CAD t	ools													
12.	Sim	ulate tl	ne Autoi	motive r	nechani	ism by ເ	using C	AD tool	S										
															Total:3				
REFE	RENC	ES/ M	ANUAL	/SOFT	WARE:														
1.	K.R	. Gopa	la Krish	na, "Ma	chine D	rawing"	, 6th Ec	dition, S	ubhash	Publica	tion, Ne	w Delhi, 20 ⁻	17.						
2.	Lab	oratory	Manua	1															
		UTCO												BT Ma					
			the cou											(Highes Applyin					
CO1			-		•			ools in (•			lesigning 31	_	Precisio	on (S3)				
CO2	moc	del of a	utomoti	ve comp	onents				•					Applyin Precisio	on (S3)				
CO3	simı prin		utomotiv	ve mecl	nanism	in a CA	.D pack	age and	d fabrica	ate CAI	D model	by using 3I		Applyin Precisio					
•							-	os with	1										
COs/F		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO ⁻ 3	1 PSO				
00 CO		3	2 2	1		3				1	3			-					
	-	5	-	•		5							-	2 3 2 3					

Deserve		0	:	22AUL4	2- AU	гомот	IVE CH	IASSIS	COMP	ONENT	S LABC	RATORY				
Branc	amme :h	Ğ.	B.E &	AUTO	MOBILE		NEERIN	IG			Sem.	Category	L	. Т	Ρ	Credit
Prerec	quisite	s	Nil								4	PC	0	0	2	1
Pream	nble			ourse p onents.	rovides	practice	e on dis	mantle,	assem	ble and	perform	ance of auto	omo	tive c	hassis	
LIST C		PERIN	IENTS /	EXER	CISES:											
1.	Mea	surem	ent of L	ight and	l Heavy	Comme	ercial V	ehicle C	Chassis	Frame						
2.	Calc	ulatior	n of gea	r ratios a	and stee	ering an	igles foi	r variou	s steerii	ng syst	em					
3.	Dism	nantlin	g and A	ssembli	ng of Ti	ansfer	case									
4.	Dism	nantlin	g and A	ssembli	ng of G	ear bo	k and ca	alculate	the var	ious ge	ar ratios	6				
5.	Dism	nantlin	g and A	ssembli	ng of D	ifferentia	al Unit									
6.	Dism	nantlin	g and A	ssembli	ng of C	onstant	Velocit	y Joint								
7.	Dism	nantlin	g and A	ssembli	ng of R	ear Axle	Э									
8.	Dism	nantlin	g and A	ssembli	ng of D	isc and	Drum E	Brake sy	vstem							
9.	Dism	nantlin	g and A	ssembli	ng of S	uspensi	on Syst	em								
10.	Perfo	orman	ce test o	on Coil S	Spring a	ind Sho	ck Abso	orber								
11.	Perfo	orman	ce test o	of a Two	Wheel	er using	g Chass	sis Dyna	amomet	er						
12.	Two	Whee	ler Cha	in test u	sing Ch	ain test	Rig									
																Total:30
REFE	RENC	ES/ M	ANUAL	/SOFT\	NARE:											
1.	Labo	oratory	Manua	I												
	SE OU		MES: the cou	irse, th	e stude	nts will	l be abl	e to							ST Map ghest	ped Level)
CO1	Dism	nantle	and ass	emble v	/arious	transmi	ssion el	ements	in a ve	hicle.					plying oulatio	100
CO2		nantle utomo		emble	steering	g systen	ns, susp	pension	system	s and b	raking s	ystems in		Ap	plying	(K3),
CO3				formanc	e test o	n coil s	pring, s	hock ab	sorber	and Two	o wheele	er chassis		Ap	plying	(K3),
						Mappi	ng of C	os with	n POs a	nd PSC	Ds				20.0101	. (00)
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO
CO	1	3	2		1		2	1	2	3	3		2	2	3	
CO		3	2		1		2	1	2	3	3		2		3	
CO		3	3 erate, 3		2		2	1	2	3	3		2	2	3	

	(Common to All BE/ BTech Engineering and Tecl	nnology b	ranches)				
Programme & Branch	Ch All BE/ Blech Engineering and Technology branches Sem. Category L I P C equisites Nil 4 EC 0 0 80 mble This subject is to enhance the employability skills and to develop career competency -1 Soft Skills - 1:						Credit
Prerequisites	Nil	4	EC	0	0	80	2
Preamble	This subject is to enhance the employability skills and to dev	elop care	er competen	су			
Unit – I	Soft Skills – I :			-			20
etiquette- Basics of etiquette- Body La	of etiquette-Introductions and greetings-Rules of the handshak inguage.						
Unit – II							
Problem solving							
variation-Partners	hip-Time speed and distance-Data interpretation-data re	presentat	ion. Logical				
variation-Partners	hip-Time speed and distance-Data interpretation-data re	presentat	ion. Logical				
variation-Partners Deductions-Logica Unit – III	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and c Written Communication & Verbal Aptitude	presentat complex a	ion. Logical rrangement	rea	sonin	g: Fam	nily tree 30
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and connectives-Binary logic Linear Based questions (presentat omplex a Cover le cal Report s Homon orms usir Transforn	tter -Respon- t writing Inter yms One wo appropriat hation : Active	rea ding preta ord s e art e-Pas	to Jol tion c ubstiti icles	g: Fam o Advert of Techn ution Idi and pre & Direct	ily tree 30 tisement ical Dat oms an positions
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and connectives-Binary logic Linear Based questions (presentat omplex a Cover le cal Report s Homon orms usir Transforn	tter -Respon- t writing Inter yms One wo appropriat hation : Active	rea ding preta ord s e art e-Pas	to Jol tion c ubstiti icles	g: Fam o Advert of Techn ution Idi and pre & Direct	ily tree 30 isement ical Dat oms an positions
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and connectives-Binary logic Linear Based questions (presentat omplex a Cover le cal Report s Homon orms usir Transforn	tter -Respon- t writing Inter yms One wo appropriat hation : Active	rea ding preta ord s e art e-Pas	to Jol tion c ubstiti icles	g: Fam o Advert of Techn ution Idi and pre & Direct	ily tree 30 isement ical Dat oms an positions -Indirect
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se Rearranging Jumb TEXT BOOK:	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and c Written Communication & Verbal Aptitude ting strategies and formats Importance of Résumés Writing a uil Writing Responding to e-mails and business letters Technic ting One-page Essays. Verbal Aptitude Synonyms Antonym rords Analogies Spelling test Cloze test using suitable verb frentence Correction and Formation Grammar Based questions (oled Sentences & Jumbled paragraphs, Identifying Facts, Inference porpe and Showick Thorpe, "Objective English for Competitive E	presentat omplex a Cover le cal Report s Homon orms usir Transforn nces and	ion. Logical rrangement tter -Respon- t writing Inter yms One wo ng appropriat nation : Active Judgements	rea ding preta ord s e art e-Pas state	to Jol tion c ubstitu icles ssive ement	g: Farr o Advert of Techn ution Idi and pre & Direct s	ily tree 30 isementical Dat oms an positions -Indirect Total:4
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se Rearranging Jumb TEXT BOOK: 1 Edgar Tho	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and c Written Communication & Verbal Aptitude ting strategies and formats Importance of Résumés Writing a uil Writing Responding to e-mails and business letters Technic ting One-page Essays. Verbal Aptitude Synonyms Antonym rords Analogies Spelling test Cloze test using suitable verb frentence Correction and Formation Grammar Based questions (oled Sentences & Jumbled paragraphs, Identifying Facts, Inference porpe and Showick Thorpe, "Objective English for Competitive E	presentat omplex a Cover le cal Report s Homon orms usir Transforn nces and	ion. Logical rrangement tter -Respon- t writing Inter yms One wo ng appropriat nation : Active Judgements	rea ding preta ord s e art e-Pas state	to Jol tion c ubstitu icles ssive ement	g: Farr o Advert of Techn ution Idi and pre & Direct s	ily tree 30 isementical Dato oms an positions -Indirect Total:4
variation-Partners Deductions-Logica Unit – III Writing Skills: Wri Professional e-ma (Transcoding) Wr Phrases Paired w Spotting Errors Se Rearranging Jumb TEXT BOOK: 1. Edgar The Services I REFERENCES:	hip-Time speed and distance-Data interpretation-data re al connectives-Binary logic Linear arrangements- Circular and c Written Communication & Verbal Aptitude ting strategies and formats Importance of Résumés Writing a uil Writing Responding to e-mails and business letters Technic ting One-page Essays. Verbal Aptitude Synonyms Antonym rords Analogies Spelling test Cloze test using suitable verb frentence Correction and Formation Grammar Based questions (oled Sentences & Jumbled paragraphs, Identifying Facts, Inference porpe and Showick Thorpe, "Objective English for Competitive E	presentat complex a Cover le cal Report s Homon orms usir Transform nces and xaminatio	ion. Logical rrangement tter -Respond t writing Inter yms One wo ng appropriat hation : Active Judgements	rea ding preta ord s e art e-Pas state	to Jol tion c ubstitu icles ssive ement	g: Farr o Advert of Techn ution Idi and pre & Direct s	ily tree 30 isemen ical Dat oms an position -Indirect Total:4

		UTCON		rse, the	student	ts will be	e able to	D						BT Mapped lighest Lev	
CO1			e soft sk nd as a t		arners to	o suppoi	t them	work ef	ficiently	' in an c	organizati	ion as an		Applying (K3 Precision (S	
CO2	solv	/e real t	ime prob	olems usi	ng num	erical ab	ility and	logical	reason	ing				Applying (K3 Precision (S	
CO3				on skills grammati				and de	eliver in	formatic	on in vario	ous		Applying (K3 Precision (S	
						Марр	ing of C	Os wit	h POs	and PS	Os				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO	1	3	2				3	3		3		3	2		
CO	2	3	2				3	3		3		3	2		
CO	3		2				3	3		3	3	3	2		
1 – Sli	ght, 2	– Mode	erate, 3 -	– Substa	ntial, B1	- Bloom	's Taxoi	nomy							
						ASSE	SSMEN		TERN -	THEOF	۲Y				
	t / Bl ateg	oom's ory*	Re	member (K1) %	ing l	Jndersta (K2)	0	Apply (K3)		Analyz (K4)	•	valuating (K5) %	Creati	ng (K6) %	Tota %
	CAT	1		2	0	50		30							100
	CAT	2				50		50							100
	CAT	3				50		50							100
	ES	=							NA						100

22AUC51 - VEHICLE DYNAMICS

Programme Branch	B.E. & Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisite	Statics and Dynamics	5	PC	3	0	2	4
Preamble	This course provides knowledge on dynamic, hand	ing and ride perform	nance charac	torie	tice o	fvobi	cles
rieanible	This course provides knowledge on dynamic, hand	ing and nue perion		10113	105 0	i vern	0105
Unit – I	Acceleration Performance:						9
Dynamic axle	Fundamental approach to modeling - Vehicle fixed coordi loads - Level roads and grades. Acceleration performance active force, acceleration and gradeability.						
Unit – II	Braking Performance:						9
	gram of decelerating vehicle, brake force distribution, maxir	num decelerating r	ates, maximu	m bi	aking	force	e, stoppin
Unit – III	raking efficiency. Consequence of wheel lock up. Tire Dynamics:						9
	d moments - Tire axis system - Rolling resistance of a tire	e - Tire soil interact	ion - Conicity	anc	l ply :	steer.	
	res and camber thrust. Various tire Models - Brush model,	Magic formula mod	el.				
Unit – IV	Handling Characteristics:	Standy state com	oring otoori	a fa	otoro	Vahi	9
parameters -	rnering and static steering - Ackerman steering geometry. under steer, neutral steer, over steer, roll steer, complia ral acceleration gain, characteristic speed, yaw velocity gain	nce steer, ride ste	er and slip a	angle	e stee	er. Ste	eady stat
Unit – V	Ride Characteristics:						9
	nse to vibration, Ride models - Quarter car, Half car mping, and tire stiffness. Control law for LQR, H-infinite an			of	suspe	ension	stiffness
LIST OF EXP	ERIMENTS / EXERCISES:						
1. Calci	late static and dynamic axle loads of a vehicle						
2. Evalu	ate tractive force and acceleration parameters of a car						
3. Estin	ate braking torque of disc and drum brakes						
4. Analy	ze braking performance of a car						
5. Com	are stiffness of car tire and truck tire for different payload						
6. Com	ute tire forces, offset and self-aligning torque						
7. Calci	late cornering resistance of a four axled truck for various st	eering angles					
8. Evalu	ate steady state cornering characteristics of a vehicle						
9. Estin	ate ride comfort using quarter car model at constant velocit	y on a random road	ł				
10. Analy	ze dynamics of a quarter car model with non-linear spring a	and sky hook damp	er crossing ar	n obs	stacle		
			Lecture:4	15, P	racti	cal:30), Total:7
TEXT BOOK							
	J.Y, "Theory of Ground Vehicles", 4th Edition, John Wiley a		•				
	Rill, Abel Arrieta Castro, "Road Vehicle Dynamics: Fundar , 2020.Units-1,2,3,4 & 5.	nentals and Modeli	ng with MATL	.AB"	, 2nd	editio	n, CRC
	5/ MANUAL / SOFTWARE:						
REFERENCE							
	as D. and Gillespie., "Fundamentals of Vehicle Dynamics",	1st Edition, SAE In	ternational, U	nited	d Stat	es, 19	992.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	solve the acceleration performance of a vehicle.	Applying (K3), Precision (S3)
CO2	examine the braking performance of a vehicle.	Applying (K3), Precision (S3)
CO3	calculate the forces generated in a tire by applying different models.	Applying (K3), Precision (S3)
CO4	determine the handling characteristics of a vehicle.	Applying (K3), Precision (S3)
CO5	model the ride models and their characteristics of a vehicle.	Applying (K3), Precision (S3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3	1		1	1	2		2	3	
CO2	3	3	2	2	3	1		1	1	2		2	3	
CO3	3	3	2	2	3	1		1	1	2		2	3	
CO4	3	3	2	2	3	1		1	1	2		2	3	
CO5	3	3	2	2	3	1		1	1	2		2	3	

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	10	30	60				100
CAT3	10	30	60				100
ESE	10	30	60				100
* ±3% may be varied (CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)	· · · · · · · · · · · · · · · · · · ·			

22AUT51 - AUTOMOTIVE SENSORS AND CONTROLLERS

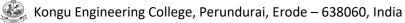
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Electrical Systems and Drives	5	PC	3	0	0	3
Preamble	This course provides knowledge on concept and workin which finds the extensive application in the field of autor		nsors, transdu	icers	and	micro	processor
Unit – I	Electrical Transducers and Signal Conditioning:						9
LVDT - RVDT - C	istive transducers - Potentiometer, RTD, Thermistor - The Capacitive transducer - Applications of electrical transducer one bridge - Analog to digital conversion - Digital to analog o	s in automobile					
Unit – II	Sensors :						9
	sors - Hall effect sensor – Proximity sensors – Optical sensor Image sensors - Parking sensors - Automotive radar sensor						n sensors
Unit – III	Microprocessor 8085:						9
Pin details – Regis Unit – IV	croprocessor and microcontroller - Organization of microcon sters organization - Memory interfacing – Timing diagram. Microprocessor programming: s Immediate addressing - Register addressing - Direct						9
Pin details – Regis Unit – IV Addressing mode Implicit addressing	sters organization - Memory interfacing – Timing diagram.	addressing - R	egister indire	ct ad	Idres	sing -	9 - Implied
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs.	 sters organization - Memory interfacing – Timing diagram. Microprocessor programming: s - Immediate addressing - Register addressing - Direct 	addressing - R	egister indire	ct ad	Idres	sing -	9 - Implied /
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni	 sters organization - Memory interfacing – Timing diagram. Microprocessor programming: s - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - 	addressing - R Logical group -	egister indire Branch grou Jel managem system – Tra	ct ad p - C ent - actior	Idress ontro Clos	sing – I grou sed loo	9 - Implied p - Simple 9 op lambda
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering -	addressing - R Logical group -	egister indire Branch grou Jel managem system – Tra	ct ad p - C ent - actior	Idress ontro Clos	sing – I grou sed loo	9 - Implied p - Simple 9 op lambda
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering -	addressing - R Logical group -	egister indire Branch grou Jel managem system – Tra	ct ad p - C ent - actior	Idress ontro Clos	sing – I grou sed loo	9 - Implied p - Simple 9 op lambda Automatie
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni transmission syste TEXT BOOK:	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering -	addressing - R Logical group - d ignition and Fi Antilock brake em - Complete	egister indire Branch grou Jel managem system – Tra vehicle contro	ct ad p - C ent - actior ol sys	Idress ontro Clos con stems	sing – I grou sed loo trol –	9 - Implied p - Simple 9 op lambda Automatie Total:4
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni transmission syste TEXT BOOK: 1. Tom Dent 2. Ramesh	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering - em- Automatic gear shift and Torque converter - Airbag syst	addressing - R Logical group - d ignition and Fi - Antilock brake em - Complete	egister indire Branch grou uel managem system – Tra vehicle contro	ct ac p - C ent - actior bl sys	Idress ontro Clos con stems	sing – I grou eed loo trol –	9 - Implied p - Simple 9 op lambda Automati Total:4
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni transmission syste TEXT BOOK: 1. Tom Dent 2. Ramesh Internatio	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering - em- Automatic gear shift and Torque converter - Airbag syst ton, "Automobile Electrical and Electronic Systems", 5th Edi Gaonkar, "Microprocessor Architecture, Programming, ar	addressing - R Logical group - d ignition and Fi - Antilock brake em - Complete	egister indire Branch grou uel managem system – Tra vehicle contro	ct ac p - C ent - actior bl sys	Idress ontro Clos con stems	sing – I grou eed loo trol –	9 - Implied p - Simple 9 op lambda Automati Total:4
Pin details – Regis Unit – IV Addressing mode Implicit addressing programs. Unit – V Introduction to EC control - Electroni transmission syste TEXT BOOK: 1. Tom Dent 2. Ramesh Internatio REFERENCES:	sters organization - Memory interfacing – Timing diagram. Microprocessor programming: es - Immediate addressing - Register addressing - Direct g - Instruction sets - Data transfer group - Arithmetic group - Electronic Control Unit: CU design – Electronic control of diesel injection- Combined c engine management system - Electronic power steering - em- Automatic gear shift and Torque converter - Airbag syst ton, "Automobile Electrical and Electronic Systems", 5th Edi Gaonkar, "Microprocessor Architecture, Programming, ar	addressing - R Logical group - d ignition and Fe Antilock brake em - Complete	egister indire Branch grou uel managem system – Tra vehicle contro , United Kingo with the 808	ct ac p - C ent - actior ol sys	Idress ontro Closs con stems 2017 6th E	sing – I grou eed loo trol –	9 - Implied p - Simple 9 op lambda Automati Total:4

		UTCOM	-											ВТ Мар				
On co	mplet	ion of t	he cours	se, the stu	Idents V	vill be a	able to						(Hignest L	.evel)			
CO1	illust	trate the	e working	of electro	nic tran	sducers	s and pur	pose of	signal	conditio	ning sys [.]	tems.	Ur	nderstandi	ng (K2)			
CO2	disc	cuss in detail about the operation of automotive sensors and its automotive application											Ur	Understanding (K2)				
CO3	desc	escribe the architecture of 8085 microprocessor and its pin details.											Ur	nderstandi	ng (K2)			
CO4		elop ar oproces		etic prog	jram u	sing in	structior	n set	and a	ddressir	ng mod	es of 80	85	(Highest Le Understandin Understandin Understandin	(K3)			
CO5	expla	ain the	role of el	ectronic co	ontrol ur	nit in au	tomobile						Ur	nderstandi	ng (K2)			
						Mappin	ng of CO	s with	POs an	d PSOs	5							
COs/F	POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1									2		3
CO2	3	3	1									2		3
CO3	3	3	1									2		3
CO4	3	3	1									2		3
CO5	3	3	1									2	2	3
1 - Slight 2	Mode	rato 3	Substanti		Bloom's	Tayono	mv							

1 – Slight, 2 – Moderate, 3 – Substa	ntial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	60	20				100
ESE	10	70	20				100
* ±3% may be varied (_				100


	22AUT52 - MECHANICS	OF MACHINES					
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Statics and Dynamics	5	PC	3	0	0	3
Preamble	This course provides knowledge on kinematics of machine elements.	mechanisms and the	e effect of bala	ancin	g in d	differe	ent
Unit – I	Basics of Mechanisms:						9
Degrees of freedo	hine Structure - Kinematic link, pair and chain – Kut m – Grashof's law - Slider crank and crank rocker me ns - Velocity and acceleration - Four bar and slider cr	chanisms - Inversion	ns - Applicatio	ns -			
Unit – II	Design of Cam Profile:						9
deceleration motio	on and cycloidal motion. Cam profile – Roller, Flat fac	ed and Knite edge fol	llower - Graph	ical	meth	od.	
	- 1						1
Introduction to ge Reverted gear trai	Kinematics of Gear Trains: ears, Classification – Gear terminologies, Gear ration and Epicyclic gear train, compound epicyclic gear train					ound	-
Introduction to ge Reverted gear trai Unit – IV Rotating masses	ears, Classification – Gear terminologies, Gear rati	rain and Epicyclic gea	ar train with be	evel ngle	gear and		gear train
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas	 Balancing of Masses: Single mass - single plane - single mass - difference - single mass - single - sin	rain and Epicyclic gea	ar train with be	evel ngle	gear and		gear trair 9
Reverted gear trai	 Balancing of Masses: Single mass - single plane - single mass - diff 	rain and Epicyclic gea erent plane - Severa Single and multi-cylir ed centrifugal governo	ar train with be al mass – Si nder In-line en	ngle gine	gear and s.	differ	gear train 9 ent plane 9
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug	 Balancing of Masses: Single mass - single plane - single mass - differences Governors and Gyroscope: al governors - Gravity controlled and spring controlled 	rain and Epicyclic gea erent plane - Severa Single and multi-cylir ed centrifugal governo	ar train with be al mass – Si nder In-line en	ngle gine	gear and s.	differ	gear trair 9 ent plane 9
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug – Controlling Force	 Balancing of Masses: Single mass - single plane - single mass - differences Governors and Gyroscope: al governors - Gravity controlled and spring controlled 	rain and Epicyclic gea erent plane - Severa Single and multi-cylir ed centrifugal governo	ar train with be al mass – Si nder In-line en	ngle gine	gear and s.	differ	gear train 9 rent plane 9 t of frictic
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug – Controlling Force	 Balancing of Masses: Single mass - single plane - single mass - differences Governors and Gyroscope: al governors - Gravity controlled and spring controlled 	rain and Epicyclic gea erent plane - Sever Single and multi-cylir ed centrifugal governo obiles.	ar train with be al mass – Si nder In-line en ors – Charact	ngle gine	gear and s.	differ	gear train 9 rent plane 9 t of frictio
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug – Controlling Force	 Balancing of Masses: Single mass - single plane – single mass – differences - Primary and secondary balancing. Balancing - Governors and Gyroscope: al governors – Gravity controlled and spring controlled e. Gyroscopic couples – Gyroscopic effects in automotion 	rain and Epicyclic gea erent plane - Sever Single and multi-cylir ed centrifugal governo obiles.	ar train with be al mass – Si nder In-line en ors – Charact	ngle gine	gear and s.	differ	gear train 9 rent plane 9 t of frictic
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mass Unit – V Types – Centrifug – Controlling Force TEXT BOOK: 1. Rattan S.S REFERENCES:	 Balancing of Masses: Single mass - single plane - single mass - differences - Primary and secondary balancing. Balancing - Governors and Gyroscope: al governors - Gravity controlled and spring controlled e. Gyroscopic couples - Gyroscopic effects in automotion 	rain and Epicyclic gea erent plane - Severa Single and multi-cylin ed centrifugal governo obiles.	ar train with be al mass – Si nder In-line en ors – Charact 2017.	ngle gine erist	gear and s.	differ	gear train 9 rent plane t of frictio Total:4

	DURSE OUTCOMES: n completion of the course, the students will be able to O1 calculate the velocity and acceleration of various links of simple mechanisms.													BT Mapped (Highest Level)				
CO1	calc	ulate th	e velocity	and acce	eleratior	of vario	ous links	of simp	ole mec	hanism	5.		Applying (K3)					
CO2	desi	gn cam	profile fo	or differen	t followe	er motior	ıs.							Applying	(K3)			
CO3	eva	uate the	e kinema	tics aspec	cts of ge	ars and	gear tra	iins.						Applying	(K3)			
CO4	dete	ermine t	he static	and dyna	mic bala	ancing o	f various	s mecha	nical sy	vstems.				(K3)				
CO5	exa	mine the	e fluctuat	ion of spe	ed in go	vernors	and gy	roscopio	c effect.					Applying	(K3)			
						Mappin	g of CO	s with	POs an	d PSOs	5							
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
00		2	2	2	2								2	2	1			

CO1	3	3	2	2						2	3	
CO2	3	3	2	2						2	3	
CO3	3	3	2	2						2	3	
CO4	3	3	2	2						2	3	
CO5	3	3	2	2						2	3	
1 – Slight 2	– Mode	erate 3 –	Substanti	al BT-I	Bloom's	Taxono	mv					

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom	's laxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	10	20	70				100
CAT3	10	20	70				100
ESE	10	20	70				100
* ±3% may be varied ((CAT 1,2,3 – 50 mark	ks & ESE – 100 ma	ırks)				

	22AUT53 – VEHICLE COMPON	NENTS DESIGN – II					
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	5	PC	3	0	0	3
Preamble	This course provides knowledge on construction,	working and design o	of chassis and	its s	sub s	ystem	S.
Unit – I	Clutch and Gear box:						
	s- Single plate clutch- Multiple Plate Clutch- Centrif nd Synchromesh gearboxes, Fluid coupling and Torqu		uction and op	erat	ion c	of Slid	ling mest
Unit – II	Design of Clutch and Gear box:						
	of clutch – Design of single plate clutch, multi-plate cl five speed gearboxes.	utch. Gear train calc	ulations – De	term	inatio	on of	gear ratios
Unit – III	Drive line and Rear axle:						9
Universal joint- sli axle - three quarte	ip joint- Propeller shaft – Final drive – Differential – Tyj er floating axle - semi floating axle.	pes. Rear Axle - Loa	ds acting on t	he re	ear a:	de - F	ull floatin
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar vo braking system. Wheels and Rims - Types. Tyre -	nd working – mecha	nical – hydra	ulic	– pne	eumat	full floating
Universal joint- sli axle - three quarte Unit – IV Need for braking	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar vo braking system. Wheels and Rims - Types. Tyre -	nd working – mecha	nical – hydra	ulic	– pne	eumat	full floating tic - powe Pattern -
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar to braking system. Wheels and Rims - Types. Tyre - re.	nd working – mecha bias ply - radial ply ng – Braking efficien	nical – hydra - tubed and t	ulic ubel	– pne ess.	eumat	Full floating
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar to braking system. Wheels and Rims - Types. Tyre - te. Design of Braking System: topping time and distance, weight transfer during braki	nd working – mecha bias ply - radial ply ng – Braking efficien	nical – hydra - tubed and t	ulic ubel	– pne ess.	eumat	Full floating
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar to braking system. Wheels and Rims - Types. Tyre - te. Design of Braking System: topping time and distance, weight transfer during braki	nd working – mecha bias ply - radial ply ng – Braking efficien	nical – hydra - tubed and t	ulic ubel	– pne ess.	eumat	full floating tic - powe Pattern - ear whee
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st brake and all whe TEXT BOOK:	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar to braking system. Wheels and Rims - Types. Tyre - te. Design of Braking System: topping time and distance, weight transfer during braki	nd working – mecha bias ply - radial ply ng – Braking efficien drum and disc brake	nical – hydra - tubed and t cy – Design a design.	ulic ubel	– pne ess. analys	eumat Treac	Tull floating
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st brake and all whe TEXT BOOK: 1. Dr. Kirpal & 2018 for	 ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction at /o braking system. Wheels and Rims - Types. Tyre - re. Design of Braking System: topping time and distance, weight transfer during braking el brake. Braking of vehicle moved in a curved path - or set of the set of the set. I Singh, "Automobile Engineering Volume 1 & 2", 14th 	nd working – mecha bias ply - radial ply ing – Braking efficien drum and disc brake Edition, Standard Pu	nical – hydra - tubed and t cy – Design a design. blishers Distr	ulic ubel Ind a	– pne ess. analys	eumat Treac	Tull floating
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st brake and all whe TEXT BOOK: 1. Dr. Kirpal & 2018 for	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar yo braking system. Wheels and Rims - Types. Tyre - re. Design of Braking System: topping time and distance, weight transfer during braki el brake. Braking of vehicle moved in a curved path - o I Singh, "Automobile Engineering Volume 1 & 2", 14th or Units I,III,IV	nd working – mecha bias ply - radial ply ing – Braking efficien drum and disc brake Edition, Standard Pu	nical – hydra - tubed and t cy – Design a design. blishers Distr	ulic ubel Ind a	– pne ess. analys	eumat Treac	full floating tic - powe Pattern - rear whee Total:4
Universal joint- sli axle - three quarte Unit – IV Need for braking assisted and serv Wet tyre – Dry tyr Unit – V Calculations on st brake and all whe TEXT BOOK: 1. Dr. Kirpal & 2018 fc 2. Giri N.K., REFERENCES:	ip joint- Propeller shaft – Final drive – Differential – Typer floating axle - semi floating axle. Brakes and Tyres: systems - Drum and disc actuation - Construction ar yo braking system. Wheels and Rims - Types. Tyre - re. Design of Braking System: topping time and distance, weight transfer during braki el brake. Braking of vehicle moved in a curved path - o I Singh, "Automobile Engineering Volume 1 & 2", 14th or Units I,III,IV	nd working – mecha bias ply - radial ply ng – Braking efficien drum and disc brake Edition, Standard Pu tions, New Delhi, 20	nical – hydra - tubed and t cy – Design a design. blishers Distr	ulic ubel Ind a	– pne ess. analys	eumat Treac	full floating tic - powe Pattern - rear whee Total:4

		UTCOM		se, the st	udents	will be a	able to						(BT Mapı Highest L	
CO1	sum	nmarize	the cons	truction a	nd worki	ng of va	rious cl	utches a	and gea	r boxes			Ur	derstandi	ng (K2)
CO2	des	ign the v	/arious ty	pes of clu	utches a	nd autor	motive g	jear box	es					Applying	(K3)
CO3	exp	lain the	construct	tion and w	vorking o	of drive I	ine and	rear ax	e.				Ur	derstandi	ng (K2)
CO4	illus	trate the	e constru	ction and	working	principl	e of var	ious Bra	ikes an	d tyres			Ur	derstandi	ng (K2)
CO5	des veh		/arious ty	pes of br	akes for	automo	tive app	lication	and cal	culate s	stopping o	listance of	а	Applying	(K3)
						Mappin	g of CC	s with	POs an	d PSO:	6				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO)1	3	3										2	3	
CO	2	3	3	2	2								2	3	
CO	3	3	3										2	3	
CO)4	3	3										2	3	
CO	95	3	3	2	2								2	3	
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT- I	Bloom's	Taxono	my	·	·					
						ASSES	SMENT	PATTE	RN – T	HEOR	(

		ASSESSIVIENT	FALLENN-	THEORI			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	70	15				100
CAT2	15	70	15				100
CAT3	20	50	30				100
ESE	10	60	30				100
+ ±3% may be varied	(CAT 1.2.3 – 50 marl	s & ESE – 100 ma	urks)				

22AUL51 - AUTOMOTIVE SENSORS AND CONTROLLERS LABORATORY

Progra Branc		e &	B.E	- Auton	nobile E	Enginee	ering				Sem.	Category	L	т	Р	Credit
Prerec	quisit	es	Nil								5	PC	0	0	2	1
Pream	ble			ourse p		hands	on expe	erience	to progi	ram mic	roproces	ssor and inte	erface	e ser	nsors w	ith
LIST C	OF EX		IENTS	EXER	CISES:											
1.	Mea	asurem	nent of t	emperat	ture usi	ng Ther	mistor /	RTD								
2.	Mea	asurem	nent of t	emperat	ture usi	ng Ther	mocoup	ole								
3.	Mea	asurem	nent of c	lisplace	ment us	sing Pot	entiome	eter, LV	DT and	Capaci	tive tran	sducer				
4.	Tor	que/ St	train Me	asurem	ent usir	ng Straii	n Gaug	е								
5.	For	ce mea	asureme	ent using	g Load (Cell										
6.	Flo	w meas	suremer	nt using	Orifice	Meter										
7.	Lev	el mea	sureme	nt using) Capac	itive typ	e level	Gauge								
8.	Spe	ed me	asurem	ent usin	g Enco	der and	Opto-c	oupler								
9.	8-b	it Addit	ion and	subtrac	tion of t	wo num	nbers us	sing 808	35 micro	proces	sor					
10.	8-b	it Multi	olication	and div	ision u	sing 808	35 micro	oproces	sor							
																Total:30
REFE	RENC	ES/ M	ANUAL	/SOFT	WARE:											
1.	Lab	oratory	/ Manua	ıl												
		UTCO													BT Map	
On co CO1			the counce the chara						easurer	nent sy	stem.			An	alyzing	(K4),
CO2	ana	lvze th	e chara	cteristic	s of var	ious tra	nsduce	rs in the	e measu	irement	system.				recision alyzing	
											-)			Pr	ecision	(S3))
CO3	dev	elop th	e 8085	micropr	ocesso	r progra	im for a	rithmeti	c opera	tions.				Ap Pi	pplying recision	(K3), i (S3)
			r		r	Маррі	ing of C	Cos wit	n POs a	and PS	Os	1				
COs/P		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P01	2	PSO1	PSO2
CO		3	3	1					1	3	2		1			3
CO2		3	3	1					1	3	2		1			3
COC	3	3	3	1					1	3	2		1	1		3

Progr Branc	amme Sh	e &	B.E	- Autom	obile E	Inginee	ring				Sem.	Category	L	т	Р	Credit
	quisit	es	Comp	outer Ai	ded De	sign La	aborato	ory			5	PC	0	0	2	1
Pream	nble										l and the	nermal per solver.	forma	nce	of au	tomobile
LIST	OF EX		IENTS /	EXER	CISES:											
1.	Stu	dy of d	ifferent	commer	cial FE/	A tools ι	used for	r design	and an	alysis						
2.	The	ermal a	nalysis (of cylind	er liner	6										
3.	Stru	uctural	and the	rmal ana	alysis of	piston	crown									
4.	Des	sign an	d analys	sis of co	nnectin	g rod										
5.	Stre	ess ana	alysis of	cranksh	aft											
6.	Stre	ess ana	alysis of	cam sh	aft											
7.	Des	sign an	d analys	sis of ch	assis fra	ames										
8.	Stre	ess ana	alysis of	leaf spr	ing											
9.	Stre	ess ana	alysis of	coil spri	ng											
10.	Des	sign an	d analys	sis of tor	sion ba	r										
11.	Stre	ess ana	alysis of	compos	ite bod	y panels	6									
12.	Мос	dal ana	lysis of	Aerofoil	profile											
															1	Total:3
REFE	RENC	ES/M	ANUAL	/SOFT	NARE:											
1.	Lab	oratory	/ Manua	l												
2.	ANS	SYS 20)20 R1													
00115		UTCO	MEQ.											P	BT Map	mod
			the cou	urse, th	e stude	nts wil	l be ab	le to							ghest	
CO1	ana	lyze th	e structi	ural beh	avior of	automo	otive co	mponer	nts.						alyzing ecisior	
CO2	eva	luate th	ne therm	nal beha	vior of a	automot	ive con	nponent	s.					An	alyzing	j (K4),
CO3	vali	date th	e variou	IS FEA a	and FVN	/ results	s based	l on sim	ulation	results.				An	alyzing	j (K4),
														Pr	ecisior	i (S3)
							-			nd PSC	1					
COs/F		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10 2	PO11	PO1 2	2	PSO1 3	PSO
00 CO		3	3	2	2	3			1	3	2		1		3	
CO		3	3	2	2	3			1	3	2		1		3	+

	(Common to All BE/ BTech Engineering and Tech	noloav bra	anches)				
Programme & Branch	All BE/ BTech Engineering and Technology branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	EC	0	0	80	2
Preamble	This subject is to enhance the employability skills and to deve	lop caree	r competency	,			
Unit – I	Soft Skills – II :	•	. ,				20
Facing an intervi Communication interviews.	eam-Elements of leadership, disadvantages of a team, stages of ew: Foundation in core subject- industry orientation / knowledg skills-Activities before Interview, upon entering interview room	e about t	ne company-	prof	essio	nal per	sonality- nd Mocl
Unit – II	Quantitative Aptitude and Logical Reasoning – II: level II: Money related problems-Mixtures-Symbol base proble						30
reasoning: Condi reasoning- Quant	ics-Data sufficiency- Geometry-Trigonometry-Heights and dista tionality and grouping-Sequencing and scheduling- Selections-N based reasoning-Flaw detection- Puzzles-Cryptarithms.						
Unit – III	Reading & Speaking Skills						-30
	g comprehension- Effective Reading strategies - Descriptive,						ssages -
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D	g comprehension– Effective Reading strategies – Descriptive, l ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussio ersations & Skills – Negotiating Skills.	timming f ensive rea articles Speaking hort Talks view Pres	or general u ading – under in business r g: Mock Inter s / TED Tall entation – O	under rstan naga views ks – rator	rstand ding f azines s –Se Exter y and	ding – the deve s, news elf-Introo npore; I Effecti	ssages - selective elopmen papers - duction - Giving a ve Public
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements. Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussion	timming f ensive rea articles Speaking hort Talks view Pres	or general u ading – under in business r g: Mock Inter s / TED Tall entation – O	under rstan naga views ks – rator	rstand ding f azines s –Se Exter y and	ding – the deve s, news elf-Introo npore; I Effecti	ssages - selective elopmen papers - duction - Giving a ve Public
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements. Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussion	timming f ensive rea articles Speaking hort Talks view Pres	or general u ading – under in business r g: Mock Inter s / TED Tall entation – O	under rstan naga views ks – rator	rstand ding f azines s –Se Exter y and	ding – the deve s, news elf-Introo npore; I Effecti	ssages - selective elopmen papers - duction - Giving a ve Public sessed -
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D Telephonic Conv TEXT BOOK:	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements. Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussion	timming f ensive rea s articles Speaking hort Talks view Pres n – Strate	or general u ading – under in business r g: Mock Inter s / TED Tall entation – O egies to be ad	under rstan maga views ks – rator lopte	rstand ding azines s –Se Exter y and d – S	ding – the devos, news elf-Introo npore; I Effecti Skills As	ssages selective elopmer papers duction Giving ve Publi sessed Total:4
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D Telephonic Conv TEXT BOOK:	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussio ersations & Skills – Negotiating Skills.	timming f ensive rea s articles Speaking hort Talks view Pres n – Strate	or general u ading – under in business r g: Mock Inter s / TED Tall entation – O egies to be ad	under rstan maga views ks – rator lopte	rstand ding azines s –Se Exter y and d – S	ding – the devos, news elf-Introo npore; I Effecti Skills As	ssages selective elopmer papers duction Giving ve Publi sessed Total:4
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D Telephonic Conv TEXT BOOK: 1. Edgar Th Services	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re scussion – Group Discussion – The process of Group Discussio ersations & Skills – Negotiating Skills.	timming f ensive rea articles Speaking hort Talks view Pres n – Strate	or general u ading – under in business r g: Mock Inter s / TED Tall eentation – O egies to be ac	under rstan maga views ks – rator lopte	rstand ding azines s –Se Exter y and d – S	ding – the devos, news elf-Introo npore; I Effecti Skills As	ssages - selective elopmen papers - duction - Giving a ve Public sessed - Total:4
Identifying and comprehension / of an argument Reading notices Sharing of Real Presentation on Speaking; Pair D Telephonic Conv TEXT BOOK: 1. Edgar Th Services REFERENCES: 1. Aruna Ko	ocating factual information within a text – global reading/sl scanning for specific information – detailed comprehension / int - identifying the writer's attitude and opinions – Reading news and book reviews –Interpreting graphic data & Advertisements. Time Experience; Conversational Practices –Role Play – S /arious Topics – Technical / Non-Technical Topics – Project Re iscussion – Group Discussion – The process of Group Discussio ersations & Skills – Negotiating Skills.	timming f ensive rea articles Speaking hort Talks view Pres n – Strate amination	or general u ading – under in business r g: Mock Inter s / TED Tall eentation – O egies to be ac ", 6th Edition, ", 6th Edition,	inder rstan naga views ks – rator dopte	rstand ding f zzines s -Se Exter y and d - S	ding – the devos, news elf-Introo npore; I Effecti Skills As	ssages selective elopmer papers duction Giving ve Publi sessed Total:4

	DURSE OUTCOMES: n completion of the course, the students will be able to					
CO1	develop the soft skills of learners to support them work efficiently in an organization as an individual and as a team	Applying (K3), Precision (S3)				
CO2	solve real time problems using numerical ability and logical reasoning	Applying (K3), Precision (S3)				
CO3	apply reading and speaking skills effectively for various academic and professional purposes	Applying (K3), Precision (S3)				

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	0	3	3	0	3	0	3	2		
CO2	3	2	0	0	0	3	3	0	3	0	3	2		
CO3		2	0	0	0	3	3	0	3	3	3	3		

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2		50	50				100
CAT3		50	50				100
ESE				NA			
* ±3% may be varied	(CAT 1,2 & 3 – 50 m	arks)					

	22AUT54 - THEORY OF	MACHINES	1	1	1	1	1
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Statics and Dynamics	5	PC	3 1 0		4	
Preamble	This course provides knowledge on kinematics of n machine elements.	nechanisms and the	effect of bala	ancir	ng in (differe	ent
Unit – I	Basics of Mechanisms:						9+3
Degrees of freedo	hine Structure - Kinematic link, pair and chain – Kutzt m – Grashof's law - Slider crank and crank rocker mec ns - Velocity and acceleration - Four bar and slider cra	hanisms - Inversion	s - Applicatio	ns -			
Unit – II	Design of Cam Profile:						9+3
	d followers – Terminology. Follower motions - Uniforn on and cycloidal motion. Cam profile – Roller, Flat faced						celeration
Introduction to ge	Kinematics of Gear Trains: ears, Classification – Gear terminologies, Gear ratio n and Epicyclic gear train, compound epicyclic gear tra					ound	9+3 gear trair
Introduction to ge Reverted gear trai Unit – IV Rotating masses	ears, Classification – Gear terminologies, Gear ratio	in and Epicyclic gea	ar train with be	evel ngle	gear and		gear trair 9+3
Reverted gear trai	 Balancing of Masses: Single mass - single plane - single mass - differences 	in and Epicyclic gea	ar train with be	evel ngle	gear and		gear train
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug	 Balancing of Masses: Single mass - single plane - single mass - difference 	in and Epicyclic gea rent plane - Severa ingle and multi-cylin	ar train with be al mass – Si ider In-line en	evel ngle gine	gear and s.	differ	gear trair 9+3 ent plane 9+3
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug	Balancing of Masses: – Single mass - single plane – single mass – diffesses - Primary and secondary balancing. Balancing - S Governors and Gyroscope: al governors – Gravity controlled and spring controlled	in and Epicyclic gea rent plane - Severa ingle and multi-cylin	ar train with be al mass – Si ider In-line en ors – Charact	evel ngle gine	gear and s. ics –	differ Effec	gear trair 9+3 rent plane 9+3 t of frictio
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug – Controlling Force	Balancing of Masses: – Single mass - single plane – single mass – diffesses - Primary and secondary balancing. Balancing - S Governors and Gyroscope: al governors – Gravity controlled and spring controlled	in and Epicyclic gea rent plane - Severa ingle and multi-cylin	ar train with be al mass – Si ider In-line en ors – Charact	evel ngle gine	gear and s. ics –	differ Effec	gear trair 9+3 rent plane 9+3 t of frictio
Introduction to ge Reverted gear trai Unit – IV Rotating masses Reciprocating mas Unit – V Types – Centrifug – Controlling Force TEXT BOOK:	Balancing of Masses: – Single mass - single plane – single mass – diffesses - Primary and secondary balancing. Balancing - S Governors and Gyroscope: al governors – Gravity controlled and spring controlled	in and Epicyclic gea rent plane - Severa ingle and multi-cylin centrifugal governo iles.	ar train with be al mass – Si der In-line en ors – Charact Lecture:	evel ngle gine	gear and s. ics –	differ Effec	gear trair 9+3 ent plane 9+3
Introduction to ge Reverted gear trai	Balancing of Masses: – Single mass - single plane – single mass – diffesses - Primary and secondary balancing. Balancing - S Governors and Gyroscope: al governors – Gravity controlled and spring controlled e. Gyroscopic couples – Gyroscopic effects in automobility	in and Epicyclic gea rent plane - Severa ingle and multi-cylin centrifugal governo iles.	ar train with be al mass – Si der In-line en ors – Charact Lecture:	evel ngle gine	gear and s. ics –	differ Effec	gear trair 9+3 rent plane 9+3 t of frictio
Introduction to ge Reverted gear trai	Balancing of Masses: – Single mass - single plane – single mass – diffesses - Primary and secondary balancing. Balancing - S Governors and Gyroscope: al governors – Gravity controlled and spring controlled e. Gyroscopic couples – Gyroscopic effects in automobility	in and Epicyclic gea rent plane - Severa ingle and multi-cylin centrifugal governo iles.	ar train with be al mass – Si der In-line en ors – Charact Lecture: 2017.	evel ngle gine erist	gear and s. ics –	differ Effec	9+3 rent plane 9+3 t of frictio 5, Total:6

		UTCON		se, the st	udents	will be a	able to						(BT Mapped (Highest Level)		
CO1	calculate the velocity and acceleration of various links of simple mechanisms.									Applying (K3)						
CO2	design cam profile for different follower motions.									Applying	(K3)					
CO3	evaluate the kinematics aspects of gears and gear trains.									Applying	(K3)					
CO4	dete	ermine t	he static	and dyna	mic bala	ancing o	f various	s mecha	nical sy	vstems.				Applying (K3)		
CO5	exa	examine the fluctuation of speed in governors and gyroscopic effect.							Applying (K3)							
						Mappin	g of CO	s with	POs an	d PSOs	5					
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
~~~									2	2	1					

CO1	3	3	2	2						2	3	
CO2	3	3	2	2						2	3	
CO3	3	3	2	2						2	3	
CO4	3	3	2	2						2	3	
CO5	3	3	2	2						2	3	
1 – Slight 2	– Mode	erate 3 –	Substant	ial BT-	Bloom's	Taxono	mv					

1 – Slight, 2 – Moderate, 3 – Substantial, B	I - Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	60				100
CAT2	10	20	70				100
CAT3	10	20	70				100
ESE	10	20	70				100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)	·			

## 22AUT61 - AUTOMOTIVE EMBEDDED SYSTEMS

Programr Branch	me &	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequis	sites	Automotive Sensors and Controllers	6	PC	3	0	0	3
Preamble	9	This course deals with the basic architecture and pe language programming.	ripheral interfacing	of microcontr	oller	with	assen	nbly
Unit – I		Introduction to Embedded Systems:						9
Introduction mapping -	on to RIS - Register	SC and CISC machines - 89C51 Microcontroller arch r organization - Basic concepts of I/O pins - Interfacing	itecture - Pin confi to external memory	guration - Da	ata a	nd pi	rograr	n memor
Unit – II		Microcontroller Programming:						9
programm programm	ning: LED ning - Sim	ddressing modes - Assembly language programming D - Seven segment display - Switch interfacing - I nple programs.						d counte
Unit – III		Communication with Peripherals:						9
Hardware Unit – IV	e interrupt	lay interfacing - Matrix keypad interfacing - Serial data         - Timer interrupt - External interrupt - Serial interrupt.         Sensor Interfacing:         DC 0804 with LM35 temperature sensor				-		9
Hardware Unit – IV Analog to width mod	e interrupt	- Timer interrupt - External interrupt - Serial interrupt.	Signal conditioning	. Motor Interf	acing	j: Rel		9
Hardware Unit – IV Analog to width mod Unit – V	o digital co dulation -	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto     Intelligent Automotive Systems:	Signal conditioning r interfacing with au	. Motor Interf	acing licati	g: Rel ons.	ay log	9 gic - Puls 9
Hardware Unit – IV Analog to width mod Unit – V Introductic control - U	o digital co dulation - on to 8-b Ultrasonic	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto	Signal conditioning r interfacing with au	. Motor Interf	acing licati	g: Rel ons.	ay log	9 gic - Puls 9
Hardware Unit – IV Analog to width mod Unit – V Introductic control - U TEXT BO 1. M	o digital co dulation - on to 8-b Ultrasonic DOK: Muhamma	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto     Intelligent Automotive Systems:     it ATmega microcontroller - Simple programs - Serial     sensor interfacing - Automotive applications.	Signal conditioning r interfacing with au al UART interfacing nlay, "The 8051 Mi	. Motor Interf itomotive app g - Servo mo	acing licati tor ii	g: Rel ons.	cing	9 gic - Puls 9 with angl Total:4
Hardware Unit – IV Analog to width mod Unit – V Introductic control - U TEXT BO 1. M U 2. C	o digital co dulation - on to 8-b Ultrasonic DOK: Muhamma Jsing Asse Culkin, Jo	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto     Intelligent Automotive Systems:     it ATmega microcontroller - Simple programs - Serial     sensor interfacing - Automotive applications.	Signal conditioning r interfacing with au al UART interfacing nlay, "The 8051 Mi ersey, 2011 for Unit n Arduino: An Illu:	. Motor Interf itomotive app g - Servo mo icrocontroller is I,II,III,IV.	acing licati tor in	g: Rel ons. nterfa	cing	9 gic - Puls 9 with ang Total:4
Hardware Unit – IV Analog to width mod Unit – V Introductic control - U TEXT BO 1. M U 2. C	o digital cc dulation - ion to 8-b Ultrasonic <b>DOK:</b> Muhamma Jsing Assa Culkin, Jo Computing	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto     Intelligent Automotive Systems:     it ATmega microcontroller - Simple programs - Serial     sensor interfacing - Automotive applications.     id Ali mazidi, Janice Gillispie Mazidi and Rolin D. McKiembly and C ", 2nd Edition, Pearson Education, New Je     dy, and Eric Hagan, "Make: Learn Electronics with	Signal conditioning r interfacing with au al UART interfacing nlay, "The 8051 Mi ersey, 2011 for Unit n Arduino: An Illu:	. Motor Interf itomotive app g - Servo mo icrocontroller is I,II,III,IV.	acing licati tor in	g: Rel ons. nterfa	cing	9 gic - Puls 9 with angl Total:4
Hardware Unit – IV Analog to width mod Unit – V Introductic control - U TEXT BO 1. M U 2. C REFEREN 1 M	o digital co dulation - dulation - on to 8-b Ultrasonic DOK: Muhamma Jsing Asse Culkin, Jo Computing NCES: Muhamma	Timer interrupt - External interrupt - Serial interrupt.     Sensor Interfacing:     onverter - ADC 0804 with LM35 temperature sensor -     Speed control of DC motor using PWM - Stepper moto     Intelligent Automotive Systems:     it ATmega microcontroller - Simple programs - Serial     sensor interfacing - Automotive applications.     id Ali mazidi, Janice Gillispie Mazidi and Rolin D. McKiembly and C ", 2nd Edition, Pearson Education, New Je     dy, and Eric Hagan, "Make: Learn Electronics with	Signal conditioning r interfacing with au al UART interfacing inlay, "The 8051 Mi ersey, 2011 for Unit n Arduino: An Illus nits V.	. Motor Interf itomotive app g - Servo mo icrocontroller is I,II,III,IV. strated Begir	acing licati tor in and	g: Rel ons. nterfa Embe	cing edded	9 gic - Puls 9 with angl Total:4 Systems

		UTCOM tion of t	-	rse, the st	udent	s will be a	ble to							BT Mapp Highest Le	
CO1	inte	rpret the	basic (	concepts o	f the 8	051 micro	controlle	er.					Ur	nderstandin	g (K2)
CO2	write	e assem	bly lang	guage prog	rams	for the 805	51 micro	controll	er.					Applying (	K3)
CO3		elop ass rocontro		anguage p	rograr	ms for inte	rfacing p	peripher	al devi	ces with	the 805	51		Applying (	K3)
CO4	write	e assem	bly lang	guage prog	rams	for sensor	interfac	ing with	the 80	)51 micro	ocontrol	ler.		Applying (	K3)
CO5	exp	lain the	role of t	he microco	ontrolle	er in intellig	gent aut	omotive	syster	ns.			Ur	nderstandin	g (K2)
						Mappin	g of CC	s with	POs a	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CC	)1	3	2	1		2							2		3
CC	)2	3	2	1		2							2		3
CC	)3	3	2	1		2							2		3
CC	)4	3	3	1		2							2		3
CC	)5	3	3	1		2							2		3
1 – Sli	ght, 2	– Mode	rate, 3 ·	- Substant	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEORY	(				
	st / Bl Categ	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %	g Cre	ating (K6) %	Total %
	CAT	1		10		60		30	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		40		50	)						100
	ESI	Ξ		10		35		55	5						100

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

	22AUT62 - MODELLING OF HYBRID AND	ELECTRIC VEH	HICLES				
Programme & Branch	B.E. & Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Electrical Systems and Drives	6	PC	3	0	0	3
Preamble	This course deals with modeling and simulation of hyb	orid and electric v	ehicles.				
Unit – I	Electric Vehicles:						9
	architecture and components – Configuration of electric tics -Tractive effort - Transmission requirements - Vehicle					icles	<ul> <li>Tractio</li> </ul>
Unit – II	Hybrid Vehicles:	•	0,				9
	hybrid vehicles - Torque coupling in parallel hybrid-electri	ic drive trains - S	Speed couplir	ng in	hyb	rid-ele	ctric driv
•	nd speed coupling in parallel hybrid-electric drive trains.		· ·				
Unit – III Introduction - Me	Energy Management : ethods to determine state of charge - Estimation of bat		ability – Batt				
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr	Energy Management : ethods to determine state of charge - Estimation of bat nation of cell core temperature - Battery system efficiency -	Plug-in charge c	ability – Batt haracteristics	, alg	orithr	n and	ion – Ce impact o <b>9</b>
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr systems.	Energy Management :         ethods to determine state of charge - Estimation of bat         nation of cell core temperature - Battery system efficiency -         n systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c	Plug-in charge c	ability – Batt haracteristics	, alg	orithr	n and	ion – Ce impact o <b>9</b> of ancillar
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr systems. Unit – V System modelling	Energy Management : ethods to determine state of charge - Estimation of bat nation of cell core temperature - Battery system efficiency - n systems. Electric Vehicle Modeling:	Plug-in charge c considerations for	ability – Batt haracteristics r chassis syst	, alg ems	orithr	n and sign c	ion – Ce impact o 9 of ancillar 9
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr systems. Unit – V System modelling	Energy Management :         ethods to determine state of charge - Estimation of bat hation of cell core temperature - Battery system efficiency - n systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c         Hybrid Vehicle Modeling:         g - Hybrid vehicle control: Engine control, Dumping control	Plug-in charge c considerations for	ability – Batt haracteristics r chassis syst	, alg ems	orithr	n and sign c	ion – Ce impact o 9 of ancillar 9 ike contro
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr systems. Unit – V System modelling	Energy Management :         ethods to determine state of charge - Estimation of bat         bation of cell core temperature - Battery system efficiency -         b systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c         Hybrid Vehicle Modeling:         g - Hybrid vehicle control: Engine control, Dumping control	Plug-in charge c considerations for	ability – Batt haracteristics r chassis syst	, alg ems	orithr	n and sign c	ion – Ce impact o 9 of ancillar 9
Unit – III Introduction - Me Balancing - Estim power distribution Unit – IV Modelling - Electr systems. Unit – V System modelling – Thermal control	Energy Management :         ethods to determine state of charge - Estimation of bat         bation of cell core temperature - Battery system efficiency -         b systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c         Hybrid Vehicle Modeling:         g - Hybrid vehicle control: Engine control, Dumping control	Plug-in charge c considerations for I through electric e analysis.	ability – Batt haracteristics r chassis syst motor, High-'	, alg ems Volta	- De	n and sign c us sp	ion – Ce impact o 9 of ancillar 9 ike contro
Unit – III         Introduction - Me         Balancing - Estim         power distribution         Unit – IV         Modelling - Electr         systems.         Unit – V         System modelling         – Thermal control         TEXT BOOK:         1.       Wei Liu.,	Energy Management :         ethods to determine state of charge - Estimation of bat         hation of cell core temperature - Battery system efficiency -         n systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c         Hybrid Vehicle Modeling:         g - Hybrid vehicle control: Engine control, Dumping control         I of battery system – HEV/EV traction control - Performance	Plug-in charge c considerations for I through electric e analysis.	ability – Batt haracteristics r chassis syst motor, High-'	, alg ems Volta	- De	n and sign c us sp	ion – Ce impact o 9 of ancillar 9 ike contro
Unit – III         Introduction - Me         Balancing - Estim         power distribution         Unit – IV         Modelling - Electr         systems.         Unit – V         System modelling         – Thermal control         TEXT BOOK:         1.       Wei Liu.,         REFERENCES:         1       Mehrdad	Energy Management :         ethods to determine state of charge - Estimation of bat         hation of cell core temperature - Battery system efficiency -         n systems.         Electric Vehicle Modeling:         ric vehicle acceleration - Electric vehicle range - Design c         Hybrid Vehicle Modeling:         g - Hybrid vehicle control: Engine control, Dumping control         I of battery system – HEV/EV traction control - Performance	Plug-in charge c considerations for l through electric e analysis. trol", Wiley India	ability – Batt haracteristics r chassis syst motor, High-' Pvt Ltd, New	, alg ems Volta	- De age B i, 201	n and sign c us sp	ion – Ce impact o 9 of ancillar 9 ike contro <b>Total:4</b>

	BT Mapped (Highest Level)
summarize the layout and sub systems of electric vehicles.	Understanding (K2)
explain the architecture of various types of hybrid Vehicles.	Understanding (K2)
illustrate the battery charging characteristics and its management system.	Applying (K3)
model and simulate electric vehicles for various environmental conditions.	Applying (K3)
model and simulate hybrid vehicles for different operating conditions.	Applying (K3)
	explain the architecture of various types of hybrid Vehicles. illustrate the battery charging characteristics and its management system. model and simulate electric vehicles for various environmental conditions.

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2			2	2					3	2	3
CO2	3	3	2			2	2					3	2	3
CO3	3	3	3	2		2	2					3	2	3
CO4	3	3	3	2		2	2					3	2	3
CO5	3	3	3	2		2	2					3	2	3
			<u> </u>			-								

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	40	40				100
CAT3	20	30	50				100
ESE	<mark>20</mark>	40	40				100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)				

Progra Branc		e &	B.E	- Auton	nobile E	Enginee	ering				Sem.	Category	L	т	Р	Credit
Prerec	quisit	es	Autor	notive	Sensor	s and C	ontrol	lers Lal	oorator	у	6	PC	0	0	2	1
Pream	nble			course p		hands	on expe	erience	in progr	ramminę	g and pe	ripheral inte	erfacir	ng wi	th	
LIST C	OF EX		IENTS	EXER	CISES:											
1.	Ado	dition a	nd subti	raction u	using 89	9C51 mi	icrocon	troller								
2.	Mul	ltiplicati	ion and	division	using 8	39C51 r	nicroco	ntroller								
3.	Inte	erfacing	ofasw	itch and	d LED w	vith 89C	51 mic	rocontro	oller							
4.	Sev	/en seg	ment di	isplay ir	terfacin	g with 8	39C51 r	nicroco	ntroller							
5.	LC	D interf	acing w	ith 89C	51 micro	ocontrol	ler									
6.	Rel	ay Inte	rfacing	with 890	C51 mic	rocontro	oller									
7.	DC	Motor	Interfac	ing with	89C51	microc	ontrolle	r								
8.	Ste	pper m	otor inte	erfacing	with 89	C51 mi	crocont	roller								
9.	Inte	erfacing	of swite	ch and I	ED wit	h Arduii	no boar	d								
10.	Ser	vo mot	or interf	acing w	ith Ardı	ino boa	ard									
																Total:30
REFE	RENC	ES/ M	ANUAL	/SOFT	WARE:											
1.	Lab	oratory	/ Manua	al												
		UTCO													BT Map	
<u>On co</u> CO1	App	oly 805	51 instr	urse, th uction vision pr	set and	d addre			for give	en Add	lition / S	Subtraction	/	A	ghest oplying recisior	(K3),
CO2	Bui	ld LED		n, Seve	-		D, Rela	ay, DC i	motor a	nd Step	oper mot	or interface	S	A	oplying recisior	(K3),
CO3	Der		ate the		of LED	), Switc	h and \$	Servo n	notor in	terfaces	s using A	Tmega 8 b	oit	A	oplying recisior	(K3),
						Mappi	ing of C	Cos wit	n POs a	and PS	Os					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	12	PSO1	PSO2
CO	1	3	2	1		2			1	3	2		1			3
CO	2	3	2	1		2			1	3	2		1			3
CO	3	3	2	1		2			1	3	2		1			3

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

Progr Branc	amme	&	B.E	Autom	nobile E	Inginee	ring				Sem.	Category	L	т	Р	Credit
	an quisite	S				-		notive	Chassi	5	6	PC	0	0	2	1
Pream	nble			ourse p Iobile sy		ands o	n exper	ience ir	n mainte	nance,	servicin	g and perfo	mance	e te:	st of	
LIST	OF EXF	PERIN	IENTS /	EXER	CISES:											
1.	Perfo	orman	ce test (	of a two	wheele	r using	chassis	s dynam	ometer							
2.	Perfo	orman	ce test o	on shoc	k absor	ber										
3.	Perfe	orman	ce test o	on coil s	pring											
4.	Perfo	orman	ce test o	of two w	heeler (	chain										
5.	Test	ing an	d valida	tion of E	Battery a	and batt	tery cha	irging								
6.	Gase	oline E	Ingine T	uning: I	gnition	timing, v	valve ga	ap, adju	stment	on carb	uretor a	nd plugs				
7.	Dies	el Eng	jine Tun	ing: Inje	ection p	ressure	, adjusti	ment of	injectio	n pump	and val	/es				
8.	Com	pressi	ion and	vacuum	test in	single a	and mul	ti-cylind	ler engiı	nes						
9.	Mea	surem	ent of h	ead ligh	ıt illumir	ation										
10.	Tire	remov	al, edge	e rotatio	n and p	osition I	rotation									
11.	Whe	el bala	ancing a	ind whe	el aligni	ment of	a car									
12.	Faul	t diagr	nosis of	hydraul	ic brakiı	ng syste	em									
															•	Total:30
REFE	RENC	ES/ M	ANUAL	/SOFT	WARE:											
1.	Labo	oratory	Manua	I												
															Т Мар	
On co	ompleti	on of	the cou	irse, th	e stude	nts wil	l be ab	e to						•	<b>ghest l</b> oplying	
CO1	Calc	ulate v	/arious	perform	ance of	two wh	eeler cł	nassis c	compone	ents.			ſ	Man	ipulatio	on (S2)
CO2	Cond	duct va	arious te	ests and	l tuning	to impro	ove the	perform	nance o	f autom	otive en	gines.	ſ		plying plying	(K3), on (S2)
CO3	Trou	blesho	oot vario	ous fault	s in fou	r wheel	er chas	sis syst	ems.					Ap	plying	
						Маррі	ng of C	os with	n POs a	nd PSC	Ds					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	2	PSO1	PSO
CO	)1	3	2	1		3	2	1	1	3	2		1		3	
CO	2	3	2	1		3	2	1	1	3	2		1		3	
CO	2	3	2	1		3	2	1	1	3	2		1	1	3	

						22/	AUP61	- PROJ	ECT W	ORKI						
Progra Branc		e &	B.E	- Autom	nobile E	Inginee	ring				Sem.	Category	L	т	Р	Credit
Prerec	quisit	tes	NIL								6	EC	0	0	8	4
															Т	otal:120
		UTCOI													T Map	
On co				urse, th	e stude	ents will	be abl	e to						(Пі	ghest I	_ever)
CO1	fulf	III team	roles as	ssigned										Ap	oplying	(K3)
CO2	cor	nmunic	ate effe	ctively										Ap	oplying	(K3)
CO3	sol	ve engii	neering	problem	ns involv	ving cur	rent iss	ues usii	ng mod	ern tool	S			Ap	oplying	(K3)
CO4	der	nonstra	te the a	bility to	apply th	ne know	ledge g	ained ir	the pro	ogramm	e			Ap	oplying	(K3)
CO5				oal, ecor e implic				tal issue	es asso	ciated w	/ith the p	roject		An	alyzing	(K4)
						Маррі	ng of C	os with	POs a	nd PSC	Ds					
COs/P	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2
CO	1	3	3	3	2	2	2	2	2	3	3	3	2		3	3
CO2	2	3	3	3	3	3	2	2	2	3	3	3	2		3	3
COS	3	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO4	4	3	3	3	3	3	3	3	3	3	3	3	3		3	3
CO	5	3	3	3	3	3	3	3	3	3	3	3	3		3	3
1 – Slie	ght, 2	2 – Mod	erate, 3	– Subs	tantial.	BT- Blo	om's Ta	axonom	V	1	1	ıl		-		1

						22/	AUP62	- PROJ	ECT W	ORKI						
Progra Brancl		e &	B.E	- Autom	nobile E	inginee	ering				Sem.	Category	L	т	Р	Credit
Prerec	quisit	es	NIL								6	EC	0	0	8	4
															Т	otal:120
COUR	SE O	UTCOI	MES:												Т Мар	
On co	mple	tion of	the cou	urse, th	e stude	nts will	l be abl	e to						(Hi	ghest l	.evel)
CO1	fulfi	ill team	roles as	ssigned										Ap	oplying	(K3)
CO2	con	nmunic	ate effe	ctively										Ap	oplying	(K3)
CO3	solv	ve engii	neering	problen	ns involv	/ing cur	rent iss	ues usii	ng mod	ern tool	S			Ap	oplying	(K3)
CO4	der	nonstra	te the a	bility to	apply th	ie know	ledge g	ained ir	n the pro	ogramm	e			Ap	oplying	(K3)
CO5		•	•	oal, ecor le implic				tal issue	es asso	ciated w	ith the p	roject		An	alyzing	(K4)
						Маррі	ng of C	os with	n POs a	nd PSC	Ds					
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	<b>PO1</b>	2	PSO1	PSO2
CO1	1	3	3	3	2	2	2	2	2	3	3	3	2		3	3
CO2	2	3	3	3	3	3	2	2	2	3	3	3	2		3	3
COS	3	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO4	4	3	3	3	3	3	3	3	3	3	3	3	3		3	3
CO5	5	3	3	3	3	3	3	3	3	3	3	3	3		3	3
1 – Slig	ght, 2	– Mod	erate, 3	– Subs	tantial,	BT- Blo	om's Ta	xonom	y	1	1	11		-		1

	22GET31- UNIVERSAL HU (Common to All Engineering and T		3)				
Programme & Branch	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	3/6	HS	2	0	0	2
Preamble	To make the student to know what they 'really meaning of happiness and prosperity for a humar harmony at all the levels of human living, and live a	n being. Also to faci	•				
Unit – I	Introduction:						6
Exploration – Cor Aspirations – Cor Human Aspiration	Guidelines of Value Education – Content and Process ntent and Process of Self exploration – Natural Acce ntinuous Happiness and Prosperity – Exploring Happir ns – Relationships – Physical Facilities – Right Under	eptance – Realization ness and Prosperity	n and Under	stand	ding	– Bas	sic Huma Ifillment c
Unit – II	Harmony in the Self and Body: Body – Understanding Myself as Co–existence of Se						6
-	r, Self ('I') as the Conscious Entity, the Body as the Ma	aterial Entity – Exerci	se – Body as	an li	nstru	ment-	- Harmon
( )	nderstanding Myself – Harmony with Body.						6
Unit – III	Harmony in the Family and Society:	nships – Relationshir	o from Family	to Se	ociety	/ – Ide	6 entificatio
Unit – III Harmony in the Fa		nships – Relationship	o from Family	to So	ociety	/ – Ide	
Unit – III Harmony in the Fa	Harmony in the Family and Society: amily – Justice – Feelings (Values) in Human Relation Five dimensions of Human Endeavour.	nships – Relationship	o from Family	to So	ociety	/ – Ide	-
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature -	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Sp	er – Innateness – Na	atural Charac	terist	tic –	Basic	entificatio
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature – Conformance – I Existence is Co–e Unit – V	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understanding	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b>	atural Charac unlimited – /	terist Activ <b>Ethi</b> e	tic – re an <b>cs:</b>	Basic d No	entificatio
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature – Conformance – I Existence is Co–e Unit – V Values in differen	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understandir         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct	atural Charac unlimited – Professional	terist Activ Ethics of N	tic – ′e an <b>cs:</b> √alue	Basic d No-	6 Activity -activity 6 ed Living
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature – Conformance – I Existence is Co–e Unit – V Values in differen Identification of C Professional Ethic	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understandir         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct	atural Charac unlimited – Professional	terist Activ Ethics of N	tic – ′e an <b>cs:</b> √alue	Basic d No-	Activity -activity -activity ed Living Issues i
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature – Conformance – I Existence is Co–e Unit – V Values in differen Identification of C Professional Ethic TEXT BOOK:	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understandir         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education         cs.	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct n – Universal Huma	atural Charac unlimited – A Professional –Implications n Order – Co	terist Activ Ethics of Normpe	tic – ve an cs: /alue	Basic d No- base e and	6 Activity activity 6 d Living Issues i Total:3
Unit – III Harmony in the Fa of Human Goal – Unit – IV Order of Nature – Conformance – I Existence is Co–e Unit – V Values in differen Identification of C Professional Ethic TEXT BOOK: 1 Gaur R.R	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understandir         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct n – Universal Huma	atural Charac unlimited – A Professional –Implications n Order – Co	terist Activ Ethics of Normpe	tic – ve an cs: /alue	Basic d No- base e and	6 Activity activity 6 d Living Issues i Total:3
Unit – III         Harmony in the Factor         of Human Goal –         Unit – IV         Order of Nature -         Conformance – I         Existence is Co-ee         Unit – V         Values in differen         Identification of C         Professional Ethic         TEXT BOOK:         1.       Gaur R.R.         Books Pv         REFERENCES:	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understanding         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education         s.        , Sangal R., Bagaria G.P., "A Foundation Course in Hit.         t. Ltd., New Delhi, 2016.	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct n – Universal Huma	atural Charac unlimited – A Professional –Implications n Order – Co	terist Activ Ethics of Normpe	tic – ve an cs: /alue	Basic d No- base e and	6 Activity activity 6 d Living Issues i Total:3
Unit – III         Harmony in the Factor         of Human Goal –         Unit – IV         Order of Nature -         Conformance – I         Existence is Co-ee         Unit – V         Values in differen         Identification of C         Professional Ethic         TEXT BOOK:         1.       Gaur R.R.         Books Pv         REFERENCES:	Harmony in the Family and Society:         amily – Justice – Feelings (Values) in Human Relation         Five dimensions of Human Endeavour.         Harmony in Nature and Existence:         - Interconnectedness – Understanding the Four orde         ntroduction to Space – Co–existence of units of Spexistence.         Implications of the above Holistic Understandir         t dimensions of Human Living – Definitiveness of Ethi         Comprehensive Human Goal – Humanistic Education         s.	er – Innateness – Na bace – Limited and <b>ng of Harmony on I</b> ical Human Conduct n – Universal Huma	atural Charac unlimited – A Professional –Implications n Order – Co	terist Activ Ethics of Normpe	tic – ve an cs: /alue	Basic d No- base e and	6 Activity activity 6 d Living Issues Total:3

		UTCOM			_									ВТ Марр	
On co				,		ts will be a								Highest L	evel)
CO1			meanin the socie	• • •	oiness	s and pros	sperity a	and do	a cor	rect app	oraisal o	f the curre	nt	Applying	(K3)
CO2		•		the Self		ne Body, u	nderstar	nd the r	neanir	ng of Har	mony in	the Self, the	ne	Applying	(K3)
CO3						•			•			ly acceptab ous society	le	Applying	(K3)
CO4	tran nati		nemselve	es to co-e	exist v	vith nature	by real	ising in	tercon	nectedne	ess and	four order	of	Applying	(K3)
CO5		inguish l er living		ethical a	nd un	ethical pra	ctices, a	ind exte	end eth	nical and	moral p	ractices for	a	Applying	(K3)
						Mappin	a of CO	s with	POs a	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO		PO6	PO7	PO8		PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2	1	1										
CO	)2	3	2	1	1										
CO	3	3	2	1	1										
CO	)4	3	2	1	1										
CO	95	3	2	1	1										
1 – Sli	ght, 2	– Mode	rate, 3 -	Substant	ial, B⁻	T- Bloom's	Taxono	my				1		J.	
						ASSES	SMENT	PATTE	RN - 1	THEORY	,				
	st / Bl Categ	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)	U U	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		25		75									100
	CAT	2		25		75									100
	ESI	Ε		NA											100
* ±3%	may b	be varie	d (CAT 1	& 2 – 50	mark	s & ESE –	100 ma	rks)					·		· ·

	(Common to All BE/BTech b	ranches)					
Programme & Branch	All BE/BTech branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	7	HS	3	0	0	3
Preamble	The aim of the course is to create fundamental knowledg economics, national income, marketing, operations mana					epts lil	ke
Unit – I	Micro Economics						9
	asics Concepts and Principles – Demand and Supply – Law ircular Flow of Economic Activities and Income.	of demand and S	Supply – Dete	rmin	ants	– Ma	rket
Unit – II	Macro Economics, Business Ownership and Manage	ment concepts					9
Business - Ow	e and its Measurement Techniques. Inflation - Causes of Inflation nership Types. Management concepts: Taylor and Fayol's Pr f Management - Roles of Manager.						
Unit – III	Marketing Management						9
	e Concepts of Marketing - Four P's of Marketing - New Prod cle - Pricing Strategies and Decisions.	uct Developmen	t – Intellectua	l Pro	perty	' Righ	ts (IPR),
Unit – IV	Operations Management						9
	nagement - Resources - Types of Production System - Site S ventory - EOQ Determination.	election, Plant L	ayout, Steps	in Pr	oduc	tion F	Planning
Unit – V	Financial Management						9
	ciples – Financial Statements and its Uses – Depreciation - - Capital Budgeting - Significance –Traditional and Discounte			Bala	nce l	Metho	od – Brea
							Total:4
TEXT BOOK:	ed by Department of Management Studies, Kongu Engineeri	ng College, "Ecc	pnomics and I	Mana	gem	ent fo	or
1 Compil	ers", 1 st Edition, McGraw Hill Education, Noida, 2013.						
1. Compil Engine							
1. Compil Engine		nomics", 3 rd Editi	on, McGraw-	Hill, I	New	Delhi,	2018.
Compil1.CompilEngineREFERENCES1.Geetika	:			Hill, I	New	Delhi,	2018.

		UTCON on of th		e, the stuc	lents wi	ll be able	to							Mapped jhest Lev	vel)
CO1	iden	tify ma	rket equi	ilibrium ar	nd interp	oret natio	nal inco	me calci	ulations	and inf	lation iss	sues		Applying	(K3)
CO2	choo	ose a s	uitable b	ousiness o	wnersh	ip for thei	r enterp	rise and	l illustra	ate mana	agerial fu	unctions		Applying	(K3)
CO3	infer	· marke	ting mar	nagement	decisio	ns							Ur	nderstand	ing (K2)
CO4	appl	y appro	opriate o	peration r	nanage	ment con	cept in l	busines	s situati	ions				Applying	(K3)
CO5	inter	pret fin	ancial a	nd accour	nting sta	atements	and eva	lluate ne	ew prop	osals				Applying	(K3)
						Mappin	g of CC	)s with	POs ar	nd PSOs	6				
COs/P	Os	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1	1	1	2			3		2	2	2	3	2		
CO	2		1	2			2	2	2	2	2	3	2		
CO	3	1	2	1			2		2	2	2	3	2		
CO	4	1	2	1			2		2	2	2	3	2		
CO	5	2	2				2		2	2	2	3	2		
1 – Slię	ght, 2	– Mode	erate, 3 -	- Substan	tial, BT-	- Bloom's	Taxonc	omy	1	4			1	I	
						ASSES	SMENT	ратте	RN - T	HEORY	,				
	st / Blo Catego	oom's ory*	R	emember (K1) %	ing	Understa (K2)	anding	Apply (K3)	ying	Analyzi (K4) %	ing	Evaluating (K5) %		eating (6) %	Total %
	CAT	1		20		40		40	)						100
	CAT	2		20		40		40	)						100
	CAT	3		20		40	)	40	)						100
	UA1														

	22AUT71 - MANUFACTURING OF AU	JTOMOTIVE COMPO	DNENTS				
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	7	PE	3	0	0	3
Preamble	This course provides knowledge on various mater production of automotive components	rial forming, removing	g and joining t	echn	iques	s emp	loyed in
Unit - I	Engine Components I:						9
	on and Manufacturing methods for Piston - Piston rin coating of Engine head and valves.	ngs -Cylinder block	- Wet and dr	y lin	iers -	Engi	ne head
Unit - II	Engine Components II:						9
Material selectic arm, tappets, sp	n and Manufacturing methods for Crank shaft - Conn ark plug.	ecting rod, Cam sha	ft, valve, Pist	on p	in, P	ush ro	od, Rocke
11	Transmission Quaterns						9
Material selectic Shaft - Bearing generation - gea	Transmission System: n and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufacture ir finishing and shaving.						nes - ge
Shaft - Bearing generation - gea <b>Unit - IV</b> Material selectio	n and Manufacturing methods for Clutch - Clutch linit - fasteners - Wheel drum - Methods of Gear manufa	acture - Gear hobbir	ng and gear	shap	oing n	nachir	nes - ge 9
Material selectic Shaft - Bearing generation - gea <b>Unit - IV</b> Material selectio	n and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa r finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, lo	acture - Gear hobbir	ng and gear	shap	oing n	nachir	nes - ge 9
Material selectic Shaft - Bearing generation - gea <b>Unit - IV</b> Material selectio - Steering syster <b>Unit - V</b> Surface treatme exhaust manifol	n and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa r finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, lo m, Brake shoes, wheel rim, Tyres.	acture - Gear hobbin eaf spring, coil spring ior Dashboard - Pro	ng and gear	shap bsorl	bers -	Whe	nes - ge 9 el housir 9 forming
Material selectic Shaft - Bearing generation - gea <b>Unit - IV</b> Material selectio - Steering syster <b>Unit - V</b> Surface treatme exhaust manifol	n and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa ir finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, le n, Brake shoes, wheel rim, Tyres. Recent Developments: int - Plastics - Plastics in Automobile vehicles - Inter d and lamp housing - Stretch forming of Auto bod	acture - Gear hobbin eaf spring, coil spring ior Dashboard - Pro	ng and gear	shap bsorl	bers -	Whe	nes - ge 9 el housir 9 forming 5 for Au
Material selection Shaft - Bearing generation - gea Unit - IV Material selection - Steering system Unit - V Surface treatme exhaust manifol components - Use TEXT BOOK:	n and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa ir finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, le n, Brake shoes, wheel rim, Tyres. Recent Developments: int - Plastics - Plastics in Automobile vehicles - Inter d and lamp housing - Stretch forming of Auto bod	acture - Gear hobbir eaf spring, coil spring ior Dashboard - Pro y panels - MMC lir	ng and gear and shock a cessing of pla ners - Selecti	bsorl	bers bers s - H of ma	• Whe	nes - ge 9 el housir 9 forming 5 for Au
Material selection Shaft - Bearing generation - gea Unit - IV Material selection - Steering system Unit - V Surface treatme exhaust manifol components - Us TEXT BOOK: 1. Serope Education	An and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa ir finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, le m, Brake shoes, wheel rim, Tyres. Recent Developments: ent - Plastics - Plastics in Automobile vehicles - Inter d and lamp housing - Stretch forming of Auto bod se of Robots in Body welding. Kalpakjian & Steven Schmid, "Manufacturing Processe	acture - Gear hobbir eaf spring, coil spring ior Dashboard - Pro y panels - MMC lir	ng and gear and shock a cessing of pla ners - Selecti	bsorl	bers bers s - H of ma	• Whe	nes - ge 9 el housir 9 forming 5 for Au
Material selectic Shaft - Bearing generation - gea Unit - IV Material selectio - Steering syster Unit - V Surface treatme exhaust manifol components - Us TEXT BOOK: 1. Serope Education REFERENCES/	An and Manufacturing methods for Clutch - Clutch linin - fasteners - Wheel drum - Methods of Gear manufa ir finishing and shaving. Vehicle Chassis: n and manufacturing methods for chassis, dead axle, le n, Brake shoes, wheel rim, Tyres. Recent Developments: Int - Plastics - Plastics in Automobile vehicles - Inter d and lamp housing - Stretch forming of Auto bod se of Robots in Body welding. Kalpakjian & Steven Schmid, "Manufacturing Processe on India, New Delhi, 2016.	acture - Gear hobbin eaf spring, coil spring ior Dashboard - Pro y panels - MMC lin	ng and gear and shock a cessing of pla ers - Selecti terials", 6th E	bsorl	bers bers s - H of ma	• Whe	nes - ge 9 el housir 9 forming 5 for Au

		UTCOM tion of t		se, the st	udent	s will be	able to							BT Mapp (Highest L	
CO1	und	erstand	basic pr	inciple an	d prod	luction m	ethods of	f engine	comp	onents			Und	derstanding	g (K2)
CO2	und	erstand	the mat	erial selec	tion a	nd the pro	oduction	of forge	d engi	ne comp	onents		Uno	derstanding	g (K2)
CO3	disc	uss the	materia	selection	and n	nanufactu	uring of tr	ansmiss	sion sy	stem coi	mponent	S	Und	derstanding	g (K2)
CO4	sum	marize	the impo	ortance an	d mar	nufacturin	g of vehi	cle chas	ssis co	mponent	s of auto	mobile	Und	derstanding	g (K2)
CO5	und	erstand	the rece	ent develo	oment	s in manu	ufacturing	g proces	s for a	utomotiv	e compo	onents	Und	derstanding	g (K2)
						Маррі	ng of CC	s with	POs a	nd PSOs	6				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
СО	1	3	2	1										2	
CO	2	3	1	1										3	
CO	3	3	2	2										3	
CO	4	3	1	1										2	
CO	5	3	1	1										2	
1 – Sli	ght, 2	– Mode	rate, 3 -	- Substant	ial, BT	- Bloom'	s Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEORY	,				
	st / Ble Catego	oom's ory*	Re	ememberi (K1) %	ng	Underst (K2		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		Creating (K6) %	Tota %
	CAT	1		40		6	0							•	100
	CAT	2		40		6	0								100
	CAT	3		40		6	0								100
	ESE	Ξ		40		6	0								100

## 22AUP71 PROJECT WORK II PHASE I

Progra Branc		&	B.E	- Autom	nobile E	Inginee	ring				Sem.	Category	L	Т	Р	Credit
Prerec	quisite	S	NIL								7	EC	0	0	10	5
															Т	otal:150
COUR	SE OU	JTCOI	MES:												т Мар	
On co	mpleti	on of	the cou	urse, th	e stude	ents will	l be abl	e to						(Hig	ghest I	_evel)
CO1	fulfill	team	roles as	ssigned										Ap	plying	(K3)
CO2	comr	munica	ate effe	ctively										Ap	plying	(K3)
CO3	solve	e engii	neering	problen	ns invol	ving cur	rent iss	ues usii	ng mod	ern tool	s			Ap	plying	(K3)
CO4	demo	onstra	te the a	bility to	apply th	ne know	ledge g	ained ir	n the pro	ogramm	ne			Ap	plying	(K3)
CO5						nd envir o the sc		tal issue	es asso	ciated v	vith the p	project		An	alyzing	ı (K4)
						Маррі	ng of C	os with	n POs a	nd PS	Ds					
COs/P	Os I	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	<b>PO1</b>	2	PSO1	PSO2
CO	1	3	3	3	2	2	2	2	2	3	3	3	2		3	3
CO2	2	3	3	3	3	3	2	2	2	3	3	3	2		3	3
COS	3	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO4	4	3	3	3	3	3	3	3	3	3	3	3	3		3	3
CO	5	3	3	3	3	3	3	3	3	3	3	3	3		3	3
1 – Slie	aht 2 -	– Mod	erate 3	– Subs	tantial	BT- Blo	om's Ta	avonom			1	1 1				1

						22AUP7	72 PRC	DJECT	WORK	II PHAS	SE I					
Progra Branc		e &	B.E	- Autom	nobile E	Enginee	ering				Sem.	Category	L	т	Р	Credit
Prerec	quisit	tes	NIL								7	EC	0	0	10	5
															Т	otal:150
		UTCO		urse, th	e stude	ents wil	l be abl	le to							T Map ghest l	
CO1	fulf	ill team	roles as	ssigned										Ap	plying	(K3)
CO2	cor	nmunic	ate effe	ctively										Ap	plying	(K3)
CO3	sol	ve engi	neering	problen	ns invol	ving cur	rent iss	ues usi	ng mod	ern tool	s			Ap	plying	(K3)
CO4				bility to			~ ~			·				Ap	plying	(K3)
CO5				oal, ecor le implic				tal issue	es asso	ciated v	vith the p	roject		An	alyzing	(K4)
						Маррі	ng of C	os with	n POs a	nd PS	Os					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSO2
CO	1	3	3	3	2	2	2	2	2	3	3	3	2		3	3
CO	2	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO	3	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO	4	3	3	3	3	3	3	3	3	3	3	3	3		3	3
CO	5	3	3	3	3	3	3	3	3	3	3	3	3		3	3
1 – Sli	ight, 2	2 – Mod	erate, 3	– Subs	tantial,	BT- Blo	om's Ta	axonom	y	1				1		1

## 22AUP81 PROJECT WORK II PHASE II

Progra Branc		8	B.E	- Autom	nobile E	Inginee	ring				Sem.	Category	L	т	Р	Credit
Prerec	quisite	es	NIL								8	EC	0	0	8	4
															Т	otal:120
COUR	SE O	UTCOI	MES:												Т Мар	
On co	mplet	tion of	the cou	urse, th	e stude	ents wil	l be abl	le to						(Hig	ghest l	_evel)
CO1	fulfil	ll team	roles as	ssigned										Ap	plying	(K3)
CO2	com	nmunic	ate effe	ctively										Ap	plying	(K3)
CO3	solv	ve engii	neering	problen	ns invol	ving cur	rent iss	ues usii	ng mod	ern tool	S			Ap	plying	(K3)
CO4	dem	nonstra	te the a	bility to	apply th	ne know	ledge g	ained ir	the pro	ogramm	ne			Ap	plying	(K3)
CO5				al, ecor e implic				tal issue	es asso	ciated w	vith the p	project		An	alyzing	I (K4)
						Маррі	ng of C	os with	POs a	nd PSC	Ds					
COs/P	Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	<b>PO1</b>	2	PSO1	PSO2
CO1	1	3	3	3	2	2	2	2	2	3	3	3	2		3	3
CO2	2	3	3	3	3	3	2	2	2	3	3	3	2		3	3
COS	3	3	3	3	3	3	2	2	2	3	3	3	2		3	3
CO4	4	3	3	3	3	3	3	3	3	3	3	3	3		3	3
COS	5	3	3	3	3	3	3	3	3	3	3	3	3		3	3
1 – Slie	aht 2	– Mod	erate, 3	– Subs	tantial	BT- Blo	om's Ta	vonom			н	ı		- 1		1

_			TECHNOLO		1			
Progra Branc	amme & h	BE – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerec	quisites	Automotive Powertrain and Automotive Chassis	5	PE	3	0	0	3
Pr	reamble	This course provides knowledge on two and three-wheeler	systems an	d its advance	men	ts.		
Unit –	I	Two-wheeler Engine systems:						9
system	n – Layout, d	nes – Types and working principle. Fuel supply system - C components and sensors. Lubrication system - Function, type ystem - Push, kick and auto-start mechanisms.						
Unit –	11	Two-wheeler Chassis systems:						9
Types handle chargii	and their op bar. Front s ng circuit.	neeler: Types and loads - Different drive systems for two-who perating mechanisms. CVT - Final drive. Steering: Fork assen suspension systems - Telescopic type, Rear suspension syste	bly and Ha	ndle bar. Pan	el m	eters	and o	controls o s: Lighting
Unit –		Two-wheeler Brakes and Wheels:						9
control	I systems. V	disc brakes: Types, construction and working. Front and rear Nheels: Spoked, alloy and disc wheels. Tyre: Type, constru	brake linkag ction details	e - Compone 8. Road holdi	nts - ng, v	Bral	ke act le ha	uation an ndling and
control stabilit <b>Unit –</b>	I systems. V y characteris IV	Wheels: Spoked, alloy and disc wheels. Tyre: Type, construstics. Two-wheeler Advanced Technologies	ction details	s. Road holdi	ng, v	vehic	le ha	ndling and
control stabilit Unit – Advan perforr and AF its con Regen	I systems. V y characteris IV ced two-whe mance (SEP PDV ignition ntrollers: Ty perating brak	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue engine technologies: Yamaha - Honda -</li></ul>	ction details co technolog FT), Advand out – Batter	s. Road holdi gy (HET), Ba ced swirl flow ies and their t	ing, v jaj - indu sypes	DTS DTS Iction	ile hai -i, Su syste	ndling and 9 zuki - Ec em (ASFS notors an system
control stabilit Unit – Advan perforr and AF its con Regen Unit –	I systems. V y characteris IV ced two-whe mance (SEP PDV ignition ntrollers: Ty lerating brak V	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Edeler engine technologies: Yamaha - Blue core, Honda - Edeler, Hero - i3s, Advanced tumble flow induction technology (AT system. Electric two-wheeler: Construction and drive train lay ropes and circuits. Charger and charging system – Battering principles. Merits and demerits. Regulations and safety.</li> <li>Three-wheeler:</li> </ul>	ction details co technolog FT), Advand out – Batter ry balancer	s. Road holdi gy (HET), Ba ced swirl flow ies and their f and battery	ing, v jaj - indu ypes ma	DTS Iction B. Ele	-i, Su -i, Su syste ctric r ement	ndling and zuki - Ec em (ASFS notors an system <b>9</b>
control stabilit Unit – Advan perforr and AF its con Regen Unit – Three-	I systems. V y characteris ced two-whe mance (SEP PDV ignition ntrollers: Ty erating brak V wheeler: Cla and diesel e	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue core, Honda - Editer engine technologies: Yamaha - Blue engine technologies: Yamaha - Honda -</li></ul>	ction details co technolog FT), Advand out – Batter ry balancer	s. Road holdi gy (HET), Ba ced swirl flow ies and their f and battery c. Frame and	ing, v jaj - indu ypes ma bodv	DTS DTS Iction S. Ele Inage	-i, Su -i, Su syste ctric r ement pes. F	ndling and zuki - Ec em (ASFS notors and system 9 Four strok
control stabilit Unit – Advan perforr and AF its con Regen Unit – Three- CNG a	I systems. V y characteris ced two-whe mance (SEP PDV ignition ntrollers: Ty erating brak V wheeler: Cla and diesel e	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Eder, Hero - i3s, Advanced tumble flow induction technology (AT system. Electric two-wheeler: Construction and drive train lay upes and circuits. Charger and charging system – Battering principles. Merits and demerits. Regulations and safety.</li> <li>Three-wheeler:</li> <li>assification, construction, layout of passenger and loading automatication.</li> </ul>	ction details co technolog FT), Advand out – Batter ry balancer	s. Road holdi gy (HET), Ba ced swirl flow ies and their f and battery c. Frame and	ing, v jaj - indu ypes ma bodv	DTS DTS Iction S. Ele Inage	-i, Su -i, Su syste ctric r ement pes. F	ndling and zuki - Ec em (ASFS notors an system <b>9</b> Four strok
control stabilit <u>Unit –</u> Advan perforr and AF its con Regen <u>Unit –</u> Three- CNG a details	I systems. V y characteris ced two-whe mance (SEP PDV ignition ntrollers: Ty erating brak V wheeler: Cla and diesel e	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Eder, Hero - i3s, Advanced tumble flow induction technology (AT system. Electric two-wheeler: Construction and drive train lay upes and circuits. Charger and charging system – Battering principles. Merits and demerits. Regulations and safety.</li> <li>Three-wheeler:</li> <li>assification, construction, layout of passenger and loading automatication.</li> </ul>	ction details co technolog FT), Advand out – Batter ry balancer	s. Road holdi gy (HET), Ba ced swirl flow ies and their f and battery s. Frame and	ing, v jaj - indu ypes ma bodv	DTS Inction Inage	-i, Su -i, Su syste ctric r ement pes. F	ndling an <b>9</b> zuki - Ec em (ASFS notors an system <b>9</b> Four strok erformanc
control stabilit <u>Unit –</u> Advan perforr and AF its con Regen <u>Unit –</u> Three- CNG a details	I systems. V y characteris IV ced two-whe mance (SEP PDV ignition ntrollers: Ty ierating brak V wheeler: Cla and diesel e  BOOK:	<ul> <li>Wheels: Spoked, alloy and disc wheels. Tyre: Type, constructions.</li> <li>Two-wheeler Advanced Technologies</li> <li>eeler engine technologies: Yamaha - Blue core, Honda - Eder, Hero - i3s, Advanced tumble flow induction technology (AT system. Electric two-wheeler: Construction and drive train lay upes and circuits. Charger and charging system – Battering principles. Merits and demerits. Regulations and safety.</li> <li>Three-wheeler:</li> <li>assification, construction, layout of passenger and loading automatication.</li> </ul>	ction details co technolog FT), Advand out – Batter ry balancer to rickshaws ctric three-w	s. Road holdi gy (HET), Ba ced swirl flow ies and their t and battery s. Frame and heeler: Cons	ing, v jaj - indu ypes ma bodv	DTS Inction Inage	-i, Su -i, Su syste ctric r ement pes. F	ndling an <b>9</b> zuki - Ec em (ASFS notors an system <b>9</b> Four strok erformanc
control stabilit Unit – Advan perforr and AF its con Regen Unit – Three- CNG a details TEXT 1.	I systems. V y characteris IV ced two-whe mance (SEP PDV ignition ntrollers: Ty ierating brak V wheeler: Cla and diesel e  BOOK:	Wheels: Spoked, alloy and disc wheels. Tyre: Type, constru- stics.           Two-wheeler Advanced Technologies           eeler engine technologies: Yamaha - Blue core, Honda - Ed           b; Hero - i3s, Advanced tumble flow induction technology (AT           system. Electric two-wheeler: Construction and drive train lay           vps and circuits. Charger and charging system – Batter           ing principles. Merits and demerits. Regulations and safety.           Three-wheeler:           assification, construction, layout of passenger and loading autergines – Drive train – Suspension and brake systems. Electric	ction details co technolog FT), Advand out – Batter ry balancer to rickshaws ctric three-w	s. Road holdi gy (HET), Ba ced swirl flow ies and their t and battery s. Frame and heeler: Cons	ing, v jaj - indu ypes ma bodv	DTS Inction Inage	-i, Su -i, Su syste ctric r ement pes. F	ndling an <b>9</b> zuki - Ec em (ASFS notors an system <b>9</b> Four strok erformanc
control stabilit Unit – Advan perforr and AF its con Regen Unit – Three- CNG a details TEXT 1.	I systems. V y characteris IV ced two-whe mance (SEP PDV ignition ntrollers: Ty ierating brak V wheeler: Cla and diesel e  BOOK: Andrew Lir RENCES:	Wheels: Spoked, alloy and disc wheels. Tyre: Type, constru- stics.           Two-wheeler Advanced Technologies           eeler engine technologies: Yamaha - Blue core, Honda - Ed           b; Hero - i3s, Advanced tumble flow induction technology (AT           system. Electric two-wheeler: Construction and drive train lay           vps and circuits. Charger and charging system – Batter           ing principles. Merits and demerits. Regulations and safety.           Three-wheeler:           assification, construction, layout of passenger and loading autergines – Drive train – Suspension and brake systems. Electric	ction details co technolog FT), Advand out – Batter ry balancer to rickshaws ctric three-w	s. Road holdi gy (HET), Ba ced swirl flow ies and their f and battery s. Frame and heeler: Cons	ng, v jaj - indu ypes ma body tructi	DTS DTS Inction S. Ele Inage y: Tyl ion a	-i, Su syste ctric r ement pes. F nd pe	ndling an <b>9</b> zuki - Ec em (ASFS notors ar system <b>9</b> Four strokerformance

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the power unit and its subsystems on a two-wheeler.	Understanding (K2)
CO2	explain the two-wheeler chassis and transmission systems.	Understanding (K2)
CO3	describe the types of brakes and wheels used in two-wheelers.	Understanding (K2)
CO4	outline the construction and working concepts of an electric two-wheeler.	Understanding (K2)
CO5	summarize the types of three-wheelers and their systems.	Understanding (K2)

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				1						2	3	
CO2	3	2				1						2	3	1
CO3	3	2				1						2	3	
CO4	3	3				2	3					2	3	2
CO5	3	2				1						2	3	1
4 01:			0		DI	<b>T</b>								-

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	15	85					100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)				

Programme & Branch	BE – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Automotive Electrical Systems and Drives and Vehicle Dynamics	5	PE	3	0	0	3
Preamble	This course provides knowledge on locomotive systems, more communications in locomotives.	delling of	traction, trair	n dyr	amic	s, sig	naling an
Unit – I	Introduction to Locomotives:						9
mechanisms - Sta	ves – Wagon frames – Suspension elements – Bodies – Wheel andards and acceptance tests. Important parameters of locomotiv Electric power systems.						
Unit – II	Traction System and Control:						9
generators and a	comotives with AC and DC traction system. Electric locomotiv Iternators. Traction motor operating principles. Control of trac Induction traction motors.						
Unit – III	Train Dynamics:						•
							9
	ail load model – Rail connection model – Interaction of long tarting the train – Stopping the train – Topography issues – Tract					amics	-
considerations – S	Rail load model - Rail connection model - Interaction of long					amics	-
considerations – S Unit – IV Adhesion control st traction control st	Rail load model – Rail connection model – Interaction of long         Starting the train – Stopping the train – Topography issues – Tract         Traction Control Modelling:         strategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios	ion pinch	points – Cyc – Traction co	le tin ntrol	ne. mod	elling.	<ul> <li>Energ</li> <li>9</li> <li>Simplified</li> </ul>
considerations – S Unit – IV Adhesion control st traction control st	Rail load model – Rail connection model – Interaction of long         Starting the train – Stopping the train – Topography issues – Tract         Traction Control Modelling:         strategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios	ion pinch	points – Cyc – Traction co	le tin ntrol	ne. mod	elling.	<ul> <li>Energy</li> <li>9</li> <li>Simplified</li> </ul>
considerations – S Unit – IV Adhesion control st traction control stu simulation in MAT Unit – V Signaling and inte Boveri System –	Rail load model – Rail connection model – Interaction of long tarting the train – Stopping the train – Topography issues – Tract Traction Control Modelling: trategies and algorithms. Wheelset dynamics – Adhesion force m dy – Locomotive and wagon parameters – Simulation scenarios _AB Simulink.	ion pinch nodelling – Consta state cor	points – Cyc – Traction co nt speed mod	le tin ntrol de ar for l	me. mod nd Ac	elling. celera	<ul> <li>Energ</li> <li>9</li> <li>Simplified</li> <li>ation mode</li> <li>9</li> <li>s - Brown</li> </ul>
considerations – S <b>Unit – IV</b> Adhesion control st traction control stu simulation in MAT <b>Unit – V</b> Signaling and inte Boveri System – railways.	Rail load model – Rail connection model – Interaction of long         Itarting the train – Stopping the train – Topography issues – Tract         Traction Control Modelling:         Itrategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios         _AB Simulink.         Signaling and Communications:         erlocking - Speed signaling – Centralizing signal boxes – Solid-	ion pinch nodelling – Consta state cor	points – Cyc – Traction co nt speed mod	le tin ntrol de ar for l	me. mod nd Ac	elling. celera	<ul> <li>Energ</li> <li>9</li> <li>Simplified</li> <li>ation mode</li> <li>9</li> <li>s - Brown</li> </ul>
considerations – S <b>Unit – IV</b> Adhesion control st traction control stu simulation in MAT <b>Unit – V</b> Signaling and inte Boveri System – railways.	Rail load model – Rail connection model – Interaction of long         Itarting the train – Stopping the train – Topography issues – Tract         Traction Control Modelling:         Itrategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios         _AB Simulink.         Signaling and Communications:         erlocking - Speed signaling – Centralizing signal boxes – Solid-	ion pinch nodelling – Consta state cor	points – Cyc – Traction co nt speed mod	le tin ntrol de ar for l	me. mod nd Ac	elling. celera	<ul> <li>Energ</li> <li>9</li> <li>Simplifie</li> <li>ation mod</li> <li>9</li> <li>s - Browr</li> <li>main lin</li> </ul>
considerations – S Unit – IV Adhesion control st simulation in MAT Unit – V Signaling and inte Boveri System – railways. TEXT BOOK: 1. Maksym	Rail load model – Rail connection model – Interaction of long         Itarting the train – Stopping the train – Topography issues – Tract         Traction Control Modelling:         Itrategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios         _AB Simulink.         Signaling and Communications:         erlocking - Speed signaling – Centralizing signal boxes – Solid-	ion pinch nodelling – Consta state cor ning, con Quan S	points – Cyc – Traction co nt speed mod ntrol systems trol and drivi un & Tim M	le tin ntrol de ar for l ng s	mod nd Ac ocom yster	elling. celera notive: ns on	<ul> <li>Energ</li> <li>9</li> <li>Simplifie</li> <li>ation mod</li> <li>9</li> <li>s - Browr</li> <li>main lin</li> <li>Total:4</li> </ul>
considerations – S Unit – IV Adhesion control st simulation in MAT Unit – V Signaling and inte Boveri System – railways. TEXT BOOK: 1. Maksym	Rail load model – Rail connection model – Interaction of long         Itarting the train – Stopping the train – Topography issues – Tract         Image: Traction Control Modelling:         Itrategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios         _AB Simulink.         Image: Signaling and Communications:         Index of the signaling – Centralizing signal boxes – Solid-Radio communications, signaling and control – Automatic warr         Spiryagin, Peter Wolfs, Colin Cole, Valentyn Spiryagin, Yan	ion pinch nodelling – Consta state cor ning, con Quan S	points – Cyc – Traction co nt speed mod ntrol systems trol and drivi un & Tim M	le tin ntrol de ar for l ng s	mod nd Ac ocom yster	elling. celera notive: ns on	<ul> <li>Energ</li> <li>9</li> <li>Simplifier</li> <li>ation mode</li> <li>9</li> <li>s - Brown</li> <li>main line</li> <li>Total:4</li> </ul>
considerations – S Unit – IV Adhesion control st simulation in MAT Unit – V Signaling and inte Boveri System – railways. TEXT BOOK: 1. Maksym Simulation REFERENCES:	Rail load model – Rail connection model – Interaction of long         Itarting the train – Stopping the train – Topography issues – Tract         Image: Traction Control Modelling:         Itrategies and algorithms. Wheelset dynamics – Adhesion force m         dy – Locomotive and wagon parameters – Simulation scenarios         _AB Simulink.         Image: Signaling and Communications:         Index of the signaling – Centralizing signal boxes – Solid-Radio communications, signaling and control – Automatic warr         Spiryagin, Peter Wolfs, Colin Cole, Valentyn Spiryagin, Yan	ion pinch nodelling – Consta state con ning, con	points – Cyc – Traction co nt speed moo ntrol systems trol and drivi un & Tim M elhi, 2016.	le tin ntrol de ar for I ng s	me. mod ad Ac ocom yster	elling. celera notive: ns on y, "D	<ul> <li>Energ</li> <li>9</li> <li>Simplified</li> <li>ation mode</li> <li>9</li> <li>s - Brown</li> <li>main line</li> <li>Total:4:</li> <li>esign and</li> </ul>

		UTCON tion of t		irse, the st	udent	s will be a	able to						(	BT Map Highest L	
CO1	sum	nmarize	differe	nt subsyste	ms an	d power g	eneratio	n syste	ms in I	ocomotiv	/es.		Und	lerstanding	g (K2)
CO2	exp	lain vari	ous tra	ction contro	ol syste	ems and c	ontrol st	rategies	S.				Und	lerstanding	g (K2)
CO3	mod	del math	ematic	al equation	s usin	g fundame	ental prir	nciples I	oy con	sidering	train dyr	namics.	Арр	lying (K3)	
CO4		del and algorith		e traction o	ontrol	systems f	or vario	us scen	arios v	vith diffe	rent cont	trol strategie	es Ana	lyzing (K4	)
CO5	outl	ine sign	aling, c	ommunica	ions a	ind control	system	s in loco	omotiv	es.			Und	lerstanding	g (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	5				
COs/I	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	2			2						1	3	2
CO	2	3	2	2			2						1	3	2
CO	3	3	2	2			2						1	3	2
CO	4	3	2	2		3	2						1	3	2
CO	5	3	2	2			2						1	3	2
1 – Sli	ght, 2	– Mode	erate, 3	- Substan	ial, BT	Γ- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(				
	st / Bl Categ	oom's ory*	F	Remember (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) ^c		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		80	)								100
	CAT	2		10		50		40	)						100
	CAT	3		10		20		50	)	20					100
	ESI	E		10		60		15	5	15					100
* ±3%	may b	oe varie	d (CAT	1,2,3 – 50	marks	8 & ESE -	100 ma	irks)							

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Manufacturing Technology	5	PE	3	0	0	3
Preamble	This course enables to understand about the manument manufacturing, FMS and Computer aided quality co		process plan	ning,	cellu	lar	
Unit – I	Introduction:						9
of CIM system –T Simple problems. Kanban System -	nufacturing Planning, Manufacturing control - Concurre Types of production – Manufacturing models and Metr Basic Elements of an Automated system – Levels of A Smart Factories, Industrial revolution – history - Feature	rics – Mathematica Automation. Lean P es of Industry 4.0.	l models of P roduction and	rodu	ction	Perfo	ormance - Production
Unit – II	Production Planning & Control and Computerize		<u> </u>				9
Production Plannii Shop Floor Contro (ERP) – Supply Cl	<ul> <li>Computer Aided Process Planning (CAPP) – Logica ng and Master Production Schedule – Material Requir ol - Inventory Control. Brief on Manufacturing Resour hain Management (SCM) – Simple Problems.</li> </ul>	rement Planning -	Capacity Plar	ning	- Co	ontrol	Systems e Planning
Unit – III	Cellular Manufacturing: (GT), Part Families – Parts Classification and Coding						9
	Cellular Manufacturing – Composite part concept – N		and layout -	- Qu	antita	tive a	
	uring – Rank Order Clustering Method – Arranging Mac Flexible Manufacturing System (FMS) and Autor		Hollier Metho	od –	Simp		oblems. 9
<b>Unit – IV</b> Types of Flexibility FMS – Simple Pr	Flexible Manufacturing System (FMS) and Autor – FMS – FMS Components – FMS Application & Bene roblems. Automated Guided Vehicle System (AGVS) ent & Safety. Automated Storage systems – Performan	mated Guided Veh efits – FMS Plannin – AGVS Applicati	Hollier Methonia icle System g and Contro	od – ( <b>AG\</b>  – Qı	Simp <b>/S):</b> Jantita	le Pro	9 analysis ir
<b>Unit – IV</b> Types of Flexibility FMS – Simple Pr Vehicle Managem	Flexible Manufacturing System (FMS) and Autor – FMS – FMS Components – FMS Application & Bene roblems. Automated Guided Vehicle System (AGVS) ent & Safety. Automated Storage systems – Performan	mated Guided Veh efits – FMS Plannin – AGVS Applicati	Hollier Methonia icle System g and Contro	od – ( <b>AG\</b>  – Qı	Simp <b>/S):</b> Jantita	le Pro	9 analysis ir
Unit – IV Types of Flexibility FMS – Simple Pr Vehicle Managem Unit – V Computers in QC, Machine Vision	Flexible Manufacturing System (FMS) and Autor / – FMS – FMS Components – FMS Application & Beno roblems. Automated Guided Vehicle System (AGVS)	mated Guided Veh efits – FMS Plannir – AGVS Applicati ace –Methods.	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Cor	od – ( <b>AG</b> ) – Qi Gui	Simp /S): Jantita dance	le Pro ative e Tec ectior	9 analysis ir chnology - <b>9</b> Methods
Unit – IV Types of Flexibility FMS – Simple Pr Vehicle Managem Unit – V Computers in QC, Machine Vision	Flexible Manufacturing System (FMS) and Autor           / – FMS – FMS Components – FMS Application & Bendroblems. Automated Guided Vehicle System (AGVS)           roblems. Automated Storage systems – Performant           Computer Aided Quality Control:           , Automated Inspection Methods and Principles, Conta           System, Optical Inspection Method, Sensors, Co-o	mated Guided Veh efits – FMS Plannir – AGVS Applicati ace –Methods.	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Cor	od – ( <b>AG</b> ) – Qi Gui	Simp /S): Jantita dance	le Pro ative e Tec ectior	9 analysis ir hnology - 9 Methods d Testing
Unit – IV Types of Flexibility FMS – Simple Pr Vehicle Managem Unit – V Computers in QC, Machine Vision S Integration of CAC	Flexible Manufacturing System (FMS) and Autor / - FMS – FMS Components – FMS Application & Beneroblems. Automated Guided Vehicle System (AGVS) ent & Safety. Automated Storage systems – Performant Computer Aided Quality Control: , Automated Inspection Methods and Principles, Conta System, Optical Inspection Method, Sensors, Co-o QC with CAD/CAM.	mated Guided Veh efits – FMS Plannin – AGVS Applicati ace –Methods. act Inspection Meth ordinate Measuring	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Con Machine, C	od – ( <b>AG</b> ) (- Qu Gui ntact	Simp Jantit dance Inspe uter	le Pro ative ative Tec ectior Aideo	9 analysis ir hnology - 9 Methods d Testing Total:4
Unit – IV Types of Flexibility FMS – Simple Pr Vehicle Managem Unit – V Computers in QC, Machine Vision S Integration of CAG TEXT BOOK: 1 Groover M	Flexible Manufacturing System (FMS) and Autor           / – FMS – FMS Components – FMS Application & Bendroblems. Automated Guided Vehicle System (AGVS)           roblems. Automated Storage systems – Performant           Computer Aided Quality Control:           , Automated Inspection Methods and Principles, Conta           System, Optical Inspection Method, Sensors, Co-o	mated Guided Veh efits – FMS Plannin – AGVS Applicati ace –Methods. act Inspection Meth ordinate Measuring	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Con Machine, C	od – ( <b>AG</b> ) (- Qu Gui ntact	Simp Jantit dance Inspe uter	le Pro ative ative Tec ectior Aideo	9 analysis ir hnology - 9 Methods d Testing Total:4
Unit – IV Types of Flexibility FMS – Simple Pr Vehicle Managem Unit – V Computers in QC, Machine Vision S Integration of CAG TEXT BOOK: 1 Groover M	Flexible Manufacturing System (FMS) and Autor         / – FMS – FMS Components – FMS Application & Beneroblems. Automated Guided Vehicle System (AGVS)         roblems. Automated Guided Vehicle System (AGVS)         ent & Safety. Automated Storage systems – Performant         Computer Aided Quality Control:         , Automated Inspection Methods and Principles, Conta         System, Optical Inspection Method, Sensors, Co-o         QC with CAD/CAM.	mated Guided Veh efits – FMS Plannin – AGVS Applicati ace –Methods. act Inspection Meth ordinate Measuring	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Con Machine, C	od – ( <b>AG</b> ) (- Qu Gui ntact	Simp Jantit dance Inspe uter	le Pro ative ative Tec ectior Aideo	9 analysis ir hnology - 9 Methods d Testing Total:4
Unit – IV         Types of Flexibility         FMS – Simple Pr         Vehicle Managem         Unit – V         Computers in QC,         Machine Vision S         Integration of CAG         TEXT BOOK:         1.       Groover M         India, New         REFERENCES:	Flexible Manufacturing System (FMS) and Autor         / – FMS – FMS Components – FMS Application & Beneroblems. Automated Guided Vehicle System (AGVS)         roblems. Automated Guided Vehicle System (AGVS)         ent & Safety. Automated Storage systems – Performant         Computer Aided Quality Control:         , Automated Inspection Methods and Principles, Conta         System, Optical Inspection Method, Sensors, Co-o         QC with CAD/CAM.	mated Guided Veh efits – FMS Plannin – AGVS Applicati nce –Methods. act Inspection Meth ordinate Measuring	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Cor Machine, C	od – ( <b>AG</b> ) (- Qu Gui ntact	Simp Jantit dance Inspe uter	le Pro ative ative Tec ectior Aideo	9 analysis ir hnology - 9 Methods d Testing Total:4
Unit – IV         Types of Flexibility         FMS – Simple Pr         Vehicle Managem         Unit – V         Computers in QC,         Machine Vision S         Integration of CAG         TEXT BOOK:         1.       Groover M         India, New         REFERENCES:         1.       Koren, Yo	Flexible Manufacturing System (FMS) and Autor / - FMS – FMS Components – FMS Application & Ben- roblems. Automated Guided Vehicle System (AGVS) ent & Safety. Automated Storage systems – Performan Computer Aided Quality Control: , Automated Inspection Methods and Principles, Conta System, Optical Inspection Method, Sensors, Co-o QC with CAD/CAM.	mated Guided Veh efits – FMS Plannin – AGVS Applicati ace –Methods. act Inspection Meth ordinate Measuring tegrated Manufactu	Hollier Metho icle System g and Contro on – Vehicle ods, Non-Con Machine, C machine, C	od – ( <b>AG</b> ) (- Qu Gui ntact	Simp Jantit dance Inspe uter	le Pro ative ative Tec ectior Aideo	9 analysis i chnology 9 Methods d Testing Total:4

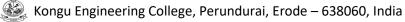
		UTCOM		rse, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1	outl	ine the i	mpleme	ntation of	CIM co	oncepts in	manufa	acturing	indust	ries.			Ur	derstandi	ng (K2)
CO2	dev	elop a p	rocess	plan and n	nateria	l requirem	nent plar	n for a p	roduct					Applying	(K3)
CO3	ider	ntify the	parts by	using diff	erent c	oding me	thods.							Applying	(K3)
CO4	des	ign a fle	xible ma	anufacturir	ng layo	ut for a m	achine c	cell.						Applying	(K3)
CO5	infe	r various	s compu	iter aided	quality	control ar	nd inspe	ction te	chniqu	es.			Ur	nderstandi	ng (K2)
						Mappin	g of CC	s with	POs a	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2	2	1								1	3	
CO	)2	3	2	2	1								1	3	
CO	3	3	2	2	1								1	3	
CO	94	3	2	2	1								1	3	
CO	95	3	2	2	1								1	3	
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substant	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN - T	THEORY	,				
	st / Bl Categ	oom's ory*	R	ememberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		20		65	5	15	5						100
	CAT	2		20		65	i	15	5						100
	CAT	3		20		65	;	15	5						100
	ESI	E		15		65	5	20	)						100
* ±3%	may b	be varie	d (CAT	1,2,3 – 50	marks	& ESE -	- 100 ma	arks)			I		1		1

Program	mme &	P.E. Automobile Engineering	Com	Cotonom		т	Р	Credit
Branch	1	B.E. – Automobile Engineering	Sem.	Category	L	Т	Р	Credit
Prerequ	uisites	Automotive Electrical Systems and Drives	5	PE	3	0	0	3
Preamb	ble	This course provides knowledge on various systems mo	odeling and cor	ntrol technique	es in	autor	nobile	es.
Unit - I		Mathematical Modeling of Systems:						9
		sed loop systems - Transfer function: Mechanical systems uction techniques - Signal flow graphs.	, Electrical syst	ems and Elec	tro n	necha	anical	systems
Unit - II		Time Response Analysis:						9
		zeros - First order system - Response for impulse, step an Fime domain specifications - Steady-state error constants -						
Unit - III	1	Frequency Response and Stability Analysis:						9
	ncv domain	specifications - Peak resonance resonant frequency h	andwidth and	cut-off rate	SUIT	n-Hur	witz d	criterion o
Frequer stability. <b>Unit - IV</b>	r. Štability in V	specifications - Peak resonance, resonant frequency, b the frequency domain - Gain and Phase margins: Bode p Compensators:	lot.					9
Frequer stability. Unit - IV Need fo	r. Štability in V	the frequency domain - Gain and Phase margins: Bode p	lot.					9
Frequer stability. <b>Unit - IV</b> Need fo locus. <b>Unit - V</b>	r. Štability in V pr compens V	the frequency domain - Gain and Phase margins: Bode p Compensators: ator – Types of compensation - Root Locus techniques Automotive Control Techniques:	lot. – Design of La	ag and Lead	Com	pens	ators	9 using roo 9
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r	r. Štability in V or compens V ional contro	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spece	lot. – Design of La ol actions - Tur	ag and Lead	Com	pens	ators ile, Co	9 using roc 9 ohen-coo
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r	r. Štability in V pr compens V ional contro rule. Applica	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spece	lot. – Design of La ol actions - Tur	ag and Lead	Com	pens	ators ile, Co	9 using roc 9 ohen-coo
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r control -	r. Stability in V pr compens V ional contro rule. Applica - ABS contr	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spece	lot. – Design of La ol actions - Tur	ag and Lead	Com	pens	ators ile, Co	9 using roc 9 ohen-coo nsmissio
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r control - TEXT B	r. Štability in V pr compens V ional contro rule. Applica - ABS contr 300K:	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spece	lot. – Design of La ol actions - Tur ed Control - Cl	ag and Lead ning rules: ZN ruise Control	Com I tuni - Au	pens ing ru toma	ators ile, Co	9 using roc 9 ohen-coo nsmissio
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r control - TEXT B 1.	r. Štability in V pr compens V ional contro rule. Applica - ABS contr 300K:	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spectol.	lot. – Design of La ol actions - Tur ed Control - Cl	ag and Lead ning rules: ZN ruise Control	Com I tuni - Au	pens ing ru toma	ators ile, Co	9 using roo 9 ohen-coo nsmissio
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r control - TEXT B 1. REFERI	r. Stability in V pr compens V ional contro rule. Applica - ABS contr BOOK: Salivahana ENCES:	the frequency domain - Gain and Phase margins: Bode p     Compensators:     ator – Types of compensation - Root Locus techniques     Automotive Control Techniques:     I - Integral control - Derivative control - PI and PID control     ations - Fuel Control - Spark - Timing Control - Idle-spectol.	lot. – Design of La ol actions - Tur ed Control - Cu ystems enginee	ag and Lead ning rules: ZN ruise Control ring. Pearson	Com I tuni - Au	pens ing ru toma	ators ile, Co	9 using roc 9 ohen-coo nsmissio
Frequer stability. Unit - IV Need fo locus. Unit - V Proporti tuning r control - TEXT B 1. REFERI 1.	r. Štability in V pr compens V ional contro rule. Applica - ABS contr BOOK: Salivahana ENCES: Norman S.	Automotive Control Techniques: Automotive Control Techniques: OI - Integral control - Derivative control - PI and PID control ations - Fuel Control - Spark - Timing Control - Idle-spectol. An, S., R. Rengaraj, and G. R. Venkatakrishnan. Control sy	lot. – Design of La ol actions - Tur ed Control - Cu ystems enginee ley & Sons, 201	ag and Lead hing rules: ZN ruise Control ring. Pearson	Com I tuni - Au	pens ing ru toma	ators ile, Co	9 using roo 9 ohen-coc nsmissic

	SE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	apply the mathematical models for linear time-invariant systems of different sub systems in automobile engineering	Applying (K3)
CO2	model a state-feedback controller using pole placement to meet transient response specification	Applying (K3)
CO3	apply the frequency domain analysis techniques to determine the system response and stability	Applying (K3)
CO4	design the compensators by using root locus techniques	Applying (K3)
CO5	apply the control methodologies for automotive applications	Applying (K3)

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	2	3
CO2	3	3	2	1								1	2	3
CO3	3	3	2	1								1	2	3
CO4	3	3	2	1								1	2	3
CO5	3	3	2	1								1	2	3
	Mada		Cubatant			т			1					1

1 – Slight, 2 – Moderate,	3 – Substantial,	BT- Bloom's	Taxonomy


		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	70				100
CAT2	10	20	70				100
CAT3	10	20	70				100
ESE	10	20	70				100
* ±3% may be varied (	CAT 1,2,3 - 50 mark	s & ESE – 100 ma	rks)			•	

	<b>22AUE05 – MACHINE D</b> (Use of PSG Design Data book)						
Programme 8 Branch		Sem.	Category	L	т	Р	Credit
Prerequisites	Mechanics of Deformable Bodies	5	PE	3	0	0	3
Preamble	This course provides knowledge to design and analyz	e the various macl	hine compon	ents.			
Unit - I	Steady and Variable Stresses in Machine Member	s:					9
equations – C Design for vari	the design process – Factors influencing machine design alculation of principal stresses – Eccentric loading – Facto able loading – Soderberg, Goodman and Gerber relations.						entration ·
Unit - II	Design of Parallel axis gears: minology - Speed ratio and number of teeth - Force analysi						9
gears – Press gears.	y - Gear materials – Module and face width – Power rating ure angle in the normal and transverse plane – Equivalent r						n of helica
Unit - III	Design of Fasteners and Welded Joints:						9
	eners – Design of bolted joints – Eccentric loading – Desigr				nsym	metri	cal welde
	ric load in the plane of welds - Welded joint subjected to ben	ding moment and	twisting mom	ent.			-
Unit - IV	Design of Bearings and Levers:		<u> </u>				9
	rings - Preloading, design of rolling contact bearings - Cu	ubic mean load -	Design of joi	ırnaı	bea	rings	- McKee
	culation of bearing dimensions. Design of levers.  Design of Shafts and Couplings:						9
							3
Unit - V	and hollow shafts kove and kov wave rigid flovible cour	lings and knuckle	jointe Introd	uctio	n to	aoor	and chad
	and hollow shafts, keys and key ways, rigid, flexible coup olings.	lings and knuckle	joints. Introd	uctio	n to	gear	and shoc
Design - Solid		lings and knuckle	joints. Introd	uctio	n to	gear	
Design - Solid		lings and knuckle	joints. Introd	uctio	n to	gear	and shock
Design - Solid absorbing cou TEXT BOOK:				uctio	n to	gear	
Design - Solid absorbing cou TEXT BOOK:	lari V.B., "Design of Machine Elements", 5th Edition, Tata M				n to	gear	
Design - Solid         absorbing cou         TEXT BOOK:         1.       Bhance         REFERENCES         1       Richal	lari V.B., "Design of Machine Elements", 5th Edition, Tata M	cGraw-Hill, New D	elhi, 2020.				

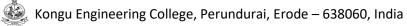
	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design and specify the shape of various machine components.	Applying (K3)
CO2	design spur gear and helical gear for different application.	Applying (K3)
CO3	design various types of screw fasteners and welded joints for different applications.	Applying (K3)
CO4	design bearings for various industrial applications.	Applying (K3)
CO5	analyze and select shafts, couplings, keys and knuckle joint for different applications.	Analyzing (K4)

CO1       3       3       2       2       1       2       2       3         CO2       3       3       2       2       1       2       2       3         CO3       3       3       2       2       1       2       3         CO4       3       3       2       2       1       2       3	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO2         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<>	CO1	3	3	2	2			1					2	3	
	CO2	3	3	2	2			1					2	3	
CO4         3         3         2         2         1         2         3	CO3	3	3	2	2			1					2	3	
	CO4	3	3	2	2			1					2	3	
CO5         3         3         2         2         1         2         3	CO5	3	3	2	2			1					2	3	

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	15	70				100
CAT2	15	15	70				100
CAT3	15	15	55	15			100
ESE	5	10	70	15			100



Programme & Branch	BE – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	5	PE	3	0	0	3
<b>D</b>			·				
Preamble	This course emphasizes on selection cum manager	ment of farm, fertiliz	er and harves	sting	macl	ninerie	es.
Unit – I	Farm Mechanization:						9
	ry of Mechanized Agriculture – Farming Operations an processes of agricultural machines – Process diagram						
Unit – II	Precision Farming and Hitching Systems:						9
	nsors – Global Positioning System – Geographic Info Hitching Systems – Tires and Traction – Soil Compactio				olicat	ons -	-Controlle
Unit – III	On it Title and one and Direction at						-
ntroduction to Sol Hitching of Tillage	Soil Tillage and Crop Planting: il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop prmance.						
Introduction to Soi Hitching of Tillage Transplanter Perfo <b>Unit – IV</b> Selection - Calibra - Sprayers and du	il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and usters - Work physiology of men and women – Hay an	Planting – Functior	ed control - P	– E ^v lant	valua	ting P	lements - lanter and <b>9</b> equipmen
Introduction to Soi Hitching of Tillage Transplanter Perfo Unit – IV Selection - Calibra - Sprayers and du Vegetable Harves Unit – V	Il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and sters - Work physiology of men and women – Hay and ting. Special Machineries:	Planting – Functior d adjustment of We d Forage Harvestin	al Processes ed control - P g – Grain Ha	lant	valua prote ting -	ting P ction ( - Fruit	equipments - 9 9 9, Nut, and 9
Introduction to Soi Hitching of Tillage Transplanter Perfo <b>Unit – IV</b> Selection - Calibra - Sprayers and du Vegetable Harves <b>Unit – V</b> Introduction – Scr	Il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and Isters - Work physiology of men and women – Hay an ting.	Planting – Functior d adjustment of We d Forage Harvestin ators – Forage Blov	ed control - P g – Grain Ha vers – Field 0	lant rves	valua prote ting - city a	ting P ction ( - Fruit	equipmer , Nut, and
Introduction to Soi Hitching of Tillage Transplanter Perfo <b>Unit – IV</b> Selection - Calibra - Sprayers and du Vegetable Harves <b>Unit – V</b> Introduction – Scr	Il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and isters - Work physiology of men and women – Hay an ting. Special Machineries: ew Conveyors – Pneumatic Conveyors – Bucket Eleva	Planting – Functior d adjustment of We d Forage Harvestin ators – Forage Blov	ed control - P g – Grain Ha vers – Field 0	lant rves	valua prote ting - city a	ting P ction ( - Fruit	9 equipmer , Nut, and ficiency c
Introduction to Soi Hitching of Tillage Transplanter Perfo <b>Unit – IV</b> Selection - Calibra - Sprayers and du Vegetable Harves <b>Unit – V</b> Introduction – Scr Farm Machineries	Il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and isters - Work physiology of men and women – Hay an ting. Special Machineries: ew Conveyors – Pneumatic Conveyors – Bucket Eleva	Planting – Functior d adjustment of We d Forage Harvestin ators – Forage Blov	ed control - P g – Grain Ha vers – Field 0	lant rves	valua prote ting - city a	ting P ction ( - Fruit	9 equipmer , Nut, an 9 ficiency c
Introduction to Soi Hitching of Tillage Transplanter Perfo Unit – IV Selection - Calibra - Sprayers and du Vegetable Harves Unit – V Introduction – Scr Farm Machineries TEXT BOOK: 1. Ajit K. Sri	Il Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance. Fertilizer and Harvesting Applications: ation - Construction features - Different components and isters - Work physiology of men and women – Hay an ting. Special Machineries: ew Conveyors – Pneumatic Conveyors – Bucket Eleva	Planting – Function d adjustment of We d Forage Harvestin ators – Forage Blow - Machinery Selectio	ed control - P g – Grain Ha vers – Field C on and Replac	2 – E Plant Inves	valua prote ting - city a ent.	ting P ction o - Fruit	9 equipmer , Nut, an ficiency c
Introduction to Soi Hitching of Tillage Transplanter Perfo Unit – IV Selection - Calibra - Sprayers and du Vegetable Harves Unit – V Introduction – Scr Farm Machineries TEXT BOOK: 1. Ajit K. Sri Machines	<ul> <li>I Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance.</li> <li>Fertilizer and Harvesting Applications: ation - Construction features - Different components and usters - Work physiology of men and women – Hay an ting.</li> <li>Special Machineries: ew Conveyors – Pneumatic Conveyors – Bucket Eleva – Draft and Power Requirements – Machinery Costs –</li> <li>vastava, Carroll E. Goering, Roger P. Rohrbach, Denr</li> </ul>	Planting – Function d adjustment of We d Forage Harvestin ators – Forage Blow - Machinery Selectio	ed control - P g – Grain Ha vers – Field C on and Replac	2 – E Plant Inves	valua prote ting - city a ent.	ting P ction o - Fruit	9 equipments - equipments, Nut, and ficiency o Total:4
Introduction to Soi Hitching of Tillage Transplanter Perfo Unit – IV Selection - Calibra - Sprayers and du Vegetable Harves Unit – V Introduction – Scr Farm Machineries TEXT BOOK: 1. Ajit K. Sri Machines REFERENCES:	<ul> <li>I Tillage – Tillage Methods and Equipment – Mechanic Implements – Methods and Equipment used for Crop ormance.</li> <li>Fertilizer and Harvesting Applications: ation - Construction features - Different components and usters - Work physiology of men and women – Hay an ting.</li> <li>Special Machineries: ew Conveyors – Pneumatic Conveyors – Bucket Eleva – Draft and Power Requirements – Machinery Costs –</li> <li>vastava, Carroll E. Goering, Roger P. Rohrbach, Denr</li> </ul>	Planting – Function d adjustment of We d Forage Harvestin ators – Forage Blov - Machinery Selection his R. Buckmaster., logical Engineers, U	ed control - P g – Grain Ha vers – Field C on and Replac	- E ⁱ llant irves Capa ceme	prote ting - city a ent.	ting P ction ( - Fruit nd Ef	Inter and Inter and equipmer , Nut, and ficiency c Total:4


		UTCOM		urse, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1	illus	trate the	e differ	ent method	s of fa	rm mecha	nization						Ur	derstandii	ng (K2)
CO2	des	cribe pre	ecisior	n farming an	d tract	tor testing							Ur	derstandi	ng (K2)
CO3	exp	lain the	variou	s types of s	oil tille	rs and cro	p plantir	ng mach	ines.				Ur	derstandi	ng (K2)
CO4	sum	marize	fertiliz	er and harv	esting	applicatio	n equipr	nent.					Ur	derstandi	ng (K2)
CO5	ider	ntify the	differe	nt types of s	specia	l machine	ry for ag	ricultura	al appli	cations.			Ur	derstandi	ng (K2)
						Mappin	g of CC	s with	POs a	nd PSO:	5				
COs/I	POs	PO1	PO2	2 PO3	PO	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2				2	2					1	3	
CO	)2	3	2				2	2					1	3	
CO	)3	3	2				2	2					1	3	
CO	)4	3	2				2	2					1	3	
CO	)5	3	2				2	2					1	3	
1 – Sli	ight, 2	– Mode	erate, 3	8 – Substant	tial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(				
	st / Bl Catego	oom's ory*		Remember (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) ^c		Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		20		80				-					100
	CAT	2		20		80									100
	CAT	3		20		80	)								100
	ESE	=		15		85									100
* ±3%	may b	be varied	d (CAT	1,2,3 – 50	marks	8 & ESE -	- 100 ma	arks)	•		·				

Programme &		r method					
Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Mechanics of Deformable Bodies	6	PE	3	0	0	3
Preamble	This course provides knowledge to apply finite elemen and thermal systems.	t method in solvin	g differential	equa	tions	of str	uctural
Unit - I	Fundamentals of Finite Element Analysis:						9
	trix approach – Coordinates. Numerical simulation - Gaunapes - Discretization process - Node Numbering Schercation of FEA.						
Unit - II	One Dimensional Analysis:						9
	finite element modeling - Element Types - Linear Elem kin's method - Solid Mechanics - Heat transfer - pin fin an ems.						
Unit - III	Two-Dimensional Analysis:						9
Introduction to 2-	D Finite element modelling - Constant Strain Triangular						ns - strai
Introduction to 2- displacement and							ns - strair
Introduction to 2- displacement and temperature effect	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and						ns - straii
Introduction to 2- displacement and temperature effec <b>Unit - IV</b> Axisymmetric forr Boundary condition	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres	Plane Strain -	Temperature perature effe	Effe	ects. Stres	Appli	ns - strair cations o <b>9</b> culations
Introduction to 2- displacement and temperature effec <b>Unit - IV</b> Axisymmetric forr Boundary conditio - 2D axis symmet	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements.	Plane Strain - dy forces and tem sures - Applicatio	Temperature perature effe	Effe	ects. Stres	Appli	ns - strair cations o <b>9</b> culations
displacement and temperature effec Unit - IV Axisymmetric forr Boundary conditio - 2D axis symmet Unit - V Natural Co-ordina	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Shap	Temperature perature effe ns of plane tr pe functions ·	Effe	ects. Stres Pisto	Appli ss cal n hea	ns - strair cations o 9 culations d analysis 9
Introduction to 2- displacement and temperature effect Unit - IV Axisymmetric forr Boundary conditio - 2D axis symmet Unit - V Natural Co-ordina	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements. Isoparametric Elements for Two-Dimensional Cont ate Systems - Isoparametric elements - The four node qu	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Shap	Temperature perature effe ns of plane tr pe functions ·	Effe	ects. Stres Pisto	Appli ss cal n hea	ns - strair cations o 9 culations d analysis 9 ess matrix
Introduction to 2- displacement and temperature effect <b>Unit - IV</b> Axisymmetric form Boundary conditio - 2D axis symmet <b>Unit - V</b> Natural Co-ordina and force vector -	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements. Isoparametric Elements for Two-Dimensional Cont ate Systems - Isoparametric elements - The four node qu	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Shap	Temperature perature effe ns of plane tr pe functions ·	Effe	ects. Stres Pisto	Appli ss cal n hea	ns - strain cations o 9 culations d analysis 9 ess matri
Introduction to 2- displacement and temperature effec Unit - IV Axisymmetric forr Boundary conditio - 2D axis symmet Unit - V Natural Co-ordina and force vector -	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements. Isoparametric Elements for Two-Dimensional Cont ate Systems - Isoparametric elements - The four node que Jacobin matrix - Stress calculations - Numerical integration "The Finite Element Method in Engineering", 6th Edition,	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Sha on - Gauss Quadr	Temperature perature effe ns of plane tr pe functions - ature.	Effe	Stres Pisto	Appli ss cal n hea stiffn	ns - strain cations o g culations d analysis g ess matri Total:4
Introduction to 2- displacement and temperature effect Unit - IV Axisymmetric forr Boundary conditionary conditionary - 2D axis symmetric Unit - V Natural Co-ordinaria and force vector - TEXT BOOK: 1. Rao S.S, Delhi, 201	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements. Isoparametric Elements for Two-Dimensional Cont ate Systems - Isoparametric elements - The four node que Jacobin matrix - Stress calculations - Numerical integration "The Finite Element Method in Engineering", 6th Edition,	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Sha on - Gauss Quadr	Temperature perature effe ns of plane tr pe functions - ature.	Effe	Stres Pisto	Appli ss cal n hea stiffn	ns - strair cations o g culations d analysis g ess matrix Total:4
Introduction to 2- displacement and temperature effect Unit - IV Axisymmetric forr Boundary conditio - 2D axis symmet Unit - V Natural Co-ordina and force vector - TEXT BOOK: 1. Rao S.S, Delhi, 20 REFERENCES: 1. Tirupathi	D Finite element modelling - Constant Strain Triangular d stress strain relationship matrix - Plane Stress and its on Piston and cylinder. Axisymmetric Continuum and Plane truss: mulation - Element stiffness matrix and force vector - Boo ons – Analysis of cylinders - under internal / external pres ric elements. Isoparametric Elements for Two-Dimensional Cont ate Systems - Isoparametric elements - The four node que Jacobin matrix - Stress calculations - Numerical integration "The Finite Element Method in Engineering", 6th Edition,	Plane Strain - dy forces and tem sures - Applicatio tinuum: uadrilateral - Sha on - Gauss Quadr Butterworth–Hein	Temperature perature effens of plane tripoe functions - ature.	Effe	Stres Pisto ment	Appli ss cal n hea stiffn	ns - strain cations o g culations d analysis 9 ess matrix Total:4!

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	formulate finite element equations and solve engineering problems.	Applying (K3)
CO2	analyze 1D structural and heat transfer problems for different applications.	Analyzing (K4)
CO3	analyze 2D structural problems for different applications.	Analyzing (K4)
CO4	solve axisymmetric and plane truss problems.	Applying (K3)
CO5	analyze isoparametric formulation and numerical integration.	Analyzing (K4)

Mapping of COs with POs and PSOs														
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2								2	3	
CO2	3	3	2	2	2							2	3	
CO3	3	3	2	2	2							2	3	
CO4	3	3	2	2	2							2	3	
CO5	3	3	2	2								2	3	-
1 – Slight, 2	– Mode	erate, 3 –	Substanti	al, BT- E	Bloom's	Taxonor	my		1					

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	15	15	55	15			100					
CAT2	15	15	35	35			100					
CAT3	15	15	35	35			100					
ESE	5	10	35	50			100					
* ±3% may be varied (0	CAT 1,2,3 – 50 marks	& ESE – 100 marl	ks)	1		1	1					



	22AUE08 - IN - VEHICLE	NETWORKING									
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	P 0	Credit				
Prerequisites	Automotive Embedded Systems	6	PE	3	0		3				
Preamble	This course provides knowledge on data commun diagnostic protocols.	ication, networking, a	automotive co	ommi	unica	tion a	nd				
Unit – I	Controller Area Network:						9				
CAN Bus - Protoc bit stuffing - Data and CAN 2.0B.	col - ISO/OSI layers –Properties of CAN - CAN 2.0A s Frame - Errors - Error detection - The rest of the fra	tandard frame - Mes me -CAN 2.0B – fra	sage Transfe me format - (	r - C/ Comp	AN bi batibi	t - NR ity of	Z coding CAN 2.0				
Unit – II	CAN Physical Layer:						9				
Time - Estimatin	N bit - Nominal Bit Time - CAN and Signal Propagati g the value - Precise - Corollaries: Relations betwee Bit resynchronization -Network speed –Bit rate - Later	en the medium, bit	rate and ler	u Sti ngth	of th	e - Pl e net	work - B				
Unit – III Time-Triggered protocols:											
Time-Triggered o	Time-Triggered protocols: communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con										
Communication f	communication on CAN – High-Speed - X-by-Wire	nponents for FlexRay	y - Line driver	-Bu	s gua	rdian.	handling 9				
Time-Triggered of Communication fr <b>Unit – IV</b> Vehicle - Wired Conformity of LIN	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms:	LIN 2.0 protocol -	y - Line driver	-Bus	s gua e - [	rdian.	handling 9 ink layer				
Time-Triggered of Communication fi <b>Unit – IV</b> Vehicle - Wired Conformity of LIN <b>Unit – V</b>	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audio Wireless Communication:	LIN 2.0 protocol - Video Buses - I2C	y - Line driver Operating pri Bus - MOST	ncipl Bus.	s gua	rdian. Data I	handling 9 ink layer 9				
Time-Triggered of Communication fi Unit – IV Vehicle - Wired Conformity of LIN Unit – V Radio-Frequency	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audio	LIN 2.0 protocol - Video Buses - I2C	y - Line driver Operating pri Bus - MOST	ncipl Bus.	s gua	rdian. Data I	handling 9 ink layer 9 - Wireles				
Time-Triggered of Communication fr Unit – IV Vehicle - Wired Conformity of LIN Unit – V Radio-Frequency Networks – GSM	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audic Wireless Communication: Communication – Internal - External - Control of oper	LIN 2.0 protocol - Video Buses - I2C	y - Line driver Operating pri Bus - MOST	ncipl Bus.	s gua	rdian. Data I	handling 9 ink layer 9				
Time-Triggered of Communication fr Unit – IV Vehicle - Wired Conformity of LIN Unit – V Radio-Frequency Networks – GSM TEXT BOOK: 1. Dominiqu	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audic Wireless Communication: Communication – Internal - External - Control of oper	nponents for FlexRay LIN 2.0 protocol - D-Video Buses - I2C	y - Line driver Operating pri Bus - MOST ceyless entry	and p	s gua	rdian. Data I ve go	handling 9 ink layer 9 - Wireles Total:4				
Time-Triggered of Communication fr Unit – IV Vehicle - Wired Conformity of LIN Unit – V Radio-Frequency Networks – GSM TEXT BOOK: 1. Dominiqu	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audic Wireless Communication: Communication – Internal - External - Control of oper - Bluetooth -IEEE 802.11x – NFC.	nponents for FlexRay LIN 2.0 protocol - D-Video Buses - I2C	y - Line driver Operating pri Bus - MOST ceyless entry	and p	s gua	rdian. Data I ve go	handling 9 ink layer 9 - Wireles Total:4				
Time-Triggered of Communication fr Unit – IV Vehicle - Wired Conformity of LIN Unit – V Radio-Frequency Networks – GSM TEXT BOOK: 1. Dominiq Wiley & S REFERENCES:	communication on CAN – High-Speed - X-by-Wire rame - Architecture of a FlexRay node - Electronic con Image Processing Algorithms: and wireless communication - Basic concept of the I - Fail-safe SBC approach - Safe-by-Wire Plus - Audic Wireless Communication: Communication – Internal - External - Control of oper - Bluetooth -IEEE 802.11x – NFC.	LIN 2.0 protocol - Video Buses - I2C ning parts - Passive k	y - Line driver Operating pri Bus - MOST ceyless entry xray, Safe-by	ncipl Bus. and I	e - [ 	rdian. Data I ve go st Edi	handling 9 ink layer 9 - Wireles Total:4				

		UTCON tion of		se, the st	uden	ts will be a	able to							BT Mapp (Highest Le			
CO1	summarize the basics of in-vehicle networks and the CAN protocol.												Ur	Understanding (K2)			
CO2	illus	illustrate the CAN physical layer.												Understanding (K2)			
CO3	cla	classify the time-triggered and Flexray protocols for vehicle networking.												Understanding (K2)			
CO4	exp	explain and relate the multiplexed bus concepts for automotive networking.											Ur	Understanding (K2)			
CO5	out	outline the importance of wireless systems in automobiles.										Ur	Understanding (K2)				
						Mappin	g of CO	s with	POs a	nd PSOs	5						
COs/F	POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	1	3	2										1		3		
CO2 3 2											1		3				
CO	3	3	2										1		3		
CO	4	3	2										1		3		
CO	05 3 2					1		3									
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substant	ial, B	Γ- Bloom's	Taxonc	omy									
						ASSES	SMENT	PATTE	RN –	THEORY	,						
Test / Bloom's Category*Remembering (K1) %Understanding (K2) %Applying (K3) %Analyzing (K4) %Evaluating (K5) %											g Cr	reating (K6) %	Total %				
	CAT1 20 80													100			
	CA	Г2		20		80									100		
	CA	ГЗ		20		80									100		
	ESE 15 85														100		

* ±3% may be varied (CAT 1,2,3 - 50 marks & ESE - 100 marks)



	22AUE09 - VEHICLE BODY	ENGINEERING					
Programme & Branch	BE - Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Chassis	6	PE	3	0	0	3
Preamble	This course provides knowledge on ergonomics, m	naterials and design	of vehicle boo	dies.			
Unit – I	Ergonomics in Vehicle Bodies:						9
frame seating - E	ating dimensions - Interior ergonomics - Ergonomics Back pain reducers - Dash board instruments - Elec ge layout - Goods vehicle layout.						
Unit – II	Car Body Details:						9
visibility - Improve - Safety aspect of Unit – III		ign – Car body con	struction - Va	rious	pane	els in (	I
	Commercial Vehicle Body Details:		Commonsial	Vak	ialar	Dram	9 sida Da
Commercial vehic	le bodies – Types and Construction: Light Commercian of the commercian - Heavy commercial vehicle: Rigid and Articulated						side , Bo
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b>	<ul> <li>Ie bodies – Types and Construction: Light Commerciant</li> <li>n - Heavy commercial vehicle: Rigid and Articulated in - Regulations.</li> <li>Vehicle Body Repair:</li> </ul>	type. Dimensions of	of driver's sea	it in	relati	on to	side , Bo: controls - <b>9</b>
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har	le bodies – Types and Construction: Light Commercia n - Heavy commercial vehicle: Rigid and Articulated n - Regulations.	type. Dimensions of ber, plastics, GRF neet metal - Repair	of driver's sea	it in Body	relatio	on to	side , Boz controls - <b>9</b> ns - Bod
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har	<ul> <li>Ile bodies – Types and Construction: Light Commercial</li> <li>n - Heavy commercial vehicle: Rigid and Articulated</li> <li>n - Regulations.</li> <li>Vehicle Body Repair:</li> <li>nstruction materials – Properties - Steel sheet, time</li> <li>nd tools - Power tools - Panel repair - Repairing short</li> </ul>	type. Dimensions of ber, plastics, GRF neet metal - Repair	of driver's sea	it in Body	relatio	on to	side , Box controls - <b>9</b> ns - Body
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har compartment serv <b>Unit – V</b> Design of comme	<ul> <li>Ile bodies – Types and Construction: Light Commercial in - Heavy commercial vehicle: Rigid and Articulated in - Regulations.</li> <li>Vehicle Body Repair:</li> <li>Instruction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties.</li> <li>Design, Safety and Fatigue Aspects:</li> <li>Bercial vehicle structure - Chassis frame configuration of the sives and sealants. Crash tests - Forces in roll over the structure of the sives and sealants.</li> </ul>	type. Dimensions of ber, plastics, GRF neet metal - Repair cess, procedure and - Structural properti	of driver's sea 2 and CRP. 7 ing plastics 4 challenges. es of chassis	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls - <b>9</b> ns - Bod Passenge <b>9</b> working
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har compartment serv <b>Unit – V</b> Design of comme Spot welding - Ad	<ul> <li>Ile bodies – Types and Construction: Light Commercial in - Heavy commercial vehicle: Rigid and Articulated in - Regulations.</li> <li>Vehicle Body Repair:</li> <li>Instruction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties.</li> <li>Design, Safety and Fatigue Aspects:</li> <li>Bercial vehicle structure - Chassis frame configuration of the sives and sealants. Crash tests - Forces in roll over the structure of the sives and sealants.</li> </ul>	type. Dimensions of ber, plastics, GRF neet metal - Repair cess, procedure and - Structural properti	of driver's sea 2 and CRP. 7 ing plastics 4 challenges. es of chassis	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls - <b>9</b> ns - Bod Passenge <b>9</b> working
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har compartment serv <b>Unit – V</b> Design of comme Spot welding - Ad structure fatigue –	<ul> <li>Ile bodies – Types and Construction: Light Commercial in - Heavy commercial vehicle: Rigid and Articulated in - Regulations.</li> <li>Vehicle Body Repair:</li> <li>Instruction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties.</li> <li>Design, Safety and Fatigue Aspects:</li> <li>Bercial vehicle structure - Chassis frame configuration of the sives and sealants. Crash tests - Forces in roll over the structure of the sives and sealants.</li> </ul>	type. Dimensions of ber, plastics, GRF neet metal - Repair cess, procedure and - Structural properti	of driver's sea 2 and CRP. 7 ing plastics 4 challenges. es of chassis	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls <b>9</b> Mas - Bod Passenge <b>9</b> working is. Vehicl
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har compartment serv <b>Unit – V</b> Design of comme Spot welding - Ad structure fatigue –	<ul> <li>Ile bodies – Types and Construction: Light Commercial in - Heavy commercial vehicle: Rigid and Articulated in - Regulations.</li> <li>Vehicle Body Repair:</li> <li>Instruction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties.</li> <li>Design, Safety and Fatigue Aspects:</li> <li>Bercial vehicle structure - Chassis frame configuration of the sives and sealants. Crash tests - Forces in roll over the structure of the sives and sealants.</li> </ul>	type. Dimensions of theet metal - Repair cess, procedure and - Structural properti er, head on impact	of driver's sea 2 and CRP. 7 ing plastics 4 challenges. es of chassis	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls <b>9</b> Mas - Bod Passenge <b>9</b> working is. Vehicl
Commercial vehic van and Panel va Driver's cab desig <b>Unit – IV</b> Vehicle body cor mechanisms. Har compartment serv <b>Unit – V</b> Design of comme Spot welding - Ad structure fatigue – <b>TEXT BOOK:</b> 1. A.K. Babu	<ul> <li>Ie bodies – Types and Construction: Light Commercial n - Heavy commercial vehicle: Rigid and Articulated n - Regulations.</li> <li>Vehicle Body Repair: netroction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties. Corrosion: Anticorrosion methods - Painting – Properties vehicle structure - Chassis frame configuration sheesives and sealants. Crash tests - Forces in roll over Vibration.</li> </ul>	type. Dimensions of theet metal - Repair cess, procedure and - Structural properti er, head on impact	of driver's sea 2 and CRP. 7 ing plastics 4 challenges. es of chassis	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls <b>9</b> Mas - Bod Passenge <b>9</b> working is. Vehicl
Commercial vehic van and Panel va Driver's cab desig Unit – IV Vehicle body cor mechanisms. Har compartment serv Unit – V Design of comme Spot welding - Ad structure fatigue – TEXT BOOK: 1. A.K. Babu REFERENCES:	<ul> <li>Ie bodies – Types and Construction: Light Commercial n - Heavy commercial vehicle: Rigid and Articulated n - Regulations.</li> <li>Vehicle Body Repair: netroction materials – Properties - Steel sheet, time tools - Power tools - Panel repair - Repairing shrice. Corrosion: Anticorrosion methods - Painting – Properties. Corrosion: Anticorrosion methods - Painting – Properties vehicle structure - Chassis frame configuration sheesives and sealants. Crash tests - Forces in roll over Vibration.</li> </ul>	type. Dimensions of theet metal - Repair cess, procedure and - Structural properti er, head on impact, blishers, 2021.	of driver's sea and CRP. ing plastics - d challenges. es of chassis plastic collap	t in Body · Boo fran	relation v trim dy fill ne -	n item ers. F Press	side , Bo controls <b>9</b> Mas - Bod Passenge <b>9</b> working is. Vehicl

		UTCOM tion of t		rse, the st	udent	s will be	able to						(	BT Mapp Highest L	
CO1	sum	nmarize	the fun	damentals	of ergo	onomics i	n vehicl	e bodie:	s.				Und	erstanding	g (K2)
CO2	des	cribe the	e differe	ent types of	car bo	odies with	i constru	ctional	details				Und	erstanding	g (K2)
CO3	illus	trate va	rious co	mmercial	vehicle	bodies v	vith cons	truction	al deta	ils.			Und	erstandin	g (K2)
CO4	ider	ntify the	materia	ls used in	body b	uilding ar	nd body	repair w	ork.				Und	erstanding	g (K2)
CO5	exp	lain des	ign tech	niques wit	h safet	y and fat	igue asp	ects in v	/ehicle	structur	e.		Und	erstandin	g (K2)
						Mappir	ng of CO	s with	POs a	nd PSO:	5				
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO	)1	3	2				2	1					1	3	2
CO	)2	3	2				2	1					1	3	
CO	3	3	2				2	1					1	3	
CO	)4	3	2			1	2	1					1	3	
CO	95	3	2			1	2	1					1	3	
1 – Sli	ght, 2	- Mode	rate, 3	<ul> <li>Substant</li> </ul>	ial, BT	- Bloom's	s Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(				
	st / Bl Catego	oom's ory*	R	ememberi (K1) %	ing	Underst (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating K6) %	Tota %
	CAT	1		20		80				•					100
	CAT	2		20		80	)								100
	CAT	3		20		80	)								100
	ESE	F		15		85	5								100



		22AUE10 - OPERATIONS RESEARC	H					
Progra Branc	amme & h	B.E – AUTOMOBILE ENGINEERING	Sem.	Category	L	т	Ρ	Credit
Prerec	quisites	Nil	6	PE	3	0	0	3
Pream	ble	This course promotes the application of scientific methods in coperations for the effective utilization of scarce resources.	lecision-i	making with re	espe	ct to	the pi	oduction
Unit –	I	Linear Models:						9
		duction - Phases of OR study – Formation of Linear Programi Graphical Solution - Simplex Algorithm - Artificial Variables Tech						
Unit –	II	Transportation Problems, Assignment Problems and Sequence	uencing	Problems:				9
Mather	matical formu machine, n jo	proximation Method (VAM). Optimality test – Modified Distribulation –Hungarian Algorithm. Sequencing Problems:1 jobs n mochine and 2 jobs n machine problems.						nachine,
Unit –		Network Models and Project Management:						9
		nortest route - Minimal spanning tree - Maximum flow models. Pr		nagement: Co	onstr	uctio	n of n	etworks-
activity	/ and event-ba	ased diagrams - PERT-CPM-problems – Cost analysis and cras	hing of n					
Unit –	IV	Inventory Models:		etworks.				9
Unit – Invento	IV ory Models: T		ninistic in	etworks.	els - I	Price	breal	-
Unit – Invento - Stoch Unit –	IV ory Models: T nastic invento V	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models:	inistic in control t	etworks. ventory mode echniques.				k problem
Unit – Invento - Stoch Unit – Queuir - expor	IV ory Models: T nastic invento V ng Models: Qu nential service	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory	ninistic in control t server a	etworks. ventory mode echniques. nd multi-serve	er m	odels	- Po	k problem 9 isson inpu
Unit – Invento - Stoch Unit – Queuir - expor	IV ory Models: T nastic invento V ng Models: Qu nential service	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Model	ninistic in control t server a	etworks. ventory mode echniques. nd multi-serve	er m	odels	- Po	k problem 9 isson inpu
Unit – Invento - Stoch Unit – Queuir - expor with ar	IV ory Models: T nastic invento V ng Models: Qu nential service	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Model	ninistic in control t server a	etworks. ventory mode echniques. nd multi-serve	er m	odels	- Po	sson inpu
Unit – Invento - Stoch Unit – Queuir - expor with ar	IV ory Models: T nastic invento V ng Models: Q nential servic nd without tim BOOK:	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Model	inistic in control t server a dels: Rep	etworks. ventory mode echniques. nd multi-serv. lacement of l	er me	odels s due	to de	sson inputerioratio
Unit – Invento - Stoch Unit – Queuir - expoi with ar TEXT	IV ory Models: T nastic invento V ng Models: Q nential servic nd without tim BOOK:	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Model e value of Money - Individual and group replacement policy	inistic in control t server a dels: Rep	etworks. ventory mode echniques. nd multi-serv. lacement of l	er me	odels s due	to de	sson inpresentation
Unit – Invento - Stoch Unit – Queuir - expor with ar TEXT I 1. REFEF	IV ory Models: T nastic invento V ng Models: Qu nential service nd without tim BOOK: Gupta P.K. RENCES:	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Model e value of Money - Individual and group replacement policy	inistic in control t server a dels: Rep Company	etworks. ventory mode echniques. nd multi-serv lacement of l	er me tems	odels due	to de	sson inpueterioratio
Unit – Invento - Stoch Unit – Queuir - expoi with ar TEXT	IV ory Models: T hastic invento V ng Models: Q nential servic nd without tim BOOK: Gupta P.K. RENCES: Taha & Har	Inventory Models: ypes of Inventories – Economic Order Quantity (EOQ) - Determ ry models - Multi item deterministic models - Selective inventory Queuing Models and Replacement Models: ueuing systems and structures - Notations - Parameter - Single e - Constant rate service - Infinite population. Replacement Mode e value of Money - Individual and group replacement policy & Hira D.S., "Operations Research", 7th Edition, S. Chand and of mdy A., "Operation Research: An Introduction", 10th Edition, Pea- prick S. & Lieberman Gerald J., "Introduction to Operations Research	inistic in control t server a dels: Rep Company	etworks. ventory mode echniques. nd multi-serv lacement of l / Ltd, New De	er me Items elhi, 2	odels s due 2014. 2017	- Po to de	sson inpo terioratio

(Highest Level) Applying (K3) Applying (K3)
Analyzing (K4)
Analyzing (K4)
Analyzing (K4)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2							1	1	3	
CO2	3	3	2	2							1	1	3	
CO3	3	3	2	2							1	1	3	
CO4	3	3	2	2							1	1	3	
CO5	3	3	2	2							1	1	3	
1 – Slight, 2	– Mode	erate, 3 –	Substanti	al, BT- I	Bloom's	Taxono	my							

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	20	30	30			100
CAT3	20	20	30	30			100
ESE	10	20	40	30			100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)				

	22AUE11 - VEHICLE MAINTENAN	ICE	1			r	
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Powertrain and Automotive Chassis	6	PE	3	0	0	3
Preamble	This course provides knowledge on maintenance, serv automobile.	cing and	reconditioning	g of	vario	ous s	ystems i
Unit – I	Maintenance procedure and tools:						
activities in vehicle Personnel, equipm reconditioning wor	maintenance – Classification of maintenance – Service inte e maintenance. Vehicle insurance policy - Towing and recov nent and vehicles - Fire safety. Tools and equipment for shop ks.	ering - Fir	st aid – Main	tena	ince	policy	. Safety
Unit – II	Engine Maintenance:						9
•	becedure - Dismantling procedure of Engine. Inspection, Troubling of cooling system, lubrication system, fuel system, exha	•				•	•
	ם וטטו.						
Unit – III Inspection, Trouble	Driveline Maintenance: eshooting, reconditioning and replacing procedure - Clutch, tra		transaxle, pr	opel	ler sł	naft, y	
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv	Driveline Maintenance:         eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem         Chassis Maintenance:         vice and reconditioning procedure - Macpherson strut system	bly. leaf spring	g system and	sho	ck al	osorbe	oke, cros
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu	Driveline Maintenance: eshooting, reconditioning and replacing procedure - Clutch, tra constant velocity joints, axle shafts, bearings, differential assem Chassis Maintenance:	bly. leaf spring	g system and	sho	ck al	osorbe	oke, cros
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu	Driveline Maintenance:           eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem           Chassis Maintenance:           vice and reconditioning procedure - Macpherson strut system           valating ball type, worm type, power steering systems - Brake structure	bly. leaf spring	g system and	sho	ck al	osorbe	ers - Rac
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu Review of wheel a Unit – V Maintenance, serv	Driveline Maintenance:           eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem           Chassis Maintenance:           vice and reconditioning procedure - Macpherson strut system ilating ball type, worm type, power steering systems - Brake signment parameters.	bly. leaf spring /stems - W	g system and heels and tire	sho s -	ck al Fire r	osorbe	oke, cros ers - Rac n patterns
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu Review of wheel a Unit – V Maintenance, serv	Driveline Maintenance:           eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem           Chassis Maintenance:           vice and reconditioning procedure - Macpherson strut system alating ball type, worm type, power steering systems - Brake stignment parameters.           Electrical and HVAC Maintenance:           vice and troubleshooting procedure - Battery, starting, charactery	bly. leaf spring /stems - W	g system and heels and tire	sho s -	ck al Fire r	osorbe	oke, cros ers - Rac n patterns
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu Review of wheel a Unit – V Maintenance, serv Refrigerant leakag	Driveline Maintenance:           eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem           Chassis Maintenance:           vice and reconditioning procedure - Macpherson strut system alating ball type, worm type, power steering systems - Brake stignment parameters.           Electrical and HVAC Maintenance:           vice and troubleshooting procedure - Battery, starting, charactery	bly. leaf spring /stems - W	g system and heels and tire	sho s -	ck al Fire r	osorbe	oke, cros ers - Rac n patterns g system
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu Review of wheel a Unit – V Maintenance, serv Refrigerant leakag	Driveline Maintenance:           eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem           Chassis Maintenance:           vice and reconditioning procedure - Macpherson strut system alating ball type, worm type, power steering systems - Brake stignment parameters.           Electrical and HVAC Maintenance:           vice and troubleshooting procedure - Battery, starting, charactery	leaf spring /stems - W ging, lighti	g system and heels and tire ng systems,	sho s -	ck al Fire r	osorbe	oke, cros ers - Rac n patterns g system <b>Total:4</b>
Unit – III Inspection, Trouble of universal joint, c Unit – IV Maintenance, serv and pinion, recircu Review of wheel a Unit – V Maintenance, serv Refrigerant leakag	Driveline Maintenance:         eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem         Chassis Maintenance:         vice and reconditioning procedure - Macpherson strut system ulating ball type, worm type, power steering systems - Brake s lignment parameters.         Electrical and HVAC Maintenance:         vice and troubleshooting procedure - Battery, starting, charge detection and charging.	leaf spring /stems - W ging, lighti	g system and heels and tire ng systems,	sho s -	ck al Fire r	osorbe	oke, cros ers - Rac n patterns g system <b>Total:4</b>
Unit – III         Inspection, Trouble of universal joint, c         Unit – IV         Maintenance, servand pinion, recircue Review of wheel at         Unit – V         Maintenance, servand pinion, recircue Review of wheel at         Unit – V         Maintenance, servand pinion, recircue Review of wheel at         Unit – V         Maintenance, servand pinion         Refrigerant leakag         TEXT BOOK:         1.       William H.         REFERENCES:	Driveline Maintenance:         eshooting, reconditioning and replacing procedure - Clutch, traconstant velocity joints, axle shafts, bearings, differential assem         Chassis Maintenance:         vice and reconditioning procedure - Macpherson strut system ulating ball type, worm type, power steering systems - Brake s lignment parameters.         Electrical and HVAC Maintenance:         vice and troubleshooting procedure - Battery, starting, charge detection and charging.	bly. leaf spring /stems - W ging, lighti	g system and heels and tire ng systems, Graw Hill Educ	sho s - ⁻ air air	ck al Fire n cond	osorbe otation tionin w Del	oke, cros ers - Rac n patterns g system <b>Total:4</b> hi, 2017.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	discuss the importance of maintenance, workshop practices, tools and safety requirements for automobiles.	Understanding (K2)
CO2	explain the maintenance procedure of engine with its sub-systems and possible reconditioning works.	Understanding (K2)
CO3	illustrate the maintenance related issues in transmission and drive line components.	Understanding (K2)
CO4	identify the service practices in the steering, brake, suspension and wheel.	Understanding (K2)
CO5	asses the maintenance cum troubleshooting aspects in electrical and air-conditioning systems.	Applying (K3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2					2	3	
CO2	3	2			2		2					2	3	
CO3	3	2					2					2	3	
CO4	3	2					2					2	3	
CO5	3	2					2					2	1	3

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	65	15				100
ESE	15	70	15				100
* ±3% may be varied (	(CAT 1.2.3 – 50 mark	s & ESE – 100 ma	irks)				

	22AUE12 - COMPOSITE MA	TERIALS					
Programme & Branch	B.E. & Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Materials Science and Metallurgy	6	PE	3	0	0	3
Preamble	This course provides the basic concepts, manufacturi and dynamic loads.	ing and character	ization of com	iposi	te ma	aterial	s for stati
Unit – I	Fiber, Matrix and Composite:						9
	arbon, Ceramic, Aramid, Polymer and Natural – Char al - Fillers and Additives used in composite – Characteriza			men	t. Ma	ıtrix –	Polyme
Unit – II	Composite Manufacturing:						9
Technique. Hand	tal Matrix Composites (MMC) – Diffusion Bonding – S Layup – Spray up - Bag Molding – Compression Molding Molding - Tube Rolling – Quality Inspection Methods.						
Unit – III	Composite Performance and Analysis:						9
	erties – Static and dynamic Analysis – Thermograv ects – Long Term Properties - Service Life Predication - F						operties
Unit – IV	Composite Mechanics:						9
Fiber Content - De	ensity and Void Content - Rule of Mixture - Volume and M	lass Fractions - E	valuation of F	our I	=lasti	c Mor	Juli Rasor
Major Poisson's R	aterials Approach and Semi-Empirical Model - Longitud atio-in-Plane Shear Modulus - Ultimate Strengths of a Ur s – Lamination Theory.	linal Young's Mo	dulus - Trans	vers	e Yo	ungʻs	Modulus-
Major Poisson's R Lamina–Laminate		linal Young's Mo	dulus - Trans	vers	e Yo	ungʻs	Modulus-
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Bolt Design of a Bean	Latio-in-Plane Shear Modulus - Ultimate Strengths of a Ur s – Lamination Theory. Design of Composites: s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a T n - Design of a Torsional Member - Application of Fin	linal Young's Mo hidirectional Lami - Design Criteria Fension Member	dulus - Trans na- Character - Design Allov - Design of a	verso istics vable Com	e You of F - De	ungʻs iber-R sign ( sion N	Modulus- Reinforced 9 Guidelines Iember –
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Bolt Design of a Bean	Latio-in-Plane Shear Modulus - Ultimate Strengths of a Ur s – Lamination Theory. Design of Composites: s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a T n - Design of a Torsional Member - Application of Fin	linal Young's Mo hidirectional Lami - Design Criteria Fension Member	dulus - Trans na- Character - Design Allov - Design of a	verso istics vable Com	e You of F - De	ungʻs iber-R sign ( sion N	Modulus- Reinforced 9 Guideline: 1ember –
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Boli Design of a Bean Laminated Compo	Latio-in-Plane Shear Modulus - Ultimate Strengths of a Ur s – Lamination Theory. Design of Composites: s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a T n - Design of a Torsional Member - Application of Fin	linal Young's Mo hidirectional Lami - Design Criteria Fension Member	dulus - Trans na- Character - Design Allov - Design of a	verso istics vable Com	e You of F - De	ungʻs iber-R sign ( sion N	Modulus Reinforced 9 Guideline Aember – Analysis d
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Boli Design of a Bean Laminated Compo TEXT BOOK:	Latio-in-Plane Shear Modulus - Ultimate Strengths of a Ur s – Lamination Theory. Design of Composites: s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a T n - Design of a Torsional Member - Application of Fin	linal Youngʻs Mo nidirectional Lami - Design Criteria Fension Member ite Element Meth	dulus - Trans na- Character - Design Allov – Design of a nod (FEM) for	verse istics vable Com r Des	e You of F - De press sign	ungʻs iber-R esign ( sion M and A	Modulus Reinforced 9 Guideline Aember – Analysis o Total:4
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Bolt Design of a Bean Laminated Compo TEXT BOOK: 1. Mallick P. Francis, N	<ul> <li>katio-in-Plane Shear Modulus - Ultimate Strengths of a Urs – Lamination Theory.</li> <li>Design of Composites:</li> <li>s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a Torsional Member - Application of Finistes.</li> <li>K., "Fiber Reinforced Composites: Materials, Manufacturi</li> </ul>	linal Youngʻs Mo nidirectional Lami - Design Criteria Fension Member ite Element Meth	dulus - Trans na- Character - Design Allov – Design of a nod (FEM) for	verse istics vable Com r Des	e You of F - De press sign	ungʻs iber-R esign ( sion M and A	Modulus Reinforced 9 Guideline Aember – Analysis c Total:4
Major Poisson's R Lamina–Laminate Unit – V Failure Predictions - Joint Design-Bolt Design of a Bean Laminated Compo TEXT BOOK: 1. Mallick P. Francis, N REFERENCES:	<ul> <li>katio-in-Plane Shear Modulus - Ultimate Strengths of a Urs – Lamination Theory.</li> <li>Design of Composites:</li> <li>s - Theories of Failure - Laminate Design Consideration - ted and Bonded Joints - Design Examples - Design of a Torsional Member - Application of Finistes.</li> <li>K., "Fiber Reinforced Composites: Materials, Manufacturi</li> </ul>	linal Young's Mo hidirectional Lami - Design Criteria Fension Member ite Element Meth ing and Design",	dulus - Trans na- Character - Design Allow – Design of a nod (FEM) for 3rd Edition, C	versi istics vable Com r Des	e Yoi s of F e - De press sign s	ungʻs iber-R sign ( sion N and A Taylo	Modulus Reinforced 9 Guideline Aember – Analysis o Total:4

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the fundamentals of fibers - matrices - additives and composites.	Understanding (K2)
CO2	discuss the various manufacturing processes involved in the fabrication of composite material.	Understanding (K2)
CO3	determine the testing methods and properties of composite materials.	Applying (K3)
CO4	apply and solve problems concerning the mechanics of composite materials.	Applying (K3)
CO5	execute the design criteria for the development of fiber reinforced composites.	Applying (K3)
	Mapping of COs with POs and PSOs	

					wappin	y or co	5 WILLI	FUS all	u F30:	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1				2					2	3	
CO2	3	1	1				2					2	3	
CO3	3	3	1				2					2	3	
CO4	3	3	3	2			2					2	3	
CO5	3	3	3	2			2					2	3	
4 015-164 0			0		DI	<b>T</b>								

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	60	20				100
CAT3	20	40	40				100
ESE	10	50	40				100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)	· ·			

	22AUE13 - CNC AND M	ETROLOGY					
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Manufacturing Processes	7	PE	3	0	0	3
Preamble	This course provides the concepts of CNC part pro	gramming and vario	ous measuren	nent	techr	iques	
Unit – I	Basic Concepts of Metal Cutting and CNC Mac	nines:					9
Machinability. CNM Machine accuracy drives - Magnetic ways. Re-circulatil Unit – II Interchangeable to tooling system – assemblies – Too	chanics of chip formation -Mechanics of oblique cutti C machines: Classification – Construction details: Stru- P – DNC – Adaptive control CNC systems, Drives and C Levitation and Linear motors. Timing belts and pulle ng ball screws – Backlash measurement and compens Tooling For CNC Machines: ooling system – Preset and qualified tools – coolant Automatic head changers – Tooling requirements for I Magazines – ATC Mechanisms – Automatic Pallet C devices. Economics of CNC Machines and Retrofitting	ucture, Configuration Controls - Drive Mec ys, Spindle bearing ation, linear motion feed tooling system or Turning and Mac hanger-Tool manag	n of CNC sys hanism, gear – Arrangem guide ways. n – Modular chining centre ement. Princi	tem box, ent a fixtu es – ples	- Co Spine and ir ring - Tool of loo	mpens dle Dr stalla - Quid holde cation	sations fo ives, Axe tion. Slid <b>9</b> ck chang ers – Too , clampin
operation of CNC	C Machines – Practical aspects of introducing CNC	machines in indus	-				
Machines – Preve Unit – III	ntive Maintenance, Other maintenance requirements.	Retrofitting.					9
Part Program Terr	Part Programming of CNC Machines: minology - G and M Codes – Types of interpolation. Cl	NC part programmin	g – Manual p	art p	orogra	mmin	_
Part Program Terr and Milling). <b>Unit – IV</b>	minology - G and M Codes – Types of interpolation. Cl						g (Turnin <b>9</b>
Part Program Terr and Milling). <b>Unit – IV</b> Basic concepts: Interchangeability measurement: bev Terminology – Ge	minology - G and M Codes – Types of interpolation. Cl Linear and Angular Measurements: Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fit- vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. S	errors – Standar s and tolerances, h and Form Measur urface- roughness	ds of meas Gauge desig ement: Meas measuremen	urer In-	nent- Comp	Trac arato of surf	g (Turnin <b>9</b> eability rs-Angula ace finisł
Part Program Terr and Milling). <b>Unit – IV</b> Basic concepts: Interchangeability measurement: bev Terminology – Ge	minology - G and M Codes – Types of interpolation. Cl Linear and Angular Measurements: Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fit- vel protractor - Angle gauges - Sine bar. Surface Finis	errors – Standar s and tolerances, h and Form Measur urface- roughness	ds of meas Gauge desig ement: Meas measuremen	urer In-	nent- Comp	Trac arato of surf	g (Turnin <b>9</b> eability rs-Angula ace finish
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bev Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi	minology - G and M Codes – Types of interpolation. Cl         Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fits vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Suology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction and applications of CMM. Machine Vision System	errors – Standar s and tolerances, h and Form Measur surface- roughness nent of various elem flatness interferome nal features - Possi	ds of meas Gauge desig ement: Meas measuremen ents of gear. eter, Laser int ble causes of	uren uren t me	nent- Comp nent o ethods romet	Trac arato of surf s. Scr er. Ac CMM	g (Turnin 9 eability rs-Angula ace finish ew threa 9 lvances i - Probin rement- I
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bey Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin	minology - G and M Codes – Types of interpolation. Cl         Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fits vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Suology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction and applications of CMM. Machine Vision System	errors – Standar s and tolerances, h and Form Measur surface- roughness nent of various elem flatness interferome nal features - Possi	ds of meas Gauge desig ement: Meas measuremen ents of gear. eter, Laser int ble causes of	uren uren t me	nent- Comp nent o ethods romet	Trac arato of surf s. Scr er. Ac CMM	g (Turnin 9 eability rs-Angula ace finish ew threa 9 Ivances i - Probin
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bev Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin	Iminology - G and M Codes – Types of interpolation. Cl         Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fits vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Suology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction hance and applications of CMM. Machine Vision Systeme measurement.	errors – Standar s and tolerances, h and Form Measur urface- roughness nent of various elem flatness interferome nal features - Possi stem: Applications o	ds of meas Gauge desig rement: Meas measuremen ents of gear. ter, Laser int ble causes of of machine vi	urer In- uren t me erfer errfer sion	nent- Comp nent o ethods romet prs in in m	Trac arato of surf s. Scr er. Ac CMM easur	g (Turnin 9 eability rs-Angula ace finisl ew threa 9 dvances i - Probin ement- 1 Total:4
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bev Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin	minology - G and M Codes – Types of interpolation. Cl         Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fits vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Suology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction and applications of CMM. Machine Vision System	errors – Standar s and tolerances, h and Form Measur urface- roughness nent of various elem flatness interferome nal features - Possi stem: Applications o	ds of meas Gauge desig rement: Meas measuremen ents of gear. ter, Laser int ble causes of of machine vi	urer In- uren t me erfer errfer sion	nent- Comp nent o ethods romet prs in in m	Trac arato of surf s. Scr er. Ac CMM easur	g (Turnin 9 eability rs-Angula ace finish ew threa 9 Avances i - Probin ement- I Total:4
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bey Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin TEXT BOOK: 1. Narang J. I,II,III.	Iminology - G and M Codes – Types of interpolation. Cl         Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fits vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Suology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction hance and applications of CMM. Machine Vision Systeme measurement.	errors – Standar s and tolerances, h and Form Measur surface- roughness nent of various elem flatness interferome nal features - Possi stem: Applications of	ds of meas Gauge desig ement: Meas measuremen ents of gear. eter, Laser int ble causes of of machine vi	urer In- uren t me erfer errfer sion	nent- Comp nent o ethods romet prs in in m	Trac arato of surf s. Scr er. Ac CMM easur	g (Turnin 9 eability rs-Angula ace finish ew threa 9 Avances i - Probin ement- I Total:4
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bev Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin TEXT BOOK: 1. Narang J. I,II,III.	minology - G and M Codes – Types of interpolation. Cl          Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fit: vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Stology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction hance and applications of CMM. Machine Vision System measurement.         S. & Narang V.D.S., "CNC Machines and Automation	errors – Standar s and tolerances, h and Form Measur surface- roughness nent of various elem flatness interferome nal features - Possi stem: Applications of	ds of meas Gauge desig ement: Meas measuremen ents of gear. eter, Laser int ble causes of of machine vi	urer In- uren t me erfer errfer sion	nent- Comp nent o ethods romet prs in in m	Trac arato of surf s. Scr er. Ac CMM easur	g (Turnin 9 eability rs-Angula ace finisl ew threa 9 dvances i - Probin ement- 1 Total:4
Part Program Terr and Milling). Unit – IV Basic concepts: Interchangeability measurement: bev Terminology – Ge metrology: Termin Unit – V Principle of light v Metrology: Coordi system – Perform process and On lin TEXT BOOK: 1. Narang J. I,II,III. 2. Jain R.K., REFERENCES:	minology - G and M Codes – Types of interpolation. Cl          Linear and Angular Measurements:         Legal metrology- Precision- Accuracy- Types of and selective assembly. Introduction to limits, fit: vel protractor - Angle gauges - Sine bar. Surface Finis cometrical irregularities – Roughness – Waviness. Stology- Errors in thread, Gears Terminology- Measurem         Interferometry and LASER Metrology:         vave interference – Optical flats -Michelson and NPL nate Measuring Machine (CMM): Types - Construction hance and applications of CMM. Machine Vision System measurement.         S. & Narang V.D.S., "CNC Machines and Automation	errors – Standar s and tolerances, h and Form Measur surface- roughness nent of various elem flatness interferome nal features - Possi stem: Applications of	ds of meas Gauge desig ement: Meas measuremen ents of gear. eter, Laser int ble causes of of machine vi	urer In- uren t me erfer errfer sion	nent- Comp nent o ethods romet prs in in m	Trac arato of surf s. Scr er. Ac CMM easur	g (Turnin 9 eability rs-Angula ace finisl ew threa 9 dvances i - Probin ement- 1 Total:4

		UTCOM ion of t		se, the st	uden	ts will be	able to						(	BT Mapp Highest L	
CO1			-	neters of i a CNC sy		-	nd comp	prehend	the b	asic con	nponents	s, drives ar	nd Ur	nderstandii	ng (K2)
CO2		ct vario hines.	ous toolir	ng system	s and	fixtures f	or CNC	and ide	entify r	naintena	nce feat	tures of CN	IC Ur	nderstandii	ng (K2)
CO3	deve	elop par	rt progra	mming for	vario	us machin	ing proc	esses.						Applying	(K3)
CO4		linear hness.	and an	gular mea	surer	ments usir	ng vario	us instr	ument	s and d	etermine	e the surface	ce Ur	nderstandii	ng (K2)
CO5			the form		le me	asuremen	ts using	Coordir	nate M	easuring	Machin	e (CMM) wi	ith Ur	nderstandi	ng (K2)
Марр	ing o	f COs	with P	Os and P	SOs		1	1							
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	3										2	3	
CO	2	3	3										2	3	
CO	3	3	3	2	2	3							2	3	
CO	94	3	3										2	3	
CO	95	3	3										2	3	
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substant	ial, B	T- Bloom's	Taxono	my				1			I
						ASSES	SMENT	PATTE	ERN –	THEORY	1				
	st / Blo Catego	oom's ory*	Re	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		15		85	5		T						100
	CAT	2		15		65	5	20	0						100
	CAT	3		15		85	5								100

15

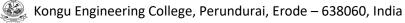
15 * ±3% may be varied (CAT 1,2,3 - 50 marks & ESE - 100 marks)

ESE

70

100

## 22AUE14 - COMPUTATIONAL FLUID DYNAMICS


Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Mechanics of Fluids and Hydraulic Machines	7	PE	3	0	0	3
Preamble	This course involves on the application of numerical method In addition, the course also provides an introduction into tu of CFD in vortices and eddies.						
Unit – I	Governing Equations and Boundary Conditions:						9
Momentum and E	ons and Boundary Conditions: Basics of Computational Fluid nergy Equations – General Transport Equation – Physical Bour on CFD –Elliptic - Parabolic - Hyperbolic Equations.	Dynamics ndary Con	<ul> <li>Governing</li> <li>ditions – Disc</li> </ul>	Equ retiz	ation ation	s – C – Ma	ontinuity thematica
Unit - II	Finite Difference Method:						9
- Implicit Method -	Method: Finite Difference Method – Taylors Series – Forward - ( – Tridiagonal Matrix-Application of the TDMA to Two-Dimension Elliptic Equations – Errors.						
Finite Volume Me	Finite Volume Method: thod: Finite Volume Formulation for Steady-State - One - Two						
Finite Volume Me Parabolic Equation One-Dimensional Properties of Disci	thod: Finite Volume Formulation for Steady-State - One - Two ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of Convection and Diffusion – Central - Upwind Differencing Sch retization Schemes.	n Elliptic a	nd Parabolic	Equa	ations	s - Ste	roblems eady State chemes
Finite Volume Me Parabolic Equation One-Dimensional Properties of Disci	thod: Finite Volume Formulation for Steady-State - One - Two ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of Convection and Diffusion – Central - Upwind Differencing Sch	n Elliptic a	nd Parabolic	Equa	ations	s - Ste	roblems eady Stat
Finite Volume Me Parabolic Equation One-Dimensional Properties of Disci <b>Unit - IV</b> Grid: Types – Grid	thod: Finite Volume Formulation for Steady-State - One - Two ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of Convection and Diffusion – Central - Upwind Differencing Sch retization Schemes.	n Elliptic a emes- Hyt /ariable –\$	nd Parabolic prid - Power-I Staggered Gri	Equa _aw	ations - QU	- Ste	roblems eady State chemes
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr <b>Unit - IV</b> Grid: Types – Gric Correction – SIMP	thod: Finite Volume Formulation for Steady-State - One - Two ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of Convection and Diffusion – Central - Upwind Differencing Sch retization Schemes. <b>Grid:</b> d Generation – Grid Transformation – Calculation of Flow Field	n Elliptic a emes- Hyt /ariable –\$	nd Parabolic prid - Power-I Staggered Gri	Equa _aw	ations - QU	- Ste	roblems - eady State schemes - 9
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr <b>Unit - IV</b> Grid: Types – Gric Correction – SIMP <b>Unit - V</b> Turbulence Mode Averaged Navier	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field V         PLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model         Stokes Equation – Characteristics of Simple Turbulent Flow	n Elliptic a emes- Hyt /ariable –{ D Algorithn el - Turbul	nd Parabolic brid - Power-I Staggered Gri n. lence – Effec	Equa _aw id –F	ations - QU Pressi Turbi	G - Ste CK S ure ar	seady Stat chemes 9 nd Velocit 9 e on Tim
Parabolic Equation One-Dimensional Properties of Discr Unit - IV Grid: Types – Grid Correction – SIMP Unit - V Turbulence Mode Averaged Navier	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field V         PLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model	n Elliptic a emes- Hyt /ariable –{ D Algorithn el - Turbul	nd Parabolic brid - Power-I Staggered Gri n. lence – Effec	Equa _aw id –F	ations - QU Pressi Turbi	G - Ste CK S ure ar	seady Stat chemes 9 nd Velocit 9 e on Tim
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr <b>Unit - IV</b> Grid: Types – Gric Correction – SIMP <b>Unit - V</b> Turbulence Mode Averaged Navier	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field V         PLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model         Stokes Equation – Characteristics of Simple Turbulent Flow	n Elliptic a emes- Hyt /ariable –{ D Algorithn el - Turbul	nd Parabolic brid - Power-I Staggered Gri n. lence – Effec	Equa _aw id –F	ations - QU Pressi Turbi	G - Ste CK S ure ar	roblems eady Stat chemes 9 nd Velocit 9 e on Tim pe Flow
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr Unit - IV Grid: Types – Gric Correction – SIMP Unit - V Turbulence Mode Averaged Navier Turbulence Model TEXT BOOK:	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field V         PLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model         Stokes Equation – Characteristics of Simple Turbulent Flow	h Elliptic a emes- Hyt /ariable -{ D Algorithn el - Turbul / - Flat F	nd Parabolic brid - Power-L Staggered Grin. lence – Effec Plate Bounda	Equa _aw idF	ations - QU Presso Turb ayer	ure ar	roblems eady Stat schemes 9 nd Velocit 9 e on Tim be Flow Total:4
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr Unit - IV Grid: Types – Gric Correction – SIMP Unit - V Turbulence Mode Averaged Navier Turbulence Model TEXT BOOK:	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field YPLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model         Stokes Equation – Characteristics of Simple Turbulent Flow         Is – Mixing Length Model –K-ε Models.         H. K. & Malalasekera W., "An Introduction to Computational Fluit	h Elliptic a emes- Hyt /ariable -{ D Algorithn el - Turbul / - Flat F	nd Parabolic brid - Power-L Staggered Grin. lence – Effec Plate Bounda	Equa _aw idF	ations - QU Presso Turb ayer	ure ar	roblems eady Stat chemes 9 nd Velocit 9 e on Tim be Flow Total:4
Finite Volume Me Parabolic Equation One-Dimensional Properties of Discr Unit - IV Grid: Types – Grid Correction – SIMP Unit - V Turbulence Model Averaged Navier Turbulence Model TEXT BOOK: 1. Versteeg Edition, P REFERENCES:	thod: Finite Volume Formulation for Steady-State - One - Two         ns – Explicit - Implicit Schemes - Unsteady Heat Conduction of         Convection and Diffusion – Central - Upwind Differencing Sch         retization Schemes.         Grid:         d Generation – Grid Transformation – Calculation of Flow Field YPLE Algorithm – SIMPLER Algorithm-SIMPLEC Algorithm – PISC         Turbulence Models:         els: Reynolds Stress Equation Model – Algebraic Stress Model         Stokes Equation – Characteristics of Simple Turbulent Flow         Is – Mixing Length Model –K-ε Models.         H. K. & Malalasekera W., "An Introduction to Computational Fluit	h Elliptic a emes- Hyt /ariable _{ D Algorithn el - Turbul / – Flat F	nd Parabolic brid - Power-I Staggered Gri n. lence – Effec Plate Bounda	Equa _aw idF	ations - QU Press Turb ayer	a - Ste ICK S ure ar ulence – Pip	roblems eady Stat chemes 9 nd Velocit 9 e on Tim be Flow Total:4

		UTCOM tion of t		se, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1				ning equa				ditions f	or fluid	l dynami	cs.			Applying	(K3)
CO2	app	ly variou	us finite	difference	metho	od to solve	the con	nplex pi	roblem	s.				Applying	(K3)
CO3	ana	lyze the	convec	tion diffusi	on pro	blems by	the finite	e volum	e meth	od.				Analyzing	(K4)
CO4	iden	ntify the	grid ger	eration teo	chniqu	e for the f	low field	variabl	es.					Applying	(K3)
CO5	reco	ognize a	ind sumi	narize the	variou	us turbulei	nce mod	lels and	l its ch	aracteris	tics			Analyzing	(K4)
						Mappin	g of CO	s with	POs a	nd PSO:	5				
COs/I	POs	PO1	PO2	PO3	PO4	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	3	1	2							2	3	1
CO	2	3	2	3	1	2							2	3	1
CO	3	3	2	3	1	2							2	3	1
CO	4	3	2	3	1	2							2	3	1
CO	5	3	2	3	1	2							2	3	1
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substant	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(				
	st / Ble Catege	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating K6) %	Tota %
	CAT	1		10		40	)	50	)						100

CATT	10	40	50			100
CAT2	10	20	35	35		100
CAT3	10	20	35	35		100
ESE	10	20	35	35		100
* ±3% may be varied (0	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)			

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	7	EE	3	0	0	3
Preamble	This course provides the practical knowledge about image processing techniques.	out various componen	ts of machine	e visi	on sy	stems	s and
Unit – I	Processing of Information in the Human Visu	al System:					9
	cture of eye- Adaptation to different light level- Roc n: Specification- Part presentation- Performance	d and Cone Respons					
Unit – II	Designing a Machine Vision System:						9
resolution, Reso design - digital a	Field view– Resolution: camera sensor resolution, S lution for a Line Scan Camera - Choice of camera nd smart cameras	, Frame grabber and					ate- Lens
Unit – III	Lighting System & Camera Computer Interfact thine vision lighting – Light and light perception – Light						9
	light, white light, UV, IR and Polarized light – Light fil uses– Standard PC buses – Computer buses – D						
digital camera b Application progr <b>Unit – IV</b> Introduction to D Radiometric Cal Understanding. Fitting. Template	<ul> <li>Image Processing Algorithms:</li> <li>Image Processing - Image sampling and quant ibration, Image Smoothing– Geometric transformati Feature extraction: Region Features, Gray Value Fe matching: Grey value based, Image pyramid mate ct systems and vision controllers.</li> </ul>	igital video transmiss i ization - Image enhar on– Image segmenta Features, Contour Fe	ion – Came ncement: Gra ation– Objec eatures–Morp	ay Va t Rec	lue T cogni gy–E	Transf tion a	software 9 ormations and Image extraction-
digital camera b Application prog Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V	Juses – Standard PC buses – Computer buses – D ramming interface- Features of machine vision system Image Processing Algorithms: Jigital Image Processing - Image sampling and quant ibration, Image Smoothing – Geometric transformati Feature extraction: Region Features, Gray Value Fe matching: Grey value based, Image pyramid matect systems and vision controllers. Applications and Case Studies:	igital video transmiss n ization - Image enhan ion– Image segmenta Features, Contour Fe ching. Optical Charac	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti	ay Va t Reo oholo on -	ik – I lue T cogni gy–E Integ	Transf tion a dge e gratior	software: 9 ormations, and Image extraction- n of vision 9
digital camera b Application prog Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspect component– Mu management of Completeness c	<ul> <li>Nuses- Standard PC buses - Computer buses - D ramming interface- Features of machine vision system</li> <li>Image Processing Algorithms:</li> <li>Nigital Image Processing - Image sampling and quant ibration, Image Smoothing- Geometric transformati Feature extraction: Region Features, Gray Value Fe matching: Grey value based, Image pyramid matect systems and vision controllers.</li> </ul>	igital video transmiss ization - Image enhan- ion- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp hybrid circuit- Pin ty of rivets- Tubing insp sition and completene	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti leteness che be verificatio ection – Glu	ra lin ay Va t Rec oholo on - eck c n– T e cho	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software: 9 ormations, and Image extraction- n of vision 9 ve contro result data UV Light-
digital camera b Application prog Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspect component– Mu management of Completeness c	Jusses – Standard PC buses – Computer buses – D         ramming interface- Features of machine vision system         Image Processing Algorithms:         Jigital Image Processing - Image sampling and quant         ibration, Image Smoothing – Geometric transformati         Feature extraction: Region Features, Gray Value Fe         e matching: Grey value based, Image pyramid mate         ct systems and vision controllers.         Applications and Case Studies:         tion of rivets – Tubing inspection – Glue check und         Itiple position and completeness- Check of small H         spark plugs – Robot guidance Diameter inspection c	igital video transmiss ization - Image enhan- ion- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp hybrid circuit- Pin ty of rivets- Tubing insp sition and completene	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti leteness che be verificatio ection – Glu	ra lin ay Va t Rec oholo on - eck c n– T e cho	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software 9 ormations and Image extraction- n of visior 9 ve contro result data UV Light- sircuit- Pir
digital camera b Application progr Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspect component– Mu management of Completeness c type verification–	Jusses – Standard PC buses – Computer buses – D         ramming interface- Features of machine vision system         Image Processing Algorithms:         Jigital Image Processing - Image sampling and quant         ibration, Image Smoothing – Geometric transformati         Feature extraction: Region Features, Gray Value Fe         e matching: Grey value based, Image pyramid mate         ct systems and vision controllers.         Applications and Case Studies:         tion of rivets – Tubing inspection – Glue check und         Itiple position and completeness- Check of small H         spark plugs – Robot guidance Diameter inspection c	igital video transmiss ization - Image enhan- ion- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp hybrid circuit- Pin ty of rivets- Tubing insp sition and completene	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti leteness che be verificatio ection – Glu	ra lin ay Va t Rec oholo on - eck c n– T e cho	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software 9 ormations and Image extraction- n of visior 9 ve contro result data UV Light- sircuit- Pir
digital camera b Application progr Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspec component– Mu management of Completeness c type verification–	Jusses – Standard PC buses – Computer buses – D         ramming interface- Features of machine vision system         Image Processing Algorithms:         Jigital Image Processing - Image sampling and quant         ibration, Image Smoothing – Geometric transformati         Feature extraction: Region Features, Gray Value Fe         e matching: Grey value based, Image pyramid mate         ct systems and vision controllers.         Applications and Case Studies:         tion of rivets – Tubing inspection – Glue check und         Itiple position and completeness- Check of small H         spark plugs – Robot guidance Diameter inspection c	igital video transmiss ization - Image enhar on- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp nybrid circuit- Pin ty of rivets- Tubing insp sition and completene cobot guidance	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti leteness che be verificatio ection – Glu	ra lin ay Va t Rec oholo on - eck c n– T e cho	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software 9 ormations and Image extraction- n of visior 9 ve contro result data UV Light- sircuit- Pir
digital camera b Application progr Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspec component– Mu management of Completeness c type verification– TEXT BOOK: 1. Alexand	Inses-       Standard PC buses - Computer buses - D         ramming interface-       Features of machine vision system         Image Processing Algorithms:         bigital Image Processing - Image sampling and quant         ibration, Image Smoothing-       Geometric transformati         Feature extraction: Region Features, Gray Value Fe         e matching: Grey value based, Image pyramid mate         ct systems and vision controllers.         Applications and Case Studies:         titlple position and completeness-         Check of small F         spark plugs-         Robot guidance Diameter inspection of         heck of automotive control component-         Multiple positi	igital video transmiss ization - Image enhar on- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp nybrid circuit- Pin ty of rivets- Tubing insp sition and completene cobot guidance	ion – Came ncement: Gra ation– Objec eatures–Morp cter recogniti leteness che be verificatio ection – Glu	ra lin ay Va t Rec oholo on - eck c n– T e cho	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software 9 ormations and Image extraction- n of visior 9 ve contro result data UV Light-
digital camera b Application prog Unit – IV Introduction to D Radiometric Cal Understanding. Fitting. Template sensors, Compa Unit – V Diameter inspec component– Mu management of Completeness c type verification- TEXT BOOK: 1. Alexand REFERENCES:	Inses-       Standard PC buses - Computer buses - D         ramming interface-       Features of machine vision system         Image Processing Algorithms:         bigital Image Processing - Image sampling and quant         ibration, Image Smoothing-       Geometric transformati         Feature extraction: Region Features, Gray Value Fe         e matching: Grey value based, Image pyramid mate         ct systems and vision controllers.         Applications and Case Studies:         titlple position and completeness-         Check of small F         spark plugs-         Robot guidance Diameter inspection of         heck of automotive control component-         Multiple positi	igital video transmiss ization - Image enhan on- Image segmenta Features, Contour Fe ching. Optical Charac der UV Light- Comp nybrid circuit- Pin ty of rivets- Tubing insp sition and completene tobot guidance	ion – Came incement: Gra ation– Objec eatures–Morp cter recogniti leteness che pe verificatio ection – Glu ss- Check o	ra lin ay Va t Ree holo on - T e chc f sma	ik – I lue T cogni gy–E Integ f aut	Driver Transf tion a dge e gratior omoti and r nder	software 9 ormations and Image extraction- n of visior 9 ve contro result data UV Light- sircuit- Pir

		UTCON		urse, the s	tuden	ts will be	able to						(	BT Mapp Highest Le	
CO1	inte	erpret th	e fund	amental co	ncepts	of the visi	on syste	em					Und	lerstanding	(K2)
CO2	ide	ntify the	suitab	le compon	ents fo	r designin	g the ma	achine v	ision s	system			Und	lerstanding	(K2)
CO3	exp	plain the	conce	pt of lightin	g syste	em and va	rious co	mputer	interfa	ces			Und	lerstanding	(K2)
CO4	infe	er the co	oncept	of image p	ocessi	ng technic	lues						Und	lerstanding	(K2)
CO5	des	sign the	machi	ne vision sy	vstem f	or real tim	e manuf	facturing	g appli	cations			Арр	lying (K3)	
						Mappin	g of CO	s with	POs a	nd PSOs	6				
COs/F	POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1	1	2							2		3
CO	2	3	2	1	1	2							2		3
CO	3	3	2	1	1	2							2		3
CO	4	3	2	1	1	2							2		3
CO	5	3	2	1	1	2							2		3
1 – Sli	ght, 2	2 – Mode	erate, 3	8 – Substar	tial, B	Γ- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEORY	,				
	st / B Categ	loom's ory*		Remember (K1) %		Understa (K2)	anding	Apply (K3)	/ing	Analyzi (K4) %	ing	Evaluating (K5) %	g Cre	ating (K6) %	Tota %
	CA	T1		20		80									100
	CA	Т2		20		80									100
	CA	ТЗ		20		60		20	)						100
	ES	E		15		65		20	)						100
* ±3%	may	be varie	d (CA	Г 1,2,3 — 50	marks	s & ESE -	- 100 ma	arks)			·				



	22AUE16 - AUTOMOTIVE POI	LUTION CONTROL					
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Engines	7	PE	3	0	0	3
Preamble	This course provides knowledge on emission star	ndards, formation, me	asurement ar	nd co	ontrol	techn	iques.
Unit – I	Introduction:						9
	ution from automotive engines - Global warming human health. Emission Standards and Driving Cycle		et and effects	s of	engi	ne po	ollution o
Unit – II	Emission Formation in SI Engines:						9
	Emission Formation in CI Engines: combustion – Formation of HC, CO, NOx, PM and	smoke - Aldehvde e	mission Effe	nte o	fonc	ina d	9 esign an
	a sub-sub-standard for an extension	· · · <b>,</b> · · ·		15 0	i eng	line u	esign an
	es on emission formation.			.15 0		nne u	esign an
Unit – IV	Emission Measurement Techniques:						9
Unit – IV CO and CO ₂ ND		minescence Analyze	– Smoke m				9
Unit – IV CO and CO ₂ ND	Emission Measurement Techniques: IR Analyzers – Flame Ionization Detector - Chemilu	minescence Analyze	– Smoke m				9
Unit – IV CO and CO ₂ ND Sampler – Particu Unit – V Engine Design m	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate	minescence Analyze se measurement – SL on control – EGR - A	⁻ – Smoke m M, ISLM. ir injection - T	eters	s – C nal R	onsta	9 nt Volum 9 rs - Wate
Unit – IV CO and CO ₂ ND Sampler – Particu Unit – V Engine Design m Injection - Cataly	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate	minescence Analyze se measurement – SL on control – EGR - A	⁻ – Smoke m M, ISLM. ir injection - T	eters	s – C nal R	onsta	9 nt Volum 9 rs - Wate
Unit – IV CO and CO ₂ ND Sampler – Particu Unit – V Engine Design m Injection - Cataly	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate	minescence Analyze se measurement – SL on control – EGR - A	⁻ – Smoke m M, ISLM. ir injection - T	eters	s – C nal R	onsta	9 nt Volum 9 rs - Wate e pollutio
Unit – IV CO and CO ₂ ND Sampler – Particu Unit – V Engine Design m Injection - Cataly control measures	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate	minescence Analyze se measurement – SL on control – EGR - A e traps - De-NO _x cata	- Smoke m M, ISLM. ir injection - T lysts - SCR s	eters	s – C nal R ms –	onsta	9 nt Volum 9 rs - Wate e pollutio
Unit – IV         CO and CO2 ND         Sampler – Particu         Unit – V         Engine Design m         Injection - Cataly         control measures         TEXT BOOK:         1.         Ganesan	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate         .	minescence Analyze se measurement – SL on control – EGR - A e traps - De-NO _x cata	- Smoke m M, ISLM. ir injection - T lysts - SCR s	eters	s – C nal R ms –	onsta	9 nt Volum 9 rs - Wate e pollutio
Unit – IV CO and CO ₂ ND Sampler – Particu Unit – V Engine Design m Injection - Cataly control measures TEXT BOOK: 1. Ganesan REFERENCES:	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         ulate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate         .	minescence Analyze se measurement – SL on control – EGR - A e traps - De-NO _x cata McGraw Hill Educatio	- Smoke m M, ISLM. ir injection - T lysts - SCR s	eters Thern syste	5 – C nal R ms – 013.	eacto Noise	9 nt Volum rs - Wate e pollutio Total:4
Unit – IV         CO and CO₂ ND         Sampler – Particu         Unit – V         Engine Design m         Injection - Cataly         control measures         TEXT BOOK:         1.         Ganesan         REFERENCES:         1.         John Hey	Emission Measurement Techniques:         IR Analyzers – Flame Ionization Detector - Chemilu         Jate Emission measurement and Dilution tunnel, Nois         Emission Control Techniques:         Iodifications - Fuel modification - Evaporative emission         tic converters. Diesel oxidation catalyst - Particulate         .         .         .         .         .         .         .	minescence Analyze se measurement – SL on control – EGR - A e traps - De-NO _x cata McGraw Hill Educatio 1st Edition, McGraw	- Smoke m M, ISLM. ir injection - T lysts - SCR s on, Noida, Ind Hill Education	eters Therm syste	5 – C nal R ms – 013.	eacto Noise	9 nt Volum rs - Wate e pollutio Total:4

		UTCOM	-	se, the st	udents	will be a	able to						(	BT Mapı Highest L	
CO1	expl	ain the	various e	environme	ntal poll	ution as	pects, is	ssues a	nd stan	dards.			Ur	derstandi	ng (K2)
CO2	illus	trate the	e formatio	on of emis	sion fro	m SI En	gines.							Applying	(K3)
CO3	exa	mine the	e emissio	n formatio	on from	CI Engir	nes.							Applying	(K3)
CO4	expl	ain the	various n	neasurem	ient tec	hniques	for vehi	cle emi	ssion.				Ur	Iderstandi	ng (K2)
CO5	Inte	rpret the	e various	emission	control	techniqu	ues for a	utomoti	ve engi	nes.				Applying	(K3)
						Mappin	g of CO	s with	POs an	d PSO:	S				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	2	1	1	2	3					1	3	
CO	2	3	2	2	1	1	2	3					1	3	
CO	3	3	2	2	1	1	2	3					1	3	
CO	4	3	2	2	1	1	2	3					1	3	
CO	5	3	2	2	1	1	2	3					1	3	
1 – Slig	ght, 2	– Mode	rate, 3 –	Substant	ial, BT- I	3loom's	Taxono	my							

		ASSESSMENT	PATTERN –	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	20	60	20				100
CAT3	20	60	20				100
ESE	15	65	20				100
±3% may be varied (	CAT 1.2.3 – 50 mark	s & ESE – 100 ma	irks)	· ·		1	

Programme & Branch	B.E – AUTOMOBILE ENGINEERING	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	PE	3	0	0	3
Preamble	This course provides knowledge on value engineering pro	cess and its	functions with	nin th	e org	aniza	tion.
Unit – I	Introduction:				Ŭ		9
Element of choice	g concepts – Advantages – Applications - Problem recognitic e. Level of value engineering in the organization - Size and and quantitative evaluation of ideas.						
Unit – II	Value Engineering Job Plan:						9
	entation, information phase, speculation phase, analysis phaselection, methods selection, value standards - Application or					lue e	ngineerin
Unit – III	Analysis Function:	<b>¥</b>		-			9
Evaluation of value	tion - Determining function - Classifying function - Evaluation	2. 333.0 LV			- 0.0		
Unit – IV	Value Engineering Techniques:						9
Unit – IV Selecting product function(s)assignir use of decision ma		functions, de	ecision makin	g for	optin	num a	evaluating alternative up, Use o
Unit – IV Selecting product function(s)assignir use of decision ma	Value Engineering Techniques: s and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, r	functions, de	ecision makin	g for	optin	num a	evaluating
Unit – IV Selecting product function(s)assignir use of decision ma advanced techniqu Unit – V Value engineering	Value Engineering Techniques:           is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.           Versatility of Value Engineering:           g operation in maintenance and repair activities, value engiamme Introduction, training plan, career development for value	functions, de neasuring pro	ecision makin fits, reporting n-hardware p	g for i rest	optin ults, f	num a ollow nitiatir	evaluating alternative up, Use c <b>9</b> ng a value
Unit – IV Selecting product function(s)assignir use of decision ma advanced techniqu Unit – V Value engineering engineering progra	Value Engineering Techniques:           is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.           Versatility of Value Engineering:           g operation in maintenance and repair activities, value engiamme Introduction, training plan, career development for value	functions, de neasuring pro	ecision makin fits, reporting n-hardware p	g for i rest	optin ults, f	num a ollow nitiatir	evaluatin alternative up, Use o <b>9</b> ng a valu ming: cos
Unit – IV Selecting product function(s)assignir use of decision ma advanced techniqu Unit – V Value engineering engineering progra models, life cycle of	Value Engineering Techniques:           is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.           Versatility of Value Engineering:           g operation in maintenance and repair activities, value engiamme Introduction, training plan, career development for value	functions, de neasuring pro	ecision makin fits, reporting n-hardware p	g for i rest	optin ults, f	num a ollow nitiatir	evaluatin alternative up, Use o <b>9</b> ng a valu ming: cos
Unit – IV Selecting product function(s)assignir use of decision ma advanced techniqu Unit – V Value engineering engineering progra models, life cycle of TEXT BOOK:	Value Engineering Techniques:           is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.           Versatility of Value Engineering:           g operation in maintenance and repair activities, value engiamme Introduction, training plan, career development for value	functions, de neasuring pro neering in no ue engineeri	ecision makin ofits, reporting n-hardware p ng specialties	g for i rest projec s. Fas	optin ults, f cts. li st dia	num a ollow nitiatin Igram	evaluatin alternative up, Use o 9 ng a valu ming: cos Total:4
Unit – IV         Selecting product         function(s)assignir         use of decision ma         advanced techniqu         Unit – V         Value engineering programodels, life cycle of         TEXT BOOK:         Anil Kuma	Value Engineering Techniques:         is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.         Versatility of Value Engineering:         g operation in maintenance and repair activities, value engi amme Introduction, training plan, career development for value costs.	functions, de neasuring pro neering in no ue engineeri	ecision makin ofits, reporting n-hardware p ng specialties	g for i rest projec s. Fas	optin ults, f cts. li st dia	num a ollow nitiatin Igram	evaluatin alternative up, Use o <b>9</b> ng a valu ming: cos <b>Total:4</b>
Unit – IV         Selecting product         function(s)assignir         use of decision ma         advanced techniqu         Unit – V         Value engineering programodels, life cycle of         TEXT BOOK:         1.         Anil Kuma         2010.         REFERENCES:	Value Engineering Techniques:         is and operation for value engineering action, value enging rupee equivalents, developing alternate means to required atrix, queuing theory and Monte Carlo method make or buy, rue like Function Analysis System.         Versatility of Value Engineering:         g operation in maintenance and repair activities, value engi amme Introduction, training plan, career development for value costs.	functions, de neasuring pro- neering in no ue engineeri es and applic	ecision makin ofits, reporting n-hardware p ng specialties ations", 1st Ec	g for i rest projec s. Fas	optin ults, f cts. li st dia	num a ollow nitiatin Igram	evaluatir alternativ up, Use 9 ng a valu ming: co Total:4

		UTCOM ion of t		rse, the st	udents	s will be a	able to						(	BT Mapp Highest L	
CO1	dese	cribe va	lue eng	ineering co	ncepts	and thei	r importa	ance in	an org	anizatior	۱.		Und	lerstanding	3 (K2)
CO2	expl	ain the	value e	ngineering	plan fo	or a produ	ict.						Und	lerstanding	3 (K2)
CO3		mate pro		osts based niness.	on val	ue engine	ering pr	inciples	in terr	ms of the	ir values	3	Und	lerstanding	3 (K2)
CO4	sum proj		and sel	ect approp	riate m	ethods, s	tandard	s and a	pply th	em to a	value en	gineering	Арр	lying (K3))	1
CO5	disc	uss que	erying th	eory and F	AST to	o perfect a	a value	enginee	ring pi	oject im	olementa	tion.	Und	lerstanding	3 (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1			2	2				2	1	2	2
CO	2	3	2	1			2	2				2	1	2	2
CO	3	3	2	1			2	2				2	1	2	2
CO	4	3	2	1			2	2				2	1	2	2
CO	5	3	2	1			2	2				2	1	2	2
1 – Sli	ght, 2	– Mode	rate, 3	- Substant	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	,				
	st / Blo Catego	oom's ory*	R	ememberi (K1) %	ng	Understa (K2)	5	Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		20		80									100
	CAT	2		20		80									100
	CAT	3		20		45		35	5						100
	ESE	Ξ		15		70		15	5						100
* ±3%	may b	e varie	d (CAT	1,2,3 – 50	marks	& ESE -	100 ma	arks)							

	22AUE18 - AUTOMOTIVE NOISE, VIBRATION ANI	D HARS	HNESS				
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	7	PE	3	0	0	3
	· · · · · · · · · · · · · · · · · · ·						
Preamble	This course provides knowledge about vehicle noise, vibration	and har	shness.				
Unit - I	Introduction:						9
	opagation - Quantification of sound - Noise sources - Pass-by bise of vehicles - Sound quality - Ride comfort - Noise and vibrati				its -	Auton	notive NVH
Unit - II	Transducers and Measurement:						9
Analyzers and sigr	exciters - Sound pressure - Intensity and power measurement al generators - Equipment for data acquisition and digital sig pration of shock and vibration transducers - Metrology and tracea	nal prod	cessing - Ca	librat	ion	of me	asurement
Unit - III	Noise Source Identification:						9
holography and be	er domain analysis - Sound intensity and sound power mappir am forming - Standard methods for evaluating sound absorptio Prediction of transmission loss and flanking transmission - Dampi	n coeffic	cient and tran	ismis	ssion	loss	
Unit - IV	Passive Noise Treatments:						9
silencers - Overall	<ul> <li>Types of mufflers - Performance parameters - Acoustics design considerations - Acoustic material characterization - Sc tic material with respect to sound absorption and transmission.</li> </ul>	and bac ound trar	ckpressure - nsmission - A	Rea bsor	ctive ptior	and n and	absorptive damping -
Unit - V	Interior Noise and Modal Analysis:						9
	es - Structure borne noise - Airborne noise, Refinement technic analysis theory - FEM and experimental modal analysis - Applica				- De	efinitic	n of modal
							Total:45
TEXT BOOK:							
1. Xu Wang., 2016.	"Vehicle Noise and Vibration Refinement", 1st Edition, Woodhea	d Publisl	hing, Cambrid	lge,	Unite	ed Kin	gdom,
REFERENCES:							
1. M.Harrison 2004.	., "Vehicle Refinement: Controlling Noise and Vibration in Road	d Vehicl	es", Society	of Au	utom	otive	Engineers,
2. C.W. de Sil	va., "Vibration Monitoring, Testing, and Instrumentation", 1st Edi	tion, CR	C Press, Unit	ed S	tates	s, 200	7.

BT Mapped (Highest Level)
Understanding (K2)
Understanding (K2)
Understanding (K2)
Understanding (K2)
Applying (K3)

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2					1	3	
CO2	3	2					2					1	3	
CO3	3	2					2					1	3	
CO4	3	2					2					1	3	
CO5	3	2					2					1	3	
1 – Slight, 2	– Mode	rate, 3 –	Substant	ial, BT- I	Bloom's	Taxono	my							

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	65	15				100
ESE	15	70	15				100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)	·		•	



	(Common to All BE/BT	ech branches)					
Programme Branch	& All BE/BTech branches	Sem.	Category	L	т	Ρ	Credit
Prerequisite	s Nil	7	GE	3	0	0	3
Preamble	This course familiarizes the fundamental conce also disseminate the process involved in collect a presentable form using latest tools.						
Unit – I	Introduction to Research						9
	to Research: Types and Process of Research - O cs of a Good Research Problem - Errors in Selecting a R					arch	Problem
Unit – II	Literature Review	•					9
Literature Re	view: Literature Collection - Methods - Analysis - Citation	n Study - Gap Analysis	- Problem For	mula	ation	Tech	niques.
11							-
	Research Methodology ethodology: Appropriate Choice of Algorithms/Methodolo Methods and Result Analysis - Investigation of So						
Research Me Experimental Limitations. Unit – IV	ethodology: Appropriate Choice of Algorithms/Methodolog Methods and Result Analysis - Investigation of So Journals and Papers	olutions for Research	Problem - II	nterp	oretat	ion -	Analysis - Researcl 9
Research Me Experimental Limitations. <b>Unit – IV</b> Journals and	ethodology: Appropriate Choice of Algorithms/Methodolo Methods and Result Analysis - Investigation of So	d Impact factor of Journ	Problem - I	nterp	oretat	ion -	Analysis - Researcl 9
Research Me Experimental Limitations. <b>Unit – IV</b> Journals and	ethodology: Appropriate Choice of Algorithms/Methodolog Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and	d Impact factor of Journ	Problem - I	nterp	oretat	ion -	Analysis - Researcl 9
Research Me Experimental Limitations. <b>Unit – IV</b> Journals and Types of Res <b>Unit – V</b> How to Write	Appropriate Choice of Algorithms/Methodology     Appropriate Choice of Algorithms/Methodology     Methods and Result Analysis - Investigation of So     Journals and Papers     Papers: Journals in Science/Engineering - Indexing and     search Papers - Original Article/Review Paper/Short Com     Reports and Presentations     a Report - Language and Style - Format of Project Reports     s - Footnotes - Tables and Figures - Appendix - Bibliog	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra	Problem - In nals. Plagiari /. act - Table of	sm a	and R	ion - Resear	Analysis - Researcl 9 rch Ethics 9 adings and
Research Me Experimental Limitations. <b>Unit – IV</b> Journals and Types of Res <b>Unit – V</b> How to Write Sub-Heading	ethodology: Appropriate Choice of Algorithms/Methodologi Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and search Papers - Original Article/Review Paper/Short Com Reports and Presentations a Report - Language and Style - Format of Project Reports - Footnotes - Tables and Figures - Appendix - Bibliog arch Tools.	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra	Problem - In nals. Plagiari /. act - Table of	sm a	and R	ion - Resear	Analysis Researc 9 rch Ethics 9 adings an ation usin
Research Me Experimental Limitations. Unit – IV Journals and Types of Res Unit – V How to Write Sub-Heading PPTs. Resea	ethodology: Appropriate Choice of Algorithms/Methodologi Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and search Papers - Original Article/Review Paper/Short Com Reports and Presentations a Report - Language and Style - Format of Project Reports - Footnotes - Tables and Figures - Appendix - Bibliog arch Tools.	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra graphy etc - Different F	Problem - In hals. Plagiari /. act - Table of Reference For	sm a Con mate	and R tents s. Pre	ion - tesea - Hea esenta	Analysis Researc 9 rch Ethics 9 adings an ation usin
Research Me Experimental Limitations. Unit – IV Journals and Types of Res Unit – V How to Write Sub-Heading PPTs. Resea TEXT BOOK 1. Walli	ethodology: Appropriate Choice of Algorithms/Methodologi Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and search Papers - Original Article/Review Paper/Short Com Reports and Presentations a Report - Language and Style - Format of Project Reports - Footnotes - Tables and Figures - Appendix - Bibliog arch Tools.	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra graphy etc - Different F	Problem - In hals. Plagiari /. act - Table of Reference For	sm a Con mate	and R tents s. Pre	ion - tesea - Hea esenta	Analysis Researc 9 rch Ethics 9 adings an ation usin
Research Me Experimental Limitations. Unit – IV Journals and Types of Res Unit – V How to Write Sub-Heading PPTs. Resea TEXT BOOK 1. Walli REFERENCE	ethodology: Appropriate Choice of Algorithms/Methodologi Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and search Papers - Original Article/Review Paper/Short Com Reports and Presentations a Report - Language and Style - Format of Project Reports - Footnotes - Tables and Figures - Appendix - Bibliog arch Tools.	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra graphy etc - Different F	Problem - In hals. Plagiari /. act - Table of Reference For for Units I, II,	sm a Con mate	and R tents s. Pre	ion - tesea - Hea esenta	Analysis Researc 9 rch Ethics 9 adings an ation usin
Research Me Experimental Limitations. Unit – IV Journals and Types of Res Unit – V How to Write Sub-Heading PPTs. Resea TEXT BOOK 1. Walli REFERENCE 1. Mish	ethodology: Appropriate Choice of Algorithms/Methodologi Methods and Result Analysis - Investigation of So Journals and Papers Papers: Journals in Science/Engineering - Indexing and search Papers - Original Article/Review Paper/Short Com Reports and Presentations a Report - Language and Style - Format of Project Reports s - Footnotes - Tables and Figures - Appendix - Bibliog irch Tools.	d Impact factor of Journ munication/Case Study ort - Title Page - Abstra graphy etc - Different F tion, Routledge, 2017.,	Problem - In mals. Plagiari /. act - Table of Reference For for Units I, II, ing, 2017	Con mats	and R tents s. Pre	ion - Resea - Hea esenta	Analysis Researc 9 rch Ethics 9 adings an ation usin

		UTCOM		se, the st	udent	s will be a	able to						(	BT Map Highest L	
CO1	list t	he vario	ous stage	es in resea	arch ar	nd categoi	rize the	quality of	of jourr	als				Applying	(K3)
CO2	form	nulate a	researcl	n problem	from p	oublished	literatur	e/journa	l pape	ſS				Evaluating	(K5)
CO3	write	e, prese	nt a jour	nal paper/	proje	ct report ir	n proper	format						Creating	(K6)
CO4	sele	ct suital	ble journ	al and sub	omit a	research	paper							Applying	(K3)
CO5	com	pile a re	esearch	report and	the p	resentatio	n							Applying	(K3)
						Mappin	g of CC	s with	POs ar	nd PSOs	6				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1	3	3	2	2	2	1	1	3	3	1	1	3	3	3
CO	2	3	3	3	3	2	1	1	3	3	3	3	3	3	3
CO	3	3	3	3	3	3	1	1	3	3	3	1	3	3	3
CO	4	3	2	1	1	2	1	1	3	2	1	1	3	3	3
CO	5	3	3	2	2	3	1	1	3	3	3	1	3	3	3
1 – Sli	ght, 2	– Mode	erate, 3 –	Substant	ial, BT	- Bloom's	Taxono	omy							
						ASSES	SMENT	PATTE	ERN - 1	HEORY	,				
	st / Ble Catege	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)	•	Apply (K3)	-	Analyz (K4) 9	•	Evaluating (K5) %	-	reating (K6) %	Total %
	CAT	1				40		50	)	10					100
	CAT	2				30		50	)	10		10			100
	CAT	3				20		30	)	30		10		10	100
	ESE	1				40		40	)	10		10			100
* ±3%	may t	oe varie	d (CAT 1	,2,3 – 50	marks	& ESE –	100 ma	rks)	I		I		I		

R

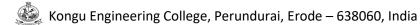
## 22AUE19 - AUTOMOTIVE HVAC

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Thermal Engineering and Heat Transfer	Thermal Engineering and Heat Transfer     7     PE     3     0     0		3			
Preamble	This course provides knowledge on automotive air-cond servicing and repairing.	itioning compo	nents, contro	ls, fa	ult di	agnos	itics,
Unit - I	Air-conditioning Fundamentals:						9
	ation system – Basic theory of cooling – Vapour compression valve system – Fixed orifice valve system – Dual air conc		n – Alternative	е сус	les –	Air co	onditionin
Unit - II	Air Conditioning Components:						9
fixed orifice valve -	bes of compressor – Condenser – Types of condenser - Re – Evaporator – Anti-frosting devices – Basic control switche		nd accumulat	or –	Expa	nsion	valve an
11							•
	Electrical and Electronics control:	Oscilloscop	waveform o	amol	ing	N /1 . 1+ii	9
Electrical principle systems – On Boa	s – Sensors and actuators – Testing sensors and actuators and Diagnostics.	– Oscilloscop	e waveform s	ampl	ing –	Multi	olex wirin
Electrical principle systems – On Boa	s – Sensors and actuators – Testing sensors and actuators	– Oscilloscop	e waveform s	ampl	ling –	Multij	_
Electrical principle systems – On Boa <b>Unit - IV</b> Initial vehicle inspe	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. <b>Diagnostics and Troubleshooting:</b> ection – Temperature measurements – Pressure gauge re						olex wirin 9
Electrical principle systems – On Boa <b>Unit - IV</b> Initial vehicle insp testing – Sight glas	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. <b>Diagnostics and Troubleshooting:</b> ection – Temperature measurements – Pressure gauge re						olex wirin 9
systems – On Boa Unit - IV Initial vehicle inspo testing – Sight glas Unit - V Servicing precautio	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. <b>Diagnostics and Troubleshooting:</b> ection – Temperature measurements – Pressure gauge ress.	ading – Cycle	testing – Air flushing – Od	-con	dition	ing sy	olex wirin 9 vstem lea 9
Electrical principle systems – On Boa <b>Unit - IV</b> Initial vehicle inspetesting – Sight glas <b>Unit - V</b> Servicing precaution	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. Diagnostics and Troubleshooting: ection – Temperature measurements – Pressure gauge ress. Air Conditioning Service and Repair: ons – Refrigerant: recovery, recycle and charging - System	ading – Cycle	testing – Air flushing – Od	-con	dition	ing sy	olex wirin 9 vstem lea 9
Electrical principle systems – On Boa <b>Unit - IV</b> Initial vehicle inspo testing – Sight glas <b>Unit - V</b> Servicing precautio – Replacement an	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. Diagnostics and Troubleshooting: ection – Temperature measurements – Pressure gauge ress. Air Conditioning Service and Repair: ons – Refrigerant: recovery, recycle and charging - System	ading – Cycle	testing – Air flushing – Od	-con	dition	ing sy	olex wirin 9 /stem lea 9 Retrofittin
Electrical principle systems – On Boa Unit - IV Initial vehicle inspo testing – Sight glas Unit - V Servicing precautio – Replacement an TEXT BOOK:	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. Diagnostics and Troubleshooting: ection – Temperature measurements – Pressure gauge ress. Air Conditioning Service and Repair: ons – Refrigerant: recovery, recycle and charging - System	ading – Cycle oil – System ve remove and	testing – Air flushing – Od I replace.	our i	dition	ing sy /al – f	olex wirin 9 vstem lea 9 Retrofittin Total:4
Electrical principle systems – On Boa Unit - IV Initial vehicle inspo testing – Sight glas Unit - V Servicing precautio – Replacement an TEXT BOOK: 1. Steven Da 2006.	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. Diagnostics and Troubleshooting: ection – Temperature measurements – Pressure gauge ress. Air Conditioning Service and Repair: ons – Refrigerant: recovery, recycle and charging - System d adjustment of compressor components – Fixed orifice val	ading – Cycle oil – System ve remove and	testing – Air flushing – Od I replace.	our i	dition	ing sy /al – f	olex wirin 9 vstem lea 9 Retrofittin Total:4
Electrical principle systems – On Boa Unit - IV Initial vehicle inspo testing – Sight glas Unit - V Servicing precautio – Replacement an TEXT BOOK: 1. Steven Da 2006. REFERENCES:	s – Sensors and actuators – Testing sensors and actuators and Diagnostics. Diagnostics and Troubleshooting: ection – Temperature measurements – Pressure gauge ress. Air Conditioning Service and Repair: ons – Refrigerant: recovery, recycle and charging - System d adjustment of compressor components – Fixed orifice val	ading – Cycle oil – System ve remove and ms", 1st Editio	testing – Air flushing – Od replace.	-con our i	dition	ing sy val – I ann, I	olex wirin 9 vstem lea 9 Retrofittir Total:4

		UTCOM		se, the st	udents	will be a	able to					(	BT Map Highest L	
CO1	illus	trate the	e basic pi	inciples o	of heatin	g, ventil	ation an	d air-co	nditioni	ng syste	em.	Ur	Iderstandi	ng (K2)
CO2	desi	gn the l	basic con	nponents	of an ai	r conditi	oning sy	stems.					Applying	(K3)
CO3	outli	ine the e	electrical	and elect	ronic co	mponer	nts prese	ent in ai	-conditi	oning s	ystem.	Ur	derstandi	ng (K2)
CO4	dem	onstrat	e the trou	Ibleshoot	ing proc	edure of	f air-con	ditioning	g syster	n.			Applying	(K3)
CO5	expl	ain the	air-condi	tioning se	ervice an	d repair	ing proc	edure.				Ur	derstandi	ng (K2)
					1	Mappin	g of CC	s with	POs an	d PSO:	6	 		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1			1	2					2	3	2
CO2	3	3	1			1	2					2	3	2
CO3	3	3	1			1	2					2	3	2
CO4	3	3	1			1	2					2	3	2
CO5	3	3	1			1	2					2	3	2
	Mada	mata O	Culture at a reat			Tavana						•		

	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	60	20				100					
CAT2	20	60	20				100					
CAT3	20	45	35				100					
ESE	15	50	35				100					
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)									




		HICLE TECHNOLOG	Y				
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credi
Prerequisites	NIL	7	PE	3	0	0	3
Preamble	To acquire knowledge on the concept of automa intelligence with case studies of an autonomous		and the conti	ributi	on of	artific	ial
Unit – I	Safety in Automated Driving:						9
Introduction to AD	V - Safety - Vehicle and its occupants – External Pe	eople and Property - Se	ervice and Re	pair ·	· IMI ·	TechS	Safe.
Unit – II	Advanced Driver Assistance Systems:						9
	AS - Example systems - Adaptive Cruise Control - lera - Rear radar - Functional safety and risk.	Obstacle Avoidance I	Radar - Basic	Rev	ersin	g Aid	– Radar
Unit – III	Automated Driving Technologies:						9
	Artificial Intelligence: pp-down and bottom-up AI - Deep learning - End and Human Issues - Public reaction to Connected ar						9 Simplifie
Unit – V	Case Studies:						9
Nvidia – Bosch - G	Soogle (Waymo) - Tesla Autopilot – Audi - Jaguar La	and Rover - Toyota Gu	ardian – FLIR	- Fii	st se	nsor /	AG. Total:4
TEXT BOOK:							
1. Tom Dente 2020.	on., "Automated Driving and Driver Assistance Syst	ems", 1st Edition, Rou	tledge, Taylor	& F	ranci	s Grou	up, UK,
REFERENCES:							
			nomous Drivi	ng: ·	Tech	nical	
	/larkus, J. Christian Gerdes, Barbara Lenz, and He pects" Springer Nature, 2016.	ermann Winner., "Auto		0		noar,	Leyal al
2. Coppola, I				•	er, 20		
2. Coppola, i	pects" Springer Nature, 2016.			•	er, 20		

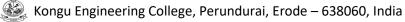
		UTCON	-	se, the stu	udents	will be a	able to						(	BT Mapp Highest L	
CO1	expl	lain the	safety as	pects of a	utonom	ious veh	icles.						Un	Iderstandir	ng (K2)
CO2	describe advanced driver assistance systems for autonomous vehicles.											Un	Understanding (K2)		
CO3	illus	trate au	tomated	driving teo	chnologi	ies with	sensor	position	ing.					Applying	(K3)
CO4	app	ly the ar	rtificial int	elligence	techniq	ues to a	utonomo	ous veh	icles.					Applying	(K3)
CO5	ana	lyse the	specifica	ations of a	utonom	ous veh	icles fro	m vario	us man	ufacture	ers.			Analyzing	(K4)
						Mappin	g of CO	s with	POs an	d PSOs	6				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	3	2	1	1	2	2					3	2	3
CO	2	3	3	2	1	1	2	2					3	2	3
CO	3	3	3	2	1	1	2	2					3	2	3
CO	4	3	3	2	1	1	2	2					3	2	3

CO5

ASSESSMENT PATTERN - THEORY											
est / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	80					100				
CAT2	20	30	50				100				
CAT3	10	20	35	35			100				
ESE	10	40	35	15			100				
ESE		40	35				-				



22GEE02 total quality management


	22AUE22 - DESIGN OF ENGINE COMP (Use of PSG Design Data book is perr						
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Mechanics of Deformable Bodies	7	PE	3	0	0	3
Preamble	This course provides knowledge to design and analyze Inter	nal Combi	stion Engine	com	pone	nts.	
Unit - I	Cylinder and Piston:		<b>x</b>				9
Material for cylind Lubrication of pisto	ler and piston - Design considerations. Design - cylinder, pist on assembly.	on, piston	pin and pisto	on rir	ngs. I	Pistor	n failures
Unit - II	Connecting Rod:						9
	s formula for columns - Johnson formula. Material used - Desig esign - Small end, shank, big end and cap bolts.	n consider	ations. Deterr	ninir	ng mil	nimur	n length o
Unit - III	Crankshaft:						9
Balancing of I.C.	engines - Significance of firing order - Material used - Des	ign of cra	nkshaft unde	r be	ndinc	and	twisting
Ų	calculations - Development of short and long crank arms - Front	and rear-e					
Balancing weight of		and rear-e					9
Balancing weight o	calculations - Development of short and long crank arms - Front		nd details.			Desi	· -
Balancing weight of Unit - IV Turning moment of	calculations - Development of short and long crank arms - Front Flywheels:		nd details.			Desi	
Balancing weight of Unit - IV Turning moment of and arms. Unit - V	calculations - Development of short and long crank arms - Front Flywheels: Jiagram - Mass of flywheel - Coefficient of fluctuation – Speed	– Energy ·	nd details. Stresses on	the	rim -		gn of hub
Balancing weight of Unit - IV Turning moment of and arms. Unit - V	Calculations - Development of short and long crank arms - Front Flywheels: diagram - Mass of flywheel - Coefficient of fluctuation – Speed Camshaft, Valve and Valve Train:	– Energy ·	nd details. Stresses on	the	rim -		gn of hub 9 gs.
Balancing weight of Unit - IV Turning moment of and arms. Unit - V	Calculations - Development of short and long crank arms - Front Flywheels: diagram - Mass of flywheel - Coefficient of fluctuation – Speed Camshaft, Valve and Valve Train:	– Energy ·	nd details. Stresses on	the	rim -		gn of hub
Balancing weight of Unit - IV Turning moment of and arms. Unit - V Design - Cam, car TEXT BOOK:	Calculations - Development of short and long crank arms - Front Flywheels: diagram - Mass of flywheel - Coefficient of fluctuation – Speed Camshaft, Valve and Valve Train:	- Energy	nd details. • Stresses on naust valves a	the and v	rim - valve	sprin	gn of hub 9 gs. Total:4
Balancing weight of Unit - IV Turning moment of and arms. Unit - V Design - Cam, car TEXT BOOK:	calculations - Development of short and long crank arms - Front Flywheels: diagram - Mass of flywheel - Coefficient of fluctuation – Speed Camshaft, Valve and Valve Train: nshaft, cam profile generation, rocker arm, pushrods, tappets, ir	- Energy	nd details. • Stresses on naust valves a	the and v	rim - valve	sprin	gn of hub 9 gs. Total:4
Balancing weight of Unit - IV Turning moment of and arms. Unit - V Design - Cam, car TEXT BOOK: 1. Khurmi R. REFERENCES:	calculations - Development of short and long crank arms - Front Flywheels: diagram - Mass of flywheel - Coefficient of fluctuation – Speed Camshaft, Valve and Valve Train: nshaft, cam profile generation, rocker arm, pushrods, tappets, ir	– Energy	end details. • Stresses on haust valves a Publishing Hou	the and v	rim - valve	sprin	gn of hut 9 gs. Total:4

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	design engine cylinder, piston and gudgeon pin.	Applying (K3)
CO2	calculate various forces acting on connecting rod.	Applying (K3)
CO3	design of crankshaft for multi cylinder IC engine.	Applying (K3)
CO4	design of flywheel for slow speed IC engine.	Applying (K3)
CO5	design of camshaft, valve and valve train components.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2								2	3	
CO2	3	3	2	2								2	3	
CO3	3	3	2	2								2	3	
CO4	3	3	2	2								2	3	
CO5	3	3	2	2								2	3	

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	15	15	70				100				
CAT2	15	15	70				100				
CAT3	15	15	70				100				
ESE	5	10	85				100				

* ±3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)



	22AUE23 – MOBILE ROBOTICS						
Programme & Branch	B.E. & Automobile Engineering	Sem. Category		L	т	Ρ	Credit
Prerequisites	Mechanics of Machines, Automotive Control System	7	PE	3	0	0	3
Preamble	This course enables to grasp the knowledge on different kinds manufacture and structural disposition.	of mobil	e robots and	their	desi	gn, ar	chitecture
Unit – I	Introduction to Mobile Robots:						9
Inspection an	ile robots: Automated Guided vehicles (AGVs)- Service robots - Cle d exploration robots - Humanoid robots – Nuclear robots – Underv f mobile robots.	aning ro vater ro	bots – Socia bots - Auton	il rot omoi	oots - us su	- Field Irface	d robots vessels
Unit – II	Mobile Robot Engineering:						9
Mobile robot s models and co Motion control	subsystems – Fundamentals of wheeled and legged mobile robot - K onstraints – Hilare mobile robots – Car-like mobile robots – Mobile robo	(inemation of maneu	cs models of uverability - M	mob obile	ile ro robo	bots: ot wor	Kinemati kspace-
Unit – III	Locomotion:						
	Locomotion.						9
Introduction -	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.	of legge	ed robot loco	notio	on - \	Wheel	-
Introduction - robots - Whee	Legged mobile robots - Leg configurations and stability - Examples	of legge	ed robot loco	notio	on - \	Wheel	-
Introduction - robots - Whee Unit – IV Sensors for m	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.	e robot l	ocalization -	Chal	lenge	e of la	ed mobile
Introduction - robots - Whee Unit – IV Sensors for m	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.  Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile	e robot l	ocalization -	Chal	lenge	e of la	ed mobile
Introduction - robots - Whee <b>Unit – IV</b> Sensors for m Noise and Alia <b>Unit – V</b> Introduction-	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.         Perception and Localization:         nobile robots - Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Probabilistic map-based localiz	e robot l pabilistic	ocalization - : map-based l ures- Modula	Chal ocali	lenge zatio	e of lo n.	ed mobile 9 calization 9
Introduction - robots - Whee <b>Unit – IV</b> Sensors for m Noise and Alia <b>Unit – V</b> Introduction-	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.  Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Prob Planning and Navigation: Competences for navigation- Planning and Reacting- Navigation a	e robot l pabilistic	ocalization - : map-based l ures- Modula	Chal ocali	lenge zatio	e of lo n.	ed mobile 9 calization 9
Introduction - robots - Whee <b>Unit – IV</b> Sensors for m Noise and Alia <b>Unit – V</b> Introduction-	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.  Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Prob Planning and Navigation: Competences for navigation- Planning and Reacting- Navigation a	e robot l pabilistic	ocalization - : map-based l ures- Modula	Chal ocali	lenge zatio	e of lo n.	ed mobil 9 calizatior 9 reuse an
Introduction - robots - Whee Unit – IV Sensors for m Noise and Alia Unit – V Introduction- sharing- Contr TEXT BOOK:	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies.  Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Prob Planning and Navigation: Competences for navigation- Planning and Reacting- Navigation a	e robot l pabilistic architect bot arch	ocalization - map-based l ures- Modula itectures.	Chal ocali ırity	lenge zatio	e of lo n.	ed mobil 9 calizatior 9 reuse an Total:4
Introduction - robots - Whee Unit – IV Sensors for m Noise and Alia Unit – V Introduction- sharing- Contr TEXT BOOK:	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies. Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Prote Planning and Navigation: Competences for navigation- Planning and Reacting- Navigation a rol localization- Techniques for decomposition- Case studies: Tiered rol d Siegwart, Illah Reza Nourbakhsh & Davide Scaramuzza, "Introduction ress, United Kingdom, 2011.	e robot l pabilistic architect bot arch	ocalization - map-based l ures- Modula itectures.	Chal ocali ırity	lenge zatio	e of lo n.	ed mobil 9 calizatior 9 reuse an Total:4
Introduction - robots - Whee Unit – IV Sensors for m Noise and Alia Unit – V Introduction- sharing- Contri TEXT BOOK: 1. Rolan MIT P REFERENCE	Legged mobile robots - Leg configurations and stability - Examples led locomotion: Design space-Case studies. Perception and Localization: nobile robots – Representing uncertainty - Feature extraction - Mobile asing - Map representation - Probabilistic map-based localization - Prote Planning and Navigation: Competences for navigation- Planning and Reacting- Navigation a rol localization- Techniques for decomposition- Case studies: Tiered rol d Siegwart, Illah Reza Nourbakhsh & Davide Scaramuzza, "Introduction ress, United Kingdom, 2011.	e robot I pabilistic architect bot arch	ocalization - map-based l ures- Modula itectures.	Chal ocali urity bile I	lenge zatio for c	e of lo n. code i ts", 2r	ed mobil 9 calizatior 9 reuse an Total:4

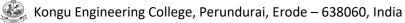
		JTCOM ion of t		se, the st	udent	s will be a	able to						(	BT Mapp Highest L			
CO1	iden	lentify various domains for robotic systems applications evelop kinematic model of mobile robots												Understanding (K			
CO2	deve	elop kin	ematic m	nodel of m	obile r	obots								Applying	(K3)		
CO3	anal	yze diffe	erent cor	ncepts of	ocomo	otion								Applying	(K3)		
CO4	sele	ct the se	ensory d	evices for	localiz	zation							Un	Iderstandi	ng (K2)		
CO5	appl	y the co	oncepts o	of planning	g and ı	navigation	l							Applying	(K3)		
						Mappin	g of CO	s with	POs a	nd PSO:	6						
COs/l	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	)1	3	3	3	3	2							2	3	3		
CO	)2	3	3	3	3	2							2	3	3		
CO	03	3	3	3	3	2							2	3	3		
CO	94	3	3	3	3	2							2	3	3		
CO	95	3	3	3	3	2							2	3	3		
			-	Substant		- Bloom's	Taxono	my									
Tes	st / Blo Catego	oom's	1	memberi (K1) %		Understa (K2)		Apply (K3)		Analyz (K4) 9	-	Evaluating (K5) %		reating (K6) %	Total %		
	CAT	1		20		60		20	)						100		
	CAT	2		15		15		70	)						100		
	CAT	3		20		45		35	5						100		
	ESE			15		35		50	)						100		
* ±3%		-	 d (CAT 1		marks	35 & ESE –			,								

	22AUE24 - AUTOMOTIVE VE	HICLE SAFETY				1	1
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	7	PE	3	0	0	3
<u> </u>			·				
Preamble Unit - I	This course provides knowledge to understand the Introduction:	various safety syster	ns in automo	sile.			9
Definitions - Drivi	ng Forces for Increased Vehicle Safety - Safety Legisla		Accident Ave	oidar	nce -	Huma	-
	pnomics, Acceleration and Braking and Information Sys	tems.					1
Unit - II	Biomechanics and Occupant Simulation:						9
Making Process	Limits - External Injuries - Internal Injuries – Concuss - Head Protection, chest Protection, Neck Injury and Part Test Devices, Three-Dimensional Dummies and Hu	performance Criter	ia for the Ru				
Unit - III	Vehicle Body and Simulation Tests:	•					9
	ct - Quasi-Static Test Requirement - Seat and Seat-Be	elt Anchorage Point	Tests, Roof S	Stren	igth a		
- · · -							
	Collisions - Pole Test, frontal Car-to-Car Crash and de	esign Requirements	of Frontal Co	llisio	ons. L	atera	Collisior
<ul> <li>Rear-End Collis</li> </ul>	ions – Rollover.	esign Requirements	of Frontal Co	llisio	ons. L	atera	
- Rear-End Collis <b>Unit - IV</b> Vehicle Compartr	ions – Rollover. Occupant Protection and Interrelationships: ment - Restraint Systems - Seat Belts - Airbags - Fron	tal Impacts, side Pro	otection, addi	iona	ıl Airt	ag ar	9 nd sensor
- Rear-End Collis Unit - IV Vehicle Compartr for Restraint Syspretensioner, pyr	ions – Rollover. Occupant Protection and Interrelationships:	tal Impacts, side Pro rained occupant, se sive Restraints - Te	otection, addi eat-belt clam st Results fo	iona ping or Di	I Airt dev fferer	bag ar ice, r	9 nd sensor nechanic nalysis fo
- Rear-End Collis Unit - IV Vehicle Comparti for Restraint Sy pretensioner, pyr Lateral Collisions	ions – Rollover. Occupant Protection and Interrelationships: ment - Restraint Systems - Seat Belts - Airbags - Fron stems - Child Restraints. Frontal Impacts - Unrest otechnic pretensioner and seat-belt load limiter. Pase	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E	otection, addi eat-belt clam st Results fo	iona ping or Di	I Airt dev fferer	bag ar ice, r	9 nd sensor nechanica nalysis fo
- Rear-End Collis Unit - IV Vehicle Compart for Restraint Sy pretensioner, pyr Lateral Collisions Unit - V European NCAP	ions – Rollover.         Occupant Protection and Interrelationships:         ment - Restraint Systems - Seat Belts - Airbags - Fron         stems - Child Restraints. Frontal Impacts - Unrest         rotechnic pretensioner and seat-belt load limiter. Pass         - Thorax Side Airbags - Side Head Protection Airbags         Pedestrian Protection and Computer Aid in Safe         - Test - Legislation Activities - Solutions for Vehicles in	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E ty: n Accidents. Numeri	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca	iona ping r Di and Icula	I Airt dev fferer Rolld	bag ar ice, r nt - A over F	9 nd sensor nechanic nalysis fo protection 9
- Rear-End Collis Unit - IV Vehicle Compart for Restraint Sy pretensioner, pyr Lateral Collisions Unit - V European NCAP	ions – Rollover.         Occupant Protection and Interrelationships:         ment - Restraint Systems - Seat Belts - Airbags - Fron         stems - Child Restraints. Frontal Impacts - Unrest         rotechnic pretensioner and seat-belt load limiter. Pass         - Thorax Side Airbags - Side Head Protection Airbags         Pedestrian Protection and Computer Aid in Safe	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E ty: n Accidents. Numeri	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca	iona ping r Di and Icula	I Airt dev fferer Rolld	bag ar ice, r nt - A over F	9 nd sensor nechanica nalysis fo Protection 9
- Rear-End Collis Unit - IV Vehicle Comparti for Restraint Sy pretensioner, pyr Lateral Collisions Unit - V European NCAP	ions – Rollover.         Occupant Protection and Interrelationships:         ment - Restraint Systems - Seat Belts - Airbags - Fron         stems - Child Restraints. Frontal Impacts - Unrest         rotechnic pretensioner and seat-belt load limiter. Pass         - Thorax Side Airbags - Side Head Protection Airbags         Pedestrian Protection and Computer Aid in Safe         - Test - Legislation Activities - Solutions for Vehicles in	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E ty: n Accidents. Numeri	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca	iona ping r Di and Icula	I Airt dev fferer Rolla	bag ar ice, r nt - A over F	9 nd sensor nechanic: nalysis fo protection 9 mponents
- Rear-End Collis Unit - IV Vehicle Compart for Restraint System pretensioner, pyr Lateral Collisions Unit - V European NCAP- Total Vehicle Cra	ions – Rollover.         Occupant Protection and Interrelationships:         ment - Restraint Systems - Seat Belts - Airbags - Fron         stems - Child Restraints. Frontal Impacts - Unrest         rotechnic pretensioner and seat-belt load limiter. Pass         - Thorax Side Airbags - Side Head Protection Airbags         Pedestrian Protection and Computer Aid in Safe         - Test - Legislation Activities - Solutions for Vehicles in	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E ty: n Accidents. Numeri	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca	iona ping r Di and Icula	I Airt dev fferer Rolla	bag ar ice, r nt - A over F	9 nd sensor nechanica nalysis fo Protection 9
- Rear-End Collis Unit - IV Vehicle Compartr for Restraint Sys pretensioner, pyr Lateral Collisions Unit - V European NCAP- Total Vehicle Cra TEXT BOOK:	ions – Rollover. Occupant Protection and Interrelationships: ment - Restraint Systems - Seat Belts - Airbags - Fron stems - Child Restraints. Frontal Impacts - Unrest rotechnic pretensioner and seat-belt load limiter. Pase - Thorax Side Airbags - Side Head Protection Airbags Pedestrian Protection and Computer Aid in Safe -Test - Legislation Activities - Solutions for Vehicles in sh Computation, occupant and Restraint System Simul	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E t <b>y:</b> n Accidents. Numeri ation and Pedestrian	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca Simulation T	tiona ping or Di and Icula	I Airt dev fferer Rolla ation	bag ar ice, r nt - A over F	9 nd sensor nechanic nalysis fo protection 9 mponent
- Rear-End Collis Unit - IV Vehicle Compartr for Restraint Sys pretensioner, pyr Lateral Collisions Unit - V European NCAP- Total Vehicle Cra TEXT BOOK:	ions – Rollover.         Occupant Protection and Interrelationships:         ment - Restraint Systems - Seat Belts - Airbags - Fron         stems - Child Restraints. Frontal Impacts - Unrest         rotechnic pretensioner and seat-belt load limiter. Pass         - Thorax Side Airbags - Side Head Protection Airbags         Pedestrian Protection and Computer Aid in Safe         - Test - Legislation Activities - Solutions for Vehicles in	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E t <b>y:</b> n Accidents. Numeri ation and Pedestrian	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca Simulation T	tiona ping or Di and Icula	I Airt dev fferer Rolla ation	bag ar ice, r nt - A over F	9 nd sensor nechanic: nalysis fo protection 9 mponents
- Rear-End Collis Unit - IV Vehicle Compart for Restraint Sys pretensioner, pyr Lateral Collisions Unit - V European NCAP- Total Vehicle Cra TEXT BOOK: 1. Ulrich Se	ions – Rollover. Occupant Protection and Interrelationships: ment - Restraint Systems - Seat Belts - Airbags - Fron stems - Child Restraints. Frontal Impacts - Unrest rotechnic pretensioner and seat-belt load limiter. Pase - Thorax Side Airbags - Side Head Protection Airbags Pedestrian Protection and Computer Aid in Safe -Test - Legislation Activities - Solutions for Vehicles in sh Computation, occupant and Restraint System Simul	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E t <b>y:</b> n Accidents. Numeri ation and Pedestrian	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca Simulation T	tiona ping or Di and Icula	I Airt dev fferer Rolla ation	bag ar ice, r nt - A over F	9 nd sensor nechanic: nalysis fo protection 9 mponents
- Rear-End Collis Unit - IV Vehicle Compart for Restraint Sy- pretensioner, pyr Lateral Collisions Unit - V European NCAP- Total Vehicle Cra TEXT BOOK: 1. Ulrich Se REFERENCES: 1 Mark Go	ions – Rollover. Occupant Protection and Interrelationships: ment - Restraint Systems - Seat Belts - Airbags - Fron stems - Child Restraints. Frontal Impacts - Unrest rotechnic pretensioner and seat-belt load limiter. Pase - Thorax Side Airbags - Side Head Protection Airbags Pedestrian Protection and Computer Aid in Safe -Test - Legislation Activities - Solutions for Vehicles in sh Computation, occupant and Restraint System Simul	tal Impacts, side Pro rained occupant, se sive Restraints - Te - Analysis for Rear-E t <b>y:</b> n Accidents. Numeri ation and Pedestrian	otection, addi eat-belt clam st Results fo nd Collisions c Tools - Ca Simulation T nternational,	iona ping r Di and lcula ests	I Airt dev fferer Rolla ation	bag ar ice, r nt - A over F of Co	9 nd sensor nechanic nalysis fo Protection 9 mponent Total:4

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the basic concepts of vehicle safety.	Understanding (K2)
CO2	illustrate about the biomechanics and occupation simulation process.	Understanding (K2)
CO3	summarize the vehicle body and simulation tests requirement.	Understanding (K2)
CO4	describe about the occupant protection and interrelationships of various parameters.	Applying (K3)
CO5	discuss the pedestrian protection and computer simulations in safety tests.	Applying (K3)

				I	Mapping	g of CO	s with F	POs and	d PSOs					
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				2	2					2	3	1
CO2	3	2				2	2					2	3	1
CO3	3	2				2	2					2	3	1
CO4	3	2				2	2					2	3	1
CO5	3	2				2	2					2	3	1
1 – Slight, 2	– Mode	erate, 3 – S	Substantia	al, BT- E	loom's ⁻	Taxonor	nv			U				

		ASSESSMENT	PATTERN –	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	85					100
CAT2	15	85					100
CAT3	15	50	35				100
ESE	10	60	30				100
ESE ±3% may be varied (0							


Programme & Branch	22AUE25 - NON DESTRUCTIVE EV	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	7	PE	3	0	0	3
Preamble	This course provides an introduction to non-destr of non-destructive testing equipment and appropr defect.						
Unit - I	Introduction and Liquid Penetrant Testing:						9
Preparation of te Procedure for Pe	Liquid Penetrant Testing: Non-Destructive Testing st materials - Visual Examination - Basic Principles - ( netrant testing - Light sources and special lighting - C perties of liquid penetrant - Sensitivity - Applications a	Optical aids and Appl alibration - Penetrant	ications. Liqui testing metho	id Pe	enetra	ant - F	Principles ·
Unit - II	Magnetic Particle Testing:						9
and longitudinal	<ul> <li>Testing: Principles - Theory of magnetism - Character magnetization techniques - Procedures - Equipm</li> <li>Residual magnetism - Applications and Limitations -</li> </ul>	ent calibration - Se	nsitivity - Pri				
Unit - III	Ultrasonic Testing:						9
	onic Testing Methods - Phased Array Ultrasonic Testin antages and Limitations.		Scan - Immers Fight Diffracti				
Application - Adv Unit - IV Radiography: Ele Effects in film - E	antages and Limitations. Radiography: ectromagnetic radiation sources - X-ray production - Ga exposure charts - Radiographic imaging - Inspection te	ng (PAUT) & Time of amma ray sources - F chniques - Image Qu	Fight Diffracti Properties - Ra ality Indicator	on ( adiat	TOFI	D) - S	tandards - 9 uation and
Application - Adv Unit - IV Radiography: Ele Effects in film - E	antages and Limitations. Radiography: ectromagnetic radiation sources - X-ray production - G	ng (PAUT) & Time of amma ray sources - F chniques - Image Qu	Fight Diffracti Properties - Ra ality Indicator	on ( adiat	TOFI	D) - S	tandards - 9 uation and
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current an Advanced Test I Techniques - Ins Applications and	antages and Limitations. Radiography: ectromagnetic radiation sources - X-ray production - G- exposure charts - Radiographic imaging - Inspection te ety in industrial radiography -Neuron radiography - Sta	ng (PAUT) & Time of amma ray sources - F achniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography -	Fight Diffracti Properties - Ra ality Indicator s. n - Technique coustic Emis Principle - Ed	on ( adiat s (IC es - sion quipr	TOFI tion - QI) - A Probe Testi ments	D) - S Atten Applic e - S ing - s - Te	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques -
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current an Advanced Test I Techniques - Ins Applications and	antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Getty in industrial radiographic imaging - Inspection terety in industrial radiography -Neuron radiography - State Eddy Current and Selection of NDT Methods:         Image: Mathematical Selection of NDT Methods:         Image: Mathematical Selection of NDT Methods:         Image: Mathematical Selection of NDT Methods:         Image: Methods - Applications & Limitations - Standards - Contrumentation - Applications and Standards - Homogramical Standards - Leak testing methods - Detection and Standards - Mathematical Standards - Leak testing methods - Detection and Standards - Mathematical Standards - Leak testing methods - Detection and Standards - Mathematical Standards - Leak testing methods - Mathematical Standards - Mathmatematical Standards - Mathematical Standard	ng (PAUT) & Time of amma ray sources - F achniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography -	Fight Diffracti Properties - Ra ality Indicator s. n - Technique coustic Emis Principle - Ed	on ( adiat s (IC es - sion quipr	TOFI tion - QI) - A Probe Testi ments	D) - S Atten Applic e - S ing - s - Te	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques - material -
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current ar Advanced Test I Techniques - Ins Applications and Selection of NDT	antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Getty in industrial radiographic imaging - Inspection terety in industrial radiography -Neuron radiography - State Eddy Current and Selection of NDT Methods:         Image: Mathematical Selection Selection and Selectical Aselection and Selection and Selectical Ase	ng (PAUT) & Time of amma ray sources - F echniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography - Standards. Selection	Fight Diffracti Properties - Ra ality Indicator s. - Technique coustic Emis Principle - Eco of NDT Metho	on ( adiat rs (IC es - sion quipr ods:	TOFI ion - QI) - A Prob Testi Defe	D) - S Atten Applic e - S ing - s - Te cts in	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques - material - Total:45
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current ar Advanced Test I Techniques - Ins Applications and Selection of NDT TEXT BOOK: Baldey F	Antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Gety in industrial radiographic imaging - Inspection teety in industrial radiography -Neuron radiography - State Eddy Current and Selection of NDT Methods:         Image: Add Selection of NDT Metho	ng (PAUT) & Time of amma ray sources - F echniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography - Standards. Selection	Fight Diffracti Properties - Ra ality Indicator s. - Technique coustic Emis Principle - Eco of NDT Metho	on ( adiat rs (IC es - sion quipr ods:	TOFI ion - QI) - A Prob Testi Defe	D) - S Atten Applic e - S ing - s - Te cts in	tandards 9 uation and ations and 9 ensitivity Principle chniques material Total:45
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current ar Advanced Test I Techniques - Ins Applications and Selection of NDT TEXT BOOK: 1 Baldev F	Antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Gety in industrial radiographic imaging - Inspection teety in industrial radiography -Neuron radiography - State Eddy Current and Selection of NDT Methods:         Image: Add Selection of NDT Metho	ng (PAUT) & Time of amma ray sources - F echniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography - Standards. Selection	Fight Diffracti Properties - Ra ality Indicator s. - Technique coustic Emis Principle - Eco of NDT Metho	on ( adiat rs (IC es - sion quipr ods:	TOFI ion - QI) - A Prob Testi Defe	D) - S Atten Applic e - S ing - s - Te cts in	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques - material - Total:45
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current ar Advanced Test I Techniques - Ins Applications and Selection of NDT TEXT BOOK: 1. Baldev F New Del REFERENCES:	Antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Gety in industrial radiographic imaging - Inspection teety in industrial radiography -Neuron radiography - State Eddy Current and Selection of NDT Methods:         Image: Add Selection of NDT Metho	ng (PAUT) & Time of amma ray sources - F achniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography - Standards. Selection	Fight Diffracti Properties - Ra ality Indicator a. - Technique coustic Emis Principle - Eco of NDT Metho 3rd Edition, N	on ( adiat rs (IC es - sion quipr ods:	TOFI ion - QI) - A Prob Testi Defe	D) - S Atten Applic e - S ing - s - Te cts in	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques - material - Total:45
Application - Adv Unit - IV Radiography: Ele Effects in film - E Limitations - Safe Unit - V Eddy Current ar Advanced Test I Techniques - Ins Applications and Selection of NDT TEXT BOOK: 1. Baldev F New Del REFERENCES: 1. Hull Barr	Antages and Limitations.         Radiography:         ectromagnetic radiation sources - X-ray production - Gizposure charts - Radiographic imaging - Inspection teety in industrial radiography -Neuron radiography - Sta         Eddy Current and Selection of NDT Methods:         Id Selection of NDT Methods: Eddy Current: Princip         Methods - Applications & Limitations - Standards - C         trumentation - Applications and Standards - Homogra         Standards - Leak testing methods - Detection and S         method and Instrumentation - Case studies.         Raj, Jayakumar T. & Thavasimuthu M., "Practical Non I         hi, 2019.	ng (PAUT) & Time of amma ray sources - F achniques - Image Qu ndards - Case studies oles - Instrumentation Other Techniques - A uphy Thermography - Standards. Selection	Fight Diffracti Properties - Ra ality Indicator s. n - Technique coustic Emis Principle - Eco of NDT Metho 3rd Edition, N	on ( adiat rs (IC es - sion quipr ods: aros	TOFI ion - QI) - A Prob Testi nents Defe	D) - S Atten Applic e - S ing - s - Te cts in	tandards - 9 uation and ations and 9 ensitivity - Principle - chniques - material - Total:45

		UTCOM tion of t		rse, the s	udent	s will be a	able to							BT Map Highest L	
CO1	dep	ict the ir	nportar	nce of non- al inspection	destru	ctive testir		ods and	l impar	t knowle	dge on l	iquid	Ur	nderstandi	ng (K2)
CO2	exp	lain liqui	id pene	trant and r	nagnet	ic particle	testing	method	s.				Ur	nderstandi	ng (K2)
CO3	illus	trate the	e princij	ole of ultra	sonic te	esting and	its mod	lern me	thods.				Ur	nderstandi	ng (K2)
CO4	des	cribe rad	diograp	hic princip	es anc	I test for m	naterial	defects.					Ur	nderstandi	ng (K2)
CO5		uss othe ntificatio		destructive	testing	g techniqu	es and	select a	n appr	opriate r	nethod f	or defect	Ur	nderstandi	ng (K2)
						Mappin	g of CO	s with	POs a	nd PSO:	5				
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1	1									3	
CO	2	3	2	1	1									3	
CO	3	3	2	1	1									3	
CO	4	3	2	1	1									3	
CO	5	3	2	1	1									3	
1 – Sli	ght, 2	– Mode	rate, 3	- Substan	ial, BT	- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	RN –	THEOR	(				
	st / Bl Categ	oom's ory*	R	emember (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		80									100
	CAT	2		20		80									100
	CAT	3		20		80									100
	ESI	Ξ		15		85									100

* ±3% may be varied (CAT 1,2,3 - 50 marks & ESE - 100 marks)

	(Line of Quality Quarter) Ob artic						
Drearamme	(Use of Quality Control Chart is	Permitted for ESE)					
Programme Branch	B.E. – Automobile Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisite	es NIL	7	PE	3	0	0	3
Preamble	This course provides knowledge on quality and the	e reliability concepts	of various pro	duct	s.		
Unit - I	Introduction and Process Control for Variables	5:					ę
Quality Cost-	definition of quality, basic concept of quality, definition of Variation in process- factors – process capability – process of control chart – Control chart for variables – X chart, R cha	s capability studies a					
Unit - II	Process Control for Attributes:						g
	t for attributes –control chart for proportion or fraction defec , State of control and process out of control identification in		ηρ cnaπ – co	ITTO	chari	IOF D	eiects – C
Unit - III	Acceptance Sampling:						-
Lot by lot sa	Acceptance Sampling: mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam	e, multiple sampling pling plans for AQL	techniques – and LTPD- u	O.C ses	. curv of sta	es – j ndarc	9 producer's I sampling
Lot by lot sa Risk and cor	mpling – types – probability of acceptance in single, double	e, multiple sampling pling plans for AQL	techniques – and LTPD- u	O.C ses	. curv of sta	es –   ndarc	producer's
Lot by lot sa Risk and cor plans. <b>Unit - IV</b> Life testing - system relial	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam	pling plans for AQL	and LTPD- u ean time betv	ses (	of sta failu	ndard re, ha	oroducer's I sampling 9 uzard rate,
Lot by lot sa Risk and cor plans. <b>Unit - IV</b> Life testing - system relial	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: - Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple pro	pling plans for AQL	and LTPD- u ean time betv	ses (	of sta failu	ndard re, ha	oroducer's I sampling 9 uzard rate,
Lot by lot sa Risk and cor plans. <b>Unit - IV</b> Life testing - system relial Acceptance s <b>Unit - V</b> Reliability im	<ul> <li>mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam</li> <li>Life Testing - Reliability:</li> <li>Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple prosampling based on reliability test – O.C Curves.</li> </ul>	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc	and LTPD- u ean time betw lity and availa lancy unit an	veen ability	of sta failu / – si	ndarc re, ha mple	producer's I sampling Izard rate problems
Lot by lot sa Risk and cor plans. <b>Unit - IV</b> Life testing - system relial Acceptance s <b>Unit - V</b> Reliability im	<ul> <li>mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam</li> <li>Life Testing - Reliability:</li> <li>Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple prosampling based on reliability test – O.C Curves.</li> <li>Quality and Reliability:</li> <li>provements – techniques - Pareto analysis – design for</li> </ul>	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc	and LTPD- u ean time betw lity and availa lancy unit an	veen ability	of sta failu / – si	ndarc re, ha mple	oroducer's I sampling Izard rate problems <u>c</u> Indancy -
Lot by lot sa Risk and cor plans. <b>Unit - IV</b> Life testing - system relial Acceptance s <b>Unit - V</b> Reliability im	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: - Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple pro sampling based on reliability test – O.C Curves. Quality and Reliability: pprovements – techniques - Pareto analysis – design for in reliability – Product design – Product analysis – Product	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc	and LTPD- u ean time betw lity and availa lancy unit an	veen ability	of sta failu / – si	ndarc re, ha mple	oroducer's I sampling I sampling
Lot by lot sa Risk and cor plans. Unit - IV Life testing - system relial Acceptance : Unit - V Reliability im Optimization	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: - Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple pro sampling based on reliability test – O.C Curves. Quality and Reliability: pprovements – techniques - Pareto analysis – design for in reliability – Product design – Product analysis – Product	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc development –Produ	and LTPD- u ean time betw lity and availa lancy unit an uct life cycles.	veen ability d sta	of sta failu / - si andby	ndarc re, ha mple / redu	oroducer's I sampling I sampling
Lot by lot sa Risk and cor plans. Unit - IV Life testing - system relial Acceptance : Unit - V Reliability im Optimization TEXT BOOK 1. Dou 2019	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: <ul> <li>Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple prosampling based on reliability test – O.C Curves.</li> <li>Quality and Reliability:</li> </ul> approvements – techniques - Pareto analysis – design for in reliability – Product design – Product analysis – Product Statistical Quality C	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc development –Produ Control", 8th Edition,	and LTPD- u ean time betw lity and availa lancy unit an uct life cycles.	veen ability d sta	failu failu andby	ndarc re, ha mple / redu	oroducer's I sampling Izard rate problems Indancy - Total:45 New York
Lot by lot sa Risk and cor plans. Unit - IV Life testing - system relial Acceptance - Unit - V Reliability im Optimization TEXT BOOK 1. Dou 2019 2. Sing	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: <ul> <li>Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple prosampling based on reliability test – O.C Curves.</li> <li>Quality and Reliability:</li> </ul> Approvements – techniques - Pareto analysis – design for in reliability – Product design – Product analysis – Product Statistical Quality C of Units I,II,III. iresu S. Rao., "Reliability Engineering", 1st Edition, Pearson	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc development –Produ Control", 8th Edition,	and LTPD- u ean time betw lity and availa lancy unit an uct life cycles.	veen ability d sta	failu failu andby	ndarc re, ha mple / redu	oroducer's I sampling Izard rate problems Indancy - Total:4 New York
Lot by lot sa Risk and cor plans. Unit - IV Life testing - system relial Acceptance - Unit - V Reliability im Optimization TEXT BOOK 1. Dou 2019 2. Sing REFERENC	mpling – types – probability of acceptance in single, double nsumer's Risk. AQL, LTPD, AOQL concepts-standard sam Life Testing - Reliability: <ul> <li>Objective – failure data analysis, Mean failure rate, mea bility, series, parallel and mixed configuration – simple prosampling based on reliability test – O.C Curves.</li> <li>Quality and Reliability:</li> </ul> Approvements – techniques - Pareto analysis – design for in reliability – Product design – Product analysis – Product Statistical Quality C of Units I,II,III. iresu S. Rao., "Reliability Engineering", 1st Edition, Pearson	pling plans for AQL an time to failure, mo oblems. Maintainabil r reliability – redunc development –Produ Control", 8th Edition, n Education India, No	and LTPD- u ean time betw lity and availa lancy unit an uct life cycles. John Wiley a ew Delhi, 201	veen ability d sta	failu failu andby	ndarc re, ha mple / redu	oroducer's I sampling Izard rate problems g undancy - Total:45 New York

		UTCOM		irse, the st	uden	ts will be a	able to						(	BT Mapp Highest L			
CO1	com	npute an	d man	age variabl	es wit	h quality a	ssuranc	e and p	rocess	charts.			Арр	lying (K3)			
CO2	utiliz	ze the p	rocess	charts for a	attribu	tes and ou	t of cont	rol proc	esses				Applying (K3)				
CO3	eva	luate the	e accep	otance sam	pling i	methods a	nd their	impacts	s on pro	oducer's	and con	sumer's ris	sk. App	Applying (K3)			
CO4		npute rel lution m		data analy	sis an	d get acqu	ainted w	ith vari	ous rel	iability p	rediction	and	Арр	Applying (K3)			
CO5														lerstanding	g (K2)		
						Mappin	g of CC	s with	POs a	nd PSOs	6						
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	1	3	3	2		2							1	3			
CO	2	3	3	2		2							1	3			
CO	3	3	3	2		2							1	3			
CO	4	3	3	2		2							1	3			
CO	5	3	3	2		2							1	3			
1 – Sli	ght, 2	– Mode	rate, 3	- Substan	ial, B	Γ- Bloom's	Taxono	my			·		·		·		
						ASSES	SMENT	PATTE	RN –	THEORY	/						
	st / Bl Catego	oom's ory*	F	Remember (K1) %	ing	Understa (K2)	anding	Apply (K3)	ying	Analyz (K4) 9	ing	Evaluating (K5) %		reating (K6) %	Total %		
	CAT	1		15		15		7(	)	<u> </u>					100		
	CAT	2		15		15		70	)						100		
	CAT	3		15		50		35	5						100		
	ESE	Ξ		10		25		65	5						100		
* ±3%	may b	be varied	d (CAT	1,2,3 – 50	marks	s & ESE –	100 ma	arks)			I						



Programm Branch	B.E. & Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisi	es Nil	7	PE	3	0	0	3
Preamble	This course provides knowledge on green compos	site materials for aut	omotive comp	oner	nts.		
Unit – I	Introduction:		· · · · · ·				9
Composite	naterials - Foam cored steel composite box beams - Plastic esin transfer molding – Sheet Molding compounds - Ultra lig				actior	injec	-
Unit – II	Green composite materials from liquefied bion	nass:					9
liquefied lig Type of res	<ul> <li>Liquefaction technique - Foams- Polyurethane foams (PU ocelluloses - Molding materials - Liquefied wood as replace ns from liquefied biomass.</li> </ul>						
Unit – III	Green Fibers:						9
	<ul> <li>Kenaf, Hemp and Flax fibers - Advantages and limitation</li> <li>Binders used - Thermal resistance and chemical resistance.</li> </ul>		ties and comp	ariso	on wit	h Gla	ss fiber –
Unit – IV	Biodegradable Polymer Matrix:						9
	cid (PLA) – Synthesis mechanical properties - Thermal and encing Processing of Green Composite - Performance of G		compression a	ınd ir	njectio	on mo	lding -
Unit – V	Design of Green Bio-Composites:						9
	een composite design - Failure Prediction in a Unidirectiona ai-Wu Failure Theory - Failure Prediction in Random Fiber L						
TEXT BOO		inationa" and Editio		tion		15	
TEXT BOO	anth Pilla, Charles Lu., "Bio composites in Automotive Appli	ications, Zhu Eultio		auona	ai, 20	10.	
	ES:					avlor	
1. Sri REFEREN 1. An Fra	<b>ES:</b> ar K. Mohanty, Manjusri Misra., "Natural Fibers, Biopolymers acis, 2005 argios Koronis, Arlindo Silva., "Green Composites for Autom	•	-				

		UTCON ion of t		se, the st	udents	will be a	able to						(	BT Mapp Highest L		
CO1	dese	cribe ab	out vario	us advan	ced com	posite n	naterials	s for aut	omotive	industr	у.		Ur	Iderstandii	ng (K2)	
CO2	exe	cute the		Applying (K3)												
CO3	develop the manufacturing methods and characteristics of green fibers.														(K3)	
CO4														Applying (K3)		
CO5	eval	uate the	e mechar	nical prop	erties of	green b	io-comp	posite m	aterials	•				Applying (K3)		
						Mappin	g of CO	s with	POs an	d PSOs	6					
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO	1	3	3	1	1		1	2					2	3		
CO	2	3	3	1	1		1	2					2	3		
CO	3	3	3	1	1		1	2					2	3		
					+		1	1			1		+			

CO4

CO5

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	10	55	35				100
CAT3	10	55	35				100
ESE	10	40	50				100
±3% may be varied (	CAT 1.2.3 - 50 mark	s & ESE – 100 ma	rks)				

B.E.– Automobile Engineering, Regulation, Curriculum and Syllabus – R2022

	22AUE28 - AUTOMOTIVE TE	STING					
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Engines and Automotive Chassis	7	PE	3	0	0	3
Preamble	This course provides knowledge on various testing meth	ods for autom	obile.				
Unit – I	Wind Tunnel Test:						9
<b>Unit – II</b> Vibration measur testing, methodol	Iodel mounting – Test procedure. Crash test – Types.         Ride Vibration and Body Test:         rement instrument – Accelerometer and signal conditioning logy, vehicle acceleration measurement and documentation hic / video coverage, instrumentation - Vehicle roof strength	n - Crash test	- Dolly roll	over	test,	dolly	role over
	= Procedure and measurements. Fuel Consumption Test:			0011	nouo		9
	on - Vehicle test speeds - Cargo weights - Driver selection - en and unladen conditions.	· Test data for	m - Calculatio	ns. 1	est o	on rou	gh terrain,
Unit – IV	Suspension and Stability for Directional Control:						9
	geometric characteristics - Centre of gravity position, mon Elastic and coulomb friction characteristics - Shock absorber			ia. S	uspe	nsion	kinematic
Unit – V	Steering Control Test:						9
Analysis of const angle test - Respo	ant radius test - Constant steer angle test - Constant speec onse gain test.	d variable radiu	us test - Cons	stant	spee	d vari	able steer
							Total:45
TEXT BOOK:							
1. Crouse V	V.H. and Anglin D.L., "Automotive Mechanics", Tata McGraw	Hill Publisher	s, New Delhi,	2004	for l	Jnits I	,II.
2. Rangan,	Mani and Sharma., "Instrumentation", Tata McGraw Hill Pub	lishers, New D	elhi, 2004 for	Unit	s III,I	V,V.	
REFERENCES:							
	d book., Vol. 3, SAE Publications, 2000.						

Babu, A.K., "Automobile Mechanics", Khanna Publishing House, Delhi.

2.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the aero foil vehicle model by wind tunnel test.	Understanding (K2)
CO2	explain the testing procedure of vehicle body elements in improving the ride vibration.	Understanding (K2)
CO3	examine the fuel consumption by road rest procedure for various driving cycles.	Applying (K3)
CO4	illustrate the suspension system test procedure.	Applying (K3)
CO5	determine the steering system test procedure.	Applying (K3)

Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	2	2	1					1	3	
CO2	3	3	1	1	2	2	1					1	3	
CO3	3	3	1	1	2	2	1					1	3	
CO4	3	3	1	1	2	2	1					1	3	
CO5	3	3	1	1	2	2	1					1	3	

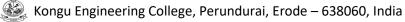
		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	60	20				100
CAT3	20	40	40				100
ESE	15	50	35				100
* ±3% may be varied (	(CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)				

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Automotive Engines	7	PE	3	0	0	3
					1		
Preamble	This course deals with alternate fuels for automo	bile engines.					
Unit – I	Introduction:						9
	n India - Energy and Environment Overview - Impo or SI and CI Engines - Emission standards and meas		nergy sources	- A\	vailab	ility o	f Alternat
Unit – II	Biodiesel:						9
	ysical and chemical characteristics on biodiesel pro ission and Combustion Characteristics in diesel engin Alcohol Fuel:		ot Physical a	nd o	hem	ical p	roperties
				4 - 41-		·	-
			lo oo fulolo 🛽 🔊				
in CI and SI engin	ds of alcohols - Production of alcohol from biomass les - Blending, dual fuel operation, fumigation, surfac haracteristics in CI and SI engines.						
in CI and SI engin and combustion c <b>Unit – IV</b>	nes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines. Gaseous Fuels:	e ignition and oxygen	ated additives	- Pe	erforn	nance	e, emissic 9
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif	nes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.	e ignition and oxygen - Reactions - Viabilit	ated additives	- Pe 3 - P	erforn hysic	nance al and	e, emissic 9 d chemic
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V	<ul> <li>hes - Blending, dual fuel operation, fumigation, surfaction haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester</li> <li>fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> </ul>	e ignition and oxygen – Reactions - Viabilit e and emission chara	ated additives y - Economics cteristics of B	- Pe s - P ioga:	hysic s, NG	al and	9 9 9 9 9 9 1 9
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr	nes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines. <b>Gaseous Fuels:</b> Inds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance	e ignition and oxygen - Reactions - Viabilit a and emission chara Disadvantages of Hyde	ated additives y - Economics cteristics of B	- Pe s - P ioga:	hysic s, NG	al and	9 9 9 9 9 9 1 2 9
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr	<ul> <li>bes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> <li>oduction of Hydrogen – Storage – Advantages and E</li> </ul>	e ignition and oxygen - Reactions - Viabilit a and emission chara Disadvantages of Hyde	ated additives y - Economics cteristics of B	- Pe s - P ioga:	hysic s, NG	al and	9 9 9 9 9 9 1 9
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr – Hazards and Sa	<ul> <li>bes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> <li>oduction of Hydrogen – Storage – Advantages and E</li> </ul>	e ignition and oxygen - Reactions - Viabilit a and emission chara Disadvantages of Hyde	ated additives y - Economics cteristics of B	- Pe s - P ioga:	hysic s, NG	al and	9 d chemic LPG in 9 9 CI Engine
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr – Hazards and Sa TEXT BOOK:	<ul> <li>bes - Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> <li>oduction of Hydrogen – Storage – Advantages and E</li> </ul>	e ignition and oxygen – Reactions - Viabilit and emission chara Disadvantages of Hyde stics. Fuel cell vehicle	ated additives y - Economics cteristics of B rogen – Hydro es.	- Pe	hysic s, NG	al and and and	9 d chemic LPG in 9 D Engine Total:4
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr – Hazards and Sa TEXT BOOK: 1. Richard F Woodhea	<ul> <li>Blending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> <li>oduction of Hydrogen – Storage – Advantages and E afety Systems – Combustion and emission characteri</li> </ul>	e ignition and oxygen – Reactions - Viabilit and emission chara Disadvantages of Hyde stics. Fuel cell vehicle	ated additives y - Economics cteristics of B rogen – Hydro es.	- Pe	hysic s, NG	al and and and	9 d chemic: LPG in 5 9 CI Engine Total:4
in CI and SI engin and combustion c Unit – IV Production metho properties - Modif and CI engines. Unit – V Properties and Pr – Hazards and Sa TEXT BOOK: 1. Richard F Woodhea REFERENCES:	<ul> <li>Bending, dual fuel operation, fumigation, surfact haracteristics in CI and SI engines.</li> <li>Gaseous Fuels:</li> <li>ds of Biogas, NG, CNG and LPG - Biogas Digester fication required in SI and CI Engines - Performance</li> <li>Hydrogen Fuel:</li> <li>oduction of Hydrogen – Storage – Advantages and E affety Systems – Combustion and emission characteri</li> <li>Folkson., "Alternative Fuels and Advanced Vehicle Tead</li> <li>Folkson., Uternative Fuels and Advanced Vehicle Tead</li> <li>Knothe, Jon Van Gerpen and Jargon Krahl., "The E</li> </ul>	e ignition and oxygen – Reactions - Viabilit and emission chara Disadvantages of Hyde stics. Fuel cell vehicle chnologies for Improve	ated additives y - Economics cteristics of B rogen – Hydro es.	- Pe	hysic hysic s, NG in SI	al and and (	9 d chemic LPG in 9 D Engine Total:4

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the need of alternate fuels for automobiles.	Understanding (K2)
CO2	infer the properties, combustion and emission characteristics of biodiesel blends.	Analyzing (K4)
CO3	evaluate the properties, combustion and emission characteristics of alcohol blends.	Analyzing (K4)
CO4	analyze the performance and emission characteristics of different gaseous fuels.	Analyzing (K4)
CO5	investigate the performance and emission characteristics of hydrogen addition.	Analyzing (K4)

	Mapping of COs with POs and PSOs														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	2	2		1	3					2	3		
CO2	3	3	2	2		1	3					2	3		
CO3	3	3	2	2		1	3					2	3		
CO4	3	3	2	2		1	3					2	3		
CO5	3	3	2	2		1	3					2	3		

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	60	15	15			100
CAT2	10	45	30	15			100
CAT3	10	45	30	15			100
ESE	10	45	15	30			100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)				

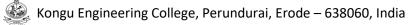

Programme & Branch         B.E – AUTOMOBILE ENGINEERING         Sem.         Category           Prerequisites         Nil         8         PE           Preamble         This course provides knowledge on motor vehicle act, vehicle taxation, vehicle insur operation structure.         8         PE           Unit - I         Introduction:         Introduction:         Personnel management - Objectives and functions – Psychology -Sociology and their relevance to a conductors: Job description -Employment tests – Interviewing - Training procedure and psychological test           Unit - II         Motor Vehicle Act:         Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing of Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.           Unit - III         Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and o Insurance: Insurance types - Significance and renewal - Furnishing particulars of vehicles involved in an a case of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident CI Fund.           Unit - IV         Transport Operation:           Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management	f driv Reg es of nline	vers gistra form e tax p ent - D	on. D & con ation co ns - Go paymo Duty o	9 rivers and 9 nductors of vehicle overnmen 9 ent. f driver in
Preamble       This course provides knowledge on motor vehicle act, vehicle taxation, vehicle insur operation structure.         Unit - I       Introduction:         Personnel management - Objectives and functions – Psychology -Sociology and their relevance to econductors: Job description -Employment tests – Interviewing - Training procedure and psychological test         Unit – II       Motor Vehicle Act:         Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing c         Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles         State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.         Unit – III       Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and c Insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an ac case of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident C Fund.         Unit – IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit – V       Maintenance Management:	f driv Reg s of nline	vers gistra form e tax p	on. D & col ation c ation c payme Duty o	9 rivers and 9 nductors of vehicle overnmen 9 ent. f driver in
operation structure.           Unit - I         Introduction:           Personnel management - Objectives and functions – Psychology -Sociology and their relevance to a conductors: Job description -Employment tests – Interviewing - Training procedure and psychological test           Unit - II         Motor Vehicle Act:           Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing or Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.           Unit - III         Taxation and Insurance:           Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and or Insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an acase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident CI Fund.           Unit - IV         Transport Operation:           Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.           Unit - V         Maintenance Management:           Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair	f driv Reg es of nline	vers gistra form e tax p ent - D	on. D & con ation co ns - Go paymo Duty o	9 rivers and 9 nductors of vehicle overnmen 9 ent. f driver in
Personnel management - Objectives and functions – Psychology -Sociology and their relevance to a conductors: Job description -Employment tests – Interviewing - Training procedure and psychological test         Unit - II       Motor Vehicle Act:         Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing of Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.         Unit - III       Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and or lasurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident CI Fund.         Unit - IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit - V       Maintenance Management:         Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works software.	f driv Reg es of nline	vers gistra form e tax p ent - D	& con ation o ns - Go paymo Duty o	rivers and 9 nductors of vehicle overnmen 9 ent. f driver in
conductors: Job description -Employment tests – Interviewing - Training procedure and psychological test         Unit - II       Motor Vehicle Act:         Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing of Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.         Unit - III       Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and of Insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident Cl Fund.         Unit - IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit - V       Maintenance Management:         Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works mechanic - Inventory control in stores - Customer longue requirements - Customer feedback systems software.	f driv Reg es of nline	vers gistra form e tax p ent - D	& con ation o ns - Go paymo Duty o	9 nductors of vehicle overnmer 9 ent. f driver in
Laws governing to use of motor vehicle & vehicle transport - Traffic rules and signs - Licensing of Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.         Unit – III       Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and of Insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident Cl Fund.         Unit – IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit – V       Maintenance Management:         Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works software.	Reg s of nline	gistra form e tax p ent - D	ation on ns - Go paymo Duty o	nductors of vehicle overnmer 9 ent. f driver in
Responsibility of driver. Accidents - Causes & analysis. Rules regarding construction of motor vehicles         State and interstate permits - Liabilities and preventive measures - Offenses and penalties - Different typ motor vehicle administration structure.         Unit - III       Taxation and Insurance:         Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and consurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident Cl Fund.         Unit - IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit - V       Maintenance Management:         Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works mechanic - Inventory control in stores - Customer longue requirements - Customer feedback systems software.	Reg s of nline	gistra form e tax p ent - D	ation on ns - Go paymo Duty o	of vehicle overnmen 9 ent. f driver in
Objectives - Structure and methods of levying taxation - Onetime tax - Tax exemption - Tax renewal and of insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident CI Fund.         Unit - IV       Transport Operation:         Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Structure organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records.         Unit - V       Maintenance Management:         Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works software.	cider	nt - D	Duty o	ent. f driver in
Insurance: Insurance types - Significance and renewal- Furnishing particulars of vehicles involved in an accase of an accident -Hit and Run case -Surveyor and loss assessor - surveyor's report -Motor Accident CI Fund. Unit – IV Transport Operation: Structure of passenger transport organizations - Depot layouts and requirements -Route planning - transport vehicles - Preparation of timetable and fare structure - Methods of fare collection - Stru organizations - Scheduling of goods transport vehicles - Management Information System (MIS) in go Storage & transportation of petroleum products -Operation cost, revenues and records. Unit – V Maintenance Management: Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works mechanic - Inventory control in stores - Customer longue requirements - Customer feedback systems software.	cider	nt - D	Duty o	f driver in
Unit – V         Maintenance Management:           Service advisor - Roles and Responsibilities - Job card and service record preparation - Trial run complaints - Time and cost analysis for repair works - Precautions before carrying out repair works mechanic - Inventory control in stores - Customer longue requirements - Customer feedback systems software.	cture	e of g	goods	transpor
complaints - Time and cost analysis for repair works - Precautions before carrying out repair works mechanic - Inventory control in stores - Customer longue requirements - Customer feedback systems software.		-		9
TEXT BOOK:	-Tra	aining	g prod	cedure fo
1. "Motor Vehicle Act"., Govt. of India Publications.				
REFERENCES:				
1. Santosh Sharma., "Productivity in Road Transport", 2nd Edition, Association of State Road Trans Delhi.				
2. Patankar P G., "Road Passenger Transport in India", CIRT, Pune.	ort L	Unde	rtakin	gs, New

COUR	SE OUTCOMES:	BT Mapped						
On co	mpletion of the course, the students will be able to	(Highest Level)						
CO1	illustrate interviewing and training procedures for drivers and conductors.	Understanding (K2)						
CO2	exemplify public & vehicle issues with the help of motor vehicle act.	Understanding (K2)						
CO3	identify appropriate tax and insurance policies for their own vehicle.	Applying (K3)						
CO4	analyze the operation costs and revenues of transport operations.	Applying (K3)						
CO5	explain the management principles involved in maintenance.	Understanding (K2)						
Mapping of COs with POs and PSOs								

## Mapping of COs with POs and PSOs

						-								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				2	2	1				2	2	1
CO2	3	2				2	2	1				2	2	1
CO3	3	2				2	2	1				2	2	1
CO4	3	2				2	2	1				2	2	1
CO5	3	2				2	2	1				2	2	1

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	80					100				
CAT2	20	45	35				100				
CAT3	20	45	35				100				
ESE	15	50	35				100				




	22AUE31 - ADVANCED THEORY OF IC	ENGINES		1			T
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Automotive Engines	8	PE	3	0	0	3
Preamble	To provide knowledge on advanced SI and CI engines with	modificatio	ns for using a	ltern	ate fu	iels.	
Unit – I	Combustion Principles:						
flame temperature	concept of combustion – Combustion equations, heat of com e, chemical equilibrium and dissociation. Theories of combustion ne propagation in engines.						
Unit – II	HCCI Combustion Engines:						
unit – III	Alternate Fuels for HCCI Engines:						
HCCI fuel ignition	Alternate Fuels for HCCI Engines:           quality, HCCI fuel Specification and fuel factors. HCCI engines           DME – Combustion characteristics and control phenomena.	s fuels – N	atural gas, CN	NG, r	netha	ane, n	
HCCI fuel ignition air mixtures and D	quality, HCCI fuel Specification and fuel factors. HCCI engines	s fuels – N	atural gas, CN	NG, r	metha	ane, n	n – butane
HCCI fuel ignition air mixtures and D <b>Unit – IV</b> Basic concept, Cł	quality, HCCI fuel Specification and fuel factors. HCCI engines ME – Combustion characteristics and control phenomena.	ed kinetics	(MK) combu				n – butane
HCCI fuel ignition air mixtures and D <b>Unit – IV</b> Basic concept, Cf generation of MK o	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate	ed kinetics	(MK) combu				
air mixtures and D <b>Unit – IV</b> Basic concept, Cf generation of MK of <b>Unit – V</b> RCCI combustion	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor	d kinetics nbustion a	(MK) combu nd emission. ethanol and i	stion	– Fi	rst ar	n – butane
HCCI fuel ignition air mixtures and D Unit – IV Basic concept, Cf generation of MK o Unit – V RCCI combustion	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor         Alternate Fuels for RCCI Engines:         fuel requirement. Alternate Fuels for RCCI Combustion – Ga	d kinetics nbustion a	(MK) combu nd emission. ethanol and i	stion	– Fi	rst ar	n – butane Ind Secon DE/Diese
HCCI fuel ignition air mixtures and D Unit – IV Basic concept, Cf generation of MK o Unit – V RCCI combustion blends and Methan	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor         Alternate Fuels for RCCI Engines:         fuel requirement. Alternate Fuels for RCCI Combustion – Ga	d kinetics nbustion a	(MK) combu nd emission. ethanol and i	stion	– Fi	rst ar	n – butane
HCCI fuel ignition air mixtures and D Unit – IV Basic concept, Cf generation of MK o Unit – V RCCI combustion blends and Methan TEXT BOOK:	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor         Alternate Fuels for RCCI Engines:         fuel requirement. Alternate Fuels for RCCI Combustion – Ga	ed kinetics nbustion a asoline, M nission Ch	(MK) combus nd emission. ethanol and is aracteristics.	stion	– Fi utanc	rst ar bl, PC	n – butane nd Secon DDE/Diese <b>Total:4</b>
HCCI fuel ignition air mixtures and D Unit – IV Basic concept, Cł generation of MK o Unit – V RCCI combustion blends and Methat TEXT BOOK: 1. John B. H	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor         Alternate Fuels for RCCI Engines:         fuel requirement. Alternate Fuels for RCCI Combustion – Ga         nol / diesel blends – Engine modifications - Combustion and Er	ed kinetics nbustion a asoline, M nission Ch	(MK) combus nd emission. ethanol and is aracteristics.	stion	– Fi utanc	rst ar bl, PC	n – butane nd Secon DDE/Diese <b>Total:4</b>
HCCI fuel ignition air mixtures and D Unit – IV Basic concept, Cf generation of MK of Unit – V RCCI combustion blends and Methan TEXT BOOK: 1. John B. H REFERENCES:	quality, HCCI fuel Specification and fuel factors. HCCI engines         DME – Combustion characteristics and control phenomena.         Low Temperature and Premixed Combustion:         haracteristics of combustion and exhaust emissions, modulate         combustion, emission and performance improvement. RCCI cor         Alternate Fuels for RCCI Engines:         fuel requirement. Alternate Fuels for RCCI Combustion – Ga         nol / diesel blends – Engine modifications - Combustion and Er	ed kinetics nbustion a asoline, M nission Ch tion, McGr	(MK) combus nd emission. ethanol and is aracteristics.	stion so b	– Fi utanc	rst ar bl, PC	n – butane nd Secon DE/Diese <b>Total:4</b>

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the importance of combustion principles with various characteristics.	Understanding (K2)
CO2	examine the Performance of the homogenous charge compression ignition combustion with various injection techniques.	Applying (K3)
CO3	Interpret the performance of the HCCI engine with alternate fuels used for novel combustion.	Applying (K3)
CO4	Determine the performance and possible outcomes of low temperature and premixed combustion technology.	Applying (K3)
CO5	illustrate the performance of RCCI engine with alternative fuels.	Applying (K3)

Mapping of COs with POs and PSOs													
PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	2	2	1	1	2	2					1	3	
3	2	2	1	1	2	2					1	3	
3	2	2	1	1	2	2					1	3	
3	2	2	1	1	2	2					1	3	
3	2	2	1	1	2	2					1	3	
	3 3 3 3 3	3     2       3     2       3     2       3     2       3     2       3     2	3     2     2       3     2     2       3     2     2       3     2     2       3     2     2       3     2     2	PO1         PO2         PO3         PO4           3         2         2         1           3         2         2         1           3         2         2         1           3         2         2         1           3         2         2         1           3         2         2         1           3         2         2         1	PO1         PO2         PO3         PO4         PO5           3         2         2         1         1           3         2         2         1         1           3         2         2         1         1           3         2         2         1         1           3         2         2         1         1           3         2         2         1         1           3         2         2         1         1	PO1         PO2         PO3         PO4         PO5         PO6           3         2         2         1         1         2           3         2         2         1         1         2           3         2         2         1         1         2           3         2         2         1         1         2           3         2         2         1         1         2           3         2         2         1         1         2           3         2         2         1         1         2	PO1PO2PO3PO4PO5PO6PO732211223221122322112232211223221122	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8           3         2         2         1         1         2         2           3         2         2         1         1         2         2           3         2         2         1         1         2         2           3         2         2         1         1         2         2           3         2         2         1         1         2         2           3         2         2         1         1         2         2           3         2         2         1         1         2         2	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9           3         2         2         1         1         2         2             3         2         2         1         1         2         2             3         2         2         1         1         2         2             3         2         2         1         1         2         2             3         2         2         1         1         2         2             3         2         2         1         1         2         2             3         2         2         1         1         2         2	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10           3         2         2         1         1         2         2 <td>PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11           3         2         2         1         1         2         2</td> <td>PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           3         2         2         1         1         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td> <td>PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         3         1         3</td>	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11           3         2         2         1         1         2         2	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12           3         2         2         1         1         2         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         2         2         1         1         3           3         2         2         1         1         3         1         3

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	60	20				100
CAT2	20	45	35				100
CAT3	20	45	35				100
ESE	15	35	50				100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)				

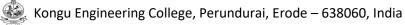


Progra Branc	amme & :h	<b>B.E – AUTOMOBILE ENGINEERING</b>	Sem.	Category	L	т	Р	Credit
Preree	quisites	Nil	8	PE	3	0	0	3
Pream	nble	This course provides knowledge on automotive pro	duct life cycle mana	agement.				
Unit –	- 1	Introduction:	·····	0				9
versio	ns, views, pr	ms of business - Extended enterprise - Concepts in oduct structure, change processes, work list, informat ufacturing bill of materials.						
Unit –		Components of PLM Solutions:						9
conne sourci	ctivity - EAI t ng.	proach in product development solutions - Phase ga echnology - Cases for preparation of combined BOM						ement and
Unit –		Product Visualization:						9
CAD r	neutral enviro							
	up - Case stu	nment and visualization of products - Standard softwa dies.	are – Visualization ir	n several stag	es of	lifec	ycle -	Reviews,
mark-u Unit –	up - Case stu - IV	Role of PLM in Industries:						9
mark-u Unit – Roles	up - Case stu - IV in Automotiv	dies.           Role of PLM in Industries:           e sectors - Ten step approach to product life cycle ma						9 ement.
mark-u Unit – Roles	up - Case stu - IV in Automotiv	Role of PLM in Industries:						9
mark-u Unit – Roles Unit –	up - Case stu • IV in Automotive • V	dies.           Role of PLM in Industries:           e sectors - Ten step approach to product life cycle ma	anagement - Benefit	s of product li	ie cy	cle m	nanag	9 ement. 9
mark-u Unit – Roles Unit –	up - Case stu • IV in Automotive • V	Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:	anagement - Benefit	s of product li	ie cy	cle m	nanag	9 ement. 9
mark-u Unit – Roles Unit – Details	up - Case stu • IV in Automotive • V	Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:	anagement - Benefit	s of product li	ie cy	cle m	nanag	9 ement. 9 are.
mark-u Unit – Roles Unit – Details	up - Case stu • IV in Automotive • V s of modules BOOK:	Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:	anagement - Benefit d implementation of	s of product lif	fe cy PDM/	cle m PLM	nanag softw	9 ement. 9 are.
mark-u Unit – Roles Unit – Details TEXT	up - Case stu - IV in Automotive - V s of modules BOOK: Stark John	Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:         in a PDM/PLM software - Basics on customization an	anagement - Benefit Id implementation of ger International Pul	s of product lif automotive F plishing, 2015	fe cy PDM/	cle m PLM Jnits	softw	9 ement. 9 are. Total:4
mark-u Unit – Roles Unit – Details TEXT 1. 2.	up - Case stu - IV in Automotive - V s of modules BOOK: Stark John	Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:         in a PDM/PLM software - Basics on customization an        , "Product Lifecycle Management (Volume 1)", Spring	anagement - Benefit Id implementation of ger International Pul	s of product lif automotive F plishing, 2015	fe cy PDM/	cle m PLM Jnits	softw	9 ement. 9 are. Total:4
mark-u Unit – Roles Unit – Details TEXT 1. 2.	up - Case stu - IV in Automotive • V s of modules BOOK: Stark John Stark John RENCES:	Adies.          Role of PLM in Industries:         e sectors - Ten step approach to product life cycle ma         Details of Module:         in a PDM/PLM software - Basics on customization an        , "Product Lifecycle Management (Volume 1)", Spring        , "Product Lifecycle Management (Volume 2)", Spring         i and Andrew YCN., "Collaborative Design and Planni	anagement - Benefit Id implementation of ger International Pul ger International Pul	s of product lit automotive F blishing, 2015 blishing, 2016	fe cy DM/ for l	cle m PLM Jnits Jnits	softw I,II. III,IV,	9 ement. 9 are. Total:4

		UTCOM	-	_	_				BT Mapped										
On co	mplet	tion of t	he cours	se, the st	udents	will be a	able to						(	Highest L	evel)				
CO1	expl	lain PLN	/I in the a	utomotive	e industr	у							U	nderstandi	ng (K2)				
CO2	dese	cribe the	e compor	nents of P	'LM								Ur	derstandir	ng (K2)				
CO3	sho	w produ	ct visuali	zation usi	ing CAD									Applying (K3)					
CO4	app	ly suitab	ole PLM r	nodules t	o new pi	oduct d	evelopn	nent					Ur	Iderstandir	ng (K2)				
CO5	sum	marize	the imple	ementatio	n of auto	motive	PDM/PL	M softw	vare				Ur	derstandir	ng (K2)				
	•																		
						Mappin	g of CO	s with	POs an	d PSOs	S								
COs/F	POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				

COS/POS	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PS02
CO1	3	2				2	2					1	2	2
CO2	3	2				2	2					1	2	2
CO3	3	2			3	2	2					1	2	2
CO4	3	2			1	2	2					1	2	2
CO5	3	2			1	2	2					1	2	2
		_				_								

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	80					100					
CAT2	20	60	20				100					
CAT3	20	80					100					
ESE	15	65	20				100					


Drogramma °	22AUE33 - PROCESS PLANNING A						
Programme & Branch	B.E – AUTOMOBILE ENGINEERING	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	8	PE	3	0	0	3
Preamble	This course provides knowledge on various produc	tion planning and co	ost estimation	tech	niau	20	
Unit – I	Work Study and Ergonomics:	and co	531 63111121011	leon	inqui		9
Method study – D	efinition – Objectives-Motion economy - Principles – T Procedure – Tools and techniques - Standard time – Er				Work	mea	-
Unit – II	Process Planning:						9
Operating sequen manufacturing logi	ctive – Scope – Approaches to process planning - F ces - Machine selection – Material selection paramet ic and knowledge - Production time calculation – Select	ters -Set of docume	ents for proce				Developin
Unit – III	Introduction to Cost Estimation: estimation - Costing – Cost accounting - Classification	of aget. Elemente of	aaat				9
-	<b>č</b>	or cost- Elements or	COSI.				
	Cost Estimation:					1	9
Unit – IV	Matheada of actionation Data as windows and a set		COST - AllOWAL	nces	in es	timati	on. 9
Types of estimates	s – Methods of estimates – Data requirements and sou	irces - Collection of					
Types of estimates Unit – V	Production Cost Estimation:						•
Types of estimates Unit – V				diffe	rent t	ypes o	•
Types of estimates Unit – V	Production Cost Estimation:			diffe	rent t	ypes o	•
Types of estimates Unit – V	Production Cost Estimation:			diffe	rent t	ypes o	of jobs.
Types of estimates Unit – V Estimation of mate TEXT BOOK: 1 Kesavan.I	Production Cost Estimation:	on of overheads – E	stimation for				of jobs.
Types of estimates Unit – V Estimation of mate TEXT BOOK: 1 Kesavan.I	Production Cost Estimation: erial cost - Labours cost and Over heads cost - Allocati R, Elanchezhian.C, Vijaya Ramnath.B.,"Process Plann	on of overheads – E	stimation for				of jobs.
Types of estimates Unit – V Estimation of mate TEXT BOOK: 1. Kesavan.I Internation REFERENCES:	Production Cost Estimation: erial cost - Labours cost and Over heads cost - Allocati R, Elanchezhian.C, Vijaya Ramnath.B.,"Process Plann	on of overheads – E ing and Cost Estima	Estimation for ation", 2nd Ed	ition,	New	/ Age	of jobs.

COUR	COURSE OUTCOMES:						
On co	mpletion of the course, the students will be able to	(Highest Level)					
CO1	illustrate product plans or schedules to optimize production.	Applying (K3)					
CO2	apply professional and ethical responsibility to reduce production time.	Applying (K3)					
CO3	explain Production and Operations Management and its role in business organizations.	Understanding (K2)					
CO4	use various cost estimation techniques.	Applying (K3)					
CO5	predict the stocking level at the minimum rate.	Applying (K3)					

## Mapping of COs with POs and PSOs

						-								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1			2	1				1	2	2
CO2	3	2	1	1			2	1				1	2	2
CO3	3	2	1	1			2	1				1	2	2
CO4	3	2	2	2			2	1				1	2	2
CO5	3	2	2	2			2	1				1	2	2
							*	*						

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	50	35				100
CAT2	15	65	20				100
CAT3	15	50	35				100
ESE	10	40	50				100



Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	8	PE	3	0	0	3
Preamble	This course provides knowledge on lean manufac	cturing technology.					
Unit – I	Introduction:						9
	tion, Customer requirements, Requirements of other Lean Manufacturing System (LMS), Value and waste,						
Unit – II	Primary Tools used in LMS I:						9
	organizations, 5S process – Sort, set in order, Shine, S TPM success - TPM implementation process, Overal						
	Primary Tools used in LMS II:	ess maps, advantage	es, types and	its c	onstr	uctior	9 . Steps
Process Mappir preparing VSM;	Primary Tools used in LMS II:         ng and Value Stream Mapping (VSM) – Need for proc         Concept of work Cell and its design, Line balancing alg         Secondary Tools used in LMS:			its c	onstr	uctior	-
Process Mappir preparing VSM; <b>Unit – IV</b> Cause and effe	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg	porithms and problem	S.				, Steps 9
Process Mappir preparing VSM; <b>Unit – IV</b> Cause and effe Visual workplac <b>Unit – V</b>	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules:	nban, Automation, SM	s. MED, Standar	dize	d fixtu	ıre, D	, Steps i 9 FMA, JIT 9
Process Mappir preparing VSM; <b>Unit – IV</b> Cause and effe Visual workplac <b>Unit – V</b> Stability, Manag projects, prepar	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nu	nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing	s. MED, Standar mplementatio LMS for high	dize n: Tı	d fixtu ainin	ıre, D g, sel	, Steps i 9 FMA, JI ⁻ 9 ecting th
Process Mappir preparing VSM; <b>Unit – IV</b> Cause and effe Visual workplac <b>Unit – V</b> Stability, Manag projects, prepar	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules: gement, Standardized work, Pull system, Continuous ing project charter, project implementation, Project re	nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing	s. MED, Standar mplementatio LMS for high	dize n: Tı	d fixtu ainin	ıre, D g, sel	a, Steps i 9 FMA, JI⊺ 9 ecting th Operato
Process Mappir preparing VSM; <b>Unit – IV</b> Cause and effe Visual workplac <b>Unit – V</b> Stability, Manag projects, prepar process, machir	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules: gement, Standardized work, Pull system, Continuous in ing project charter, project implementation, Project re- nery and equipment, workplace organization, Inventory,	porithms and problem nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing , LMS Design Process	s. MED, Standar mplementatio LMS for high S.	dize n: Tr er pr	d fixtu ainin oduc	ıre, D g, sel tivity:	9 FMA, JI 9 ecting th Operato Total:4
Process Mappir preparing VSM; Unit – IV Cause and effe Visual workplac Unit – V Stability, Manag projects, prepar process, machir TEXT BOOK: 1. Pascal	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules: gement, Standardized work, Pull system, Continuous ing project charter, project implementation, Project re	porithms and problem nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing , LMS Design Process	s. MED, Standar mplementatio LMS for high S.	dize n: Tr er pr	d fixtu ainin oduc	ıre, D g, sel tivity:	9 FMA, JI 9 ecting th Operato Total:4
Process Mappir preparing VSM; Unit – IV Cause and effe Visual workplac Unit – V Stability, Manag projects, prepar process, machir TEXT BOOK: 1. Pascal	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules: gement, Standardized work, Pull system, Continuous ing project charter, project implementation, Project re- nery and equipment, workplace organization, Inventory, Dennis., "Lean Production Simplified: A Plain-Lan ",3rd Edition, CRC Press, 2015.	porithms and problem nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing , LMS Design Process	s. MED, Standar mplementatio LMS for high S.	dize n: Tr er pr	d fixtu ainin oduc	ıre, D g, sel tivity:	9 FMA, JIT 9 ecting th Operato Total:4
preparing VSM; Unit – IV Cause and effe Visual workplac Unit – V Stability, Manag projects, prepar process, machir TEXT BOOK: 1. Pascal System REFERENCES	ng and Value Stream Mapping (VSM) – Need for proc Concept of work Cell and its design, Line balancing alg Secondary Tools used in LMS: ct diagram, Pareto chart, Radar chart, Poke Yoke, Kar e - problems on Pareto analysis and computation of nur LMS Rules: gement, Standardized work, Pull system, Continuous ing project charter, project implementation, Project re- nery and equipment, workplace organization, Inventory, Dennis., "Lean Production Simplified: A Plain-Lan ",3rd Edition, CRC Press, 2015.	porithms and problem nban, Automation, SM mber of Kanban. improvement. Lean I eview. Implementing , LMS Design Process	s. MED, Standar mplementatio LMS for high S.	dize n: Tr er pr	d fixtu ainin oduc	ıre, D g, sel tivity:	9 FMA, JI 9 ecting th Operato Total:4

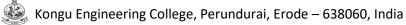
	OURSE OUTCOMES: n completion of the course, the students will be able to						
CO1	describe the importance of lean manufacturing and its elements.	Understanding (K2)					
CO2	identify appropriate lean methods to solve the problem.	Applying (K3)					
CO3	apply suitable algorithms and primary LMS tools to solve the problems.	Applying (K3)					
CO4	solve the given problem using secondary LMS tools.	Applying (K3)					
CO5	explain the various rules of the LMS.	Understanding (K2)					

	Mapping of COs with POs and PSOs													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1		2	1					1	3	
CO2	3	2	1	1		2	1					1	3	
CO3	3	2	1	1		2	1					1	3	
CO4	3	2	1	1		2	1					1	3	
CO5	3	2	1	1		2	1					1	3	
1 Slight 2	Mode	vroto 2	Substant		Ploom'o	Tayona	mu							

	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	60	20				100				
CAT2	20	45	35				100				
CAT3	20	45	35				100				
ESE	10	40	50				100				
* 120/ may be varied		0 9 ESE 100 mg		1			1				

*  $\pm$ 3% may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	NIL	8	PE	3	0	0	3
		L.	1				1
Preamble	This course provides knowledge on style and mo	del a vehicle based o	n customer re	quire	emen	t.	
Unit – I	Vision:						9
Design moveme	ng opportunity - Defining a vision & setting targets - G ents - Idea of narrative in design - Spreading the word gn – Case study: Mazda Motorsports.						
Unit – II	Ideate:						9
- Structure and	es and technical solutions based on the needs of targe a framework for vehicle architecture - Unique visu es - Segmentation and competitive benchmarking.						
Case Study: For	<b>Develop:</b> rd Mustang (phase 1) - Character development and pro- ment in full-size - Refining proposals and final selectio						
Design develop design prototype Unit – IV	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. Model:	n - Case Study: Ford	Mustang (pha	ase 2	2) - C	reatir	tion - ng an initia <b>9</b>
Case Study: For Design develope design prototype <b>Unit – IV</b> Virtual 3D - Digi	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut.	n - Case Study: Ford development - Rapid	Mustang (pha	ase 2 ockuj	2) - C	reatir Case	tion - ng an initia <b>9</b> study: clay
Case Study: For Design develope design prototype <b>Unit – IV</b> Virtual 3D - Digi	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. Model: tal design process - Digital sketch modelling - 3D data	n - Case Study: Ford development - Rapid	Mustang (pha	ase 2 ockuj	2) - C	reatir Case	tion - ng an initia <b>9</b> study: clay
Case Study: For Design developed design prototype <b>Unit – IV</b> Virtual 3D - Digi modeling, Mazd <b>Unit – V</b> Idea selection -	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. <b>Model:</b> tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin	Mustang (pha validation mo on – Developn g for designe	ase 2 ockup nent rs -	2) - C ps – 0 strat	case case egies	ition - ig an initia 9 study: clay - 9
Case Study: For Design developed design prototype <b>Unit – IV</b> Virtual 3D - Digi modeling, Mazd <b>Unit – V</b> Idea selection -	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. Model: tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha Build and Launch: Engineering, processing, and testing - Market researd	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin	Mustang (pha validation mo on – Developn g for designe	ase 2 ockup nent rs -	2) - C ps – 0 strat	case case egies	ition - ig an initia 9 study: clay - 9
Case Study: For Design developed design prototype <b>Unit – IV</b> Virtual 3D - Digi modeling, Mazd <b>Unit – V</b> Idea selection -	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. Model: tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha Build and Launch: Engineering, processing, and testing - Market researd	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin	Mustang (pha validation mo on – Developn g for designe	ase 2 ockup nent rs -	2) - C ps – 0 strat	case case egies	study: clay
Case Study: For Design developed design prototype Unit – IV Virtual 3D - Digi modeling, Mazd Unit – V Idea selection - and key stakeho TEXT BOOK:	rd Mustang (phase 1) - Character development and pro ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. Model: tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha Build and Launch: Engineering, processing, and testing - Market researd	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin vers on an idea - Laun	Mustang (pha validation mo on – Developn g for designe iching a vehic	nent rs -	2) - C ps – ( strat	Case egies t's ma	g an initia 9 study: cla 9 anagemer Total:4
Case Study: For Design developed design prototype Unit – IV Virtual 3D - Digi modeling, Mazd Unit – V Idea selection - and key stakeho TEXT BOOK:	rd Mustang (phase 1) - Character development and pro- ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. <b>Model:</b> tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha <b>Build and Launch:</b> Engineering, processing, and testing - Market researd olders - Pitching to prospective users - Selling new view Meadows., "Vehicle Design: Aesthetic Principles in Tra	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin vers on an idea - Laun	Mustang (pha validation mo on – Developn g for designe iching a vehic	nent rs -	2) - C ps – ( strat	Case egies t's ma	g an initia 9 study: clay 9 anagemen Total:4
Case Study: For Design develop design prototype Unit – IV Virtual 3D - Digi modeling, Mazd Unit – V Idea selection - and key stakeho TEXT BOOK: 1. Jordan REFERENCES:	rd Mustang (phase 1) - Character development and pro- ment in full-size - Refining proposals and final selectio e - Final theme selection – Final cut. <b>Model:</b> tal design process - Digital sketch modelling - 3D data a Kiora concept – 3D Printing, rapid prototyping and ha <b>Build and Launch:</b> Engineering, processing, and testing - Market researd olders - Pitching to prospective users - Selling new view Meadows., "Vehicle Design: Aesthetic Principles in Tra	n - Case Study: Ford development - Rapid ard modeling fabricatio ch - Early-stage vettin vers on an idea - Laun	Mustang (pha validation mo on – Developn g for designe iching a vehic Γaylor & Franc	nent rs -	2) - C ps – ( strat	Case egies t's ma	g an initia 9 study: clay 9 anagemen Total:4


(Highest Level)
Understanding (K2)
Understanding (K2)
Understanding (K2)
Applying (K3)
Applying (K3)

					Mappin	g of CC	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	3	2						1	3	
CO2	3	2	1	1	3	2						1	3	
CO3	3	2	1	1	3	2						1	3	
CO4	3	2	1	1	3	2						1	3	
CO5	3	2	1	1	3	2						1	3	
1 – Slight 2	_ Mode	vrate 3_	Substant	ial BT-	Bloom's	Taxono	mv							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Tax	onomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	45	35				100
ESE	10	55	35				100
* ±3% may be varied (	CAT 1.2.3 – 50 mark	s & ESE – 100 ma	rks)				

(U S)



	22AUE36 – NON-TRADITIONAL N	IACHINING PROCES	SES				
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Manufacturing Technology	8	PE	3	0	0	3
Preamble	This course addresses the various non-traditiona	al machining processe	s in different a	applic	ation	s.	
Unit – I	Mechanical Energy Based Processes						
	Machining Processes - Need - Classification - Appliters in Abrasive Jet Machining, Abrasive Water Jet						
Unit – II	Electrical Energy Based Processes						
Chemical Machini	ing - Principle - components - Effect of Process Par	ameters - Applications		and	Limi	tation	e Electro
Chemical Machini	ing - Principle - components - Effect of Process Par- ing - Electro-Chemical Honing - Electro-Chemical Gri				Limi	tation	
Chemical Machini <b>Unit – IV</b> Laser Beam Mach		nding - Electro Chemi	cal Deburring				
Chemical Machini <b>Unit – IV</b> Laser Beam Mach	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes nining and Drilling (LBM) - Plasma Arc Machining (PA	nding - Electro Chemi	cal Deburring				
Chemical Machini <b>Unit – IV</b> Laser Beam Mach Components – Be <b>Unit – V</b> Principle, Compo	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes hining and Drilling (LBM) - Plasma Arc Machining (PA eam control techniques – Applications.	M) and Electro Chemi M) and Electron Bear achining – Chemo Me	cal Deburring n Machining ( echanical Poli	EBM	) - Pr , Ma	inciple	e – : Abrasiv itations
Chemical Machini <b>Unit – IV</b> Laser Beam Mach Components – Be <b>Unit – V</b> Principle, Compon Finishing - Magr Applications.	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes ining and Drilling (LBM) - Plasma Arc Machining (PA am control techniques – Applications. Nano Finishing Processes nents and Process Parameters - Abrasive Flow Ma	M) and Electro Chemi M) and Electron Bear achining – Chemo Me	cal Deburring n Machining ( echanical Poli	EBM	) - Pr , Ma	inciple	e – : Abrasiv
Chemical Machini Unit – IV Laser Beam Mach Components – Be Unit – V Principle, Compon Finishing - Magr Applications. TEXT BOOK:	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes ining and Drilling (LBM) - Plasma Arc Machining (PA am control techniques – Applications. Nano Finishing Processes nents and Process Parameters - Abrasive Flow Ma	AM) and Electro Chemi AM) and Electron Bear achining – Chemo Me brasive Flow Finishin	cal Deburring m Machining ( echanical Poli- ng — Advan	EBM shing	) - Pr , Ma s and	inciple	e – : Abrasiv itations
Chemical Machini Unit – IV Laser Beam Mach Components – Be Unit – V Principle, Components Finishing - Magr Applications. TEXT BOOK: 1. Vijay.K. J	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes hining and Drilling (LBM) - Plasma Arc Machining (PA eam control techniques – Applications. Nano Finishing Processes nents and Process Parameters - Abrasive Flow Ma hetorheological Finishing - Magneto Rheological A	AM) and Electro Chemi AM) and Electron Bear achining – Chemo Me brasive Flow Finishin	cal Deburring m Machining ( echanical Poli- ng — Advan	EBM shing	) - Pr , Ma s and	inciple	e – : Abrasiv itations
Chemical Machini Unit – IV Laser Beam Mach Components – Be Unit – V Principle, Compon Finishing - Magr Applications. TEXT BOOK: 1. Vijay.K. J REFERENCES:	ing - Electro-Chemical Honing - Electro-Chemical Gri Thermal Energy Based Processes hining and Drilling (LBM) - Plasma Arc Machining (PA eam control techniques – Applications. Nano Finishing Processes nents and Process Parameters - Abrasive Flow Ma hetorheological Finishing - Magneto Rheological A	AM) and Electro Chemi AM) and Electron Bear achining – Chemo Me brasive Flow Finishin	cal Deburring m Machining ( echanical Poli- ng — Advan	EBM shing tage	) - Pr , Ma s and 15.	gnetic d Lim	e – : Abrasiv itations

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the need for mechanical energy based non-traditional machining processes in manufacturing.	Understanding (K2)
CO2	illustrate the knowledge of machining electrically conductive material through electrical energy.	Understanding (K2)
CO3	discuss the concepts of machining hard materials using chemical and electrochemical energy.	Understanding (K2)
CO4	describe thermal energy based nontraditional machining processes.	Understanding (K2)
CO5	illustrate the nano finishing processes for various applications.	Understanding (K2)

## Mapping of COs with POs and PSOs

						-								
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2					1	3	
CO2	3	2					2					1	3	
CO3	3	2					2					1	3	
CO4	3	2					2					1	3	
CO5	3	2					2					1	3	
1 Clight 0	Mada	roto 2	Substant		Dia am'a	Tayana								

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	15	85					100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	rks)				÷

Programme & Branch	All BE/BTech Branches except Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	0	2	4
Preamble	This course provides the knowledge on working principle of au fuel resources recommended for automotive engines.	utomotive	e components	and	vario	ous alt	ernative
Unit – I	Engines and Exhaust systems:						9
Piston pins - Cr	ents: Cylinder block - Cylinder head - Sump - Manifolds - Gaskets ank shaft - Bearings - Valves - Mufflers. Simple Carburetor - Port a ems - MPFI and CRDI - Exhaust systems - SCR - EGR - Catalytic of	and Valve	e Timing diag	ram	- Eng	gine c	ooling an
Unit – II	Transmission Systems:						9
Automatic - Sim - Torque conver Unit – III	and Construction - Clutch operation - Electromagnetic - Mechanical ple Floor Mounted Shift Mechanism - CVT - Dual Clutch transmissi ter - Propeller shaft - Slip Joint - Universal Joints - Differential and R Steering, Brakes and Suspension:	ion - Ove Rear Axle	r Drives - Tra	Insfe	r Box	: - Flui	id flywhee
Ackermann ste	rres - Wheel Alignment Parameters. Steering: Steering Geometre ering mechanism - Power Steering - Electronic Steering - Types ngs - Shock absorbers. Braking Systems: Types and Construction -	of Front	Axle. Suspe	ensio	n sys	stems	Types c
Unit – IV	Chassis Frame, Battery and Lighting System:						9
	ction - Truck chassis - Four-wheel drive chassis - Body on frame - S batteries - Construction, Operation and Maintenance. Electrical sys					Loads	s acting o
Unit – V	Automotive accessories and Alternate Energy Sources:		<u>,                                     </u>	,			9
Head lights - S							5
	witches - Indicating lights. Accessories: Direction indicators - Winds						Heaters
Air conditioner.	Witches - Indicating lights. Accessories: Direction indicators - Winds Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid						Heaters
Air conditioner. - Fuel Cells.	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI							Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPE 1. Dismar 2. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid RIMENTS / EXERCISES: tling and Assembling of Two stroke Petrol Engine						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEN 1. Dismar 2. Dismar 3. Dismar 4. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box						Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box	nitrogen,					Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 7. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles	nitrogen,	Ethanol and				Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 7. Dismar 8. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems	nitrogen,	Ethanol and				Heaters
Air conditioner.         - Fuel Cells.         LIST OF EXPEI         1.       Dismar         2.       Dismar         3.       Dismar         4.       Dismar         5.       Dismar         6.       Dismar         7.       Dismar         8.       Dismar         9.       Fault di	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems tling and Assembling of Recirculating Ball and Rack & Pinion Steeri	nitrogen,	Ethanol and				Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 8. Dismar 9. Fault di 10. Dismar	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid <b>RIMENTS / EXERCISES:</b> tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems tling and Assembling of Recirculating Ball and Rack & Pinion Steeri agnosis in Automotive Electrical Wiring Circuit	nitrogen,	Ethanol and				Heaters
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 8. Dismar 9. Fault di 10. Dismar TEXT BOOK: 1 Dr. Kirp	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid RIMENTS / EXERCISES: tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems tling and Assembling of Recirculating Ball and Rack & Pinion Steeri agnosis in Automotive Electrical Wiring Circuit tling and Assembling of Horn, Wiper and Starter Motor al Singh., "Automobile Engineering Volume 1 & 2", 14th Edition, Sta	nitrogen,	Ethanol and	Hydi	roger	cal:30	Heaters utomobile
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 8. Dismar 9. Fault di 10. Dismar TEXT BOOK: 1. Dr. Kirp & 2018	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid RIMENTS / EXERCISES: tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems tling and Assembling of Recirculating Ball and Rack & Pinion Steeri agnosis in Automotive Electrical Wiring Circuit tling and Assembling of Horn, Wiper and Starter Motor al Singh., "Automobile Engineering Volume 1 & 2", 14th Edition, Sta	nitrogen,	Ethanol and	Hydi	roger	cal:30	Heaters itomobile
Air conditioner. - Fuel Cells. LIST OF EXPEI 1. Dismar 2. Dismar 3. Dismar 4. Dismar 5. Dismar 6. Dismar 8. Dismar 9. Fault di 10. Dismar TEXT BOOK: 1. Dr. Kirp & 2018 REFERENCES	Use of Natural Gas, LPG, CNG, LPG, Bio diesel, Shale gas, Liquid RIMENTS / EXERCISES: tling and Assembling of Two stroke Petrol Engine tling and Assembling of Four Stroke Petrol Engine tling and Assembling of Four Stroke Diesel Engine tling and Assembling of Constant Mesh Gear Box tling and Assembling of Synchromesh Gear Box tling and Assembling of Differential and Live Axles tling and Assembling of Hydraulic and Pneumatic Braking Systems tling and Assembling of Recirculating Ball and Rack & Pinion Steeri agnosis in Automotive Electrical Wiring Circuit tling and Assembling of Horn, Wiper and Starter Motor al Singh., "Automobile Engineering Volume 1 & 2", 14th Edition, Sta	nitrogen,	Ethanol and	Hydi	roger	cal:30	Heaters itomobile

## 🥸 Kongu Engineering College, Perundurai, Erode – 638060, India

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	demonstrate the IC engine components and exhaust system by dismantling and assembling	Applying (K3), Precision (S3)
CO2	execute the various types of transmission and steering systems	Applying (K3), Precision (S3)
CO3	develop the suspension, brake and steering systems of automobile	Applying (K3), Precision (S3)
CO4	design the circuit for automotive electrical systems and illustrate the types of chassis	Applying (K3), Precision (S3)
CO5	execute the various automotive accessories and alternate fuel sources in automobiles	Applying (K3), Precision (S3)

					Mappin	g of CO	s with	POs an	d PSOs	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2			1	1		3	2		1		
CO2	3	3	2			1	1		3	2		1		
CO3	3	2	2			1	1		3	2		1		
CO4	3	2	2			1	1		3	2		1		
CO5	3	3	2			1	1		3	2		1		
1 – Slight, 2	– Mode	rate, 3 –	Substanti	al, BT- I	Bloom's	Taxono	my							

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	15	85					100
±3% may be varied (	CAT 1.2.3 – 50 mark	s & ESE – 100 ma	rks)				

	22AUO01 - AUTOMOTIVE ELECTRON						
<b>D</b>	(Offered by Department of Automobile Engin	neering)		1	1	[	1
Programme & Branch	All BE/BTech Branches except Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	6	OE	3	1	0	4
Preamble	To acquire knowledge on basic automotive electrical and electrical like charging, starting, ignition, fuel control and engine managed		stems for ma	iin fu	nctio	ns in v	vehicles
Unit - I	Charging and Starting systems:						9+3
Charging system	quirements of the charging system - Charging system principle technology - Alternator developments - Requirements of the starti Advanced starting system technology - Electronic starter motor co	ing syste	m - Starter m	otors	s and		
Unit - II	Ignition systems:						9+3
- Inductive pulse	ndamentals - Electronic ignition - Constant dwell systems- Consta generator - Dwell angle control (open loop) - Capacitor discharge on plug (COP) ignition - spark plugs						
Combustion - Eng	<b>Fuel control:</b> jine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Comm						
Combustion - Eng fuel injection - Ele Diesel lambda se	jine fueling and exhaust emissions - Emissions and driving cycles						rs - Diese
Combustion - Eng fuel injection - Ele Diesel lambda se <b>Unit - IV</b> Combined ignitior	ine fueling and exhaust emissions - Emissions and driving cycles actronic control of diesel injection - Rotary pump system - Comm nsor - air–fuel ratio	on rail sy	vstem - Electi	ronic	unit	inject	rs - Diese ion (EUI) <b>9+3</b>
fuel injection - Ele Diesel lambda ser <b>Unit - IV</b> Combined ignition	ine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Comm nsor - air-fuel ratio Engine management: and fuel injection system - Exhaust emission control - Engine des	on rail sy	vstem - Electi	ronic	unit	inject	rs - Diese ion (EUI) <b>9+3</b>
Combustion - Eng fuel injection - Ele Diesel lambda se <b>Unit - IV</b> Combined ignitior control - Engine n <b>Unit - V</b> Anti-lock brakes - Advanced chassis Cruise control - A	ine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Comm nsor - air-fuel ratio Engine management: and fuel injection system - Exhaust emission control - Engine des nanagement systems - Other aspects of engine management system	on rail sy sign - Ca em. ansmissio un-roofs -	talytic convertion - Other ch Central locki	ters assis	- Clos s elec nd el	sed lo strical ectric	rs - Diese ion (EUI) 9+3 op lambd 9+3 systems windows
Combustion - Eng fuel injection - Ele Diesel lambda se <b>Unit - IV</b> Combined ignitior control - Engine n <b>Unit - V</b> Anti-lock brakes - Advanced chassis Cruise control - A	<ul> <li>gine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Commissor - air-fuel ratio</li> <li>Engine management:</li> <li>and fuel injection system - Exhaust emission control - Engine destanagement systems - Other aspects of engine management system</li> <li>Vehicle Safety and Comfort:</li> <li>Traction and stability control - Active suspension - Automatic trassystems technology - Comfort and safety - Seats, mirrors and subaltages and belt tensioners - Advanced comfort and safety system</li> </ul>	on rail sy sign - Ca em. ansmissio un-roofs -	talytic convertion - Other ch Central locki	ters assis ng a ruise	- Clos s elec nd el	ectrical sectrical	rs - Dies ion (EUI) 9+3 op lambo 9+3 systems windows nd syste
Combustion - Eng fuel injection - Ele Diesel lambda se <b>Unit - IV</b> Combined ignitior control - Engine n <b>Unit - V</b> Anti-lock brakes - Advanced chassis Cruise control - A response - Radio	<ul> <li>gine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Commissor - air-fuel ratio</li> <li>Engine management:</li> <li>and fuel injection system - Exhaust emission control - Engine destanagement systems - Other aspects of engine management system</li> <li>Vehicle Safety and Comfort:</li> <li>Traction and stability control - Active suspension - Automatic trassystems technology - Comfort and safety - Seats, mirrors and subaltages and belt tensioners - Advanced comfort and safety system</li> </ul>	on rail sy sign - Ca em. ansmissio un-roofs -	talytic convert talytic convert on - Other ch Central locki chnology - C	ters assis ng a ruise	- Clos s elec nd el	ectrical sectrical	rs - Dies ion (EUI) 9+3 op lambo 9+3 systems windows nd syste
Combustion - Eng fuel injection - Ele Diesel lambda se Unit - IV Combined ignitior control - Engine n Unit - V Anti-lock brakes - Advanced chassis Cruise control - A response - Radio	<ul> <li>gine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Commissor - air-fuel ratio</li> <li>Engine management:</li> <li>and fuel injection system - Exhaust emission control - Engine destanagement systems - Other aspects of engine management system</li> <li>Vehicle Safety and Comfort:</li> <li>Traction and stability control - Active suspension - Automatic trassystems technology - Comfort and safety - Seats, mirrors and subaltages and belt tensioners - Advanced comfort and safety system</li> </ul>	on rail sy sign - Ca em. ansmissio un-roofs - stems teo	talytic convert talytic convert on - Other ch Central locki chnology - C Lecture:	ters assis ng a ruise	unit - Clos - Clos - con - con Clos	inject sed lo etrical ectric trol at	rs - Dies ion (EUI) 9+3 op lambo 9+3 systems windows nd syste
Combustion - Eng fuel injection - Ele Diesel lambda se Unit - IV Combined ignitior control - Engine n Unit - V Anti-lock brakes - Advanced chassis Cruise control - A response - Radio	yine fueling and exhaust emissions - Emissions and driving cycles extronic control of diesel injection - Rotary pump system - Commosor - air-fuel ratio           Engine management:           and fuel injection system - Exhaust emission control - Engine destanagement systems - Other aspects of engine management system           Vehicle Safety and Comfort:           Traction and stability control - Active suspension - Automatic trassystems technology - Comfort and safety - Seats, mirrors and subaltrags and belt tensioners - Advanced comfort and safety systems uppression calculations	on rail sy sign - Ca em. ansmissio un-roofs - stems teo	talytic convert talytic convert on - Other ch Central locki chnology - C Lecture:	ters assis ng a ruise	unit - Clos - Clos - con - con Clos	inject sed lo etrical ectric trol at	rs - Dies ion (EUI) 9+3 op lambo 9+3 systems windows nd system
Combustion - Eng fuel injection - Ele Diesel lambda sel Unit - IV Combined ignitior control - Engine n Unit - V Anti-lock brakes - Advanced chassis Cruise control - A response - Radio TEXT BOOK: 1. Tom Den REFERENCES/ M	ine fueling and exhaust emissions - Emissions and driving cycles ectronic control of diesel injection - Rotary pump system - Comm noor - air-fuel ratio Engine management: and fuel injection system - Exhaust emission control - Engine des nanagement systems - Other aspects of engine management syste Vehicle Safety and Comfort: Traction and stability control - Active suspension - Automatic tra systems technology - Comfort and safety - Seats, mirrors and su Airbags and belt tensioners - Advanced comfort and safety sys suppression calculations	on rail sy sign - Ca em. ansmissio un-roofs - stems teo Routledge	talytic convert talytic convert on - Other ch Central locki chnology - C <b>Lecture</b> e, United King	ters assis assis ruise <b>45</b> , ⁻	unit - Clos s elec nd el - con <b>Tutor</b>	inject sed lo ctrical ectric trol at <b>ial:1</b> 5	rs - Dies ion (EUI) 9+3 op lambo 9+3 systems windows nd syste

	SE OUTCOMES:	BT Mapped
On co	mpletion of the course, the students will be able to	(Highest Level)
CO1	design and implement the electrical circuits for charging and starting systems	Applying (K3)
CO2	describe the layout and types of ignition system used in gasoline engine	Understanding (K2)
CO3	execute the different elements of fuel injection systems in engines.	Applying (K3)
CO4	explain about the role of electronic control in engine management system	Understanding (K2)
CO5	carryout the various safety and comfort systems in vehicles	Applying (K3)
	Mapping of COs with POs and PSOs	I

					wappin	g of CO	s with	POs an	a P30s	5				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1								1		
CO2	3	3	1	1								1		
CO3	3	3	1	1								1		
CO4	3	3	1	1								1		
CO5	3	3	1	1								1		
1 – Slight, 2	- Mode	rate, 3 –	Substant	ial, BT- I	Bloom's	Taxono	my							

		ASSESSMENT	PATTERN –	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	40	40				100
CAT3	20	40	40				100
ESE	15	50	35				100



	22AUO02 - VEHICLE MAINTENANC	E					
	(Offered by Department of Automobile Engi	neering)					
Programme & Branch	All BE/BTech Branches except Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	7	OE	3	1	0	4
Preamble	This course provides knowledge on maintenance and servicin	g of vario	ous systems ir	n aut	omot	oiles.	
Unit - I	Maintenance procedure and tools:						9+3
Unit - II	Engine Maintenance:						9+3
Condition checkin service - Electror Diagnostics. Exha	ervice- Dismantling of Engine components- Engine repair - Work g of seals, gaskets, and sealants in engine- Cooling system se nic fuel injection and engine management service. Fault dia ust system - Servicing for parts of emission control systems.	ervice, lu	brication syst	em	servio	e, Fu	el systen Off Board
11							0.4
	Driveline Maintenance:						
Clutch - General reassembling. Re Rear axle service	Driveline Maintenance: checks, adjustment and service. Transmission and transa noving and replacing propeller shaft. Servicing of yokes, cross Removing axle shafts, bearings. Servicing of differential assemb	of unive					cking and
Clutch - General reassembling. Re Rear axle service <b>Unit - IV</b>	checks, adjustment and service. Transmission and transa noving and replacing propeller shaft. Servicing of yokes, cross Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance:	of unive bly.	ersal joint and	d cor	nstan	velo	cking and city joints 9+3
Clutch - General reassembling. Rea Rear axle service <b>Unit - IV</b> Maintenance of s systems- Rack an	checks, adjustment and service. Transmission and transa noving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee	of unive bly. and shoc ering and	ersal joint and k absorbers. Power steerin	d cor Mai ng. N	ntena	nce c	cking and city joints 9+3 of steering e of Brake
reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an	checks, adjustment and service. Transmission and transa noving and replacing propeller shaft. Servicing of yokes, cross Removing axle shafts, bearings. Servicing of differential assemb <b>Chassis Maintenance:</b> uspension systems -Macpherson strut, coil spring, leaf spring a	of unive bly. and shoc ering and	ersal joint and k absorbers. Power steerin	d cor Mai ng. N	ntena	nce c	city joints 9+3 of steering e of Brake
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte	checks, adjustment and service. Transmission and transa noving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb <b>Chassis Maintenance:</b> uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch	of unive bly. and shoc ering and ange, Wh AC Main	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai	Maii ng. N and V	ntena Aainte Whee ance	rce cenanc nanc l aligr	cking and city joints 9+ of steering e of Brake ment. 9+ C syster
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte	checks, adjustment and service. Transmission and transa moving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch Electrical and HVAC Maintenance: nance of battery, starting, charging and lighting systems. HVA	of unive bly. and shoc ering and ange, Wh AC Main	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai Leak detectio	Maii ng. N and N inten	ntena Aainte Whee ance	rce cenance nce cenanc l aligr of A nargin	cking an city joints 9+ of steering of Brak ment. 9+ C syster
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte parts- compressor	checks, adjustment and service. Transmission and transa moving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch Electrical and HVAC Maintenance: nance of battery, starting, charging and lighting systems. HVA	of unive bly. and shoc ering and ange, Wh AC Main	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai Leak detectio	Maii ng. N and N inten	ntena Aainte Whee ance	rce cenance nce cenanc l aligr of A nargin	cking an city joints 9+ of steering e of Brak iment. 9+ ′C syster g.
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte parts- compressor	checks, adjustment and service. Transmission and transa moving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch Electrical and HVAC Maintenance: nance of battery, starting, charging and lighting systems. HVA	of unive bly. and shoc ering and ange, Wh AC Main C hoses-	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai Leak detection Lecture:	Maii ng. M and V inten on- <i>A</i>	ntena Aainte Whee ance AC Ch	nce cenance l aligr of Anargin ial:15	cking an- city joints 9+ of steering e of Brak ment. 9+ /C syster g.
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte parts- compressor TEXT BOOK: 1. William H	checks, adjustment and service. Transmission and transa moving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch Electrical and HVAC Maintenance: nance of battery, starting, charging and lighting systems. HVA , condenser, expansion valve and evaporator. Replacement of A/	of unive bly. and shoc ering and ange, Wh AC Main C hoses-	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai Leak detection Lecture:	Maii ng. M and V inten on- <i>A</i>	ntena Aainte Whee ance AC Ch	nce cenance l aligr of Anargin ial:15	cking an- city joints 9+ of steering e of Brak ment. 9+ /C syster g.
Clutch - General reassembling. Re Rear axle service Unit - IV Maintenance of s systems- Rack an systems- Bleeding Unit - V Electrical: Mainte parts- compressor TEXT BOOK: 1. William H REFERENCES:	checks, adjustment and service. Transmission and transa moving and replacing propeller shaft. Servicing of yokes, cross - Removing axle shafts, bearings. Servicing of differential assemb Chassis Maintenance: uspension systems -Macpherson strut, coil spring, leaf spring a d pinion steering, Recirculating ball type steering, Worm type stee of brakes. Maintenance of wheel- Tire wear, tire rotation, Tire ch Electrical and HVAC Maintenance: nance of battery, starting, charging and lighting systems. HVA , condenser, expansion valve and evaporator. Replacement of A/	of unive bly. and shoce ering and ange, Wi AC Main C hoses- tion, McC	ersal joint and k absorbers. Power steerin heel balance a tenance: Mai Leak detection Lecture: Graw Hill Educ	Mai Mai ng. M and N inten on- <i>A</i> <b>45</b> , ⁻	ntena Aainte Whee ance AC Ch Tutor	velo nce c nanc l aligr of A nargin <b>ial:15</b> w Del	cking an city joints <b>9+</b> of steerin e of Brak ment. <b>9+</b> C syster g. <b>9</b> , <b>Total:6</b> hi, 2017.

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	discuss the importance of maintenance, workshop practices, tools and safety requirements for automobiles	Understanding (K2)
CO2	explain the maintenance procedure of engine and its sub-systems	Understanding (K2)
CO3	illustrate the maintenance related issues with transmission and drive line	Understanding (K2)
CO4	identify the service practices in the steering, brake, suspension and wheel	Understanding (K2)
CO5	asses the maintenance cum troubleshooting aspects in electrical and air-conditioning systems.	Applying (K3)

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2					2					2		
CO2	3	2			2		2					2		
CO3	3	2					2					2		
CO4	3	2					2					2		
CO5	3	2					2					2		
1 Clight 2	Mode	roto 2	Substant		Dloom'o	Tayana	mu							

1 – Slight, 2 – Moderate, 3 – Substantial, BT	<ul> <li>Bloom's Taxonomy</li> </ul>

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	15	65	20				100
ESE	15	70	15				100
* ±3% may be varied (	(CAT 1.2.3 – 50 marl	s & ESE – 100 ma	rks)			•	

 $\pm 5\%$  may be valied (CAT 1,2,3 – 50 marks  $\approx 132$  – 100 marks)

	(Offered by Department of Automobile Engi	neering)					
Programme & Branch	All BE/BTech Branches except Automobile Engineering	Sem.	Category	L	т	Р	Credi
Prerequisites	Nil	7	OE	3	0	0	3
Preamble	This course provides knowledge on motor vehicle act, vehicle operation structure	taxation,	vehicle insur	ance	e and	trans	port
Unit - I	Introduction:						9
	agement - Objectives and functions – Psychology -Sociology an description -Employment tests – Interviewing - Training procedure				nizati	on. D	rivers ar
Unit - II	Motor Vehicle Act:						9
drivers & condu Registration of v of forms - Gove	definitions - Laws governing to use of motor vehicle & vehicle tractors - Responsibility of driver. Accidents - Causes & analysis. R ehicle - State and interstate permits - Liabilities and preventive mean ment motor vehicle administration structure.	ules rega	arding constru	uctio	n of i	motor	vehicles
Unit - III							
Objectives, stru	Taxation and Insurance: cture and methods of levying taxation - Onetime tax - Tax exen ance types - Significance and renewal- Furnishing particulars of ve	nption -	Tax renewal volved in an a	and	onlir ent -	ne tax Dutv (	<b>9</b> paymer of driver
Objectives, stru Insurance: Insur case of an accio Fund.	cture and methods of levying taxation - Onetime tax - Tax exen ance types - Significance and renewal- Furnishing particulars of ve lent -Hit and Run case -Surveyor and loss assessor - surveyor's re	hicles inv	volved in an a	accid	ent -	Duty of	paymer of driver -Solatiu
Objectives, stru Insurance: Insur case of an accio Fund. <b>Unit - IV</b>	cture and methods of levying taxation - Onetime tax - Tax exen ance types - Significance and renewal- Furnishing particulars of ve lent -Hit and Run case -Surveyor and loss assessor - surveyor's re Transport Operation:	ehicles inveport -Mo	volved in an a tor Accident (	accid Clain	ent - ns Tr	Duty ( ibunal	paymer of driver -Solatiu 9
Objectives, stru Insurance: Insur case of an accio Fund. <b>Unit - IV</b> Structure of pa transport vehicl organizations -	ture and methods of levying taxation - Onetime tax - Tax exent ance types - Significance and renewal- Furnishing particulars of vertient -Hit and Run case -Surveyor and loss assessor - surveyor's response transport Operation: Seenger transport organizations - Depot layouts and requirement es - Preparation of timetable and fare structure - Methods of Scheduling of goods transport vehicles - Management Informatio	ts -Route fare colle	volved in an a tor Accident ( planning - ection - Stru	accid Clain Sche cture	ent - ns Tr edulin e of	Duty ( ibunal g of goods	paymer of driver -Solatiu 9 passeng
Objectives, stru Insurance: Insur case of an accio Fund. <b>Unit - IV</b> Structure of pa transport vehicl organizations -	ture and methods of levying taxation - Onetime tax - Tax exent ance types - Significance and renewal- Furnishing particulars of vertient -Hit and Run case -Surveyor and loss assessor - surveyor's restrict <b>Transport Operation:</b> Seenger transport organizations - Depot layouts and requirement es - Preparation of timetable and fare structure - Methods of	ts -Route fare colle	volved in an a tor Accident ( planning - ection - Stru	accid Clain Sche cture	ent - ns Tr edulin e of	Duty ( ibunal g of goods	paymer of driver -Solatiu 9 passeng
Objectives, stru Insurance: Insur case of an accio Fund. Unit - IV Structure of pa transport vehicl organizations - Storage & trans Unit - V Service advisor complaints - Ti	the second	ts -Route fare colle n System rds.	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works	Clain Clain Sche cture ods to u	ent - ns Tr edulin e of trans under ainin	Duty of ibunal g of g goods port c stand g proo	paymen of driver -Solatiu passeng transpo peration 9 custom cedure f
Objectives, stru Insurance: Insur case of an accio Fund. Unit - IV Structure of pa transport vehicl organizations - Storage & trans Unit - V Service advisor complaints - Ti mechanic - Inve	transport Operation:         Transport Operation:         Transport Operation:         Seenger transport organizations - Depot layouts and requirement         Seenger transport organizations - Depot layouts and requirement         Seenger transport of timetable and fare structure - Methods of         Scheduling of goods transport vehicles - Management Informatio         portation of petroleum products -Operation cost, revenues and reco         Maintenance Management:         - Roles and Responsibilities - Job card and service record pr         me and cost analysis for repair works - Precautions before card	ts -Route fare colle n System rds.	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works	Clain Clain Sche cture ods to u	ent - ns Tr edulin e of trans under ainin	Duty of ibunal g of g goods port c stand g proo	paymen of driver -Solatiu passeng transpo peration 9 custom cedure f
Objectives, stru Insurance: Insur case of an accid Fund. Unit - IV Structure of pa transport vehicl organizations - Storage & trans Unit - V Service advisor complaints - Ti mechanic - Inve software.	transport Operation:         Transport Operation:         Transport Operation:         Seenger transport organizations - Depot layouts and requirement         Seenger transport organizations - Depot layouts and requirement         Seenger transport of timetable and fare structure - Methods of         Scheduling of goods transport vehicles - Management Informatio         portation of petroleum products -Operation cost, revenues and reco         Maintenance Management:         - Roles and Responsibilities - Job card and service record pr         me and cost analysis for repair works - Precautions before card	ts -Route fare colle n System rds.	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works	Clain Clain Sche cture ods to u	ent - ns Tr edulin e of trans under ainin	Duty of ibunal g of g goods port c stand g proo	paymen of driver -Solatiu 9 passeng transpo peration 9 custom cedure f aintenan
Objectives, stru Insurance: Insur case of an accid Fund. Unit - IV Structure of pa transport vehicl organizations - Storage & trans Unit - V Service advisor complaints - Ti mechanic - Inve software.	transport Operation:         Transport Operation:         Transport Operation:         Seenger transport organizations - Depot layouts and requirement         Seenger transport organizations - Depot layouts and requirement         Seenger transport of timetable and fare structure - Methods of         Scheduling of goods transport vehicles - Management Informatio         portation of petroleum products -Operation cost, revenues and reco         Maintenance Management:         - Roles and Responsibilities - Job card and service record pr         me and cost analysis for repair works - Precautions before card	ts -Route fare colle n System rds.	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works	Clain Clain Sche cture ods to u	ent - ns Tr edulin e of trans under ainin	Duty of ibunal g of g goods port c stand g proo	payme of driver -Solatiu 9 passeng transpo peration 9 custom cedure f aintenan
Objectives, stru Insurance: Insur case of an accid Fund. Unit - IV Structure of pa transport vehicl organizations - Storage & trans Unit - V Service advisor complaints - Ti mechanic - Inve software.	cture and methods of levying taxation - Onetime tax - Tax exemance types - Significance and renewal- Furnishing particulars of vellent -Hit and Run case -Surveyor and loss assessor - surveyor's reserver and renewal- Furnishing particulars of vellent -Hit and Run case -Surveyor and loss assessor - surveyor's reserver transport Operation:         Seenger transport Operation:         es - Preparation of timetable and fare structure - Methods of Scheduling of goods transport vehicles - Management Informatio portation of petroleum products -Operation cost, revenues and recomportation of petroleum products -Operation cost, revenues and recomportation of petroleum products - Job card and service record prime and cost analysis for repair works - Precautions before carrientory control in stores - Customer longue requirements - Custom         //ehicle Act"., Govt. of India Publications.	ts -Route fare colle n System rds.	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works	Clain Clain Sche cture ods to u	ent - ns Tr edulin e of trans under ainin	Duty of ibunal g of g goods port c stand g proo	paymen of driver -Solatiu 9 passeng transpo peration 9 custom cedure f aintenan
Objectives, stru         Insurance: Insurance: Insurances of an accid         Fund.         Unit - IV         Structure of patransport vehicl         organizations -         Storage & trans         Unit - V         Service advisor         complaints - Ti         mechanic - Investor         software.         TEXT BOOK:         1.         "Motor"         REFERENCES:	ture and methods of levying taxation - Onetime tax - Tax exen ance types - Significance and renewal- Furnishing particulars of ve lent -Hit and Run case -Surveyor and loss assessor - surveyor's re <b>Transport Operation:</b> ssenger transport organizations - Depot layouts and requirement es - Preparation of timetable and fare structure - Methods of Scheduling of goods transport vehicles - Management Informatio portation of petroleum products -Operation cost, revenues and reco <b>Maintenance Management:</b> - Roles and Responsibilities - Job card and service record pr me and cost analysis for repair works - Precautions before card antory control in stores - Customer longue requirements - Custom /ehicle Act"., Govt. of India Publications.	hicles investories investori investories investories investories investories investories i	volved in an a tor Accident of e planning - ection - Stru n (MIS) in go n - Trial run repair works ack systems	to us -Tr	ent - ns Tr edulin e of t trans	Duty of ibunal goods port c stand g proo op Ma	payme of driver -Solatiu 9 passeng transpo peration 9 custom cedure f aintenan Total:

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate interviewing and training procedures for drivers and conductors	Understanding (K2)
CO2	exemplify public & vehicle issues with help of motor vehicle act	Understanding (K2)
CO3	identify appropriate tax and insurance policies for their own vehicle	Understanding (K2)
CO4	discuss the operation cost and revenues of transport operation	Understanding (K2)
CO5	explain the management principles involved in maintenance	Understanding (K2)

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				3	3	2				3		
CO2	3	2				3	3	2				3		
CO3	3	2				3	3	2				3		
CO4	3	2				3	3	2				3		
CO5	3	2				3	3	2				3		
4 01:	Mada		0		DI / -	т								

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	20	80					100
CAT3	20	80					100
ESE	15	85					100
* ±3% may be varied (	CAT 1,2,3 – 50 mark	s & ESE – 100 ma	irks)				

	22AUO04 - AUTONOMOL	JS VEHICLES					
	(Offered by Department of Autor	nobile Engineering)	T	r	1	r	
Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	NIL	8	OE	3	0	0	3
Preamble	To acquire knowledge on the concept of automate intelligence with case studies of an autonomous ve		and the contr	ibuti	on of	artific	ial
Unit – I	Automated Driving:						9
Introduction to A	DV - Safety - Vehicle and its occupants – External peop	le and property - Se	rvice and repa	air -	IMI T	echSa	afe.
Unit – II	Advanced driver assistance systems:						9
	DAS - Example Systems - Adaptive Cruise control - C mera - Rear Radar - Functional Safety and Risk.	Obstacle Avoidance	Radar - Basi	c rev	/ersin	g aid	- Radar
	-						
	Automated driving technologies:	nsor Positioning - A	utomated Driv	/ina	Svste	em –	9 Mapping
Introduction - Ro Other technolog Learning.	bad to Autonomy – Perception - Lidar Operation - Ser les – Connectivity - Artificial Intelligence - Top-down						Mapping d Machin
Other technolog Learning. <b>Unit – IV</b>	pad to Autonomy – Perception - Lidar Operation - Ser	and Bottom-up AI -	Deep learnin	g -	End 1	o End	Mapping d Machin <b>9</b>
Introduction - Ro Other technolog Learning. <b>Unit – IV</b> Introduction - Pu	bad to Autonomy – Perception - Lidar Operation - Ser ies – Connectivity - Artificial Intelligence - Top-down a Social and human issues:	and Bottom-up AI -	Deep learnin	g -	End 1	o End	Mapping d Machin 9
Introduction - Ro Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V	bad to Autonomy – Perception - Lidar Operation - Ser ies – Connectivity - Artificial Intelligence - Top-down a Social and human issues: blic reaction to CAVs – Insurance - Mobility as a Servi	and Bottom-up AI -	Deep learnin w - UK - Eurc	g -	End t	o End	Mapping d Machin 9 JS - japa 9
Introduction - Ro Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V	bad to Autonomy – Perception - Lidar Operation - Ser ies – Connectivity - Artificial Intelligence - Top-down a Social and human issues: blic reaction to CAVs – Insurance - Mobility as a Servi Case studies:	and Bottom-up AI -	Deep learnin w - UK - Eurc	g -	End t	o End	Mapping d Machin 9 JS - japa 9
Introduction - Ro Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V Nvidia – Bosch -	bad to Autonomy – Perception - Lidar Operation - Ser ies – Connectivity - Artificial Intelligence - Top-down a Social and human issues: blic reaction to CAVs – Insurance - Mobility as a Servi Case studies:	and Bottom-up AI -	Deep learnin w - UK - Eurc	g -	End t	o End	Mapping d Machir 9 JS - japa 9 AG.
Introduction - Ro Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V Nvidia – Bosch -	bad to Autonomy – Perception - Lidar Operation - Series – Connectivity - Artificial Intelligence - Top-down a         Social and human issues:         blic reaction to CAVs – Insurance - Mobility as a Servi         Case studies:         Google (Waymo) - Tesla Autopilot – Audi - Jaguar Land         nton., "Automated Driving and Driver Assistance System	and Bottom-up AI - ice - Global Overvie d Rover - Toyota Gu	Deep learnin w - UK - Eurc ardian – FLIR	g - ppea	End t	o End	Mapping d Machir 9 JS - japa 9 AG. Total:4
Introduction - Ro Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V Nvidia – Bosch - TEXT BOOK:	bad to Autonomy – Perception - Lidar Operation - Series – Connectivity - Artificial Intelligence - Top-down a         Social and human issues:         blic reaction to CAVs – Insurance - Mobility as a Servi         Case studies:         Google (Waymo) - Tesla Autopilot – Audi - Jaguar Land         nton., "Automated Driving and Driver Assistance System	and Bottom-up AI - ice - Global Overvie d Rover - Toyota Gu	Deep learnin w - UK - Eurc ardian – FLIR	g - ppea	End t	o End	Mapping d Machir 9 JS - japa 9 AG. Total:4
Introduction - Re Other technolog Learning. Unit – IV Introduction - Pu and china. Unit – V Nvidia – Bosch - TEXT BOOK: 1. Tom De Kingdon REFERENCES:	bad to Autonomy – Perception - Lidar Operation - Series – Connectivity - Artificial Intelligence - Top-down a         Social and human issues:         blic reaction to CAVs – Insurance - Mobility as a Servi         Case studies:         Google (Waymo) - Tesla Autopilot – Audi - Jaguar Land         nton., "Automated Driving and Driver Assistance System	and Bottom-up AI - ice - Global Overvie d Rover - Toyota Gu ns", 1st Edition, Rou	Deep learnin w - UK - Euro ardian – FLIR tledge, Taylor	g -	n unio	o Endono Endo Endono Endono Endono Endono Endono Endono Endono Endono Endono Endono Endono Endon	Mapping d Machir 9 JS - japa 9 AG. Total:4

		UTCOM tion of t		se, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1	exp	lain the	safety as	spects of a	autono	mous veh	icles.						Ur	derstandi	ng (K2)
CO2	des	cribe ad	vanced	driver assi	stance	e systems	for auto	nomou	s vehic	les.			Ur	derstandi	ng (K2)
CO3	illus	trate au	tomated	driving te	chnolo	gies with	sensor p	positioni	ing.					Applying	(K3)
CO4	app	ly the ar	tificial in	telligence	techni	ques to a	utonomo	ous veh	icles.					Applying	(K3)
CO5	ana	lyse the	specific	ations of a	utonoi	mous veh	icles fro	m vario	us mar	nufacture	ers.			Analyzing	(K4)
						Mappin	g of CO	s with	POs ar	nd PSO:	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	3	2	1	1	2	2					1		
CO	2	3	3	2	1	1	2	2					1		
CO	03	3	3	2	1	1	2	2					1		
CO	)4	3	3	2	1	1	2	2					1		
CO	95	3	3	2	1	1	2	2					1		
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	al, BT	- Bloom's	Taxono	my				L.			
						ASSES	SMENT	PATTE	RN – 1	[HEOR]	(				
	st / Bl Categ	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		20		80									100
	CAT	2		20		45		35	5						100
	CAT	3		10		35		20	)	35					100

35

15

10 *  $\pm 3\%$  may be varied (CAT 1,2,3 – 50 marks & ESE – 100 marks)

40

ESE

100

	(Offered by Department of Electronics and Commun	nication Engli	neerina)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	All	OE	4	0	0	4
Preamble	This course serves as an introduction to the German languag cultural aspects of Germany and German speaking countries the basic day to day vocabulary. On keen learning one would be able to reciprocate to basic questions	. One can lea	arn to introduc	e one	self a	ind ab	le to gai
Unit – I	Good Day (Guten Tag)						12
	introduction and introducing others, Numbers, Alphabets, Countrie es, Verb conjugation and personal pronoun.	es and langua	ages spoken.	Gram	mar	– W (	questions
Unit – II	Friends & Colleague (Freund und Kollegen):						12
Hobbies, Profequestions.	ssion, Week, Months, Season and Generate Profile. Grammar –	Articles, Plu	ural, Verbs -	have	and	to be	e, Yes/N
Unit – III	n the City (In der Stadt):						12
	/buildings in the city, asking for directions, Understanding means of s and Imperative	transport. G	rammar – defi	nite a	nd in	definit	e articles
Unit – IV	Food and Appointment (Essen und Termin):						12
Understanding	g, initiate conversations to understand and do shopping. Gran time and reciprocating, Appointments, Asking excuse, Family. Gran lein, Modal verbs- <i>müssen, können, wollen</i>						
Unit – V	Socializing (Zeit mit Freunden):						12
	er, Birthday, Invitation, Restaurant, looking for specific information case, Past tense of have and to be, Personal pronoun with Accusat		ammar – Sepa	arable	verb	os, Pre	eposition
							Total:6
TEXT BOOK:							
	e Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk D ssar with 2 CDs", Goyal Publishers, Delhi, 2015.	eutsch als F	remdsprache	A1–ι	irsbu	ch, Ar	beitsbuc
REFERENCES							
	ocw.mit.edu – Massachusetts Institute of Technology Open Coursew	are					
1. https://d	ow.mit.edu – massachusetts institute of Technology Open Ooursen	alc					

		UTCOM ion of t		se, the st	udents	will be a	ble to						(	BT Map Highest L	
CO1	unde	erstand	structure	e of langu	age and	introduci	ng each	other					Rer	nembering	g (K1)
CO2	unde	erstand	vocabula	ary on sea	asons ar	nd basic v	/erbs						Unc	lerstandin	g (K2)
CO3	ask	for direc	ctions in	a new pla	ce and a	avail trans	sport as	required					Und	lerstanding	g (K2)
CO4	unde	erstand	food hab	oits of Gei	man an	d ask for	appointn	nents.					Und	lerstanding	g (K2)
CO5	learr	n to soc	ialize in a	a Germar	speakir	ng countr	у						Und	lerstanding	g (K2)
						Маррі	ing of CO	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	) PO11	P012	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Slię	ght, 2	– Mode	rate, 3 –	Substant	ial, BT- I	Bloom's T	Taxonom	iy							
						ASSE	SSMEN		ERN - T	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ing l	Understa (K2)		Apply (K3)		Analyzi (K4) 9		Evaluating (K %		reating K6) %	Total %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100

Programme& Branch Prerequisite	(Offered by Department of Electronics and Commun All BE/BTech Engineering and Technology Branches	nication Eng	gineering)				
Branch	All BE/BTech Engineering and Technology Branches						
Prerequisite	All DE/Directi Engineering and rectinology Dranches	Sem.	Category	L	т	Ρ	Credit
	s Nil	All	OE	4	0	0	4
Preamble	The basic level of Japanese which provides understanding one to greet, introduce oneself and other person and also p conversations						
Unit – I	Introduction to Hiragana and Katakana:						12
Chart 1, Char	t 2, Chart 3, Annexures 1 and 2 and basic Japanese rules along with	n similar sou	inded vocabul	aries	for ea	ach ch	art.
Unit – II	Introduction to Nouns, various particles and usages:						12
Forming simp	le sentences, asking questions, positioning differentiation and owning	g fundamer	ntals – new pa	rticles	and	usage	es
Unit – III	Introduction of Verbs, time and place markers:						12
	on words in sentences and framing them – place and time markers u	isanes – ni	ving and recei	vina -	_ omi	eeion	• •
particles in a	•	usayes – yi	villy and recei	ving -	- 0111	551011	
Unit – IV	Introduction of Adjectives, Adverbs and usages:						12
	ouns and verbs and framing them to relate day to day conversation f the likes and dislikes expressions	ons- positiv	e and negativ	ve en	ding	of the	e same
Unit – V	Introduction to Counters and Kanji:						12
	umbers-How to use quantifiers-Present form of adjectives and Nou s – 55 kanji characters	ns-Other ne	ecessary parti	cles-H	low t	o use	number
							Total:6
ТЕХТ ВООК							
1. "MIN	NA NO NIHONGO–Japanese for Everyone", 2 nd Edition, Goyal Public	shers & Dis	tributors Pvt. I	_td., N	lew D	Delhi,	2017.
REFERENCE	S:						
1. Marg	herita Pezzopane, "Try N5", 2 nd Edition, Tankobon Softcover, Japan,	, 2017.					
		n Softcover,					

		UTCON tion of t		se, the s	tudent	s will be a	able to						()	BT Mapp lighest L	
CO1	read	d and ur	nderstan	d typical	express	sion in Hir	agana a	nd Katal	kana				Rem	embering	J (K1)
CO2	gree	et and ir	ntroduce	oneself a	and othe	ər							Und	erstandin	g (K2)
CO3	com	nmunica	te day to	o day con	versatio	ons – basi	ic level						Und	erstanding	g (K2)
CO4	und	erstand	the Kar	ijis in Jap	anese S	Script							Und	erstanding	g (K2)
CO5	com	nprehen	d conce	pt of num	bers, da	ays, mont	hs, time	and cou	inters				Und	erstanding	g (K2)
						Маррі	ng of CO	Os with	POs ar	nd PSOs	;				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substan	itial, BT	- Bloom's	Taxono	my							
						ASSE	SSMEN		ERN - 1	HEORY					
	st / Bl Categ	oom's ory*	Re	member (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		eating <6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESI	E		25		75									100
* ±3%	may I	be varie	d (CAT	1,2,3 – 50	) marks	& ESE -	100 mai	·ks)	1						

	(Offered by Department of Computer Science a	nd Engineer	ing)				
Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credi
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	Design Thinking is human-centered problem solving tool creation and stakeholder feedback to unlock creativity idea/solutions.			-			
Unit – I	Design Thinking and Explore:						9+3
	g: Key Principles and Mindset – Five Phases, Methods and Too gn Thinking – <b>Explore</b> : Methods & Tools – STEEP Analysis – S rtunity Framing.	•	•				
Unit – II	Empathize						9+3
-	nods & Tools – Field Observation – Deep User Interview – Em ser Persona Development.	pathy Map -	- User Journey	/ Map	o - N	eed	Finding
-							
	Experiment						9+3
Unit – III Experiment: Me		n – Deconsti	ruct & Recons	truct ·	– Us	er Ex	
Unit – III Experiment: Me	Experiment thods & Tools – Ideation – SCAMPER – Analogous Inspiration	n – Deconsti	ruct & Recons	truct ·	– Us	er Ex	
Unit – III Experiment: Me Journey – Prototy Unit – IV	Experiment thods & Tools – Ideation – SCAMPER – Analogous Inspiration /ping– Idea Refinement.						xperienc 9+3
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users.	Experiment thods & Tools – Ideation – SCAMPER – Analogous Inspiration /ping– Idea Refinement. Engage						xperienc 9+3
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users. Unit – V Evolve: Methods	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding	- Co-Creatio	on with Users - ystems – Activ	- Coll	ect F	eedt	9+3 pack fror 9+3
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users. Unit – V Evolve: Methods	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding         Evolve         & Tools – Concept Synthesis – Strategic Requirements –Evolve	- Co-Creatio	on with Users - ystems – Activ	- Coll rity Sy	ect F ysten	Feedt	<b>9+3</b> back fror <b>9+3</b> egration
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users. Unit – V Evolve: Methods Viability Analysis	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding         Evolve         & Tools – Concept Synthesis – Strategic Requirements –Evolve	- Co-Creatio	on with Users - systems – Activ ick Wins.	- Coll rity Sy	ect F ysten	Feedt	9+3 pack fror 9+3 egration
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users. Unit – V Evolve: Methods Viability Analysis TEXT BOOK:	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding         Evolve         & Tools – Concept Synthesis – Strategic Requirements –Evolve	– Co-Creatio ed Activity S gement - Qui	on with Users - systems – Activ ick Wins. Lecture:4	- Coll rity Sy <b>5, Tu</b>	ect F /sten	Feedt	9+3 pack from 9+3 egration
Unit – III Experiment: Me Journey – Prototy Unit – IV Engage: Method Users. Unit – V Evolve: Methods Viability Analysis TEXT BOOK:	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding         Evolve         & Tools – Concept Synthesis – Strategic Requirements –Evolve         – Innovation Tools using User Needs, CAP, 4S – Change Manage	– Co-Creatio ed Activity S gement - Qui	on with Users - systems – Activ ick Wins. Lecture:4	- Coll rity Sy <b>5, Tu</b>	ect F /sten	Feedt	9+3 pack fror 9+3 egration
Unit – III         Experiment: Me         Journey – Prototy         Unit – IV         Engage: Method         Users.         Unit – V         Evolve: Methods         Viability Analysis         TEXT BOOK:         1.         REFERENCES:	Experiment         thods & Tools – Ideation – SCAMPER – Analogous Inspiration         /ping– Idea Refinement.         Engage         s & Tools – Story Telling – Art of Story Telling – Storyboarding         Evolve         & Tools – Concept Synthesis – Strategic Requirements –Evolve         – Innovation Tools using User Needs, CAP, 4S – Change Manage         ng Hwa, "Design Thinking The Guidebook", Design Thinking Mase	– Co-Creatio ed Activity S gement - Qui ter Trainers	on with Users - systems – Activ ick Wins. <b>Lecture:4</b> of Bhutan, 201	- Coll rity Sy <b>5, Tu</b> 7. (E-	ect F ysten ttoria	n Inte	<b>9+3</b> back from <b>9+3</b> egration <b>Total:6</b>

COUR On co			MES: the cou	rse, the	studen	ts will	be ab	le to						BT Ma (Highest	
CO1	Cor	nstruct	design cl	hallenge	and ref	rame th	ne des	ign chall	enge in	to design op	portunity.			Applyin	g (K3)
CO2			he user, ne deep u					rs to fost	er deep	user unders	tanding and	be able to	)	Applyin	g (K3)
CO3	Dev	velop io	leas and	prototyp	es by b	rain sto	orming	using the	e ideati	on tools.				Applyin	g (K3)
CO4	Org	anize	the user v	walkthro	ugh exp	erience	e using	ideal us	er expe	erience journ	ey.			Applyin	g (K3)
CO5		/elop s lier pha		tegies &	implem	entatio	n plan	that will	deliver/	achieve the	idea/solution	deduced	from	Applyin	g (K3)
						Ма	pping	of COs	with P	Os and PSO	S				
COs/P	Os	РО 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO
CO	1	3	3	3	1					3	2	1		3	1
CO2	2	3	3	3	1					3	2	1		3	1
CO	3	3	3	3	1					3	2	1		3	1
CO4	4	3	3	3	1					3	2	1		3	1
CO	5	3	3	3	1					3	2	1		3	1
1 – Slię	ght, 2	2 – Moo	derate, 3	– Substa	antial, B	T- Bloo	m's Ta	axonomy	,						
						AS	SESS	MENT P	ATTER	N – THEOR	Y				
Te	ests		Remem (K1)			erstanc (K2) %		Apply (K3)		Analyzin g (K4) %	Evaluati ng (K5) %	Creat (K6) 9		Tota	۱%
CA	AT 1		10	)		20		70	)					10	0
CA	AT 2		10	)		15		75	5					10	0
CA	AT 3		10	)		15		75	5					10	0
	SE		10			15		75						10	0

	( <b>0</b> // )) <b>D</b>						
	(Offered by Department of Mechatronics Er	ngineering)	1			1	[
Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	6	OE	3	1	0	4
Preamble	This course will inspire the students to think innovation conce	epts and id	eas for busine	ess n	nodel	deve	lopments
Unit - I	Innovation and Design Thinking:						9+3
Design Thinking a	reativity– Types of innovation – challenges in innovation- steps i and Entrepreneurship – Design Thinking Stages: Empathize – D Brainstorming – Mind mapping						
Unit - II	User Study and Contextual Enquiry:						9+3
research – focus customer needs –	arch – primary and secondary data – classification of secondar groups – depth interviews – analysis of qualitative data – surve organize needs into a hierarchy –establish relative importance of	y methods	- observation	ns- P	roces	ss of i	identifying ons
Unit - III	Product Design: ools for concept generation, concept evaluation – Product archite						9+3
prototyping - top							
interaction Unit - IV	Is and techniques- overview of processes and materials - e Business Model Canvas (BMC):	valuation t	ools and tec	hniqu	ies fo	or use	-
interaction Unit - IV	Business Model Canvas (BMC): BMC - difference and building blocks- BMC: Patterns – Desig						9+3
Interaction Unit - IV Lean Canvas and	Business Model Canvas (BMC): BMC - difference and building blocks- BMC: Patterns – Desig						9+3 el failures
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled	Business Model Canvas (BMC): BMC - difference and building blocks- BMC: Patterns – Desig edies	n – Stratec	gy – Process- Trademarks	-Busi , Pa	ness tents	mode	9+: el failures 9+: ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Desig edies         I PR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Commercialization	n – Stratec	gy – Process- Trademarks	Busi , Pa ovatio	ness tents on Ma	mode , Geo arketir	9+ el failures 9+ ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Desig edies         I PR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Commercialization	n – Stratec	jy – Process- Trademarks lization – Inno	Busi , Pa ovatio	ness tents on Ma	mode , Geo arketir	9+: el failures 9+: ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled Indications, Trade	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Desig edies         I PR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Commercialization	n – Strateç py Rights, Commercia	y – Process- Trademarks lization – Inno <b>Lecture:</b>	-Busi , Pa ovatio <b>45, T</b>	ness tents on Ma	mode , Geo arketir	9+: el failures 9+: ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intellec Indications, Trade	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Designedies         IPR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Concepts and Industrial Design– Patent Licensing - Technology (Concepts)	n – Strateç py Rights, Commercia	y – Process- Trademarks lization – Inno <b>Lecture:</b>	-Busi , Pa ovatio <b>45, T</b>	ness tents on Ma	mode , Geo arketir	9+ el failures 9+ ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled Indications, Trade TEXT BOOK: 1. Rishikest REFERENCES:	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Designedies         IPR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Concepts and Industrial Design– Patent Licensing - Technology (Concepts)	n – Strateç py Rights, Commercia xcellence",	y – Process- Trademarks lization – Inno <b>Lecture:</b> Collins India,	-Busi , Pa ovatio <b>45, T</b>	ness tents on Ma	mode , Geo arketir	9+ el failures 9+ ographica
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intellec Indications, Trade TEXT BOOK: 1. Rishikest REFERENCES: 1. Peter Dru 2. Eppinge	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Desigedies         IPR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Co         Secrets and Industrial Design– Patent Licensing - Technology (         ha T.Krishnan, "8 Steps To Innovation: Going From Jugaad To E	n – Strateg py Rights, Commercia xcellence",	y – Process- Trademarks lization – Inno <b>Lecture:</b> Collins India,	Busi , Pa ovatic <b>45, T</b> 201	ness tents on Ma <b>'utor</b> i	mode , Geo arketir i <b>al:15</b>	9+ el failures 9+ ographica ng , Total:60
Interaction Unit - IV Lean Canvas and Reasons and rem Unit - V Need for Intelled Indications, Trade TEXT BOOK: 1. Rishikest REFERENCES: 1. Peter Dru 2. Eppinge 3. Alexand	Business Model Canvas (BMC):         I BMC - difference and building blocks- BMC: Patterns – Desigedies         IPR and Commercialization:         tual Property- Basic concepts - Different Types of IPs: Coresecrets and Industrial Design– Patent Licensing - Technology (Coresecrets and Industrial Design– Patent Licensing - Technology (Coresecrets)         na T.Krishnan, "8 Steps To Innovation: Going From Jugaad To Encore the secrets and Entrepreneurship", Routledge CRC Press	n – Strateg py Rights, Commercia xcellence", , London, 2 dition, McG	y – Process- Trademarks lization – Inno <b>Lecture:</b> Collins India, 014. Graw-Hill High	Busi , Pa ovatic <b>45, T</b> 201: er Ec	tents on Ma <b>iutor</b> i 3.	mode , Geo arketin ial:15	9+ el failures 9+ ographica ng , Total:6

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	understand innovation need and design thinking phases	Understanding (K2)
CO2	identify, screen and analyse ideas for new products based on customer needs	Analysing (K4)
CO3	develop and analyse the product concepts based on the customer needs and presents the overall architecture of the product.	Analysing (K4)
CO4	predict a structured business model for MVP	Applying (K3)
CO5	practice the procedures for protection of their ideas' IPR	Applying (K3)

					Mappin	ig of CC	)s with	POs ar	nd PSO	S				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2			2						3		
CO2	3	3	3	3	2	2	2	2	3	3	3	3		
CO3	2	2	3	3	3	3	3	3	3	3	3	3		
CO4				3	2	2	2	3	3	3	3	3		
CO5				3	2	2		3	2	3	3	3		

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

## **ASSESSMENT PATTERN - THEORY**

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	40	10			100
CAT2	20	30	40	10			100
CAT3	30	30	40				100
ESE	20	30	30	20			100
* ±3% may be varied	(CAT 1,2,3 – 50 mar	ks & ESE – 100 ma	rks)				

	22GEO05 - GERMAN LANGUAGE L						
	(Offered by Department of Electronics and Commu	nication Eng	pineering)	-	1	1	1
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	German Language Level 1	All	OE	4	0	0	4
Preamble	This course aims to help the learner to acquire the vocabular German language A1 level competence. This course will help vocabulary to understand and reciprocate in daily life situatio able to gain a comprehensive understanding of the German g situations	to assimilans on a broa	te the basic gr ader sense. A	ramm thoro	iar str ugh l	ucture earne	es and gair r will be
Unit – I	Contacts(Kontakte):						12
	etters, simple instructions, speaking about language learning, fir standing conversations, Making appointments. Grammar – Prep es.						
Unit – II	Accomodation(Die Wohnung):						12
	ccommodation advertisements, describing accommodation and Grammar – Adjective with to be verb, Adjective with sehr/zu, Adje						
Unit – III	Are you Working?(Arbeiten Sie):						12
							12
	speaking about past, understanding Job openings advertiseme mar – Perfect tense, Participle II – regular and irregular verbs, Co				nvers	ations	
about Jobs. Gram Unit – IV	speaking about past, understanding Job openings advertiseme nmar – Perfect tense, Participle II – regular and irregular verbs, Co Clothes and Style(Kleidung und mode):	onjunctions -	- und, oder, al	ber			, Speaking
about Jobs. Gram <b>Unit – IV</b> Clothes, Chats o	speaking about past, understanding Job openings advertiseme mar – Perfect tense, Participle II – regular and irregular verbs, Co Clothes and Style(Kleidung und mode): on shopping clothes, reporting on past, Orienting oneself in Su rogative articles and Demonstrative articles, Partizip II – separa	permarkets	und, oder, al	ber and r	esea	rch at	, Speaking 12 pout Berlin
about Jobs. Gram <b>Unit – IV</b> Clothes, Chats o Grammar – Inter	speaking about past, understanding Job openings advertiseme mar – Perfect tense, Participle II – regular and irregular verbs, Co Clothes and Style(Kleidung und mode): on shopping clothes, reporting on past, Orienting oneself in Su rogative articles and Demonstrative articles, Partizip II – separa	permarkets	und, oder, al	ber and r	esea	rch at	, Speaking 12 pout Berlin
about Jobs. Gram Unit – IV Clothes, Chats o Grammar – Inter Dative, Verbs with Unit – V Personal informa <i>du/lhr</i> , Modal ver	<ul> <li>speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Concern Contens and Style(Kleidung und mode):</li> <li>In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separate h Dative</li> </ul>	permarkets, ble and nor d prompts, , Path, Post	- und, oder, al Information a n-separable ve health tips. O	ber and r erbs, Grami er, Tra	esea Pers mar - avel r	rch at onal p - Impe eports	<ul> <li>Speaking</li> <li>12</li> <li>boott Berlin</li> <li>boronouns in</li> <li>12</li> <li>erative with</li> <li>s, Problems</li> </ul>
about Jobs. Gram <b>Unit – IV</b> Clothes, Chats of Grammar – Inter Dative, Verbs with <b>Unit – V</b> Personal informa <i>du/lhr</i> , Modal ver in hotel, Tourist d	<ul> <li>speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Construction</li> <li>Clothes and Style(Kleidung und mode):</li> <li>In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separate health</li> <li>Health and Vacation(Gesundheit und Urlaub):</li> <li>tion, Human Body parts, Sports, Understanding instructions and bs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel</li> </ul>	permarkets, ble and nor d prompts, , Path, Post	- und, oder, al Information a n-separable ve health tips. O	ber and r erbs, Grami er, Tra	esea Pers mar - avel r	rch at onal p - Impe eports	12 5 Speaking 12 5 Speaking 12 12 12 12 12 12 12 12 12 12
about Jobs. Gram Unit – IV Clothes, Chats of Grammar – Inter Dative, Verbs with Unit – V Personal informa du/lhr, Modal ver in hotel, Tourist d Schl TEXT BOOK: 1 Stefanie	<ul> <li>speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Construction</li> <li>Clothes and Style(Kleidung und mode):</li> <li>In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separate health</li> <li>Health and Vacation(Gesundheit und Urlaub):</li> <li>tion, Human Body parts, Sports, Understanding instructions and bs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel</li> </ul>	permarkets, ble and nor d prompts, , Path, Post en, Was, W	- und, oder, al Information a n-separable ve health tips. G cards, weathe em, Adverbs -	ber and r erbs, Grami er, Tra - Zue	esea Pers mar - avel r <i>rst, d</i>	rch at onal p - Impo eports ann, S	12 pout Berlin pronouns in 12 erative with s, Problems Später, Zur Total:60
about Jobs. Gram Unit – IV Clothes, Chats of Grammar – Inter Dative, Verbs with Unit – V Personal informa du/lhr, Modal ver in hotel, Tourist d Schl TEXT BOOK: 1 Stefanie	speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Compare – Perfect tense, Participle II – regular and irregular verbs, Compare And Style(Kleidung und mode): In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separa h Dative Health and Vacation(Gesundheit und Urlaub): tion, Human Body parts, Sports, Understanding instructions an bs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel estinations. Grammar – Pronoun: man, Question words – Wer, W Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk I	permarkets, ble and nor d prompts, , Path, Post en, Was, W	- und, oder, al Information a n-separable ve health tips. G cards, weathe em, Adverbs -	ber and r erbs, Grami er, Tra - Zue	esea Pers mar - avel r <i>rst, d</i>	rch at onal p - Impo eports ann, S	12 5 Speaking 12 5 Oout Berlin 5 Oronouns in 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15
about Jobs. Gram Unit – IV Clothes, Chats of Grammar – Inter Dative, Verbs with Unit – V Personal informa <i>du/lhr</i> , Modal ver in hotel, Tourist d Schl TEXT BOOK: 1. Stefanie und Glos	speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Compare – Perfect tense, Participle II – regular and irregular verbs, Compare And Style(Kleidung und mode): In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separa h Dative Health and Vacation(Gesundheit und Urlaub): tion, Human Body parts, Sports, Understanding instructions an bs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel estinations. Grammar – Pronoun: man, Question words – Wer, W Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk I	permarkets, ble and nor d prompts, , Path, Post en, Was, W	- und, oder, al Information a n-separable ve health tips. G cards, weathe em, Adverbs -	ber and r erbs, Grami er, Tra - Zue	esea Pers mar - avel r <i>rst, d</i>	rch at onal p - Impo eports ann, S	12 5 Speaking 12 5 Oout Berlin 5 Oronouns in 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15
about Jobs. Gram Unit – IV Clothes, Chats of Grammar – Inter Dative, Verbs with Unit – V Personal informa du/lhr, Modal ver in hotel, Tourist d Schl TEXT BOOK: 1. Stefanie und Glos 2. REFERENCES:	speaking about past, understanding Job openings advertisementar – Perfect tense, Participle II – regular and irregular verbs, Compare – Perfect tense, Participle II – regular and irregular verbs, Compare And Style(Kleidung und mode): In shopping clothes, reporting on past, Orienting oneself in Surogative articles and Demonstrative articles, Partizip II – separa h Dative Health and Vacation(Gesundheit und Urlaub): tion, Human Body parts, Sports, Understanding instructions an bs – sollen, müssen, nicht dürfen, dürfen. Suggestions for travel estinations. Grammar – Pronoun: man, Question words – Wer, W Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk I	permarkets, ble and nor d prompts, , Path, Post <i>en, Was, W</i>	- und, oder, al Information a n-separable ve health tips. G cards, weathe em, Adverbs -	ber and r erbs, Grami er, Tra - Zue	esea Pers mar - avel r <i>rst, d</i>	rch at onal p - Impo eports ann, S	12 5 Speaking 12 5 Oout Berlir 5 Oronouns i 12 erative wit 5, Problem Später, Zur Total:6

		UTCOM ion of t		se, the s	tudents	will be a	able to						(	BT Map Highest	
CO1	unde	erstand	letters a	nd simple	e texts								Re	ememberi	ng (K1)
CO2	assii	milate v	ocabula	ry on Acc	ommod	ation and	l invitatio	n					Ur	derstand	ing (K2)
CO3	com	prehen	d concep	ot of time,	telepho	onic conve	ersation	and job·	related	informa	tion		Ur	derstand	ing (K2)
CO4	unde	erstand	how to c	lo shoppi	ng in a	German s	store						Ur	derstand	ing (K2)
CO5	unde	erstand	body pa	rts and h	ow to pl	an persor	nal trave	I					Ur	derstand	ing (K2)
						Марр	oing of C	Os witl	n POs a	nd PSC	s				
COs/F	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Slig	ght, 2	– Mode	rate, 3 –	Substan	tial, BT-	Bloom's	Taxonoi	my							
						ASSE	ESSMEN		FERN -	THEOR	Y				
	st / Blo Catego	oom's ory*	Re	member (K1) %	ing	Understa (K2)	•	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		eating (6) %	Total %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	-		25		75									100

	(Offered by Department of Electronics and Commur	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credi
Prerequisites	German Language Level 2	All	OE	3	0	0	3
Preamble	This course provides enriching information about various eve enhances the vocabulary and speaking ability to respond to a equips one to express opinions and negotiate appointments. grammatical structure to answer confidently in everyday situa	ind also seek With diligent	information in	thos	e situ	ations	s. It also asic
Unit – I	All about food (Rund Ums Essen):						9
justify something	mation about person, Speak about food, Introduce self and other , To speak about feelings, To express opinions, To answer quest es in Dative, Yes/No questions, Reflexive verbs, Sentence with 'we	ions on a tex					
Unit – II	School days (Nach der Schulzeit):						9
To Understand S	ol reports, Speak and write comments about schooldays, To spea School types in Germany and speak about it. Grammar: Moda ativ and Akkusativ.						
Unit – III	Media in everyday life (Medien in Alltag):						9
Understand and \ with 'dass', Super							ate claus
Unit – IV	Eastings and expressions (Cafüble)						
	Feelings and expressions (Gefühle):						9
Express thanks a city, Express joy	nd congratulations, Talk about feelings, To understand information and regrets, Understand and write Blog entries, Write appropriate the state of th						lescribe
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b>	and congratulations, Talk about feelings, To understand information and regrets, Understand and write Blog entries, Write appropries to be used along with definite articles. Profession and Travel ( Beruf und Reisen):	iate heading	. Grammar:	Subo	rdina	ite Cla	lescribe ause wit
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preference information, Expr the way to work,	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropriate s to be used along with definite articles.</li> <li>Profession and Travel ( Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gather es, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand a n Describe a statistic, Understand information about a trip, Talk about , Prepositions, verb – 'werden', Subordinate clause – indirect que</li> </ul>	iate heading r information s, To unders ewspaper ar ut travel. Gr	j. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec	Subo ntrodu out W r own tive to	irdina uce p orkpl opin o be u	eople lace. ion, Tused a	escribe ause wit 9 , Expres Ask fo alk abou along wit r reading
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preference information, Expr the way to work, indefinite articles writing, speaking	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropriate s to be used along with definite articles.</li> <li>Profession and Travel ( Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gather es, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand a n Describe a statistic, Understand information about a trip, Talk about , Prepositions, verb – 'werden', Subordinate clause – indirect que</li> </ul>	iate heading r information s, To unders ewspaper ar ut travel. Gr	j. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec	Subo ntrodu out W r own tive to	irdina uce p orkpl opin o be u	eople lace. ion, Tused a	lescribe ause wit , Expres Ask fo alk abou
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preference information, Expr the way to work, indefinite articles writing, speaking <b>TEXT BOOK:</b>	<ul> <li>and congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropriate s to be used along with definite articles.</li> <li>Profession and Travel (Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gather es, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand a n Describe a statistic, Understand information about a trip, Talk about , Prepositions, verb – 'werden', Subordinate clause – indirect quand and listening.</li> </ul>	iate heading r information s, To under ewspaper ar ut travel. Gr lestions, All	g. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec units will inclu	Subo ntrodu but W r own tive to ide el	rdina uce p orkpl opin o be u lemei	te Cla eople lace. ion, T used a nts fo	escribe ause with s, Expres Ask fo along wi r reading Total:4
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preferenc information, Expr the way to work, indefinite articles writing, speaking <b>TEXT BOOK:</b>	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropriate s to be used along with definite articles.</li> <li>Profession and Travel ( Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gather es, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand a n Describe a statistic, Understand information about a trip, Talk about , Prepositions, verb – 'werden', Subordinate clause – indirect que</li> </ul>	iate heading r information s, To under ewspaper ar ut travel. Gr lestions, All	g. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec units will inclu	Subo ntrodu but W r own tive to ide el	rdina uce p orkpl opin o be u lemei	te Cla eople lace. ion, T used a nts fo	escribe ause with s, Expres Ask fo along wi r reading Total:4
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preferenc information, Expr the way to work, indefinite articles writing, speaking <b>TEXT BOOK:</b>	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropris to be used along with definite articles.</li> <li>Profession and Travel (Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gatheres, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand an a Describe a statistic, Understand information about a trip, Talk about, Prepositions, verb – 'werden', Subordinate clause – indirect quand listening.</li> <li>Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk D</li> </ul>	iate heading r information s, To under ewspaper ar ut travel. Gr lestions, All	g. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec units will inclu	Subo ntrodu but W r own tive to ide el	rdina uce p orkpl opin o be u lemei	te Cla eople lace. ion, T used a nts fo	escribe ause with s, Expres Ask fo along wi r reading Total:4
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preference information, Expr the way to work, indefinite articles writing, speaking <b>TEXT BOOK:</b> 1. Stefanie und Glos	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropris to be used along with definite articles.</li> <li>Profession and Travel (Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gatheres, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand an a Describe a statistic, Understand information about a trip, Talk about, Prepositions, verb – 'werden', Subordinate clause – indirect quand listening.</li> <li>Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk D</li> </ul>	iate heading r information s, To under ewspaper ar ut travel. Gr lestions, All	g. Grammar: from Texts, li stand text abo ticle, Say you ammar: Adjec units will inclu	Subo ntrodu but W r own tive to ide el	rdina uce p orkpl opin o be u lemei	te Cla eople lace. ion, T used a nts fo	escribe ause with s, Expres Ask fo along wi r reading Total:4
Express thanks a city, Express joy 'Wenn', Adjective <b>Unit – V</b> To have a conve career preferenc information, Expr the way to work, indefinite articles writing, speaking <b>TEXT BOOK:</b> 1. Stefanie und Glos 2. <b>REFERENCES:</b>	<ul> <li>Ind congratulations, Talk about feelings, To understand informatic and regrets, Understand and write Blog entries, Write appropris to be used along with definite articles.</li> <li>Profession and Travel (Beruf und Reisen):</li> <li>rsation at ticket counter, To talk about leisure activities, To gatheres, Ideate the dream job, To prepare and make telephone call ess uncertainty, Understand and give directions, Understand an a Describe a statistic, Understand information about a trip, Talk about, Prepositions, verb – 'werden', Subordinate clause – indirect quand listening.</li> <li>Dengler, Paul Rusch, Helen Schmitz, Tanja Sieber, "Netzwerk D</li> </ul>	r information s, To unders ewspaper ar ut travel. Gr uestions, All	g. Grammar: from Texts, listand text abord ticle, Say your ammar: Adjec units will inclu	Subo ntrodu out W r own tive to ude el	rdina uce p (orkpl opin o be u lemen	te Cla people lace. ion, T used a nts fo	lescribe ause wir 9 , Expres Ask fo along wi r readin Total:2

		JTCOM ion of t		se, the st	udents	will be al	ble to						(	BT Mapı Highest L	
CO1	unde	erstand	German	food style	e, restau	irant and	be able	express	onesel				Rem	nembering	g (K1)
CO2	unde	erstand	Germar	n school s	ystem a	nd discus	s about	habits a	nd prov	ide City-	Tipps		Und	erstanding	g (K2)
CO3	anal	yze and	l compar	e media i	n everyo	lay life.							Und	erstanding	g (K2)
CO4	expr	ess fee	lings, de	scribe a c	ity and v	write blog	entries.						Und	erstanding	g (K2)
CO5	seek	k and pr	ovide inf	ormation	in a prof	essional	setup, gi	ve direc	tions to	others a	nd talk	about travel	Und	erstanding	g (K2)
						Маррі	ing of C	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	) PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Slię	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's ⊺	Taxonom	ıy							
						ASSE	SSMEN		ERN - 1	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)	•	Apply (K3)		Analyzi (K4) %		Evaluating (K		reating K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	:		25		75									100

	22GE007-GERMAN LANGUAGE LEV						
D	(Offered by Department of Electronics and Communi	cation Engir	neering)	1			
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credi
Prerequisites	German Language Level 3	All	OE	3	0	0	3
Preamble	This course imparts knowledge about interacting with external behaviour and addressing relationships in personal and profes various media and at work. Enhance learner's grammatical ex- concepts which would lay the foundation to have a better hold be able to read and respond to reports, write simple formal and engage in simple conversations in known situations.	sional front posure and of the langu	. It helps one to cover the core lage. With focu	b und basio used l	erstai c grar learni	nd rep nmati ng on	oorts fror cal e should
Unit – I	Learning (Lernen):						9
everyday work life	d describing learning problems, Understanding and giving advi , Talking about everyday working life, Understanding a radio repo- tions- denn,weil, Konjuntiv II: Sollte( suggestions), Genitive, Temp	ort, Underst	anding and ma	aking	a mir	ni-pre	sentatior
Unit – II	Athletic (Sportlich):						9
and reacting, Mak	iasm, hope, disappointment, Understanding and writing fan comr ing an appointment, Understanding a report about an excursion ar: Conjunctions – deshalb, trotzdem, Verbs with Dativ and Akkus	Understan					
Unit – III	Living Together (Zusammen Leben):						9
	gize & give in, As for something, Understand experience reports, and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate				pets,	Resp	ond to
	Agize & give in, As for something, Understand experience reports, and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung):				pets,	Resp	ond to
information, Write a Unit – IV Talk about music s about a person, I	and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate	newspaper of a pictur	als and Wenn. reports, Give e, Describe a	more n pict	detai ure.	led in G	<b>9</b> Iformatio rammatik
information, Write a <b>Unit – IV</b> Talk about music s about a person, U Interrogative Article <b>Unit – V</b> Talk about wishes, Understand a text about behavior, Ex Give more informal listening. Gramma	and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung): tyle, Buy concert tickets, Introduce a musician / band, Understand Inderstand information about painting, Understand description as: Was fuer eine?, Pronouns – man/jemand/niemand and alles/e	e clauses – newspaper of a pictur was/nichts Plan somet lerstand inf s in a text, nclude elem	als and Wenn. reports, Give e, Describe a , Relative sent hing together, ormation abou Talk about for nents for readi	more pict ences To as it oth ms o ng, w	detai ure. s in N sk oth er cu f add rriting	led in G omina ers s Itures ressir , spea	9 Iformatio rammatik ativ 9 omething 5, Discus ng others aking an
information, Write a <b>Unit – IV</b> Talk about music s about a person, U Interrogative Article <b>Unit – V</b> Talk about wishes, Understand a text about behavior, Ex Give more informal listening. Gramma	And correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung): tyle, Buy concert tickets, Introduce a musician / band, Understand Jnderstand information about painting, Understand description as: Was fuer eine? , Pronouns – man/jemand/niemand and alles/e Passage of time and Culture (Zeitablauf & Kultur): Express wishes, Give Suggestions, Understand a conversation, , Exchange information, Talk about proverbs, write a story. Understand tip titon, Discuss about clichés and write about them. All units will in titk: Konjunctiv II (Wishes, Suggestions), Verbs with prepositions,	e clauses – newspaper of a pictur was/nichts Plan somet lerstand inf s in a text, nclude elem	als and Wenn. reports, Give e, Describe a , Relative sent hing together, ormation abou Talk about for nents for readi	more pict ences To as it oth ms o ng, w	detai ure. s in N sk oth er cu f add rriting	led in G omina ers s Itures ressir , spea	9 iformatio rammatil ativ omething , Discus aking an sentence
information, Write a Unit – IV Talk about music s about a person, U Interrogative Article Unit – V Talk about wishes, Understand a text about behavior, Ex Give more informa listening. Gramma in Akkusativ, Subo TEXT BOOK: 1 Stefanie D	And correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung): tyle, Buy concert tickets, Introduce a musician / band, Understand Jnderstand information about painting, Understand description as: Was fuer eine? , Pronouns – man/jemand/niemand and alles/e Passage of time and Culture (Zeitablauf & Kultur): Express wishes, Give Suggestions, Understand a conversation, , Exchange information, Talk about proverbs, write a story. Understand tip titon, Discuss about clichés and write about them. All units will in titk: Konjunctiv II (Wishes, Suggestions), Verbs with prepositions,	e clauses – newspaper of a pictur was/nichts Plan somet lerstand inf s in a text, nclude elem W- question	als and Wenn. reports, Give e, Describe a , Relative sent hing together, ormation abou Talk about for nents for readi ns with prepos	To as to the ms o ng, w itions	detai ure. s in N sk oth er cu f add rriting , Rela	led in G omina ers s Itures ressir , spea ative s	9 iformatio rammatil ativ 9 omething 5, Discus ng others aking an sentence Total:4
information, Write a Unit – IV Talk about music s about a person, U Interrogative Article Unit – V Talk about wishes, Understand a text about behavior, Ex Give more informa listening. Gramma in Akkusativ, Subo TEXT BOOK: 1 Stefanie D	and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung): tyle, Buy concert tickets, Introduce a musician / band, Understand Jnderstand information about painting, Understand description as: Was fuer eine? , Pronouns – man/jemand/niemand and alles/e Passage of time and Culture (Zeitablauf & Kultur): Express wishes, Give Suggestions, Understand a conversation, , Exchange information, Talk about proverbs, write a story. Understand tip tion, Discuss about clichés and write about them. All units will in tik: Konjunctiv II (Wishes, Suggestions), Verbs with prepositions, rdinate clauses with damit and UmZu.	e clauses – newspaper of a pictur was/nichts Plan somet lerstand inf s in a text, nclude elem W- question	als and Wenn. reports, Give e, Describe a , Relative sent hing together, ormation abou Talk about for nents for readi ns with prepos	To as to the ms o ng, w itions	detai ure. s in N sk oth er cu f add rriting , Rela	led in G omina ers s Itures ressir , spea ative s	9 iformatio rammatil ativ 9 omething 5, Discus ng others aking an sentence Total:4
information, Write a Unit – IV Talk about music s about a person, U Interrogative Article Unit – V Talk about wishes, Understand a text about behavior, Ex Give more informa listening. Gramma in Akkusativ, Subo TEXT BOOK: 1. Stefanie D Goyal Pub REFERENCES:	and correct a story. Grammatik: Konjunctiv II- könnte, Subordinate Good Entertainment (Gute Unterhaltung): tyle, Buy concert tickets, Introduce a musician / band, Understand Jnderstand information about painting, Understand description as: Was fuer eine? , Pronouns – man/jemand/niemand and alles/e Passage of time and Culture (Zeitablauf & Kultur): Express wishes, Give Suggestions, Understand a conversation, , Exchange information, Talk about proverbs, write a story. Understand tip tion, Discuss about clichés and write about them. All units will in tik: Konjunctiv II (Wishes, Suggestions), Verbs with prepositions, rdinate clauses with damit and UmZu.	e clauses – newspaper of a pictur was/nichts Plan somet lerstand inf s in a text, nclude elem W- question	als and Wenn. reports, Give e, Describe a , Relative sent hing together, ormation abou Talk about for nents for readi ns with prepos	To as to the ms o ng, w itions	detai ure. s in N sk oth er cu f add rriting , Rela	led in G omina ers s Itures ressir , spea ative s	9 iformatio rammatil ativ 9 omething 5, Discus ng others aking an sentence <b>Total:4</b>

		UTCOM ion of t		se, the st	udents	will be a	ble to						(	BT Mapı Highest L	
CO1	leve	rage lea	arning in	Workplac	e, unde	rstanding	reports	and mak	ke prese	entation.			Ren	nembering	g (K1)
CO2	recip	orocate	to differe	ent situatio	ons, mal	ke appoin	itment ar	nd under	stand to	exts.			Unc	erstandin	g (K2)
CO3	hand	dle relat	ionships	and resp	ond app	ropriately	to exch	ange info	ormatio	n			Unc	erstandin	g (K2)
CO4	fami	liarize to	o various	channels	s of ente	ertainmen	t						Unc	erstandin	g (K2)
CO5	knov	w about	various	cultural as	spects, ι	usage of	proverbs	and clic	hes.				Unc	erstandin	g (K2)
						Маррі	ing of C	Os with	POs ar	nd PSOs	;				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	P010	PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's ⊺	Taxonom	ıy							
						ASSE	SSMEN		ERN - T	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)	•	Apply (K3)	-	Analyzi (K4) %	-	Evaluating (K %		reating K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100

	(Offered by Department of Electronics and Commur	nication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Japanese Language Level 1	All	OE	4	0	0	4
Preamble	The basic level of Japanese which provides understanding of the ability to understand basic conversations and also enable Casual form						
Unit – I	Introduction to groups of verbs:						12
Unit – II	Introduction to Casual Form:	ation in plain	atula Diago at		no of	Dolito	<b>12</b>
nai form-Diction Casual style	ary form-ta form-Polite style and Casual style differences-Conversa	ation in plain	style-Place of	usag	ge of	Polite	style an
Unit – III	Express opinions and thoughts:						12
Introduction to r is right -Noun m	new particle-Express someone one's thought-Convey the message odifications	of one perso	n to another-A	Ask so	omeo	ne if s	somethin
	Introduction to If clause and remaining Kanjis:						12
Unit – IV	introduction to in clause and remaining Ranjis.					£ 1.4 - +	on vorbe
If clause tara fo	rm-Express gratitude for an action done by other person-Hypothetic	cal situation-l	Particles to use	e in c	ase c	of ivioti	
If clause tara fo 50 Kanjis				e in c	ase c	or ivioti	12
If clause tara fo 50 Kanjis <b>Unit – V</b>	rm-Express gratitude for an action done by other person-Hypothetic	en, even if"	usages:				
If clause tara fo 50 Kanjis <b>Unit – V</b>	rm-Express gratitude for an action done by other person-Hypothetic Introduction to giving and receiving with te form and "wh	en, even if"	usages:				12
50 Kanjis <b>Unit – V</b>	rm-Express gratitude for an action done by other person-Hypothetic Introduction to giving and receiving with te form and "wh	en, even if"	usages:				
If clause tara fo 50 Kanjis Unit – V Providing to and TEXT BOOK:	rm-Express gratitude for an action done by other person-Hypothetic Introduction to giving and receiving with te form and "wh	en, even if" sentences us	usages: ing when and	even	ifet	c.	12 Total:6
If clause tara fo 50 Kanjis Unit – V Providing to and TEXT BOOK: 1. "MINNA	rm-Express gratitude for an action done by other person-Hypothetic Introduction to giving and receiving with te form and "wh getting from differences - Understanding of situations and framing NO NIHONGO–Japanese for Everyone", 2 nd Edition, Goyal Publish	en, even if" sentences us	usages: ing when and	even	ifet	c.	12 Total:6
If clause tara fo 50 Kanjis Unit – V Providing to and TEXT BOOK: 1. "MINNA REFERENCES	rm-Express gratitude for an action done by other person-Hypothetic Introduction to giving and receiving with te form and "wh getting from differences - Understanding of situations and framing NO NIHONGO–Japanese for Everyone", 2 nd Edition, Goyal Publish	en, even if" sentences us ners & Distrib	usages: ing when and	even	ifet	c.	12 Total:6

		JTCOM ion of t		se, the st	udents	will be a	ble to						(	BT Mapı Highest L	
CO1	diffe	rentiate	groups	of verbs a	ind its fo	orms							Rem	nembering	g (K1)
CO2	unde	erstand	Polite fo	rm and C	asual fo	rm of Jap	anese						Und	erstanding	g (K2)
CO3	com	prehend	d person	al commu	inication	and exp	ress gree	etings					Und	erstanding	g (K2)
CO4	unde	erstand	the Kanj	is in Japa	nese Sc	cript and I	f clause						Und	erstanding	g (K2)
CO5	com	prehend	l concep	ot of "ever	ı if", "wh	en" and jo	ob-relate	d inform	ation				Und	erstanding	g (K2)
						Маррі	ing of C	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Slię	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's	Taxonom	iy	I						
						ASSE	SSMEN	Γ ΡΑΤΤΙ	ERN - T	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyzi (K4) 9	•	Evaluating (K5) %		reating K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100

	22GEO09 - JAPANESE LANGUAGE L						
	(Offered by Department of Electronics and Communi	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credi
Prerequisites	Japanese Language Level 2	All	OE	3	0	0	3
Preamble	The intermediate level of Japanese which provides understand which includes 150 Kanji's and provides the ability to comprehensional statements of the statement						
Unit – I	Introduction to Potential verbs:						9
	asons-Favouring Expressions-Expressing a State-Potential Verb Actions-Nouns-Basic Questions and Kanji's.	Sentences	-Simulaneous	acu	0115-1		Joups-
Unit – II	Introduction to Transitive and Intransitive verbs:						9
	verbs- Embarrassment about Facts- Consequence of Verbs with	an Intentior	ns-Affirmative	Sente	ences	- Con	junctions
Basic Questions a	and kanji's.						
Unit – III	Introduction to Volitional forms:						9
Basic Questions a Unit – III Expressions of Sp		rbs and Qua	ntifiers-Basic (	Quest	tions	and ka	•
Unit – III Expressions of S	Introduction to Volitional forms:	rbs and Qua	ntifiers-Basic (	Quest	tions	and k	•
Unit – III Expressions of Sp Unit – IV Commanding per	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Adver						anji's. 9
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Adver Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its 0						anji's. 9
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que Unit – V Description of Re	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its ( stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction	Occurrence	- Possibilities	of an	Actio	on-Ch	anji's. 9 anging o 9
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que Unit – V	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its ( stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction	Occurrence	- Possibilities	of an	Actio	on-Ch	anji's. 9 anging o 9
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que Unit – V Description of Re	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its ( stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction	Occurrence	- Possibilities	of an	Actio	on-Ch	anji's. 9 anging 0 9 rbs-Bas
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que Unit – V Description of R Questions and Ka TEXT BOOK:	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its ( stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction	Occurrence	- Possibilities gestions-Pass	of an	orms	on-Ch of Ve	anji's. 9 anging o 9 rbs-Bas Total:4
Unit – III         Expressions of S         Unit – IV         Commanding per         States Basic Que         Unit – V         Description of R         Questions and Ka         TEXT BOOK:         1.       "MINNA I	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its C stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction anji's.	Occurrence	- Possibilities gestions-Pass	of an	orms	on-Ch of Ve	anji's. 9 anging o 9 rbs-Bas Total:4
Unit – III Expressions of Sp Unit – IV Commanding per States Basic Que Unit – V Description of R Questions and Ka TEXT BOOK: 1. "MINNA I REFERENCES:	Introduction to Volitional forms: peakers Intention-Expressing Suggestion or Advice-Usage of Advert Introduction to Imperative and Prohibitive verbs: rson- Interrogatives-Expressions of Third Person-Actions and its C stions and Kanji's. Introduction to Conditional form and Passive verbs: equirement and Speaker's Judgement, HabitualActions, Direction anji's.	Occurrence ns and sug ers & Distrib	- Possibilities gestions-Pass	of an	orms	on-Ch of Ve	anji's. 9 anging o 9 rbs-Bas Total:4

		UTCOM		se, the st	udents	will be a	ble to							BT Map	
CO1	read	l and un	derstand	d BasicVo	cabulari	es.							R	ememberii	ng (K1)
CO2	unde	erstand	Convers	ations us	ed in da	ily life.							Ur	nderstandi	ng (K2)
CO3	com	preheno	d person	al commu	inication	and exp	ress gree	etings.					Ur	nderstandi	ng (K2)
CO4	unde	erstand	the Kanj	i's in Japa	anese S	cript.							Ur	nderstandi	ng (K2)
CO5	com	prehend	d Cohere	ent convei	rsations	in everyd	lay situat	ions.					Ur	nderstandi	ng (K2)
						Маррі	ing of CO	Os with	POs ar	d PSOs	;				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	) PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's T	Taxonom	iy						I	
						ASSE	SSMEN	Γ ΡΑΤΤΙ	ERN - T	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyzi (K4) 9		Evaluating (K %		reating (K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100

	22GEO10 -JAPANESE LANGUAGE L	EVEL 4					
	(Offered by Department of Electronics and Commun	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credi
Prerequisites	JAPANESE LANGUAGE LEVEL 3	All	OE	3	0	0	3
Preamble	The intermediate level of Japanese provides understanding of which also includes 150 Kanji's and also provides the ability to						
Unit – I	Introduction to Reasoning:		•				9
Causes and Sequ	ences-Causes and Effects-Interrogative Patterns-Adjective as a N	oun -Basic C	Questions and	Kanji	's		
Unit – II	Introduction to Exchanging of things:						9
	Siving and Receiving of Things-Polite Expression of Request-India	cating a Pur	pose of Actior	ns-Ba	sic Q	uantifi	ers-Bas
Questions and ka	nji's.						
	nji's. Introduction to States of an Action:						9
Unit – III Sentence Pattern		Adverbs- C	onvey informa	tion -	Basic	Ques	•
<b>Unit – III</b> Sentence Pattern kanji's.	Introduction to States of an Action:	Adverbs- C	onvey informa	tion -	Basic	Ques	•
Unit – III Sentence Pattern kanji's. Unit – IV	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que		-				stions an
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que		-				stions an
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que nji's.	estions-Judg	ement and Co	ourse	of a		stions an 9 ons-Bas
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que nji's.           Introduction to Relationship in Social Status:	estions-Judg	ement and Co	ourse	of a		stions ar 9 ons-Bas
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que nji's.           Introduction to Relationship in Social Status:	estions-Judg	ement and Co	ourse	of a		stions ar 9 ons-Bas 9
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V Honorific expressi TEXT BOOK:	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que nji's.           Introduction to Relationship in Social Status:	ons-Basic Q	ement and Co uestions and P	ourse Kanji's	of a	n actio	9 ons-Bas 9 Total:4
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V Honorific expressi TEXT BOOK:	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que inji's.           Introduction to Relationship in Social Status:           ions- Respectful expressions- Humble expressions-Polite expression	ons-Basic Q	ement and Co uestions and P	ourse Kanji's	of a	n actio	9 ons-Bas 9 <b>Total:</b> 4
Unit – III Sentence Pattern kanji's. Unit – IV Causative Forms Questions and Ka Unit – V Honorific expressi TEXT BOOK: 1. "MINNA N REFERENCES:	Introduction to States of an Action:           to Indicate Appearance-Degree of Action and State-Adjectives as           Introduction to Causative Verbs:           of Verbs-Asking Opportunity to do something-Hypothetical Que inji's.           Introduction to Relationship in Social Status:           ions- Respectful expressions- Humble expressions-Polite expression	ers & Distrib	ement and Co uestions and P	ourse Kanji's	of a	n actio	9 ons-Bas 9 <b>Total</b> :4

		JTCOM on of tl		se, the st	udents	will be al	ble to						(	BT Mapı Highest L	
CO1	read	and Ur	derstan	d Relatior	ship of	a Person							Ren	nembering	g (K1)
CO2	unde	erstand	Convers	ations Us	ed in Ev	veryday A	ctivities.						Unc	erstanding	g (K2)
CO3	com	orehend	d Conten	ts at Nea	r Natura	l Speed.							Unc	erstanding	g (K2)
CO4	unde	erstand	the Kanj	i's in Japa	anese S	cript							Unc	erstanding	g (K2)
CO5	com	orehend	d Orally F	Presented	l Materia	als.							Unc	erstanding	g (K2)
						Маррі	ng of CO	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		
CO	2								1	2	3		3		
CO	3								1	2	3		3		
CO	4								1	2	3		3		
CO	5								1	2	3		3		
1 – Slię	ght, 2 -	- Mode	rate, 3 –	Substant	ial, BT-	Bloom's 1	Faxonom	iy							
						ASSE	SSMEN	Τ ΡΑΤΤΙ	ERN - T	HEORY					
	st / Blo Catego		Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyzi (K4) 9		Evaluating (K %		reating K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE			25		75									100

	(Offered by Department of Electronics and Commun	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credi
Prerequisites	Fundamentals of French Language	All	OE	4	0	0	4
Preamble	This course provides a foundation of the French language as lifestyle of France and other French-speaking nations. The stu and acquire basic everyday vocabulary. By following the struct learning process, one can comprehend the structure of senter	udent will be tured curricu	learning how t	to inti icing	oduc the s	e him ame a	herself as per the
Unit – I	Introduction						12
French and Fren	ch culture, alphabets, pronunciation, accents, rules, and terms for p	ronunciation	(mas-fem), S	aluta	tions,	numb	ers.
Unit – II	Daily Life						12
Subject Pronoun	Francophonie's, adjectives - colors, week, months, seasons.						
Unit – III	Articles and Verbs						12
	e, definite, partitive, and contracted, (examples), introductions to ve	erbs, 1 st grou	ip of verb				
Unit – IV	In the City						12
2 nd group of ve expressions)	bs, irregular verbs (avoir, etre, faire) present yourself & no	egative sent	ences. (faire	and	Joue	r verb	with th
Unit – V	Food and Culture						12
	reposition of places (country, cities and etc), Imperative mode, ir	nvitations, cu	Ilture – food	wine	, che	ese	) Futur Total:6
(recent future)							Totallo
TEXT BOOK:							
	son						
TEXT BOOK:	son						
TEXT BOOK: 1. A1 – sai REFERENCES:	son ns les francais – 0 and 1						

		UTCOM ion of t		se, the st	udents	will be al	ble to						(	BT Mapı Highest L	
CO1	Und	erstand	the gran	nmatical s	structure	of the la	nguage a	and intro	duce se	elf to oth	ers.		Rem	nembering	g (K1)
CO2	Und	erstand	basic ve	erbs and a	ppropria	ate vocab	ulary.						Und	erstanding	g (K2)
CO3	Ask	for dire	ctions an	nd arrange	e for trar	sportatio	n, etc, as	s neede	d.				Und	erstanding	g (K2)
CO4	Und	erstand	the food	I habits of	France	and ask	for appoi	ntments	;				Und	erstanding	g (K2)
CO5	Lea	rn to soo	cialize in	French-s	peaking	countries	6						Und	erstanding	g (K2)
						Маррі	ng of C(	Os with	POs ar	nd PSOs	;				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
СО	1								1	2	3		3		2
CO	2								1	2	3		3		2
CO	3								1	2	3		3		2
CO	4								1	2	3		3		2
CO	5								1	2	3		3		2
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's 1	Faxonom	ıy							
						ASSE	SSMEN		ERN - T	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating K6) %	Tota %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100
* ±3%	may b	e varied	d (CAT 1	,2,3 – 50	marks &	ESE – 1	00 mark	s)							

	22GEO12 -FRENCH LANGUAGE LE	EVEL 2					
	(Offered by Department of Electronics and Commun	nication Engi	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Fundamentals of French Language	All	OE	4	0	0	4
Preamble	This course is designed to assist students in developing voca Framework of Reference for Languages at the A2 level. This structures as well as the acquisition of vocabulary necessary circumstances. The learner will be able to develop a thorough confidently express themselves in everyday circumstances.	course will a to comprehe	aid in the integ end and respo	ratio nd in	n of b i ever	asic ( yday	
Unit – I	French and You						12
	& Weakness, Recommendations, Sentiments, Motivations, abore gulars and irregulars), Reflexive Verbs, Prepositions	ut favorite fil	ms and Types	s of s	creer	ns in t	he movi
Unit – II	Eat and Repeat						12
					rotive		
Favorite foods, F	Recopies, Types of meals, Describing House and Kitchen, Pres	sentation of	the recipe, Co	ompa	iraiive	50, I U	13363311
	Recopies, Types of meals, Describing House and Kitchen, Pres nt continuous tense, Simple conditional form	sentation of	the recipe, Co	ompa	lialive	55, 10	00000000
pronouns, Preser Unit – III	t continuous tense, Simple conditional form Vacation		• ·			55, 1 0	12
pronouns, Preser Unit – III Invitations, pres	nt continuous tense, Simple conditional form		• ·	cribir		avorit	12
pronouns, Preser Unit – III Invitations, pres Recommendation	t continuous tense, Simple conditional form           Vacation           sentation, Greetings, Goodbyes, Activities on vacation,		• ·				12
pronouns, Preser <b>Unit – III</b> Invitations, pres Recommendation <b>Unit – IV</b> Favorite persons	Ant continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, as on various tours, Past perfect, Past imperfect tense	past expe	riences, Des	cribir	ng fa	avorit	12 e place
pronouns, Preser <b>Unit – III</b> Invitations, pres Recommendation <b>Unit – IV</b> Favorite persons	the continuous tense, Simple conditional form     Vacation     sentation, Greetings, Goodbyes, Activities on vacation,     as on various tours, Past perfect, Past imperfect tense     Likes and Views     & things, Giving advice, Experience, Moods, Illness, Discomforts	past expe	riences, Des	cribir	ng fa	avorit	12 e place
pronouns, Preser Unit – III Invitations, pres Recommendation Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs,	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, as on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide &
pronouns, Preser Unit – III Invitations, pres Recommendation Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs,	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, as on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative         Then and Now         circumstances of the past and present, Debates on past and present	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide & 12 ect tense
pronouns, Preser Unit – III Invitations, pres Recommendation Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs,	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, as on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative         Then and Now         circumstances of the past and present, Debates on past and present	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide &
pronouns, Preser <b>Unit – III</b> Invitations, pres Recommendation <b>Unit – IV</b> Favorite persons Tourist, Pharmac <b>Unit – V</b> Habits, customs, Past perfect and	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, is on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative         Then and Now         circumstances of the past and present, Debates on past and present comparatives.	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide o 12 ect tense
pronouns, Preser Unit – III Invitations, pres Recommendation Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs, Past perfect and TEXT BOOK: 1. A2 – Sais	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, is on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative         Then and Now         circumstances of the past and present, Debates on past and present comparatives.	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide o 12 ect tense
pronouns, Preser Unit – III Invitations, pres Recommendation Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs, Past perfect and TEXT BOOK: 1. A2 – Sais REFERENCES:	Int continuous tense, Simple conditional form         Vacation         sentation, Greetings, Goodbyes, Activities on vacation, is on various tours, Past perfect, Past imperfect tense         Likes and Views         & things, Giving advice, Experience, Moods, Illness, Discomforts ist & Patient), Past perfect, Past indefinite, Imperative         Then and Now         circumstances of the past and present, Debates on past and present comparatives.	past expensions	riences, Des s, Roleplay (D		ng fa	avorit	12 e place 12 , Guide o 12 ect tense

		UTCON		ourse,	the st	udents	s will be a	able to						(ł	BT Map Highest L	
CO1	Und	derstand	d the I	French	langua	age in o	deep and	its usag	e					Rem	nembering	g (K1)
CO2	Pre	paratior	n of th	eir Fav	vorite re	ecipes,	Know the	e Object	s used ii	n Kitche	en and h	ouse.		Und	erstandin	g (K2)
CO3	Cor	nverse a	about	their va	acation	n, their	Favorite [	Destinati	on					Und	erstandin	g (K2)
CO4	Unc	derstand	d com	plex ve	erbs an	nd be a	ole to con	nmunica	te about	their p	ast expe	riences		Und	erstandin	g (K2)
CO5	Kno	ow the d	liffere	nce bet	tween	Past a	nd Preser	nt and C	ompare	them.				Und	erstandin	g (K2)
							Mappir	ng of CC	)s with	POs an	d PSOs	;				
COs/P	<b>'</b> Os	PO1	PO	)2 I	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1									1	2	3		3		
CO	2									1	2	3		3		
CO	3									1	2	3		3		
CO4	4									1	2	3		3		
CO	5									1	2	3		3		
1 – Sli	ght, 2	– Mode	erate,	3 – Su	bstant	ial, BT·	Bloom's	Taxonoi	my	1					1	·
							ASSES	SMENT	PATTE	RN - T	HEORY					
	st / B Categ	loom's  ory*			emberi (1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		eating K6) %	Tota %
	CA	T1			75		25									100
	CA	T2			25		75									100
	CA	Т3			25		75									100
	ES	E			25		75									100
* ±3%	may l	be varie	d (CA	AT 1,2,3	3 – 50	marks	& ESE –	100 mar	ks)	1				·		

	22GEO13- FRENCH LANGUAGE LE	EVEL 3					
	(Offered by Department of Electronics and Commun	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Fundamentals of French Language	All	OE	3	0	0	3
Preamble	This course gives knowledge regarding a variety of personal a improving vocabulary and speaking abilities to reply to and se the ability to articulate yourself and arrange appointments. Wi grammatical structures needed to respond confidently in ever how Natives communicate.	ek informatio	on in those set ince, one can i	tings. maste	It als er all o	so give	es you essentia
Unit – I	Start Over						9
	s, Discuss a day in life, work, problems in the world, Predictions a ct and future tense.	bout the futu	ire (actions an	d situ	ation	s), Hy	pothetica
Unit – II	Prohibitions and More						9
Prohibitions, Oblia	ations, Habits to change, social customs, Use of the subjunctive	D 1			مدا ام م	rolati	on to roc
	social customs, ose of the subjunctive sks vs movies, usage of connectors, Object Direct and Indirect.	, Describe s	ynopsis of Mo	vie ar	ia its	relati	
life, Debate on boo Unit – III	bks vs movies, usage of connectors, Object Direct and Indirect. Let's be Creative	· 					9
life, Debate on boo Unit – III Write a letter by d	oks vs movies, usage of connectors, Object Direct and Indirect.	ose solution	s, Recommen				9
life, Debate on boo Unit – III Write a letter by d	oks vs movies, usage of connectors, Object Direct and Indirect.  Let's be Creative lescribing the problem, talk about desires and Necessities, prop	ose solution	s, Recommen				9
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours,	bks vs movies, usage of connectors, Object Direct and Indirect. Let's be Creative lescribing the problem, talk about desires and Necessities, prop sement, Give Instructions, Imperative negative, Use of Object Dire	ose solution ect, and Indire	s, Recommen ect	datior	ns an	d Su	9 ggestions 9
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours,	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, propiement, Give Instructions, Imperative negative, Use of Object Direct Direct         Travel and Communication         Types of tourism and communication, Send messages, petitions,	ose solution ect, and Indire	s, Recommen ect	datior	ns an	d Su	9 gestions 9
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist Unit – V Expression of Inte	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, proprement, Give Instructions, Imperative negative, Use of Object Direct         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 r (Tourist: 9
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist Unit – V Expression of Inte	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, proprement, Give Instructions, Imperative negative, Use of Object Direct Direct         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.         Let's Talk         erests, Sentiments, Feelings, Sensations, Manias etc. Certain	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 (Tourist 9 ne use c
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist Unit – V Expression of Inte	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, proprement, Give Instructions, Imperative negative, Use of Object Direct Direct         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.         Let's Talk         erests, Sentiments, Feelings, Sensations, Manias etc. Certain	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 r (Tourist: 9
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist Unit – V Expression of Inte superlatives, Excla	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, propresement, Give Instructions, Imperative negative, Use of Object Direct Direct and Communication         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.         Let's Talk         erests, Sentiments, Feelings, Sensations, Manias etc. Certain amatory phrases, subjunctives.	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 r (Tourist 9 ne use o
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist Unit – V Expression of Inte superlatives, Excla	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, propresement, Give Instructions, Imperative negative, Use of Object Direct Direct and Communication         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.         Let's Talk         erests, Sentiments, Feelings, Sensations, Manias etc. Certain amatory phrases, subjunctives.	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 (Tourist 9 ne use c
life, Debate on boo Unit – III Write a letter by d Create an Advertis Unit – IV Talk about Tours, and Guide, Tourist: Unit – V Expression of Inte superlatives, Excla TEXT BOOK: 1. B1 – Saisc REFERENCES:	bks vs movies, usage of connectors, Object Direct and Indirect.         Let's be Creative         lescribing the problem, talk about desires and Necessities, propresement, Give Instructions, Imperative negative, Use of Object Direct Direct and Communication         Travel and Communication         Types of tourism and communication, Send messages, petitions, s and Travel agents), Past Pluscumperfect, All Past tenses.         Let's Talk         erests, Sentiments, Feelings, Sensations, Manias etc. Certain amatory phrases, subjunctives.	ose solution ect, and Indire Talk to peo	s, Recommen ect ple on the tele	datior phone	ns an e, Ro	d Suç leplay	9 ggestions 9 (Tourist 9 ne use c

		JTCOM		se, the st	udents	will be a	ble to						(	BT Mapı Highest L	
CO1	Lear	n on Fu	ture ten	se.									Rem	nembering	<b>j</b> (K1)
CO2	Unde	erstand	Permiss	ions and	Prohibiti	ons.							Und	erstanding	g (K2)
CO3	Knov	wing ab	out Lette	er writing,	Creating	g Ads, Ex	pressing	Desires	, and Ir	nstructing	g Others.		Und	erstanding	g (K2)
CO4	Unde	erstandi	ing rules	for travel	and En	hancing o	communi	cations.					Und	erstanding	g (K2)
CO5	Expr	essing	the feelir	ngs and e	motions	using ad	vanced g	gramma	ſ				Und	erstanding	g (K2)
						Маррі	ng of C	Os with	POs ar	nd PSOs	;				
COs/P	POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO	1								1	2	3		3		2
CO2	2								1	2	3		3		2
CO	3								1	2	3		3		2
CO4	4								1	2	3		3		2
CO	5								1	2	3		3		2
1 – Slig	ght, 2 -	- Mode	rate, 3 –	Substant	ial, BT-			5							
<b>T</b>	4/01						SSMEN					<b>F</b> uckers			Tatal
	st / Blo Catego		Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyzi (K4) 9		Evaluating (K5) %		eating K6) %	Total %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	:		25		75									100

		EVEL 1					
	(Offered by Department of Electronics and Commur	nication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Fundamentals of Spanish Language	All	OE	4	0	0	4
Preamble	This course provides a foundation of the Spanish language and lifestyle of Spain and other Spanish-speaking nation him/herself and acquire basic everyday vocabulary. By fol same as per the learning process, one can comprehend communications.	ns. The stud lowing the s	ent will be le tructured curr	earnin iculum	g ho n and	w to I prac	introduc ticing th
Unit – I	Greetings and Good byes (Los Saludos y Despidirse):						12
	troduction , Formal and Informal ways of introducing oneself en, Parts of Grammar – Noun, Personal Pronoun, Describe surrou			Numt	ers,	Coun	tries an
Unit – II	Vida Cotidiana (Daily Life):						12
	Days of the week, Months of the year, Seasons, Verb (To be, To ion, simple sentences	Have), Adve	rbs, Likes and	l Disli	kes, I	Perso	nality an
Unit – III	Friends and Family (Amigos y La Familia):						12
Vocabulary of fa	mily, Animals, Professions, Parts of the body, Opinions on family	cultures, Art	icles – Definit	e and	Inde	finita	Hobbies
				0 0.110	maa	mine,	11000100
Regular and Irreg						inite,	12
Regular and Irreg Unit – IV Buildings in the o	gular verbs.						12
Regular and Irreg <b>Unit – IV</b> Buildings in the o Transport, Gram	gular verbs. In the City (En la Cuidad): Sity, Name of the places, asking for directions, Helping each other,						12
Regular and Irreg Unit – IV Buildings in the o Transport, Gram Unit – V Food (types and	gular verbs. In the City (En la Cuidad): Sity, Name of the places, asking for directions, Helping each other, mar - Possessive articles, prepositions	Description s, Roleplay	of house and (as diner and	its col	mpon	ents,	12 Modes o 12
Regular and Irreg Unit – IV Buildings in the o Transport, Gram Unit – V Food (types and	gular verbs. In the City (En la Cuidad): city, Name of the places, asking for directions, Helping each other, mar - Possessive articles, prepositions Food and Culture( La comida y cultura): I varieties), shopping, ordering at a restaurant, inviting to partie	Description s, Roleplay	of house and (as diner and	its col	mpon	ents,	12 Modes o 12 sman and
Regular and Irreg Unit – IV Buildings in the o Transport, Gram Unit – V Food (types and	gular verbs. In the City (En la Cuidad): city, Name of the places, asking for directions, Helping each other, mar - Possessive articles, prepositions Food and Culture( La comida y cultura): I varieties), shopping, ordering at a restaurant, inviting to partie	Description s, Roleplay	of house and (as diner and	its col	mpon	ents,	12 Modes o 12 sman and
Regular and Irreg Unit – IV Buildings in the of Transport, Gram Unit – V Food (types and customeretc.) I TEXT BOOK: 1 Chicos O	gular verbs. In the City (En la Cuidad): city, Name of the places, asking for directions, Helping each other, mar - Possessive articles, prepositions Food and Culture( La comida y cultura): I varieties), shopping, ordering at a restaurant, inviting to partie	Description s, Roleplay t imperfect- (	of house and (as diner and to be and to ha	its con custo ave)	mpon omer,	ents, sales	12 Modes of 12 sman and Total:6
Regular and Irreg Unit – IV Buildings in the of Transport, Gram Unit – V Food (types and customeretc.) I TEXT BOOK: 1 Chicos O	gular verbs.         In the City (En la Cuidad):         city, Name of the places, asking for directions, Helping each other,         mar - Possessive articles, prepositions         Food and Culture( La comida y cultura):         I varieties) , shopping, ordering at a restaurant, inviting to partie         Past tense (all three tenses-Past Participle, Indefinite past and pas         Chicas Libro de Alumno nivel 1, Ma Angeles Palomino , edelsa, G	Description s, Roleplay t imperfect- (	of house and (as diner and to be and to ha	its con custo ave)	mpon omer,	ents, sales	12 Modes of 12 sman and Total:60

		UTCOM ion of t		se, the st	udents	will be a	ble to						(1	BT Mapı Highest L	
CO1	unde	erstand	the gram	nmatical s	tructure	of the lar	nguage a	and intro	duce se	elf to othe	ers.		Rem	nembering	j (K1)
CO2	unde	erstand	basic ve	rbs and a	ppropria	ate vocab	ulary.						Und	erstanding	g (K2)
CO3	ask	for direc	tions an	d arrange	for trar	sportatio	n, etc, as	needeo	ł.				Und	erstanding	g (K2)
CO4	O4 understand the food habits of Spain and Latin countries and ask for appointments													erstanding	g (K2)
CO5	leari	n to soc	alize in S	Spanish s	peaking	countrie	8						Und	erstanding	g (K2)
						Маррі	ng of CO	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1								1	2	3		3		2
CO	2								1	2	3		3		2
CO	3								1	2	3		3		2
CO	4								1	2	3		3		2
CO	5								1	2	3		3		2
1 – Slię	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's T	Faxonom	iy						·	
						ASSE	SSMEN	Γ ΡΑΤΤΙ	ERN - 1	HEORY					
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyzi (K4) %		Evaluating (K5) %		eating K6) %	Total %
	CAT	1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ESE	=		25		75									100

	22GEO15 - SPANISH LANGUAGE L	EVEL 2					
	(Offered by Department of Electronics and Commur	ication Engir	neering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Fundamentals of Spanish Language	All	OE	4	0	0	4
Preamble	This course aims to help the Learner to acquire the vocabular level competence. This course will help to assimilate the basi understand and reciprocate in daily life situations on a broade comprehensive understanding of the Spanish grammar and comprehensive understanding of the Spanish	cgrammar st er sense. A th	ructures and g horough learne	jain vo er will	ocabu be at	ulary t	o gain a
Unit – I	Spanish and You (El Español y tú)	,	,				12
	s & Weakness, Recommendations, Sentiments, Motivations, Abo gulars and irregulars), Reflexive Verbs, Prepositions	ut favorite fil	ms and Types	s of s	creer	is in 1	ne movi
Unit – II	Eat and Repeat (Comer y repetir)						12
Equarita fooda							
	Recipies, Types of meals, Describing House and Kitchen, Presenta us tense, Simple conditional form	ation of recip	e, Comparativ	es, P	osses	sive	oronouns
Present continuo		ation of recip	e, Comparativ	es, P	osses	sive	pronouns
Present continuo Unit – III Invitations, prese	us tense, Simple conditional form		· ·				12
Present continuo Unit – III Invitations, prese on various tours,	us tense, Simple conditional form Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie		· ·				12
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons	us tense, Simple conditional form Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie Past perfect, Past imperfect tense, Usage of Todavia or No Likes and Views (Gustasyvistas) & & things, Giving advices, Experience, Moods, Illness, Discomfor	ences, Desci	ibing favorite	place	, Rec	comm	12 endation 12
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmad	us tense, Simple conditional form Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie Past perfect, Past imperfect tense, Usage of Todavia or No Likes and Views (Gustasyvistas)	ences, Desci	ibing favorite	place	, Rec	comm	12 endation 12
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs,	us tense, Simple conditional form           Its Vacation Time (Tiempo de vacaciones)           entation, Greetings, Goodbyes, Activities on vacation, past experie           Past perfect, Past imperfect tense, Usage of Todavia or No           Likes and Views (Gustasyvistas)           & things, Giving advices, Experience, Moods, Illness, Discomfor           st & Patient), Past perfect, Past indefinite, Imperative	ences, Descr ts, Symptom	ibing favorite s, Roleplay (E	place Doctor	, Rec r & P	comm	12 en dation 12 , Guide a
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs,	us tense, Simple conditional form  Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie Past perfect, Past imperfect tense, Usage of Todavia or No  Likes and Views (Gustasyvistas)  & things, Giving advices, Experience, Moods, Illness, Discomfor Eist & Patient), Past perfect, Past indefinite, Imperative  Then and Now( Antes y Ahora)  circumstances of the past and present, Debates on past and pr	ences, Descr ts, Symptom	ibing favorite s, Roleplay (E	place Doctor	, Rec r & P	comm	12 endation 12 , Guide d 12 ect tense
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs, Past perfect and	us tense, Simple conditional form  Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie Past perfect, Past imperfect tense, Usage of Todavia or No  Likes and Views (Gustasyvistas)  & things, Giving advices, Experience, Moods, Illness, Discomfor Eist & Patient), Past perfect, Past indefinite, Imperative  Then and Now( Antes y Ahora)  circumstances of the past and present, Debates on past and pr	ences, Descr ts, Symptom	ibing favorite s, Roleplay (E	place Doctor	, Rec r & P	comm	12 endation 12 , Guide a 12 ect tense
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs, Past perfect and TEXT BOOK: 1 AULA IN	us tense, Simple conditional form  Its Vacation Time (Tiempo de vacaciones) entation, Greetings, Goodbyes, Activities on vacation, past experie Past perfect, Past imperfect tense, Usage of Todavia or No  Likes and Views (Gustasyvistas)  & things, Giving advices, Experience, Moods, Illness, Discomfor Eist & Patient), Past perfect, Past indefinite, Imperative  Then and Now( Antes y Ahora)  circumstances of the past and present, Debates on past and pr	ences, Descr ts, Symptom esent situatio	ibing favorite s, Roleplay (E ons and feelin	place Doctor	r & P Past ir	comm atient	12 en dation 12 , Guide 12 ect tense Total:6
Present continuo Unit – III Invitations, prese on various tours, Unit – IV Favorite persons Tourist, Pharmac Unit – V Habits, customs, Past perfect and TEXT BOOK: 1 AULA IN	us tense, Simple conditional form         Its Vacation Time (Tiempo de vacaciones)         entation, Greetings, Goodbyes, Activities on vacation, past experier         Past perfect, Past imperfect tense, Usage of Todavia or No         Likes and Views (Gustasyvistas)         & things, Giving advices, Experience, Moods, Illness, Discomfor         is & Patient), Past perfect, Past indefinite, Imperative         Then and Now( Antes y Ahora)         circumstances of the past and present, Debates on past and pr         Present comparatives.	ences, Descr ts, Symptom esent situatio	ibing favorite s, Roleplay (E ons and feelin	place Doctor	r & P Past ir	comm atient	12 en dation 12 , Guide 8 12 ect tense Total:60

		UTCOM		se, the st	udents	will be a	ble to						(	BT Mapı Highest L	
CO1	und	erstand	the Spar	nish langu	lage in o	deep and	its usage	e					Rem	nembering	J (K1)
CO2	prep	pare for	their Fav	orite reci	oes, Kno	ow the Ob	ojects use	ed in Kit	chen ar	nd house			Und	erstanding	g (K2)
CO3	con	verse at	oout their	vacation	, their F	avorite De	estinatior	า					Und	erstanding	g (K2)
CO4	und	erstand	complex	verbs an	d be ab	le to com	municate	e about t	heir pas	st experie	ences		Und	erstanding	g (K2)
CO5	knov	w the di	fference	between	Past an	d Present	and Cor	mparing	them.				Und	erstanding	g (K2)
						Маррі	ing of C	Os with	POs ar	nd PSOs					
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1								1	2	3		3		2
CO	2								1	2	3		3		2
CO	3								1	2	3		3		2
CO	4								1	2	3		3		2
CO	5								1	2	3		3		2
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT-	Bloom's T	Taxonom	iy							
						ASSE	SSMEN	Γ ΡΑΤΤΙ	ERN - T	HEORY					
	st / Bl Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)	•	Apply (K3)		Analyzi (K4) 9		Evaluating (K5) %		reating K6) %	Total %
	CAT	-1		75		25									100
	CAT	2		25		75									100
	CAT	3		25		75									100
	ES	E		25		75									100
* ±3%	may b	be varied	d (CAT 1	,2,3 – 50	marks &	ESE – 1	00 mark	s)	·						

	22GEO16 - SPANISH LANGUAGE L	EVEL 3					
	(Offered by Department of Electronics and Commur	nication Engin	eering)				
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Fundamentals of Spanish Language	All	OE	3	0	0	3
Preamble	This course provides enriching information about various every enhances the vocabulary and speaking ability to respond to an equips one to express opinions and negotiate appointments. W grammatical structure to answer confidently in everyday situati speak.	nd also seek in Vith diligent le	nformation in t arning one ca	hose n cap	situa ture a	tions. all bas	It also sic
Unit – I	Start Over( Volver a Empezar)						9
	es, Discuss a day in life, work, problems in the world, Predictior ect and future tense.	ns about futu	re (actions an	d situ	ation	s),Hy	pothetica
Unit – II	Prohibitions and More(Prohibiciones y mas)						9
	gations, Habits to change, social customs, Use of subjunctive, De	escribe synop	sis of Movie a	ind its	s rela	tion to	o real life
	vs movies, usage of connectors, Object Direct and Indirect.						1
Unit – III	Let's be Creative (Seamoscreatives)						9
	describing the problem, talk about desires and Necessities, prop isement, Give Instructions, Imperative negative, Use of Object Dire			dation	is an	d Sug	gestions
Unit – IV	Travel and Communication (Viajar y comunicar)						9
Talk about Tours	, Types of tourism and communication, Send messages, petitions, nd Travel agents), Past Pluscumperfect, All Past tenses.	Talk to peop	le on telephon	e, Ro	ole pla	ay(To	urists an
							9
Guide, Tourists a	Let's Talk(Hablemos)						9
Guide, Tourists a <b>Unit – V</b> Expression of Int	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug	gestions to m	ake a better fu	uture,	use	of sup	•
Guide, Tourists a <b>Unit – V</b> Expression of Int	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug	gestions to m	ake a better fu	uture,	use	of sup	•
Guide, Tourists a <b>Unit – V</b> Expression of Int	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug	gestions to m	ake a better fu	uture,	use	of sup	perlatives
Guide, Tourists a Unit – V Expression of Int Exclamatory phra	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug	gestions to m	ake a better fu	uture,	use	of sup	perlatives
Guide, Tourists a Unit – V Expression of Int Exclamatory phra TEXT BOOK:	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug						Total:4
Guide, Tourists a Unit – V Expression of Int Exclamatory phra TEXT BOOK:	erests, Sentiments, Feelings, Sensations, Manias etc. Certain sug ises, subjunctive. rnational 3 (B1) [Paperback] Jaime Corpas, Agusin Garmendia, No						Total:4

		UTCON		urse,	, the stud	dents	will be ab	e to						()	BT Mapp Highest L	
CO1	lear	n on Fu	iture te	nse.										Rem	nembering	g (K1)
CO2	und	lerstand	about	Perm	nissions a	and Pr	phibitions.							Und	erstandin	g (K2)
CO3	kno	wing ab	out Le	tter w	riting, Cr	eating	Ads, Expr	essing D	Desires a	and Inst	ructing (	Others.		Und	erstandin	g (K2)
CO4	und	lerstand	ing rule	es for	travel ar	nd Enh	ance com	municati	ons.					Und	erstandin	g (K2)
CO5	ехр	ressing	the fee	elings	and emo	otions	using adva	anced gr	ammar					Und	erstandin	g (K2)
							Mappin	g of CO	s with F	POs and	d PSOs					
COs/F	POs	PO1	PO	2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1									1	2	3		3		2
CO	2									1	2	3		3		2
CO	3									1	2	3		3		2
CO	4									1	2	3		3		2
CO	5									1	2	3		3		2
1 – Sli	ght, 2	– Mode	erate, 3	3 – Si	ubstantia	I, BT- I	Bloom's Ta	axonomy	1		-			1		
							ASSES	SMENT	PATTE	RN - Tł	HEORY					
		Bloom's gory*	5	Rei	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		eating K6) %	Total %
	CA	AT1			75		25									100
	CA	AT2			25		75									100
	CA	AT3			25		75									100
	E	SE			25		75									100
* ±3%	may	be varie	d (CA	T 1,2,	3 – 50 m	arks &	ESE – 10	0 marks	)					1		

		(Offered by Department of Mechatronics E	Engineerin	g)				
Program Branch	ime &	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequi	sites	Engineering Economics & Management	7	OE	3	0	0	3
Preamble	<i>.</i>	The purpose of this course to create entrepreneurial awaren	ess amono	engineering	stude	ents		
Unit – I	•	Entrepreneurship Concepts:		ongineering	staat			9
- Entrepr	reneurship	Entrepreneur- Role in Economic Development - Factors affect vs Intrapreneurship- Entrepreneurial Motivation factors – ntrepreneurs - Entrepreneurship Development in India	•	•		•		
Unit – II		Entrepreneurial Ventures and opportunity assessment:						9
developm Opportun	nent stage hity, Evalua	tion – Bootstrapping, Minipreneurship, Start-ups, Acquiri s - Models of market opportunity- Opportunity assessment: Cr tion process, Global opportunities for entrepreneurs.						nt, Idea v
Unit – III		Business Plan: Model- Business Model Canvas- Objectives of a Business P		<b></b>	_		~	9
ionnulau								
Unit – IV Forms of	f entreprer	ntation of the Business Plan: The 'Pitch'- case studies Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists -						
Unit – IV Forms of financing investors	f entreprer : Initial Pu , Micro-fin	<b>Financing and accounting:</b> neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca	Angel inve apital. Prep	estors-New fo	rms	of fir	nancir	es, equit ig: Impac
Unit – IV Forms of financing investors analysis, Unit – V	f entreprer : Initial Pu , Micro-fin Taxation-I	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management:	Angel inve apital. Prep udy	estors-New fo paring Financ	rms :ial E	of fir Budge	nancir et, Br	es, equity ag: Impac eak ever <b>9</b>
Unit – IV Forms of financing investors analysis, Unit – V Definition Indian Sta	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small S artup Ecos nterprises	<b>Financing and accounting:</b> neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu	Angel inve apital. Prep udy all Enterpris usiness Inc	estors-New fo paring Financ es: Symptom ubators – Gov	orms cial E s -Ca /ernn	of fir Budge auses nent	ancir et, Br and Policy	es, equit ig: Impace eak even <b>9</b> remedies for Sma and Sub
Unit – IV Forms of financing investors analysis, Unit – V Definition Indian Sta Scale Err	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small S artup Ecos nterprises ng	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management: Scale Industries: Strengths and Weaknesses, Sickness in Sma system – Institutions supporting small business enterprises, Bu	Angel inve apital. Prep udy all Enterpris usiness Inc	estors-New fo paring Financ es: Symptom ubators – Gov	orms cial E s -Ca /ernn	of fir Budge auses nent	ancir et, Br and Policy	es, equity g: Impace eak ever 9 remedies for Smal
Unit – IV Forms of financing investors analysis, Unit – V Definition Indian Sta Scale En Contractii	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small \$ artup Ecos nterprises ng DOK:	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management: Scale Industries: Strengths and Weaknesses, Sickness in Sma system – Institutions supporting small business enterprises, Bu	Angel inve apital. Prep udy all Enterpris usiness Inc sification,	estors-New fo paring Financ es: Symptom ubators – Gov Joint Venture	erms cial E s -Ca vernn , Me	of fir Budge auses nent rger,	ancir et, Br and Policy FDI	es, equit ig: Impace eak even g remedies for Sma and Sub
Unit – IV Forms of financing investors analysis, Unit – V Definition Indian Sta Scale En Contractii	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small \$ artup Ecos nterprises ng <b>DOK:</b> Donald F. k	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management: Scale Industries: Strengths and Weaknesses, Sickness in Sma system – Institutions supporting small business enterprises, Bu - Growth Strategies in small industry – Expansion, Divers	Angel inve apital. Prep udy all Enterpris usiness Inc sification,	estors-New fo paring Financ es: Symptom ubators – Gov Joint Venture	erms cial E s -Ca vernn , Me	of fir Budge auses nent rger,	ancir et, Br and Policy FDI	es, equit ig: Impace eak even g remedies for Sma and Sub
Unit – IV       Forms of       financing       investors       analysis,       Unit – V       Definition       Indian Sta       Scale Er       Contraction       TEXT BC       1.       REFERE       1	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small S artup Ecos nterprises ng DOK: Donald F. H	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management: Scale Industries: Strengths and Weaknesses, Sickness in Sma system – Institutions supporting small business enterprises, Bu - Growth Strategies in small industry – Expansion, Diverse Kuratko, "Entrepreneurship: Theory, Process, Practice", 11 th Ed Hisrich, Michael P. Peters & Dean A. Shepherd, Sabyasachi Si	Angel inve apital. Prepudy all Enterprise usiness Inc sification, c ition, Ceng	estors-New fo paring Financ ees: Symptom ubators – Gov Joint Venture age Learning,	rms sial E s -Ca vernn , Me Bos	of fir Budge auses nent rger,	ancir et, Br s and Policy FDI	es, equit ig: Impace eak event remedies of for Sma and Sub Total:4
Unit – IV       Forms of       financing       investors       analysis,       Unit – V       Definition       Indian Sta       Scale       En       Contraction       1.       E       1.       F       1.       F       1.       1.       F       1.	f entreprer : Initial Pu , Micro-fin Taxation-I n of Small S artup Ecos nterprises ng DOK: Donald F. H NCES: Robert D. H Hill, Noida, Charantima	Financing and accounting: neurial capital – Sources of Financial capital: debt financing blic offering (IPO), Private placement - Venture capitalists - ancing, Peer-to-Peer Lending, Crowd funding - Natural ca Direct and indirect taxes, Insolvency and Bankruptcy- Case Stu Small Business Management: Scale Industries: Strengths and Weaknesses, Sickness in Sma system – Institutions supporting small business enterprises, Bu - Growth Strategies in small industry – Expansion, Diverse Kuratko, "Entrepreneurship: Theory, Process, Practice", 11 th Ed Hisrich, Michael P. Peters & Dean A. Shepherd, Sabyasachi Si	Angel inve apital. Prepudy all Enterprise usiness Ince sification, cong ition, Ceng	estors-New fo paring Financ ees: Symptom ubators – Gov Joint Venture, age Learning, preneurship",	rms sial E s -Ca vernn , Me Bos	of fir Budge auses nent rger, ton, 2	ancir et, Br s and Policy FDI 2020.	es, equit g: Impad eak eve 9 remedies ofor Sma and Sub Total:4

		UTCOM		se, the s	tudent	s will be	able to							BT Map (Highest L	
CO1	und	erstand	the impo	ortance of	f entrep	preneursh	ip and c	demons	trate th	e traits o	of an en	repreneur	Арр	lying (K3)	
CO2	ider	ntify suita	able entr	epreneur	ial vent	tures and	busines	ss oppo	rtunity				Арр	lying (K3)	
CO3	asse	ess the	compone	ents of bu	isiness	plan							Ana	lyzing (K4	)
CO4	app	ppraise the sources of finance and interpret accounting statements												lying (K3)	
CO5	inte	rpret the	causes	of sickne	ess of s	mall scale	e enterp	rises ar	nd its re	emedies			Unc	lerstanding	g (K2)
						Mappir	ng of CC	Os with	POs a	nd PSO	S				
COs/F	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1						2	2	1	1		3	2		
CO	2	1	2	2	2		2	2	1	1		3	2		
CO	3	2	2	2	2	2	2	2	2	2	2	3	2		
CO	4	1	1	2	1		2	1	1	1	2	3	2		
CO	5	1	1	2	1		2	1	1	1	2	3	2		
1 – Sli	ght, 2	– Mode	rate, 3 –	Substan	tial, BT	- Bloom's	Taxono	omy							
						ASSES	SMENT		ERN -	THEOR	Y				
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyz (K4)		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		20		40		40	)						100
	CAT	2		20		30		30	)	20					100
	CAT	3		30		30		40	)						100
	ESE	=		10		30		40	)	20					100

	22GEX01 – NCC Studies (Army Win	ig) – I					
	(Offered by Department of Electrical and Electro	nics Engi	neering)				
Programme & Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5/6	OE	3	0	2	4
Preamble	This course is designed especially for NCC Cadets. This course is designed especially for NCC Cadets. This course discipline, secular outlook, the spirit of adventure, sportsmar cadets by working in teams, learning military subjects included the spirit of the spirit o	n spirit and	ideals of self				
Unit - I	NCC Organisation & National Integration						9
advantages of NC National Integratio National Integratio		tives for N	CC cadets by	cen	tral a	nd sta	ite govt. Slogans o
Unit - II	Basic physical Training & Drill						9
Drill- Words of con saluting on the ma WITH DEMONSTR		marching-	turning on the	e ma			inting. (
Unit - III	Weapon Training						9
holding- safety pre	fle- Characteristics of 5.56mm INSAS rifle- Characteristics of .22 cautions – range procedure- MPI and Elevation- Group and Sn ION) - Characteristics of 7.62mm SLR- LMG- carbine machine g	ap shooting					
Unit - IV	Social Awareness and Community Development						9
preventive measu NSAP-PMGSY-Te children from sexu	ervice-Various Means and ways of social services- family pla res- NGO and their activities- Drug trafficking- Rural develo rrorism and counter terrorism- Corruption – female foeticide -dc al offences act- civic sense and responsibility	pment pro	grammes - I	MGN	REG	A-SG	SY-JGS) otection (
Unit - V	Specialized Subject (ARMY)						9
	Armed Forces- Military History – War heroes- battles of Indo-Pa ts and interviews-Fieldcraft and Battlecraft-Basics of Map readi			a- Ca	areer	in the	e Defence
			Lecture :4	5, P	racti	cal:30	), Total:7
TEXT BOOK:							
1. National C	Cadet Corps- A Concise handbook of NCC Cadets by Ramesh F	Publishing I	House, New [	Delhi	, 201	4	
REFERENCES:							
1. Cadets Ha	andbook – Common Subjects SD/SW published by DG NCC, Ne	ew Delhi.					
2. Cadets Ha	andbook- Specialized Subjects SD/SW published by DG NCC, N	New Delhi					
3. NCC OTA	Precise published by DG NCC, New Delhi.						
1							

		UTCOI tion of		se, the st	uden	ts will be a	able to							BT Mapı Highest L	
CO1						[.] values an hrough nat						outh who w	ʻill	Applying	<mark>(K3)</mark>
CO2						sense of d				ring, sma	artness,	turnout,		Applying	<mark>(K3)</mark>
CO3	bas	ic know	vledge of v	weapons	and tl	neir use an	d handl	ing.						Applying	<mark>(K3)</mark>
<ul> <li>understanding about social evils and shall inculcate sense of whistle blowing against such ev and ways to eradicate such evils</li> <li>acquaint, expose &amp; provide knowledge about Army/Navy/ Air force and to acquire information</li> </ul>														Applying	<mark>(K3)</mark>
CO5						dge about service sul					quire inf	formation		Applying	<mark>(K3)</mark>
						Mappin	g of CC	s with	POs ai	nd PSO:	5				
COs/F	POs	PO1	PO2	PO3	PO	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1						3	3	3	3	3				
CO	2					3									
CO	3	3	2	1	1										
CO	4	3	2	1	1										
CO	5	3	2	1	1										
1 – Sli	ght, 2	– Mod	erate, 3 –	Substant	ial, B	T- Bloom's	Taxono	my							
						ASSES	SMENT	PATTE	ERN - 1	THEORY	,				
/ Test Cat	Bloo egory	-	Remem	bering (H %	(1)	Understa (K2)	•	Apply (K3)	-	Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Tota %
C	CAT1			-		-		-		-		-		-	-
C	CAT2			-		-		-		-		-		-	-
C	САТЗ			-		-		-		-		-		-	-
I	ESE			all K1 to I	<6 kn	owledge le			•	•		nce, Govern Semester E			

		(Offered by Department of Information 1	Technolog	ay)				
Program Branch	nme &	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequi	lisites	Nil	5/6	OE	3	0	2	4
Preamble	le	This course is designed especially for NCC Cadets. This co discipline, secular outlook, the spirit of adventure, sportsma cadets by working in teams, honing qualities such as self-di of labour in the cadets.	in spirit an	d ideals of self	fless	servio	e amo	ongst
Unit–I		NCC Organization and National Integration						9+3
History a contribut	and Organ	C Training - NCC badges of Rank - Honors' and Awards – Ind nization of IAF - Indo-Pak War-1971 - Operation Safed S th in nation building - national integration council - Images and	Sagar. Na	tional Integrat	ion -	Unit		diversity
Unit–II		Drill and Weapon Training nmands - position and commands - sizing and forming - salution						9+3
	9.(WIIII D	DEMONSTRATION). Main Parts of a Rifle - Characteristics of	אווופ .עע ווופ	<ul> <li>loading and</li> </ul>	unio	ading	i – po	silion and
holding - PRACTIO Unit-III Laws of	- safety pro	Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar	nd Snap s	shooting - Long	g/Sho	rt rar	ige fir	ing (WITH <b>9+</b> 3
holding - PRACTIO <b>Unit-III</b> Laws of Aircraft r	- safety pro	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar	nd Snap s	shooting - Long	g/Sho	rt rar	ige fir	ing (WIT⊦ <b>9+</b> 3 urfaces -
holding - PRACTIO Unit-III Laws of a Aircraft r Unit-IV	- safety pro- ICE SESSI motion-Fo recognition	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar	nd Snap s	shooting - Long	g/Sho ondar	rt rar	nge fir	ing (WITH 9+: urfaces - 9+:
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct	- safety pro- ICE SESSI motion-Fo recognition	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines	nd Snap s	shooting - Long	g/Sho ondar	rt rar	nge fir	ing (WITH 9+3 urfaces - 9+3
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct trends. Unit-V History o	- safety pro ICE SESSI motion-Fo recognition tion of Aero of aeromoc	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine - Types of engine - piston engine - jet engines - Turbo	nd Snap s ry control s o prop eng	shooting - Long surfaces – seco gines-Basic Flig	g/Sho ondar ght In	rt rar	nge fir	ing (WITH 9+: urfaces - 9+: - Modern 9+:
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct trends. Unit-V History o	- safety pro ICE SESSI motion-Fo recognition tion of Aero of aeromoc	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-modeling	nd Snap s ry control s o prop eng	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid	g/Sho ondar ght In lers -	rt rar y cor strum Cont	nge fir ntrol su nents rolline	ing (WITH 9+: urfaces - 9+: Modern 9+: models -
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct trends. Unit-V History o	- safety pro ICE SESSI motion-Fo recognition tion of Aero of aeromoc	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-modeling	nd Snap s ry control s o prop eng	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid	g/Sho ondar ght In lers -	rt rar y cor strum Cont	nge fir ntrol su nents rolline	ing (WITH 9+: urfaces - 9+: - Modern 9+:
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct trends. Unit-V History o Radio Co TEXT BC	- safety pro- ICE SESSI motion-Fo recognition tion of Aero of aeromoc control Mod	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-modeling	nd Snap s ry control s o prop eng els – Statio	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid Lecture	g/Sho ondar ght In lers -	rt rar y cor strum Cont Tutoi	nge fir ntrol su nents rolline rial:30	ing (WITH 9+: urfaces - 9+: Modern 9+: models -
holding - PRACTIO Unit-III Laws of I Aircraft r Unit-IV Introduct trends. Unit-V History o Radio Co TEXT BC	- safety pro ICE SESSI motion-Fo recognition ction of Aero of aeromoc control Mod	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-model lels - Building and Flying of Aero-models.	nd Snap s ry control s o prop eng els – Statio	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid Lecture	g/Sho ondar ght In lers -	rt rar y cor strum Cont Tutoi	nge fir ntrol su nents rolline rial:30	ing (WITH 9+: urfaces - 9+: Modern 9+: models -
holding - PRACTIO Unit-III Laws of r Aircraft r Unit-IV Introduct trends. Unit-V History o Radio Co TEXT BC 1. (*	- safety pro ICE SESSI motion-Fo recognition ction of Aero of aeromoc control Mod OOK: "National C ENCES/ M/	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-model lels - Building and Flying of Aero-models. Cadet Corps - A Concise handbook of NCC Cadets", Ramesh	nd Snap s ry control s o prop eng els – Statio	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid Lecture	g/Sho ondar ght In lers -	rt rar y cor strum Cont Tutoi	nge fir ntrol su nents rolline rial:30	ing (WITH 9+: urfaces - 9+: Modern 9+: models -
holding - PRACTIO Unit-III Laws of Aircraft r Unit-IV Introduct trends. Unit-V History o Radio Co TEXT BC 1. REFERE	- safety pro ICE SESSI motion-Fo recognition tion of Aero of aeromoc control Mod OOK: "National C ENCES/ M/ "Cadets H	ecautions – range procedure - MPI and Elevation - Group ar ON). Principles of Flight rces acting on aircraft – Bernoulli's theorem - Stalling - Primar Aero Engines o engine -Types of engine - piston engine - jet engines - Turbo Aero Modeling deling - Materials used in Aero-modeling - Types of Aero-model lels - Building and Flying of Aero-models. Cadet Corps - A Concise handbook of NCC Cadets", Ramesh ANUAL / SOFTWARE:	nd Snap s ry control s o prop eng els – Statio	shooting - Long surfaces – seco gines-Basic Flig c Models - Glid Lecture	g/Sho ondar ght In lers -	rt rar y cor strum Cont Tutoi	nge fir ntrol su nents rolline rial:30	ing (WITH 9+: urfaces - 9+: Modern 9+: models -

		UTCOM ion of t		se, the stu	udents	will be a	able to						(	BT Mapp Highest L	
CO1				tism, secu ding throu						to motiv	ated you	th who wil	I	Applying	<mark>(K3)</mark>
CO2			e the ser nd handli		apons and	1	Applying	<mark>(K3)</mark>							
CO3	illus	strate va	rious for	ces and m	oments	acting o	on aircra	ıft						Applying	<mark>(K3)</mark>
CO4	outl	ine the	concepts	of aircraf	t engine	and roo	ket prop	oulsion						Applying	<mark>(K3)</mark>
CO5	des	ign, buil	d and fly	chuck gli	ders/mo	del air p	lanes a	nd displ	ay stati	c model	S.			Applying	<mark>(K3)</mark>
		Mapping of COs with POs and PSOs													
COs/F	POs	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO ²												PSO1	PSO2
CO	)1						3	3	3	3	3				

CO2					3						
CO3	3	2	1	1							
CO4	3	2	1	1							
CO5	3	2	1	1							
1 – Slight, 2	– Mode	erate, 3 –	Substanti	al, BT-	Bloom's	Taxono	my				
					ASSES	SMENT	PATTERN	THEORY			
Test / Bl Categ		Re	memberir (K1) %	ng l	Jndersta (K2)		Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT	Г1		-		-		-	-	-	-	-
CAT	Г2		-		-		-	-	-	-	-
CAT	ГЗ		-		-		-	-	-	-	-
	-										

ESE The examination and award of marks will be done by the Ministry of Defence, Government of India which includes all K1 to K6 knowledge levels. The maximum marks for the End Semester Examination is 500 marks. It will be converted to 100 marks.

		(Offered by Department of Managemer	nt Studies)					
Progr Branc	ramme& ch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Ρ	Credit
Prere	quisites	NIL	5	OE	3	1	0	4
Pream	nble	To provide an In-depth study of the Cost Accounting principles classification of costs components to facilitate decision Making		iques for iden	tifica	tion, a	inalys	is and
Unit -	-1	Introduction to Cost Accounting						9 + 3
	unting and r	<b>Cost Accounting:</b> Meaning - Scope, objectives and significant management accounting- cost centres - cost units - Elements						
Unit -	- 11	Cost Ascertainment – Elements of cost						9 + 3
incent Overh Unit -	tive schem h <b>eads:</b> Col - III	lection, classification and apportionment and allocation of overh Basic Costing Methods	eads.					9+
Opera	ating Costir	ng - Meaning - Preparation of Operating Cost Sheet - Transport	Costing - P	ower Supply	Costi	ng - F	lospita	al Costing
Unit -	- IV	Advanced Costing Methods						9 +
Featu Proce	res of Job ess Loss - N	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss.	Costing, an	d Batch Costi	ing -	Proce	ss Co	
Proce Unit -	ess Loss - N <b>- V</b>	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques	-					
Proce Unit – Budg classif Stand costin	ess Loss - N - V fication of b dard Costin g as a mar	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss.	nstallation o sting – Suita	f Budgetary c ability of stand bour cost var	ontro dard ( iance	l syste costin ès – C	em g – St verhe	sting - 9 + andard ad
Proce Unit – Budg classif Stand costin varian	ess Loss - N - V fication of b dard Costin ng as a mar nees – Sale	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost nagement Tool – Cost variances – Direct material cost variances	nstallation o sting – Suita	f Budgetary c	ontro dard ( iance	l syste costin ès – C	em g – St verhe	sting - 9 + andard ad
Proce Unit – Budg classif Stand costin varian	ess Loss - N - V let and Bud fication of b dard Costin g as a mar nces – Sale BOOKS	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost nagement Tool – Cost variances – Direct material cost variances as variance.	nstallation o sting – Suita s – Direct la	f Budgetary c ability of stand bour cost var <b>Lecture:</b>	ontro dard d iance <b>45</b> ,	l syste costin ès – C Tutor	em g – St verhe a <b>al: 15</b>	sting - 9 + andard ad 5, Total:6
Proce Unit – Budg classif Stand costin varian TEXT	ess Loss - N - V let and Bud fication of b dard Costin g as a mar nces – Sale BOOKS Jawahan Educatio William	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost nagement Tool – Cost variances – Direct material cost variances as variance.	nstallation o sting – Suita s – Direct la	f Budgetary c ability of stand bour cost var <b>Lecture:</b> and Cases", (	ontro dard iance <b>45</b> , ⁻	l syste costin es – C Tutor dition	em g – St verhe j <b>al: 15</b> , McG	sting - 9 + andard ad <b>5, Total:6</b> raw Hill
Proce Unit – Budg classif Stand costin varian TEXT 1. 2.	ess Loss - N - V let and Bud fication of b dard Costin g as a mar nces – Sale BOOKS Jawahan Educatio William	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost hagement Tool – Cost variances – Direct material cost variances by variance. rLal, SeemaSrivastava, Manisha Singh, " Cost Accounting, Text bon, New Delhi, 2020. Lanen, Shannon Anderson and Michael Maher, "Fundamentals	nstallation o sting – Suita s – Direct la	f Budgetary c ability of stand bour cost var <b>Lecture:</b> and Cases", (	ontro dard iance <b>45</b> , ⁻	l syste costin es – C Tutor dition	em g – St verhe j <b>al: 15</b> , McG	sting - 9 + andard ad <b>5, Total:6</b> raw Hill
Proce Unit – Budg classif Stand costin varian TEXT 1. 2. REFE	Ess Loss - N - V let and Bud fication of b dard Costin g as a mar nces – Sale BOOKS Jawahan Educatio William Educatio Educatio	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost hagement Tool – Cost variances – Direct material cost variances by variance. rLal, SeemaSrivastava, Manisha Singh, " Cost Accounting, Text bon, New Delhi, 2020. Lanen, Shannon Anderson and Michael Maher, "Fundamentals	nstallation o sting – Suita s – Direct la c, Problems of cost Acc	f Budgetary c ability of stand bour cost var <b>Lecture:</b> and Cases", ( ounting",7th E	ontro dard ( iance <b>45</b> , ⁻ ôth E Editio	l syste costin es – C Tutor dition n, Mc	em g – St verhe j <b>al: 15</b> , McG	sting - 9 + andard ad <b>5, Total:6</b> raw Hill
Proce Unit – Budg classif Stand costin varian TEXT 1. 2.	<ul> <li>Example s Loss - N</li> <li>V</li> <li>Vet and Bue fication of b</li> <li>dard Costing as a marnes – Sale</li> <li>BOOKS</li> <li>Jawahan Educatio</li> <li>William Educatio</li> <li>ERENCES</li> <li>M.N.Aro</li> </ul>	Costing - Batch Costing - Preparation of Cost Sheet Under Job Normal and Abnormal Loss. Cost Accounting Techniques dgetary Control: Budgetary control as a management Tool – Ir budgets – Fixed and Flexible Budgeting. ng and Variance Analysis: Budgetary control and standard cost hagement Tool – Cost variances – Direct material cost variances s variance. rLal, SeemaSrivastava, Manisha Singh, " Cost Accounting, Text on, New Delhi, 2020. Lanen, Shannon Anderson and Michael Maher, "Fundamentals on, New Delhi, 2020.	nstallation o sting – Suita s – Direct la c, Problems of cost Acc	f Budgetary co ability of stand bour cost var <b>Lecture:</b> and Cases", ( ounting",7th E use, New Del	ontro dard ( iance <b>45</b> , ⁻ ôth E Editio	l syste costin es – C Tutor dition n, Mc	em g – St verhe j <b>al: 15</b> , McG	sting - 9 + andard ad <b>5, Total:6</b> raw Hill

		UTCOM tion of t		se, the stu	Idents	will be a	able to							BT Ma (Highes)		
CO1	unc	derstand	I the con	ceptual fra	me wor	k of cos	t accou	Inting						Understan	ding (K2)	
CO2	und	erstand	the basi	c concepts	and pr	ocess in	detern	nination c	of cost	of produ	ict and se	ervices		Understan	ding (K2)	
CO3	use	the bas	ic costin	g methods	in diffe	rent bus	iness s	ituation						Applyin	g (K3)	
CO4	demonstrate the advanced costing methods in various decision making situation										Applying (K3)					
CO5	prep	oare var	ious type	es of budge	ets and	determi	ne varia	ance in di	ifferent	situatio	ns.			Applying (K3)		
						Mappin	g of C(	Os with F	POs an	d PSOs	5					
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P01	2 PSO1	PSO2	
CO	1										2	3	1			
CO	2										2	3	1			
CO	3										2	3	1			
CO	4										2	3	1			
CO	5										2	3	1			
1 – Sli	ght, 2	- Mode	rate, 3 -	Substantia	al, BT- I	Bloom's	Taxon	omy								
						ASSES	SMEN	Τ ΡΑΤΤΕ	RN - T	HEORY						
	t / Blo atego			embering K1) %		Understanding (K2) %		Applying (K3) %		alyzing K4) %	Evaluating (K5) %			Creating (K6) %	Total %	
	CAT1			30		70									100	
	CAT2	2		15		35		50							100	
	CAT	3		15		35		50							100	
	ESE			25		25		50							100	
* ±3%	may b	be varie	d (CAT 1	,2 & 3 – 50	) marks	& ESE	– 100 r	marks)								

	(Offered by Department of Menagemen	sion Making					
Programme&	(Offered by Department of Managemen	(Studies)					
Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Basic understanding of differential calculus	6	OE	3	1	0	4
Preamble	The course aims at introducing a few vital techniques required informed managerial decisions.	for carrying	out economi	c ana	alysis	for m	aking
Unit – I	Economic Optimization						9 +
Economic Opti Theory of firm – incremental con	Business versus Economic profit - Revenue relations - Cost rel	ations – Pro	fit relations –	Marę	ginal	versus	S
Unit – II	Forecasting						9 + 9
	Production and Cost Analysis	manageria	l and average	proc	luct -	law	-
diminishing retu Cost Analysis:	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short	<b>U</b>	Ū.	•			
Production: Production: Production: Production: Production (Cost Analysis: Volume – profit a Unit – IV	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis. Competitive Market Analysis	run cost – L	ong run cost	- COS	st rela	ations	of - cost <b>9 +</b>
Production: Pro diminishing retu Cost Analysis: volume – profit a Unit – IV Competitive Ma	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis.	run cost – L	ong run cost	- cos nalys	st rela	ations	of - cost <b>9 +</b>
Production: Pro diminishing retu Cost Analysis: volume – profit a Unit – IV Competitive Ma competitive mar Unit – V	Deduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation.         Economic and Accounting costs – Time in cost analysis – Short analysis.         Competitive Market Analysis         arket Analysis:         Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo         Game theory and Competitive Strategy	run cost – L naximisation ly – Monopo	ong run cost – Marginal ar listic competit	- cos nalys ion.	st rela	ations compe	of – cost <b>9 +</b> etition – <b>9 +</b>
Production: Pro diminishing retu Cost Analysis: volume – profit a Unit – IV Competitive Ma competitive mar Unit – V Game Theory B	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis. Competitive Market Analysis arket Analysis: Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo	run cost – L naximisation ly – Monopo	ong run cost – Marginal ar listic competit	- cos nalys ion.	st rela	ations compe	of – cost <b>9 +</b> etition – <b>9 +</b>
Production: Pro diminishing retu Cost Analysis: volume – profit a Unit – IV Competitive Ma competitive mar Unit – V Game Theory B	Deduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation.         Economic and Accounting costs – Time in cost analysis – Short analysis.         Competitive Market Analysis         arket Analysis:         Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo         Game theory and Competitive Strategy         asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Su	run cost – L naximisation ly – Monopo	ong run cost – Marginal ar listic competit	- cos nalys ion.	is in d	otions compe Points	of – cost <b>9 +</b> etition – <b>9 +</b> -
Production: Pro diminishing retu Cost Analysis: volume – profit a Unit – IV Competitive Ma competitive mar Unit – V Game Theory B	Deduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation.         Economic and Accounting costs – Time in cost analysis – Short analysis.         Competitive Market Analysis         arket Analysis:         Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo         Game theory and Competitive Strategy         asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Su	run cost – L naximisation ly – Monopo	ong run cost – Marginal ar listic competit	- cos nalys ion.	is in d	otions compe Points	of – cost <b>9 +</b> etition – <b>9 +</b> -
Production: Production: Production: Production: Profit statement         Cost Analysis:         volume – profit statement         Unit – IV         Competitive Matcompetitive mar         Unit – V         Game Theory B         Dominance Rule         TEXT BOOKS         1.       Mark Hit	Deduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation.         Economic and Accounting costs – Time in cost analysis – Short analysis.         Competitive Market Analysis         arket Analysis:         Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo         Game theory and Competitive Strategy         asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Sue         e - Mixed Strategies.	run cost – L naximisation ly – Monopo m Game - G	- Marginal ar listic competit ames without Lecture: 4	- cos inalys ion. t Sac	is in d Idle F	compe Points al: 15	of – cost <b>9 +</b> etition – <b>9 +</b> - 5, Total:6
Production: Production: Production: Production: Profit at Cost Analysis:         Volume – profit at Competitive Matcompetitive Matcompetitive mark         Competitive Matcompetitive Matcompetitive mark         Unit – IV         Game Theory B         Dominance Rule         TEXT BOOKS         1.	boduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis. Competitive Market Analysis arket Analysis: Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo Game theory and Competitive Strategy asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Su - Mixed Strategies.	run cost – L naximisation ly – Monopo m Game - G	- Marginal ar listic competit ames without Lecture: 4	- cos inalys ion. t Sac	is in d Idle F	compe Points al: 15	of – cost <b>9 +</b> etition – <b>9 +</b> - 5, Total:6
Production: Production: Production: Production: Profit         Cost Analysis:         volume – profit         Unit – IV         Competitive Matcompetitive mar         Unit – V         Game Theory B         Dominance Rule         TEXT BOOKS         1.       Mark Hi         2.       Geetika         2019.         REFERENCES	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis.           Competitive Market Analysis           arket Analysis:           Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo           Game theory and Competitive Strategy           asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Su e - Mixed Strategies.	run cost – L naximisation ly – Monopo m Game - G g, New Delh 3rd Edition,	.ong run cost – Marginal ar listic competit Bames withour Lecture: 4 i, 2022. McGraw Hill E	- cos inalys ion. t Sac	is in d Idle F	compe Points al: 15	of – cost <b>9 +</b> etition – <b>9 +</b> - 5, Total:6
Production: Production: Production: Profit         diminishing retu         Cost Analysis:         volume – profit         Unit – IV         Competitive Macompetitive mar         Unit – V         Game Theory B         Dominance Rule         TEXT BOOKS         1.       Mark Hi         2.       Geetika         2019.         REFERENCES         1.       Gupta.	<ul> <li>Deduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis.</li> <li>Competitive Market Analysis</li> <li>arket Analysis: Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo</li> <li>Game theory and Competitive Strategy</li> <li>asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Sue - Mixed Strategies.</li> <li>rschey, "Managerial Economics", 12th Edition, Cengage Learning</li> <li>, PiyaliGhosh, Purba Roy Choudhury, "Managerial Economics", 2nd Edition, McGraw Hill Education</li> </ul>	run cost – L naximisation ly – Monopo m Game - G g, New Delh 3rd Edition, , New Delhi,	- Marginal ar listic competit Games without Lecture: 4 i, 2022. McGraw Hill E 2019.	- cos nalys ion. t Sac <b>45, T</b>	is in d Idle F	compe Points al: 15	of – cost <b>9 +</b> etition – <b>9 +</b> - 5, Total:6
Production: Production: Production: Production: Production: Production: Production: Production: Production: Product Pro	oduction function – Returns to scale and returns to factor – Total rns – Optimal input usage – Production function estimation. Economic and Accounting costs – Time in cost analysis – Short analysis.           Competitive Market Analysis           arket Analysis:           Characteristics of competitive markets – Profit m ket supply curve – Equilibrium in competitive markets - Monopo           Game theory and Competitive Strategy           asics - Prisoner's Dilemma - Saddle Point - Two Person Zero Su e - Mixed Strategies.	run cost – L naximisation ly – Monopo m Game - G g, New Delh 3rd Edition, , New Delhi,	- Marginal ar listic competit Games without Lecture: 4 i, 2022. McGraw Hill E 2019.	- cos nalys ion. t Sac <b>45, T</b>	is in d Idle F	compe Points al: 15	of – cost <b>9 +</b> etition – <b>9 +</b> - 5, Total:6

		UTCOM tion of t		se, the stu	dents	will be a	able to								apped st Level)
CO1	Und	lerstand	revenue	e, cost and	profit re	elations	and ap	ply techr	iques t	o find be	est cours	e of action	n.	Applyi	ng (K3)
CO2	Арр	ly appro	priate fo	recasting t	echniq	ues for e	estimati	ng sales	, cost a	nd reve	nue.			Applyi	ng (K3)
CO3		lerstand ofit anal		tion betwe	en inpu	ts and c	output c	of produc	tion sy	stem an	d perforr	n cost – v	olume	Applyi	ng (K3)
CO4	Арр	ly mark	et equilib	rium conce	epts in I	monopo	ly and r	monopoli	stically	compet	itive mar	kets.		Applyi	ng (K3)
CO5	Und	lerstand	game th	eory and a	apply in	differen	t strate	gic decis	ions					Applyi	ng (K3)
						Mappin	g of CO	Os with I	POs ar	nd PSOs	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO1	2 PSO1	PSO2
CO	)1					2					1	3			
CO	2					2					1	3			
CO	3					2					1	3			
CO	)4					2					1	3			
CO	95					2					1	3			
1 – Sli	ght, 2	– Mode	rate, 3 -	Substantia	al, BT- I	Bloom's	Taxon	omy							
						ASSES	SMEN	Γ ΡΑΤΤΕ	RN - T	HEORY					
	t / Blo atego			embering K1) %		erstand (K2) %	ling	Applying (K3) %		alyzing K4) %	Eval	uating (K	5) %	Creating (K6) %	Total %
	CAT1			35		35		30							100
	CAT2	2		15		45		40							100
	CAT 3	3		15		35		50							100
	ESE			5		40		55							100

	22MBO03 Marketing Analytic	CS					
	(Offered by Department of Managemen	nt Studies)					
Programme& Branch	All BE/BTech Engineering and Technology Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Basic understanding of differential calculus	7	OE	3	1	0	4
Preamble	Marketing analytics enables marketers to measure, manage a effectiveness and optimize return on investment (ROI). This car measure customer value and apply analytic tools to various m	ourse expos	es the studen				
Unit – I	Market & Marketing Analytics	Ŭ					9+3
Market Insig	<ul> <li>Introduction to marketing analytics, Models &amp; Metrics</li> <li>nt - Market sizing.</li> <li>Intation –Segmentation, Targeting &amp; Positioning</li> </ul>						
Unit – II	Business & Competition						9 + 3
Unit – III	erations - Forecasting Product and Price						9 + 3
Product and	Service Analytics - Conjoint analysis and product/service metrics	5					010
Product and		3					9+3
Product and Price Analyti Unit – IV Distribution	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment		tribution and	metr	ics.		1
Product and Price Analyti Unit – IV Distribution Promotion A	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics –Characteristics, Channel evaluation and selection, Multi		tribution and	metr	ics.		9 + 3
Product and Price Analyti Unit – IV Distribution Promotion A Unit – V	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics –Characteristics, Channel evaluation and selection, Multi nalytics - Promotion budget estimation and allocation, Metrics		tribution and	metr	ics.		1
Product and Price Analyti Unit – IV Distribution Promotion A Unit – V	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics –Characteristics, Channel evaluation and selection, Multi nalytics - Promotion budget estimation and allocation, Metrics Sales		tribution and between the sector of the sect			ial: 15	9 + 3 9 + 3
Product and Price Analyti Unit – IV Distribution Promotion A Unit – V Sales Analyt	Service Analytics - Conjoint analysis and product/service metrics         cs - Pricing techniques and assessment         Distribution & Promotion         Analytics – Characteristics, Channel evaluation and selection, Multinalytics - Promotion budget estimation and allocation, Metrics         Sales         ics - Metrics for sales, profitability, and support					ial: 15	9 + 3 9 + 3
Product and Price Analyti Unit – IV Distribution A Promotion A Unit – V Sales Analyt	Service Analytics - Conjoint analysis and product/service metrics         cs - Pricing techniques and assessment         Distribution & Promotion         Analytics – Characteristics, Channel evaluation and selection, Multinalytics - Promotion budget estimation and allocation, Metrics         Sales         ics - Metrics for sales, profitability, and support	tichannel dis	Lecture: 4	45, T	utor		9 + 3 9 + 3
Product and Price Analyti Unit – IV Distribution A Promotion A Unit – V Sales Analyt TEXT BOOKS	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics – Characteristics, Channel evaluation and selection, Multi nalytics - Promotion budget estimation and allocation, Metrics Sales ics - Metrics for sales, profitability, and support S nen Sorger, "Marketing Analytics: Strategic Models and Metrics", 1s ine L. Winston, "Marketing Analytics: Data-Driven Techniques with N	tichannel dis	<b>Lecture:</b> dmiral Press,	<b>45, T</b> UK,	<b>Tutor</b> 2016		9 + 3 9 + 3 5, Total:60
Product and Price Analyti Unit – IV Distribution A Promotion A Unit – V Sales Analyt TEXT BOOKS 1. Steph 2. Wayr 2018	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics – Characteristics, Channel evaluation and selection, Multi- nalytics - Promotion budget estimation and allocation, Metrics Sales ics - Metrics for sales, profitability, and support Sheen Sorger, "Marketing Analytics: Strategic Models and Metrics", 1st ie L. Winston, "Marketing Analytics: Data-Driven Techniques with N	tichannel dis	<b>Lecture:</b> dmiral Press,	<b>45, T</b> UK,	<b>Tutor</b> 2016		9 + 3 9 + 3 5, Total:60
Product and Price Analyti Unit – IV Distribution A Promotion A Unit – V Sales Analyt TEXT BOOKS 1. Steph 2. Wayr 2018 REFERENCE	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics – Characteristics, Channel evaluation and selection, Multi- nalytics - Promotion budget estimation and allocation, Metrics Sales ics - Metrics for sales, profitability, and support Sheen Sorger, "Marketing Analytics: Strategic Models and Metrics", 1st ie L. Winston, "Marketing Analytics: Data-Driven Techniques with N	tichannel dis	Lecture: 4 dmiral Press, cel", 1st Editio	<b>45, T</b> UK, on, W	<b>Tutor</b> 2016		9 + 3 9 + 3 5, Total:60
Product and Price Analyti Unit – IV Distribution Promotion A Unit – V Sales Analyti TEXT BOOKS 1. Steph 2. Wayr 2018 REFERENCE 1. Tomr	Service Analytics - Conjoint analysis and product/service metrics cs - Pricing techniques and assessment Distribution & Promotion Analytics – Characteristics, Channel evaluation and selection, Multi- nalytics - Promotion budget estimation and allocation, Metrics Sales ics - Metrics for sales, profitability, and support S nen Sorger, "Marketing Analytics: Strategic Models and Metrics", 1 ie L. Winston, "Marketing Analytics: Data-Driven Techniques with N	tichannel dis st Edition, A Microsoft Ex Packt Publis	Lecture: 4 dmiral Press, cel", 1st Editio	<b>45, T</b> UK, on, W	<b>Tutor</b> 2016		9 + 3 9 + 3 5, Total:60

		UTCOM ion of t		se, the st	udents	will be a	able to	I						BT Map (Highest	
CO1	Und	lerstand	the impo	ortance of	Analytic	cs in Ma	rketing	, size and	d segm	ent the	market		l	Jnderstand	ling (K2)
CO2	Und	lerstand	the Bus	iness, con	petitior	and its	related	decisior	NS.				ι	Jnderstand	ling (K2)
CO3	Ider	ntify imp	ortant fea	atures of a	produc	t and su	iitable	pricing m	ethods					Applying	ı (K3)
CO4	Ass	ess Cha	annel per	formance	and Pro	motion	Metrics	6.						Applying	ı (K3)
CO5	Ass	ess sale	es perfori	mance.										Applying	ı (K3)
						Mappin	g of C	Os with I	POs an	d PSOs	5				
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CC	)1										2	3	1		
CC	)2										2	3	1		
CC	3										2	3	1		
CC	)4										2	3	1		
CC	95										2	3	1		
1 – Sli	ght, 2	– Mode	erate, 3 –	Substanti	al, BT- I	Bloom's	Taxon	omy							
								Τ ΡΑΤΤΕ	RN - T	HEORY					
	t / Blo atego			embering K1) %		erstand (K2) %	ling	Applying (K3) %		alyzing K4) %	Eval	uating (K	5) %	Creating (K6) %	Total %
	CAT1			35		65									100
	CAT2	2		15		35		50							100
	CAT	3		15		15		70							100
	ESE			25		25		50							100
* ±3%	may b	be varie	d (CAT 1	,2 & 3 – 5	0 marks	& ESE	- 100	marks)							

	(Offered by Department	of Mathematics)					
Programme & Branch	All B.E/.BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	To impart the basic knowledge in linear algebra regression and support vector machines which learning.						
Unit – I	Vector Spaces:						9+3
	paces (Definition & Problems) – Subspaces – Linea ension – Row space, Column space and Null Space.	r Combinations – Lin	ear depender	nce a	and ir	ndepe	ndence -
Unit – II	Linear Transformations:						9+3
	Rank and nullity. – Dimension theorem – Kernel a s – Matrices of linear transformations.	and range – Change	of basis - C	Comp	ositi	on an	id inverse
Unit – III	Inner Product Spaces:						9+3
Norms – Inner QR-Decompos	products – Length and Distance – Angle and Orth ition.	nogonality – Orthonor	mal Basis – (	Gram	-Sch	midt I	Process -
Unit – IV							
Matrix Decomp Vector Calculu	Matrix Decomposition and Vector Calculus: position: Cholesky decomposition – Singular Value De is: Differentiation of Univariate Functions – Partial I adjusts of matrices – Useful Identities for Computing	ecomposition. Differentiation and Gr					
Matrix Decomp Vector Calculu	position: Cholesky decomposition – Singular Value De is: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing	ecomposition. Differentiation and Gr					or valued
Matrix Decomp Vector Calculu functions – Gra Multivariate Ta <b>Unit – V</b> Introduction –	position: Cholesky decomposition – Singular Value De is: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series.	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti	Order Deriva	tives inec	– Lii qualit	neariz y con	tor valued tor and <b>9+3</b> straints -
Matrix Decomp Vector Calculu functions – Gra Multivariate Ta <b>Unit – V</b> Introduction – Kuhn Tucker c	oosition: Cholesky decomposition – Singular Value De is: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti	Order Deriva	inec cent	– Lii qualit meth	neariz y con nod –	or valued cation and <b>9+3</b> straints - Newton's
Matrix Decomp Vector Calculu functions – Gra Multivariate Ta <b>Unit – V</b> Introduction – Kuhn Tucker c	oosition: Cholesky decomposition – Singular Value De is: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti	Order Deriva mization with Steepest des	inec cent	– Lii qualit meth	neariz y con nod –	or valued cation and <b>9+3</b> straints - Newton's
Matrix Decomp Vector Calculu functions – Gr. Multivariate Ta <b>Unit – V</b> Introduction – Kuhn Tucker c method. <b>TEXT BOOK:</b>	bosition: Cholesky decomposition – Singular Value De as: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain onditions – Lagrange's multiplier method – Unconst d Anton and Chris Rorres, "Elementary Linear Algebra	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti trained optimization:	Order Deriva mization with Steepest des Lecture:4	inec cent 45, T	– Li qualit meth	y con nod – <b>al:15</b>	or valued zation and 9+3 sstraints - Newton's , Total:60
Matrix Decomp Vector Calculu functions – Gr Multivariate Ta Unit – V Introduction – Kuhn Tucker c method. TEXT BOOK: 1. Howar Units I, 2. M. P. I	bosition: Cholesky decomposition – Singular Value De as: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain onditions – Lagrange's multiplier method – Unconst d Anton and Chris Rorres, "Elementary Linear Algebra	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti trained optimization: bra", 11th Edition, Joh	Order Deriva mization with Steepest des Lecture: n Wiley & Sc	inec cent 45, T	– Lin qualit meth <b>utor</b> i	neariz y con nod – al:15 Delhi	or valued cation and <b>9+3</b> straints - Newton's <b>, Total:60</b> , 2014 fo
Matrix Decomp Vector Calculu functions – Gr Multivariate Ta Unit – V Introduction – Kuhn Tucker c method. TEXT BOOK: 1. Howar Units I, 2. M. P. I	bosition: Cholesky decomposition – Singular Value De s: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain onditions – Lagrange's multiplier method –- Unconst d Anton and Chris Rorres, "Elementary Linear Alget II,III. Deisenroth, A. A. Faisal, and C. S. Ong, "Mathematic 2019 for Units – IV, V.	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti trained optimization: bra", 11th Edition, Joh	Order Deriva mization with Steepest des Lecture: n Wiley & Sc	inec cent 45, T	– Lin qualit meth <b>utor</b> i	neariz y con nod – al:15 Delhi	or valued cation and <b>9+3</b> straints - Newton's <b>, Total:60</b> , 2014 for
Matrix Decomp Vector Calculu functions – Gr. Multivariate Ta Unit – V Introduction – Kuhn Tucker c method. TEXT BOOK: 1. Howard Units I, Press, REFERENCES	bosition: Cholesky decomposition – Singular Value De s: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series. <b>Optimization:</b> Classification of Optimization Problems – Constrain onditions – Lagrange's multiplier method –- Unconst d Anton and Chris Rorres, "Elementary Linear Alget II,III. Deisenroth, A. A. Faisal, and C. S. Ong, "Mathematic 2019 for Units – IV, V.	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti trained optimization: bra", 11th Edition, Joh	Order Deriva mization with Steepest des Lecture:4 In Wiley & So ng", 1st Editio	inec cent <b>45, T</b> ons, I	– Lin meth rutori New ambr	neariz y con nod – <b>al:15</b> Delhi	or valued ration and straints - Newton's , Total:60 , 2014 fo
Matrix Decomp Vector Calculu functions – Gr. Multivariate Ta Unit – V Introduction – Kuhn Tucker c method. TEXT BOOK: 1. Howard Units I, 2. M. P. I Press, REFERENCES 1. David New D 2. Ethem	<ul> <li>bosition: Cholesky decomposition – Singular Value Decise: Differentiation of Univariate Functions – Partial I adients of matrices – Useful Identities for Computing ylor Series.</li> <li>Optimization:</li> <li>Classification of Optimization Problems – Constrain conditions – Lagrange's multiplier method –- Unconstrained danton and Chris Rorres, "Elementary Linear Algebuilt, II, III.</li> <li>Deisenroth, A. A. Faisal, and C. S. Ong, "Mathematic 2019 for Units – IV, V.</li> <li>C. Lay, Steven R. Lay, Judith McDonald, "Linear Algebuilt.</li> </ul>	ecomposition. Differentiation and Gr g Gradients – Higher ned multivariable opti trained optimization: bra", 11th Edition, Joh cs for Machine Learni gebra and its Applicat	Order Deriva mization with Steepest des Lecture: In Wiley & So ng", 1st Edition ions", 5 th Edition	tives ineccent <b>45, T</b> ons, I	– Lii qualiti meth iutori New ambr	neariz y con nod – al:15 Delhi idge	or valued ration and straints - Newton's , Total:60 , 2014 fo University

Inderstand Interpret th Ipply the Inthonorma Identify suit S PO1 3	e concept concept Il vectors e the kno	of line of inne	ar trans r produ of factor algorith	formations ct space isation of	and de	and ve		•	natrix by	means	Unc	derstandi derstandi Applying	ng (K2)
pply the rthonorma lemonstrat dentify suit	concept I vectors e the kno able opti	of inne owledge (	r produ of factor algorith	ct space isation of	and de	and ve		•	natrix by	means	-t		• • •
Inthonormatic dentify suit	I vectors e the kno able opti	owledge (	of factor algorith	isation of	matrices	and ve		•	natrix by	means	of ,	Applying	(K3)
dentify suit	able opti	9	algorith				ctors in						(10)
s PO1	1	mization		ms for ma	ichine lea	arning a		Machine	learning		Und	derstandi	ng (K2)
	PO2		-			urning a	pplicatio	ons.			/	Applying	(K2)
	PO2	1	N	lapping	of COs	with P	Os an	d PSOs					
3		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
5	1												
3	1												
3	2												
3	3	3	1										
3	2	3	3										
it, 2 – Mo	derate, 3	3 – Sub	stantial	, BT- Blo	om's Ta	axonom	у						
			ļ	SSESS	MENT F	PATTE	RN - TI	HEORY					
Bloom's egory*	Rer	nember (K1) %	ring l							valuating (K5) %			Total %
AT1		15		65		20	)						100
AT2		15		65		20	)						100
AT3		15		50		60	)						100
SE		10		40		50	)						100
	3 3 t, 2 – Mo Bloom's egory* AT1 AT2 AT3 SE	3     3       3     2       t, 2 – Moderate, 3       Bloom's     Rer       agory*     AT1       AT2     AT3       SE     Image: Second	3         3         3           3         2         3           3         2         3           t, 2 – Moderate, 3 – Sub-           Bloom's         Remember (K1) %           AT1         15           AT2         15           AT3         15           SE         10	3     3     3     1       3     2     3     3       3     2     3     3       t, 2 – Moderate, 3 – Substantial     I       Bloom's     Remembering (K1)%     I       AT1     15     I       AT2     15     I       SE     10     I	3         3         3         1           3         2         3         3         1           3         2         3         3         1           3         2         3         3         1           3         2         3         3         1           it, 2 – Moderate, 3 – Substantial, BT- Blo         ASSESS           Bloom's         Remembering (K1) %         Understa (K2)           AT1         15         65           AT2         15         65           AT3         15         50           SE         10         40	3       3       3       1         3       2       3       3         3       2       3       3         t, 2 – Moderate, 3 – Substantial, BT- Bloom's Ta         ASSESSMENT F         Bloom's       Remembering (K1) %       Understanding (K2) %         AT1       15       65         AT2       15       65         AT3       15       50         SE       10       40	3         3         3         1           3         2         3         3         1           3         2         3         3         1         1           3         2         3         3         1         1         1           3         2         3         3         1         1         1         1           4         3         2         3         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	3       3       3       1	3         3         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	3       3       3       1	3       3       3       1	3       3       3       1	3       3       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>

		COMPUTING					
	(Offered by Department o	f Mathematics)					
Programme & Branch	All B.E/.BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	To impart knowledge in interpolation, numerical numerical algorithms to identify roots of algebrai solve linear system of equations, ordinary different	c and transcendenta					
Unit – I	Solution to Algebraic and Transcendental Equ	uations and Eigen	alue proble	ms:			9+3
Raphson method Iterative method I	or Eigen values: Power method – Jacobi's method.		a — Method of	Tais	e pos		
Unit – II	Solution of Simultaneous Linear Algebraic eq						9+3
	ect methods: Gauss elimination method – Gauss methods: Gauss Jacobi and Gauss – Seidel metho		LU decompo	ositio	n me	ethod	- Crout'
Unit – III	Interpolation:						9+3
<b>Unit – IV</b> Differentiation us Simpsons 1/3 rd ru	<ul> <li>S divided difference formula.</li> <li>Numerical Differentiation and Integration:</li> <li>ing Newton's forward, backward and divided difference</li> <li>ile – Simpsons 3/8th rule – Double integrals using Transmission</li> </ul>	apezoidal and Simp	son's rules.	atior	: Tra	pezo	1
Unit – V							0.2
	Numerical Solution of First order Ordinary Dif			_			9+3
Multi step method	Numerical Solution of First order Ordinary Dif ods: Taylor series method – Euler method – Modi ds: Milne's predictor corrector method – Adam's Bas	fied Euler method -		r Ru	nge-l	Kutta	
Multi step method	ods: Taylor series method - Euler method - Modi	fied Euler method -			0		method ·
Multi step method TEXT BOOK:	ods: Taylor series method - Euler method - Modi	fied Euler method -	- Fourth orde		0		method -
TEXT BOOK:	ods: Taylor series method - Euler method - Modi	fied Euler method – hforth method.	Fourth orde	45, T	utori	al:15	method
TEXT BOOK: 1. Veeraraja 2018.	ods: Taylor series method – Euler method – Modi ls: Milne's predictor corrector method – Adam's Bas	fied Euler method – hforth method.	Fourth orde	45, T	utori	al:15	method
Veeraraja       1.     Veeraraja       2018.       REFERENCES:       1.     Kandasar       2016.	ods: Taylor series method – Euler method – Modi Is: Milne's predictor corrector method – Adam's Bas an T, Ramachandran T., "Numerical Methods", 1 st E my, P., Thilakavathy, K. and Gunavathy, K., "Numer	fied Euler method – hforth method. dition, Tata McGraw ical Methods", Repri	Fourth orde	<b>45, T</b> ng C Chai	ompa	al:15 any, N Co, N	, <b>Total:6</b> Jew Delh
TEXT BOOK:         1.       Veeraraja         2018.       2018.         REFERENCES:         1.       Kandasar         2016.       2.         Sankara       Delhi, 200	ods: Taylor series method – Euler method – Modi Is: Milne's predictor corrector method – Adam's Bas an T, Ramachandran T., "Numerical Methods", 1 st E my, P., Thilakavathy, K. and Gunavathy, K., "Numer Rao. K., "Numerical Methods for Scientists and Eng 07.	fied Euler method – hforth method. dition, Tata McGraw ical Methods", Repri gineers", 3 rd Edition,	Fourth orde	<b>45, T</b> ng C Chai I of I	ompa nd &	al:15 any, N Co, N Pvt. I	Total:6
TEXT BOOK:1.Veeraraja 2018.REFERENCES:1.Kandasar 2016.2.Sankara Delhi, 200	ods: Taylor series method – Euler method – Modi Is: Milne's predictor corrector method – Adam's Bas an T, Ramachandran T., "Numerical Methods", 1 st E my, P., Thilakavathy, K. and Gunavathy, K., "Numer Rao. K., "Numerical Methods for Scientists and Eng	fied Euler method – hforth method. dition, Tata McGraw ical Methods", Repri gineers", 3 rd Edition,	Fourth orde	<b>45, T</b> ng C Chai I of I	ompa nd &	al:15 any, N Co, N Pvt. I	method , Total:6 lew Delh lew Delh _td, , Nev

		UTCOM tion of t		se, the s	tuden	ts will be a	ble to							BT Map lighest L	
CO1	appl	y variou	s numer	ical techr	niques	to solve al	gebraic a	and trans	scende	ntal equa	tions.		A	Applying	(K3)
CO2	solv	e simulta	aneous I	inear equ	uations	by numeri	cal meth	ods.					ŀ	Applying	(K3)
CO3	com	pute inte	ermediat	e values	of give	en evenly (	or) uneve	enly spa	ced dat	a.			A	Applying	(K3)
CO4	appl	y the co	ncepts c	of numeri	cal diff	erentiation	and inte	gration i	n real ti	me appli	cations.		Å	Applying	(K3)
CO5	iden	tify the s	solution of	of first or	dinary	differential	equatior	is by nui	merical	methods			ŀ	Applying	(K3)
						Mapping	of COs	with P	Os an	d PSOs					
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	01	3	2	1											
CO	)2	3	2	2											
CO	)3	3	3	2											
CO	)4	3	2	1											
CO	)5	3	3	3											
1 – SI	light, 2	2 – Moo	derate, 3	3 – Subs		ASSESS				HEORY					
Tee	-	oom's ory*	Rer	nember (K1) %	ing	Understa (K2)		Appl (K3		Analyz (K4) S	•	valuatin (K5) %		ating 6) %	Total %
	alege			4.0		15		75	5						100
	CAT	1		10		10									
				10 10		15		75	;						100
	CAT	2						75 75							100 100

	(Offered by Department of	Mathematics)					
Programme & Branch	All B.E/.BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	To provide an in-depth knowledge in random va ability to apply suitable queuing models to real time		process, corre	elatio	on ar	nd pro	omote the
Unit – I	Random Variables:						9+3
	ntinuous random variables – Probability Mass and F Noments – Moment generating functions.	Probability density	functions – N	lathe	emati	cal e	xpectatior
Unit – II	Random processes:						9+3
	s and definitions - Classification - Stationary proces	ss – Markov chain	s – Transitior	n pro	babi	lities	- Poissor
Unit – III	Correlation and Spectral densities:						9+3
Properties (With	<ul> <li>Cross Correlation – Properties (Without Proof)</li> <li>Wiener- Khintchine relation – Relationsh</li> </ul>						
function			power spectru	um a	nd c	ross o	correlation
Unit – IV Characteristics of	Queuing Theory: of a queueing system – Kendall's notation – Queuing	model I ( Infinite c	apacity single	e se	erver	Poiss	<b>9+3</b> son queue
Unit – IV Characteristics of model) (M/M/1) (M/M/C): (∞/FIFo model IV (Finite Unit – V	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         O) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO).	apacity single nultiple serve nodel) (M/M/1	e se rPo I):(N	erver iissor I/FIF	Poiss n que O) –	9+3 son queue ue mode Queuein 9+3
model) (M/M/1) (M/M/C): (∞/FIF0 model IV (Finite <b>Unit – V</b>	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         D) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO).	apacity single nultiple serve nodel) (M/M/1	e se rPo I):(N	erver iissor I/FIF	Poiss n que O) –	9+3 son queue ue mode Queueing 9+3
Unit – IV Characteristics of model) (M/M/1) (M/M/C): (∞/FIFo model IV (Finite Unit – V Introduction to N	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         D) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO).	apacity single nultiple serve nodel) (M/M/1	e se r Po I): (N ues	erver iissor I/FIF – Op	Poiss n que O) – pen ai	9+3 son queue ue mode Queueins 9+3 nd Closed
Unit – IV Characteristics of model) (M/M/1) (M/M/C): (∞/FIFo model IV (Finite Unit – V Introduction to N	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         D) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO).	apacity single nultiple serve nodel) (M/M/1 – Series que	e se r Po I): (N ues	erver iissor I/FIF – Op	Poiss n que O) – pen ai	9+3 son queue ue mode Queuein 9+3 nd Close
Unit – IV Characteristics of model) (M/M/1) (M/M/C): (∞/FIF0 model IV (Finite Unit – V Introduction to N queuing network TEXT BOOK: 1 Veeraraj	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         D) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO). (hintchine formula	apacity single nultiple serve nodel) (M/M/1 – Series que Lecture:4	e se r Po I): (N ues <b>45, T</b>	erver iissor V/FIF – Op	Poiss que O) – en ar	9+3 son queue ue mode Queuein 9+3 nd Close
Unit – IV         Characteristics of model) (M/M/1)         (M/M/C): (∞/FIF0         model IV (Finite         Unit – V         Introduction to N         queuing network         TEXT BOOK:         1.         Veeraraj, Educatio	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         O) – Queuing model III (Finite capacity single server capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K         s	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO). (hintchine formula	apacity single nultiple serve nodel) (M/M/1 – Series que Lecture:4	e se r Po I): (N ues <b>45, T</b>	erver iissor V/FIF – Op	Poiss que O) – en ar	9+3 son queue ue mode Queuein 9+3 nd Close
Unit – IV         Characteristics of model) (M/M/1)         (M/M/C): (∞/FIF0         model IV (Finite         Unit – V         Introduction to N         queuing network         TEXT BOOK:         1.       Veeraraj:         Educatio         REFERENCES:         1.       Athanas         McGraw	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         O) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-Ks         an, T, "Probability and Statistics, Random Proce         n, Chennai, 2019.         sios Papoulis, S. Unnikrishna Pillai., "Probability, Randor Hill, New Delhi, 2017.	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO). (hintchine formula sses and Queuin ndom Variables ar	apacity single nultiple serve nodel) (M/M/1 – Series que <b>Lecture:</b> g Theory",	e se r Pc 1): (Ν ues <b>45, T</b>	erver iissor J/FIF – Op dition	Poiss n que O) – pen ai <b>ial:15</b> n, Mo	9+3 son queue ue mode Queuein 9+3 nd Close , Total:60
Unit – IV         Characteristics of model) (M/M/1)         (M/M/C): (∞/FIF0         (M/M/C): (∞/FIF0         model IV (Finite         Unit – V         Introduction to N queuing network         TEXT BOOK:         1.       Veeraraj: Educatio         REFERENCES:         1.       Athanas: McGraw         2.       Allen A.	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         O) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-K         an, T, "Probability and Statistics, Random Proce         n, Chennai, 2019.         sios Papoulis, S. Unnikrishna Pillai., "Probability, Rate Hill, New Delhi, 2017.         O., "Probability, Statistics and Queuing Theory", 2nd E	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO). (hintchine formula sses and Queuin ndom Variables ar Edition, Academic F	apacity single nultiple serve nodel) (M/M/1 – Series que Lecture: g Theory", nd Stochastic Press, New Do	e) se r Pc I): (N ues <b>45, T</b> 1 st €	erver iissor J/FIF - Op edition ccess 199	Poiss n que O) – pen ai <b>ial:15</b> n, Mo es", 4 0.	9+3 son queue Queuein 9+3 nd Close , Total:6 cGraw-Hi
Unit – IV         Characteristics of model) (M/M/1)         (M/M/C): (∞/FIF0         (M/M/C): (∞/FIF0         model IV (Finite         Unit – V         Introduction to N queuing network         TEXT BOOK:         1.       Veeraraj         Educatio       REFERENCES:         1.       Athanas         McGraw       2.         3.       Roy D.         and Cor	Queuing Theory:         of a queueing system – Kendall's notation – Queuing         : (∞/FIFO) – Little's formulae – Queuing model II         O) – Queuing model III (Finite capacity single server         capacity multiple server Poisson model) (M/M/C) : (N/         Non-Markovian Queues and Queue Networks:         Ion-Markovian queues – M/G/1 queue – Pollaczek-Ks         an, T, "Probability and Statistics, Random Proce         n, Chennai, 2019.         sios Papoulis, S. Unnikrishna Pillai., "Probability, Randor Hill, New Delhi, 2017.	model I ( Infinite c (Infinite capacity n r Poisson queue n FIFO). (hintchine formula sses and Queuin ndom Variables ar Edition, Academic F hastic Processes - 14.	apacity single nultiple serve nodel) (M/M/1 – Series que Lecture: g Theory", nd Stochastic Press, New Dr A friendly In	e se r Pc I): (N ues <b>45, T</b> 1 st e	erver iissor J/FIF - Op dition cesso 199 iction	Poiss n que O) – ben ar ial:15 n, Mo es", 4 0. 1 for	9+3 son queue Queuein 9+3 nd Close , Total:6 cGraw-Hi

		UTCOM		se, the s	tudents	s will be a	ble to							BT Mapp ighest L	
CO1	арр	ly rando	om variat	oles suita	bly in p	ractical pr	oblems.						A	pplying	(K3)
CO2	app	ly the co	oncept of	f random	proces	s in comm	unicatio	n proble	ms.				A	pplying	(K3)
CO3		erstand	the cor	ncepts a	nd pro	perties of	Spectra	al Densi	ty Fund	ction an	d Cross	Correlatio	on Und	erstandi	ng (K2)
CO4	use	the app	ropriate	queuing	model 1	for a given	practica	al applica	ation.				A	pplying	(K3)
CO5	ider	ntify the	real time	queue ir	n compi	uter netwo	rks and t	take dec	ision ac	cording	у.		A	pplying	(K3)
					Ν	/apping	of COs	with P	Os an	d PSOs					
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	1												
CO	)2	3	2												
CO	)3	3	2												
CO	)4	3	3	3										2	
CO	)5	3	3	3										3	
				~ ~ .			'- T-								
1 – SI	light, 2	2 – Moc	derate, 3	3 – Sub:		, BT- Blo			-	HEORY					
Tes		oom's		nember (K1) %			MENT F		RN - TH	HEORY Analyzi (K4) %	•	valuating (K5) %	g Crea (K6	ating	Total %
Tes	st / Bl	oom's ory*		nember		ASSESS Understa	MENT F	PATTE	RN - Tł ying ) %	Analyzi	•			•	
Tes	t / Bl	oom's ory* 1		nember (K1) %		ASSESS Jndersta (K2)	MENT F	PATTEF Appl (K3)	RN - TH ying ) %	Analyzi	•			•	%
Tes	t / Bla atego CAT	<b>oom's</b> ory* 1 2		<b>nember</b> (K1) % 10		ASSESS Jndersta (K2) 20	MENT F	PATTEF Apply (K3)	RN - TH ying ) %	Analyzi	•			•	<b>%</b> 100

	(Offered by Department of Mathem						
Programme &	(Offered by Department of Mathem	latics)					
Branch	All B.E/.BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	To impart the basic knowledge in presentation of data, descriapply correlation, suitable non- parametric tests and control of applications.						
Unit – I	Organization and Presentation of Data:						9+3
quantitative and data – Diagramr	Statistics – Collection of data – Classification and tabulation qualitative data – Types of Measurements: nominal, ordinal, natic and Graphical Representation: Histogram - Frequency cu give curves – Stem and leaf chart.	discrete a	nd continuou	s da	ta –	Prese	entation o
Unit – II	Descriptive Statistics:						9+3
values: Quartiles	ation or central tendency: Arithmetic mean – Median – Mode - s – Deciles and percentiles – Measures of dispersion: Mean de variation – Measures of skewness – Kurtosis.						
Unit – III	Correlation and Regression:						9+3
Properties of responsible partial correlation	tting of Regression Lines. tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti ns – Regression and partial correlations in terms of lower order Non-parametric tests:	al correlati	on – Multiple				
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test –	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ns – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> sign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn	al correlati coefficien es – Signe	on – Multiple t	corre	elatio	n with	n total and 9+3
Properties of respartial correlation <b>Unit – IV</b> Introduction – S Whitney U test – <b>Unit – V</b> Introduction to S	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of partins – Regression and partial correlations in terms of lower order Non-parametric tests: ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn Statistical Quality Control: Statistical quality control – Control charts – Control chart for va	al correlati coefficien es – Signe ess.	on – Multiple t ed rank test	corre – Ra	ank S	on with Sum to	9+3 9+3 est: Manr 9+3
Properties of respartial correlatio <b>Unit – IV</b> Introduction – S Whitney U test – <b>Unit – V</b> Introduction to S	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of partins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b>	al correlati coefficien es – Signe ess.	on – Multiple t ed rank test	corre – Ra art –	ank S	on with Sum to art –	9+3 9+3 est: Manr 9+3 Charts fo
Properties of respartial correlatio <b>Unit – IV</b> Introduction – S Whitney U test – <b>Unit – V</b> Introduction to S attributes: np-ch	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of partins – Regression and partial correlations in terms of lower order Non-parametric tests: ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn Statistical Quality Control: Statistical quality control – Control charts – Control chart for va	al correlati coefficien es – Signe ess.	on – Multiple t ed rank test chart – R-ch	corre – Ra art –	ank S	on with Sum to art –	9+3 9+3 est: Man 9+3 Charts fo
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK:	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of partins – Regression and partial correlations in terms of lower order Non-parametric tests: ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn Statistical Quality Control: Statistical quality control – Control charts – Control chart for va	al correlati <u>coefficien</u> es – Signe ess. riables: X	on – Multiple t ed rank test chart – R-ch Lecture:4	corre – Ra art – <b>45, T</b>	ank S s-ch	Sum to art – ial:15	n total and 9+3 est: Manr 9+3 Charts fo , Total:60
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> sign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va art – p-chart – c-chart.	al correlati coefficien es – Signe ess. riables: X̄- Sons, Ne	on – Multiple t ed rank test chart – R-ch Lecture: w Delhi, 2011	corre – Ra art – <b>45, T</b> for	ank S s-ch	on with Gum to art – ial:15	n total and 9+3 est: Manr 9+3 Charts fo , Total:60
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup 2022. fc	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> ign test: One sample sign test – Sign test for paired sample · Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va- art – p-chart – c-chart. Data, "Statistical Methods", 44 th Revised Edition, Sultan Chand & bta, V.K.Kapoor, "Fundamentals of Mathematical Statistics", or r Units III, IV.	al correlati coefficien es – Signe ess. riables: X̄- Sons, Ne	on – Multiple t ed rank test chart – R-ch Lecture: w Delhi, 2011	corre – Ra art – <b>45, T</b> for	ank S s-ch	on with Gum to art – ial:15	n total and 9+3 est: Mann 9+3 Charts fo , Total:60
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup 2022. fc REFERENCES:	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> ign test: One sample sign test – Sign test for paired sample · Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va- art – p-chart – c-chart. Data, "Statistical Methods", 44 th Revised Edition, Sultan Chand & bta, V.K.Kapoor, "Fundamentals of Mathematical Statistics", or r Units III, IV.	al correlati <u>coefficien</u> es – Signe ess. riables: X̄- Sons, Ne 12 th Edition	on – Multiple t ed rank test chart – R-ch Lecture: w Delhi, 2011 n, Sultan Cha	corro – Ra art – <b>45, T</b> for and	s-ch Units & Sc	art – ial:15	n total and 9+3 est: Mann 9+3 Charts fo , Total:60 / lew Delhi
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup 2022. fc REFERENCES: 1. Jay L. I 2016. 2. G.C.Ber	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va- art – p-chart – c-chart. ota, "Statistical Methods", 44 th Revised Edition, Sultan Chand & ota, V.K.Kapoor, "Fundamentals of Mathematical Statistics", or r Units III, IV. Devore., "Probability and Statistics for Engineering and the S i, "Business Statistics", 3 rd Edition, Tata McGraw Hill Education	al correlati <u>coefficien</u> es – Signe ess. riables: X̄- Sons, Ne 12 th Edition Sciences", Private Li	on – Multiple t ed rank test chart – R-ch Lecture: w Delhi, 2011 n, Sultan Cha 9 th Edition, C mited, New D	corro – Ra art – <b>45, T</b> for and Ceng Delhi,	s-ch Units & Sc age 201	art – ial:15 s I,II, V ons, N Learn	n total and 9+3 est: Manr 9+3 Charts fo , Total:60 / lew Delhi ing, USA
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup 2022. fc REFERENCES: 1. Jay L. I 2016. 2. G.C.Ber	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> sign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va- art – p-chart – c-chart. Deta, "Statistical Methods", 44 th Revised Edition, Sultan Chand & ota, V.K.Kapoor, "Fundamentals of Mathematical Statistics", or units III, IV. Devore., "Probability and Statistics for Engineering and the S	al correlati <u>coefficien</u> es – Signe ess. riables: X̄- Sons, Ne 12 th Edition Sciences", Private Li	on – Multiple t ed rank test chart – R-ch Lecture: w Delhi, 2011 n, Sultan Cha 9 th Edition, C mited, New D	corro – Ra art – <b>45, T</b> for and Ceng Delhi,	s-ch Units & Sc age 201	art – ial:15 s I,II, V ons, N Learn	n total and 9+3 est: Mani 9+3 Charts fo , Total:60 / lew Delh ing, USA
Properties of respartial correlatio Unit – IV Introduction – S Whitney U test – Unit – V Introduction to S attributes: np-ch TEXT BOOK: 1. S.P.Gup 2. S.C.Gup 2022. for REFERENCES: 1. Jay L. I 2016. 2. G.C.Ben 3. Johnson 2018.	tion and Regression: Multiple and partial correlation – Met siduals – Coefficient of multiple correlation – Coefficient of parti- ins – Regression and partial correlations in terms of lower order <b>Non-parametric tests:</b> ign test: One sample sign test – Sign test for paired sample Kruskal-Wallis test – One sample run test – Tests of randomn <b>Statistical Quality Control:</b> Statistical quality control – Control charts – Control chart for va- art – p-chart – c-chart. ota, "Statistical Methods", 44 th Revised Edition, Sultan Chand & ota, V.K.Kapoor, "Fundamentals of Mathematical Statistics", or r Units III, IV. Devore., "Probability and Statistics for Engineering and the S i, "Business Statistics", 3 rd Edition, Tata McGraw Hill Education	al correlati coefficien es – Signe ess. riables: X̄- Sons, Ne 12 th Edition Sciences", Private Li ngineers",	on – Multiple t ed rank test chart – R-ch Lecture:/ w Delhi, 2011 n, Sultan Cha 9 th Edition, C mited, New D 9 th Edition, F	corro – Ra art – <b>45, T</b> for and Ceng Delhi, Pears	elatio nk S s-ch Units & Sc age 201 con E	art – ial:15 s I,II, V ns, N Learn 1.	n total an 9+3 est: Man 9+3 Charts fc , Total:6 / lew Delh ing, USA

		UTCOM		se the s	tuden	ts will be a	ble to							BT Map lighest L	
CO1	-					ata and pre		data in	various	forms.				lerstandi	
CO2	cor	mpute ai	nd interp	ret descr	iptive :	statistical m	easures	using n	umeric	al and gra	aphical te	chniques	. /	Applying	(K3)
CO3		oly statis		ethods lik	ke coi	relation, r	egressio	on anal	ysis in	analys	ing and	interpreti	ng ,	Applying	(K3)
CO4				n-parame	etric tes	st to analyz	e experi	mental c	lata.				ļ	Applying	(K3)
CO5	ide	ntify sui	table cor	ntrol char	ts for r	nonitoring	processe	es					ļ	Applying	(K3)
						Mapping	of COs	with P	'Os an	d PSOs					
COs/F	POs	PO1	PO2	PO3	PO4		PO6	P07	PO8		PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2												
CO	2	3	2												
CO	3	3	3	2											
CO	4	3	3	1											
CO	5	3	3	3											
1 – SI	ight, 2	2 – Moo	derate, 3	3 – Sub	stantia	I, BT- Blo	om's Ta	axonom	у						
						ASSESS		ράττει	RN - T	HEORY					
	t / Bl ateg	oom's ory*	Rer	nember (K1) %	ring	Understa (K2)	Inding	Appl (K3	ying	Analyz (K4) 9		valuatin (K5) %		ating 6) %	Total %
	CAT	1		10		40		50	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		20		70	)						100
	CAI														

### 22PHO01 - THIN FILM TECHNOLOGY (Offered by Department of Physics)

Branch	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisit	es Nil	5	OE	3	1	0	4
		· · · · · · · · · · · · · · · · · · ·					
Preamble	This course aims to impart the essentian in various engineering fields, and also			and a	pplica	ation o	of thin films
Unit – I	Theories and models of thin film gro	owth:					9+3
	<ul> <li>Theories of thin film nucleation: Impingement, odels – Structural consequences of thin film nuc th.</li> </ul>						
Unit – II	Vacuum technology:						9+3
pump, lon p	d working of vacuum pumps: Roots vacuum pu pump, Ti-sublimation pump – Measurement of Pu node ionization gauges – Pressure controlling sys	ressure: Bayet-Albert gauge, I					
Unit – III	Deposition of thin films - Physical m	nethods:					9+3
	aporation – Electron beam evaporation – Puls sputtering – Reactive sputtering – Molecular bear		• .		•		•
Unit – IV	Deposition of thin films – Chemical	methods:					9+3
Chemical v	apor deposition – Sol-gel method – Chemical b	معام والمعامين المعاد ومعام والمعام	al mothode	Floct	onlat	ina d	enosition –
	deposition – Spray Pyrolysis - Spin coating.	bath deposition – Hydro therm	ai methous –		υριαι	ing u	oposition
					υριαι		9+3
Electroless Unit – V Characteriz ray Photoe	deposition – Spray Pyrolysis - Spin coating.	<b>of thin films:</b> analysis, Atomic probe micros I Four probe resistivity – Appl	copy, Scanning cations (qualita	ı Tunı ative):	neling Thin	) Micr film	9+3 oscope, X- solar cells,
Electroless <b>Unit – V</b> Characteriz ray Photoer Thin film ga	deposition – Spray Pyrolysis - Spin coating. Characterization and Applications o ation: X-ray diffraction, Energy dispersive X-ray a nission Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and	<b>of thin films:</b> analysis, Atomic probe micros I Four probe resistivity – Appl	copy, Scanning cations (qualita	ı Tunı ative):	neling Thin	) Micr film	<b>9+3</b> oscope, X-
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray an ission Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and K:	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings.	copy, Scanning cations (qualita <b>Lecture:</b>	y Tunı ative): <b>45, T</b>	neling Thin <b>utori</b>	Micr film al: 15	9+3 oscope, X- solar cells, 5, Total: 60
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO 1. Mais	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray anission Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and sensors, Thin films for information storage and K:         K:         sel L.I. and Glang R, Hand book of Thin Film Tec	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings. chnology, Reprint, McGraw Hill	copy, Scanning cations (qualita Lecture: Inc., New York	y Tunı ative): <b>45, T</b> 5, 197	neling Thin <b>'utori</b> 0, (Ui	Micr film al: 15	9+3 oscope, X- solar cells, <b>, Total: 60</b> IV)
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO 1. Mais	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray an ission Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and K:	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings. chnology, Reprint, McGraw Hill	copy, Scanning cations (qualita Lecture: Inc., New York	y Tunı ative): <b>45, T</b> 5, 197	neling Thin <b>'utori</b> 0, (Ui	Micr film al: 15	9+3 oscope, X- solar cells, <b>, Total: 60</b> IV)
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO 1. Mais 2 Sam	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray and ssensors Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and sensors, Thin films for information storage and K:         Sel L.I. and Glang R, Hand book of Thin Film Tec Zhang, Lin Li and Ashok Kumar, Materials Characterials	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings. chnology, Reprint, McGraw Hill	copy, Scanning cations (qualita Lecture: Inc., New York	y Tunı ative): <b>45, T</b> 5, 197	neling Thin <b>'utori</b> 0, (Ui	Micr film al: 15	9+3 oscope, X- solar cells, <b>i, Total: 60</b> IV)
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO 1. Mais 2. Sam V) REFERENC	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray and ssensors Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and sensors, Thin films for information storage and K:         Sel L.I. and Glang R, Hand book of Thin Film Tec Zhang, Lin Li and Ashok Kumar, Materials Characterials	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings. chnology, Reprint, McGraw Hill acterization Techniques, 1 st ed	copy, Scanning cations (qualita <b>Lecture:</b> Inc., New York tion, CRC Pres	y Tunı ative): <b>45, T</b> 5, 197	neling Thin <b>'utori</b> 0, (Ui	Micr film al: 15	9+3 oscope, X- solar cells, <b>i, Total: 60</b> IV)
Electroless Unit – V Characteriz ray Photoer Thin film ga TEXT BOO 1. Mais 2. Sam V) REFERENC 1. Ohrin	deposition – Spray Pyrolysis - Spin coating.         Characterization and Applications of ation: X-ray diffraction, Energy dispersive X-ray and sisten Spectroscopy, UV-vis spectroscopy and s sensors, Thin films for information storage and sensors, Thin films for information storage and the sensor sensors, Thin films for information storage and the sensor sens sensor sens sensor sensor sens sensor sensor sensor sen	of thin films: analysis, Atomic probe micros I Four probe resistivity – Appl Optical coatings. chnology, Reprint, McGraw Hill acterization Techniques, 1 st ed	copy, Scanning cations (qualita Lecture: Inc., New York tion, CRC Pres , 2001	y Tunı ative): <b>45, T</b> 5, 197	neling Thin <b>'utori</b> 0, (Ui	Micr film al: 15	9+3 oscope, X- solar cells, <b>, Total: 60</b> IV)

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	utilize the appropriate theory and models to comprehend the thin film growth process.	Applying (K3)
CO2	apply the principle of vacuum pump to explain select methods to create vacuum and to make use of the principle of vacuum gauge to explain the measurement of vacuum by select methods.	Applying (K3)
CO3	describe the deposition of thin films by select physical methods using the principle of working of respective methods.	Applying (K3)
CO4	explain the deposition of thin films by select chemical methods using the principle of working of respective methods.	Applying (K3)
CO5	make use of select characterization techniques to comprehend the properties of thin films and also to illustrate the various device applications of thin films.	Applying (K3)

# Mapping of COs with POs and PSOs

					•••	0								
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2		
CO2	3	2	2						2	2		2		
CO3	3	2	2						2	2		2		
CO4	3	2	2						2	2		2		
CO5	3	2	2						2	2		2		

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

# **ASSESSMENT PATTERN - THEORY**

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	40				100			
CAT2	25	35	40				100			
CAT3	20	40	40				100			
ESE	20	40	40				100			

# 22PHO02 - HIGH ENERGY STORAGE DEVICES (Offered by Department of Physics)

Programme& Branch	All BE/BTech Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	This course aims to impart the essential knowledge on the fund technologies and materials for energy storage solutions, togeth engineering field.						
Unit – I	Introduction to Energy Storage:						9+3
electrical energ storage – Gene	energy storage systems (qualitative): Thermal energy storage, me y storage, electrochemical energy storage, electrostatic energy sto eral criteria of energy storage systems – Conventional batteries: fu storage systems and requirements.	orage, ma	gnetic energy	stora	ge ar	nd op	ical energy
Unit – II	Thermal storage and Mechanical Storage:						9+3
operations - M	ge: Thermal properties of materials, principle of operations, e erits and demerits of thermal storage system – Recent developmer anical storage systems, principle of operations, emerging advance	nt in therm	al storage sys	tems	. Mec	hanic	al Storage:
Unit – III	Magnetic storage, Electro-optic, Optical and Chemical Stora	age:					9+3
storage: Emerg	ge: Principle of operation, emerging challenges and a review on ging devices and upcoming technologies (qualitative). Chemical s – Bio fuels – Aluminum-Boron, silicon, and zinc.					-	-
Unit – IV	Electrochemical Storage:						9+3
operation, batte	ciple of operation, positive electrode materials, negative electrode ery components, design of electrodes, cell and battery fabrications tteries – Applications – Future developments: Sodium-battery, r	– Building	block cells -	Batte	ry mo	dules	and packs
Unit – V	Fuel Cells, Hydrogen storage and Super capacitors:						9+3
fuel cells and stanks, cryogen	oduction to fuel cells, PEM (polymer electrolyte membrane), Hydrog solid oxide fuel cells. Hydrogen storage systems: Solid state hydr c hydrogen storage tanks and liquid phase hydrogen storage tank of operation, performance and technologies of super capacitors.	ogen stor	age tanks, ga	s pha	ase h	ydrog	en storage
			Lecture:	45, 1	lutori	al: 1	5, Total: 60
TEXT BOOK:							
1. Robert	A. Huggins, Energy Storage, Springer, 2010, (Unit I – V)						
2. Ehsani (Unit I	, Y. Gao, S. Gay, A. Emadi, Modern Electric, Hybrid Electric and Fu V)	uel Cell Ve	hicles, CRC P	ress,	New	York	, 2005
REFERENCES	:						
	Wu, Lithium-Ion Batteries: Fundamentals and Applications (Electronic United Kingdom, 2015	rochemica	I Energy Stora	age a	nd Co	onver	sion), CRC
2. Trevor	M. Letcher, Storing Energy: with Special Reference to Renewable	Energy Sc	ources, 2 nd edi	tion, l	Elsevi	ier, 20	)22
3. D. Lind	en and T. S. Reddy, Handbook of Batteries, 4 th edition, McGraw Hi	II, Newyor	k, 2011				
· · · · · · · · · · · · · · · · · · ·							

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)		
CO1	utilize the appropriate concepts and models to comprehend the basics of energy storage systems.	Applying (K3)		
CO2	apply the principle of thermal and mechanical storage systems to explain the working and the recent advancements in thermal and mechanical storage systems.	Applying (K3)		
CO3	ultilize the principle of operation of magnetic storage systems, electro-optic, optical and chemical storage systems to illustrate the respective process under gone in these techniques.	Applying (K3)		
CO4	explain the principle of operation of electrochemical storage device and materials used and to elucidate the construction and working of various types of high energy storage batteries.	Applying (K3)		
CO5	make use of various techniques to construct different types of fuel cells and to explain the advanced techniques involved in hydrogen storage systems and also to explain the principle and working of super capacitors.	Applying (K3)		

# Mapping of COs with POs and PSOs

COs/POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2		
CO2	3	2	2						2	2		2		
CO3	3	2	2						2	2		2		
CO4	3	2	2						2	2		2		
CO5	3	2	2						2	2		2		
						_	1	1	1					

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

		ASSESSMEN	T PATTERN	- THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	40				100
CAT2	25	35	40				100
CAT3	20	40	40				100
ESE	20	40	40				100

# 22PH003 - STRUCTURAL AND OPTICAL CHARACTERIZATION OF MATERIALS (Offered by Department of Physics)

Programme& Branch	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	This course aims to impart the essential knowledge on the Raman spectroscopy, UV-visible spectroscopy, Electron m their application in various engineering fields, and also prov	nicroscopy	and Scanning	tunn	eling	micro	
Unit – I	Introduction to Characterization Techniques and X-Ray	Diffractio	n:				9+3
Theory of X-ray	terials characterization – Classification of characterization tech diffraction – Powder and Single crystal X-ray diffraction: Inst cture determination (qualitative), crystallite size determination (	trumentatio	n (qualitative)	, XR	D pat	tern,	systemati
Unit – II	Electron Microscopy:						9+3
characteristic X-r transmission elec	n microscopy – Electron specimen interaction: Emission of ays, transmitted electrons, specimen interaction volume – tron microscope: Schematic diagram and working – Different typ relength dispersive X-ray analysis – Three parameter equation f	Resolution pes of filam	<ul> <li>Scanning</li> <li>ients – Field</li> </ul>	elec emiss	tron sion s	micro canni	scope and
Unit – III	Scanning Tunneling Microscopy:						9+3
	antum mechanical tunneling – Basic principles of scanning ode and constant voltage mode – Instrumentation and working	•		Two	moc	les o	f scanning
Unit – IV	Raman Spectroscopy:						9+3
	re rotational Raman spectra – Vibrational Raman spectra – strumentation and working – Near-Infra-Red Raman Spectrosc			Ram	ian e	ffect	<ul> <li>Structure</li> </ul>
Unit – V	Ultra Violet & Visible Spectroscopy:						9+3
•	sible radiation – Colour and light absorption – Chromophore on – Frank-Condon principle – Instrumentation and working – Ap	•	Beer's and L	.amb	ert's I	aws -	- Theory o
			Lecture:	45, 1	lutori	al: 1	5, Total: 6
TEXT BOOK:							
1. Cullity B.	D. and Stock S. R, Elements of X-ray diffraction, 3rd Edition, Pe	earson Edu	ication, India,	2003	(Unit	I)	
		ar Spectros	copy, 5 th Editi	on. T	ata N	lcGra	w-Hill
	C. N, McCash E. M, Choudhury H. K, Fundamentals of Molecula w Delhi, 2013 (Unit II-V)			- ,			
				- ,			
Z. Publ., Ne						Delhi	, 1989
2. Publ., Ne REFERENCES: 1. Holt D. B 2 Willard H	ew Delhi, 2013 (Unit II-V)	, 1 st Edition	, Academic Pr	ess,	New		

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	apply the concept of X-ray diffraction to determine the crystal structure and related structural parameters of materials.	Applying (K3)
CO2	determine the micro-structural parameters of materials and to perform surface analysis of materials using the concept of matter waves and electron microscopy.	Applying (K3)
CO3	utilize the concept and phenomenon of quantum mechanical tunneling to interpret the surface image recorded at atomic level using scanning tunneling microscopy.	Applying (K3)
CO4	make use of the concept of Raman effect and Raman spectroscopy to determine the crystal structure and related structural parameters of materials.	Applying (K3)
CO5	apply the theory of UV-Vis spectroscopy to comprehend the working of UV-Vis spectrophotometer.	Applying (K3)

				I	Mapping	g of CO	s with	POs an	d PSOs	;				
COs/POs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2		
CO2	3	2	2						2	2		2		
CO3	3	2	2						2	2		2		
CO4	3	2	2						2	2		2		
CO5	3	2	2						2	2		2		
		_				_								

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

Test / Bloom's

Category*

CAT1

# ASSESSMENT PATTERN - THEORYRemembering<br/>(K1)%Understanding<br/>(K2)%Applying<br/>(K3)%Analyzing<br/>(K4)%Evaluating<br/>(K5)%Creating<br/>(K6)%204040

CAT2	25	35	40		
CAT3	30	30	40		
ESE	20	40	40		
* ±3% may be varied (	(CAT 1,2,3 – 50 ma	rks & ESE – 100 n	narks)	•	

Total %

100

100 100 100

# 22CYO01 - INSTRUMENTAL METHODS OF ANALYSIS

# (Offered by Department of Chemistry)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4
		1	1				
Preamble	Instrumental methods of analysis aim to prepare the s methods in order to identify the molecules and reac towards the industries.	students to have ption mechanism	all-encompa for the proc	ssing ess	to en	wledg hance	e of spectra application
Unit – I	Absorption and Emission Spectroscopy						9+3
signal to noise ra	of Absorption and Emission Spectroscopy – representatior atio - techniques for signal to noise enhancement – resolvin principles, instrumentation and applications of Atomic A	ig power – Fouri	er transform s	pect	rosco	ру – е	evaluation o
Unit – II	IR, Raman and NMR Spectroscopy						9+3
Nuclear Magneti	copy – Classical and Quantum theory instrumentation, Struc c resonance Spectroscopy – basic principles – pulsed Four tra and quantitative analysis.						elucidation
Unit – III	Surface Studies						9+3
Àtomic Force Mic Unit – IV	Mass Spectroscopy	,			•		9+3
Mass spectrosco spectra with mole	ppy – Ionization methods in mass spectroscopy – mass ana ecular structure - Instrumentation design and application of	lyzer – ion collec f Fourier Transfo	ction systems orm Mass Spe	- co	rrelat scopy	ion of / (FT-N	molecular
•	s Analyzer (IMMA).						
Unit - V	Thermal Analysis						9+3
	s: principles and instrumentations and applications of Therr ning Calorimetry (DSC), evolved gas detection, Thermo Me						
			Lecture	: 45,	Tuto	orial: 1	5, Total: 60
TEXT BOOK:							
1. Chatwal 2019.	. G. R., Anand, Sham K., "Instrumental Methods of Chemic	al Analysis" 5th	Edition, Hima	laya	Publi	shing	House,
REFERENCES:							
1. B.K. Sha	arma, Instrumental Method of Chemical Analysis, Krishna P	rakashan iviedia	(P) Ltd. 2019	).			
	arma, Instrumental Method of Chemical Analysis, Krishna P H.H, Merritt,L.L, Dean,J.A, and Settle, F.A, "Instrumental me		. ,		s & D	istribu	tors, 7 Ed,

	OUTCO		rse, the s	tudents	s will be	able to							BT Map (Highest	
11	lustrate th echniques		s of spectr	oscopy	to unders	stand the	e instru	mentat	ion of va	irious sp	ectral	L	Inderstand	ling (K2)
D2 a	pply the l	R, Rama	an and NM	IR for q	uantitativ	e analys	sis of the	e samp	le.				Applying	J (K3)
D3 a	pply the	various t	echniques	for the	better un	derstan	ding of	surface	morpho	ology.			Applying	ı (K3)
D4 e	explain the	e principl	e, instrum	entatior	of mass	spectro	scopy f	or the	analysis	of orgar	nic sample.	L	Inderstand	ling (K2)
D5 il	lustrate th	e therm	al analysis	for the	identifica	ation of 1	thermal	stabilit	y of the	compou	nds.	L	Inderstand	ling (K2)
					Маррі	ng of C	Os witł	n POs	and PSC	Ds				
Os/Pos	s PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	1												
CO5	3	1												
<ul> <li>Slight</li> </ul>	, 2 – Mod	erate, 3	– Substar	tial, BT	- Bloom's	Taxono	omy							
			-				1		THEOF					1
	Bloom's egory*	R	emember (K1) %	ing	Understa (K2)		Appl (K3)		Analyz (K4) ^o		Evaluating (K5) %		reating (K6) %	Total %
С	AT1		25		35		4(	C						100
С	AT2		25		35		4(	C						100
С	AT3		25		35		4(	C						100
E	SE		25		35		4(	2						100
E	ESE	ed (CAT		50 mar	35		4(	-						_

# 22CYO02 - CHEMISTRY CONCEPTS FOR COMPETITIVE EXAMINATIONS (Offered by Department of Chemistry)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	This course aims to refresh the knowledge of chemistry students with a capacity to solve the problems in chemistry including TNFUSRC-FORESTER (paper-II: General scien chemistry), GATE (thermodynamics concept for chemical	while partic ce-chemistry	ipating variou ), UPSC-IAS	s co (pre	mpeti	itive e	xaminations
Unit – I	Periodic Classification of Elements		<u> </u>				9+3
	odic table-Law and classification of elements- Modern period s – important aspects of s, p & d block elements -Reactivity s oxides.						
Unit – II	Chemical Equations and Bonding						9+3
nomenclature and Unit – III Acid- base theor in everyday life-sa	nds- differences between ionic and covalent compounds-Co d isomerism - application in analytical chemistry. Acids, Bases, Salts and Metallurgy ry – Bronsted- Lowry theory- conjugate acid-base- Lewis conc alts-classification of salts-uses of salts. duction-terminologies in metallurgy-differences between min	ept- HSAB-	applications-	oH s	cale-	Impo	9+3 rtance of pH
metanurgy. mino	duction-terminologies in metallurgy-dimensiones between min	erais anu u	res-occurrenc			ais- 11	leianurov o
aluminum, copper				0 01	met		lotaliargy of
aluminum, copper Unit – IV				0 01	mou		9+3
Unit – IV Introduction-comp nature of carbon	r and iron.	ding in carb Is-homologo	on and its co us series-hyc	mpo	unds	-allotro	9+3 opy-physical
Unit – IV Introduction-comp nature of carbon functional groups Unit – V	r and iron. Carbon and its Compounds oounds of carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics	ding in carb Is-homologo p-ethanol-et	on and its co us series-hyc hanoic acid.	mpo Iroca	unds. Irbon:	-allotro s and	9+3 ppy-physical their types- 9+3
Unit – IV Introduction-comp nature of carbon functional groups- Unit – V Introduction- som thermodynamics: reversible isothem ideal gases- seco	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications c mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst	on and its co us series-hyc hanoic acid. ss, properties of thermodyna I gas-isobaric em (system a physical cha	mpo Iroca amica and and and	unds- irbon: d ene s-mol isocl surro s- en	-allotro s and ergy- ar he horic p unding tropy	9+3 ppy-physical their types- 9+3 first law of at capacity- processes in gs)- entropy of chemical
Unit – IV Introduction-comp nature of carbon functional groups- Unit – V Introduction- som thermodynamics: reversible isothem ideal gases- seco change for system	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications c mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst	on and its co us series-hyc hanoic acid. ss, properties of thermodyna I gas-isobaric em (system a physical cha	mpo Iroca amica and and and	unds- irbon: d ene s-mol isocl surro s- en	-allotro s and ergy- ar he horic p unding tropy	9+3 ppy-physica their types 9+3 first law of at capacity processes ir gs)- entropy of chemica
Unit – IV Introduction-comp nature of carbon functional groups- Unit – V Introduction- som thermodynamics: reversible isothern ideal gases- seco change for system changes-Maxwell	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications c mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst	on and its co us series-hyc hanoic acid. ss, properties of thermodyna I gas-isobaric em (system a physical cha	mpo Iroca amica and and and	unds- irbon: d ene s-mol isocl surro s- en	-allotro s and ergy- ar he horic p unding tropy	9+3 ppy-physica their types 9+3 first law of at capacity processes ir gs)- entropy of chemica
Unit – IV Introduction-comp nature of carbon functional groups- Unit – V Introduction- som thermodynamics: reversible isothem ideal gases- seco change for system changes-Maxwell TEXT BOOK: 1. Steven S Units-I, II	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon and its Compounds Counds of carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications of mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase relations Zumdahl, Susan A. Zumdahl and Donald J. DeCoste , "Chem , III, IV.	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst s-entropy of	on and its co us series-hyc hanoic acid. s, properties of thermodyna I gas-isobaric em (system a physical cha Lecture: dition, Cenga	mpo lroca amica and and : <b>45</b> ,	unds- irbon: s-mol isocl surro s- en <b>Tuto</b>	-allotro s and ergy- ar he horic p unding tropy <b>rial: 1</b>	9+3 ppy-physica their types 9+3 first law o at capacity processes ir gs)- entropy of chemica 5, Total: 60
Unit – IV         Introduction-complexity         nature of carbon         functional groups         Unit – V         Introduction- some         thermodynamics:         reversible isothern         ideal gases- secce         change for system         changes-Maxwell         TEXT BOOK:         1.       Steven S         Units-I, II         Wilay and	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications of mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase relations Zumdahl, Susan A. Zumdahl and Donald J. DeCoste , "Chem	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst s-entropy of	on and its co us series-hyc hanoic acid. s, properties of thermodyna I gas-isobaric em (system a physical cha Lecture: dition, Cenga	mpo lroca amica and and : <b>45</b> ,	unds- irbon: s-mol isocl surro s- en <b>Tuto</b>	-allotro s and ergy- ar he horic p unding tropy <b>rial: 1</b>	9+3 opy-physica their types- 9+3 first law o at capacity- processes ir gs)- entropy of chemica 5, Total: 60
Unit – IV         Introduction-complexity         nature of carbon         functional groups-         Unit – V         Introduction- som         thermodynamics:         reversible isothern         ideal gases- seed         change for system         changes-Maxwell         TEXT BOOK:         1.       Steven S         Units-I, II         2       Wiley edit	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon and its Compounds Counds of carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications of mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase relations Zumdahl, Susan A. Zumdahl and Donald J. DeCoste , "Chem , III, IV.	ding in carb Is-homologo p-ethanol-et tem, proces f first law c on of an idea solated syst s-entropy of	on and its co us series-hyc hanoic acid. s, properties of thermodyna I gas-isobaric em (system a physical cha Lecture: dition, Cenga	mpo lroca amica and and : <b>45</b> ,	unds- irbon: s-mol isocl surro s- en <b>Tuto</b>	-allotro s and ergy- ar he horic p unding tropy <b>rial: 1</b>	9+3 ppy-physica their types- 9+3 first law of at capacity- processes in gs)- entropy of chemica 5, Total: 60
Unit – IV         Introduction-complexity         nature of carbon         functional groups-         Unit – V         Introduction- som         thermodynamics:         reversible isothern         ideal gases- seed         change for system         changes-Maxwell         TEXT BOOK:         1.       Steven S         Units-I, II         2.       Wiley edi         II, III, V.         REFERENCES:	r and iron. Carbon and its Compounds Carbon and its Compounds Carbon and its Compounds Counds of carbon-modern definition of organic chemistry- bor and its compounds-chemical properties of carbon compound classification of organic compounds based on functional grou Thermodynamics ne important terms in thermodynamics-thermodynamic sys mathematical expression and interpretation- applications of mal expansion/compression of an ideal gas-adiabatic expansio ond laws of thermodynamics: entropy- entropy change for i m only (ideal gas)- entropy change for mixing of ideal gase relations Zumdahl, Susan A. Zumdahl and Donald J. DeCoste , "Chem , III, IV.	ding in carb Is-homologo p-ethanol-et tem, proces f first law co on of an idea solated syst s-entropy of histry", 10 th E	on and its co us series-hyc hanoic acid. s, properties of thermodyna I gas-isobaric em (system a physical cha Lecture: Edition, Cenga d, New Delhi,	mpo Iroca amics and and : <b>45</b> ,	unds- irbon: s-mol isocl surro s- en <b>Tuto</b>	-allotro s and ergy- ar he horic p unding tropy <b>rial: 1</b>	9+3 ppy-physical their types- 9+3 first law of at capacity- processes in gs)- entropy of chemical 5, Total: 60

		UTCON tion of t		se, the s	tudents	will be	able to							BT Map (Highest	
CO1				ncept of p s of s, p 8				elemer	nts to e	explain tl	he period	lic propertie	es	Applying	ı (K3)
CO2				s of chementiate ior					olve th	e proble	ems in ba	lancing ion	ic	Applying	(K3)
CO3				of acid, b classifica							ncepts, l	mportance	of	Applying	ı (K3)
CO4			of the co npounds		carbon	and its	compou	nds to	explain	bonding	g and cla	assification	of	Applying	ı (K3)
CO5				t terms a nics with			thermod	ynamic	s to ex	plain the	e first law	and secor	d	Applying	ı (K3)
						Маррі	ing of C	Os witl	n POs	and PSC	Ds				
COs/I	Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1											
CO	2	3	2	1											
CO	3	3	2	1											
CO	4	3	2	1											
СО	5	3	2	1											
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substar	ntial, BT-	Bloom's	s Taxono	omy							
						ASSE	SSMEN	Τ ΡΑΤΊ	ERN -	THEOF	RY				
	st / Bl Catego	oom's ory*	Re	member (K1) %	ing U	Jndersta (K2)		Apply (K3)		Analyz (K4)		Evaluating (K5) %		reating K6) %	Total %
	CAT	1		25		35		4(	D						100
	CAT	2		25		35		40	)						100
	CAT	3		25		35		40	)						100
	ES	E		25		35		40	)						100

# 22CYO03 – ORGANIC CHEMISTRY FOR INDUSTRY

# (Offered by Department of Chemistry)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	5	OE	3	1	0	4
Preamble	Organic Chemistry for Industry aims to equip the student chemistry in order to meet the industrial needs.	ts to ha	ve wide-rang	ge k	nowl	edge	on organic
Unit – I	Basic aspects of Organic Chemistry						9+3
Organic intermedia synthetic applicatio Saytzeff's rule).	tes: carbocations, carbanions, free radicals, carbenes and nit ns- Nucleophilic uni- and bimolecular reactions (SN1 and SN2	trenes, t 2)- Elimi	heir method nation reaction	of fo ons	ormat (E1 &	ion, s & E2;	stability and Hoffman 8
Unit – II	Molecular Rearrangements						9+3
Migration of carbon	g electron deficient, carbon, nitrogen, oxygen centers, emphas : Wagner-Meerwein, Pinacol-pinacolone, benzyl-benzilic acid re imann, Curtius, Lossen rearrangements- Migration of oxygen: Ba	arrangei	nent – Migra	tion o			
Unit – III	Synthetic Reagents & Applications						9+3
	esulphonyl chloride – trifluoroacetic acid- lithium diisopropylami				(reac		
oxidation -p-toluen crown ethers-Trime	esulphonyl chloride – trifluoroacetic acid- lithium diisopropylami thyl silyl iodide - dichlorodicyanobenzoquinone (DDQ) – Gilmar				(reac		
oxidation –p-toluen crown ethers-Trime catalysts. Unit – IV Extraction: Liquid	thyl silyl iodide - dichlorodicyanobenzoquinone (DDQ) – Gilmar Unit Operations equilibria-extraction with reflux-extraction with agitation-cou	n reagen	t– phase trar rent extracti	nsfer on.	(reac cata Filtra	lysts-	Wilkinson's
oxidation –p-toluene crown ethers-Trime catalysts. <b>Unit – IV</b> <b>Extraction:</b> Liquid filtration- pressure a evaporators-factors	thyl silyl iodide - dichlorodicyanobenzoquinone (DDQ) – Gilmar         Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation: Azeotrop         affecting evaporation.         Crystallization:         Crystallization	n reagen inter cui pic and s	t– phase trar rent extracti team distillati	on.	(reac cata Filtra Evap	lysts- ation: pratic	Wilkinson's 9+3 Theory o on: Types o
oxidation –p-toluene crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation: Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Unit Processes	n reagen inter cui bic and s jueous-n	t– phase trar rent extracti team distillati on- aqueous	on. on. <b>E</b> solu	(reac cata Filtra Evap	lysts- ation: oratic facto	Wilkinson's 9+3 Theory o on: Types o ors affecting 9+3
oxidation –p-toluene crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial	thyl silyl iodide - dichlorodicyanobenzoquinone (DDQ) – Gilmar         Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation: Azeotrop         affecting evaporation.         Crystallization:         Crystallization.	n reagen inter cui ic and s jueous-n atic nitra	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca	on. on. <b>E</b> solu s eq talyti	(reac cata Filtra tions uipm c hal	ation: pratic facto ent fo ogen	9+3         Theory o         on: Types o         ors affecting         9+3         or technica         ations-Case
oxidation –p-toluene crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation:         Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Crystallization:         Gamma         Init Processes         gagents-aromatic nitration-kinetics and mechanism of aromatic for nitration.         Halogenation:         Kinetics of halogenations-types         halogenation process.	n reagen inter cui ic and s jueous-n atic nitra	t- phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti	on. on. <b>E</b> solu s eq talyti on o	(reac cata Filtra tions uipm c hal f Ant	lysts- ation: oratic facto ent fe ogen ibiotic	9+3         Theory of on: Types of ors affecting         9+3         000000000000000000000000000000000000
oxidation –p-toluene crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation:         Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Crystallization:         Gamma         Init Processes         gagents-aromatic nitration-kinetics and mechanism of aromatic for nitration.         Halogenation:         Kinetics of halogenations-types         halogenation process.	n reagen inter cui ic and s jueous-n atic nitra	t- phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti	on. on. <b>E</b> solu s eq talyti on o	(reac cata Filtra tions uipm c hal f Ant	lysts- ation: oratic facto ent fe ogen ibiotic	9+3         Theory o         on: Types o         ors affecting         9+3         or technica         ations-Case         s: Penicillir
oxidation –p-toluenc crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial and Streptomycin-P	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation:         Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Crystallization:         Gamma         Init Processes         gagents-aromatic nitration-kinetics and mechanism of aromatic for nitration.         Halogenation:         Kinetics of halogenations-types         halogenation process.	n reagen inter cui bic and s jueous-n atic nitra of halo ermentat	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti Lecture:	on. en on. en on. en on. en on. en on. en on	(reac cata Filtra Evapo titions uipm c hal f Ant	ent fo ogen ibiotic	Wilkinson's 9+3 Theory o on: Types o ors affecting 9+3 or technica ations-Case s: Penicillir 5, Total: 60
oxidation –p-toluenc crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial and Streptomycin-P TEXT BOOK: 1. P.S.Kalsi," C V.	thyl silyl iodide - dichlorodicyanobenzoquinone (DDQ) – Gilmar         Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration. Distillation: Azeotrop         affecting evaporation. Crystallization: Crystallization from aq         eation.         Unit Processes         g agents-aromatic nitration-kinetics and mechanism of aromatic for nitration. Halogenation: Kinetics of halogenations-types         halogenation process. Fermentation: Aerobic and anaerobic ferroduction of Vitamins: B2 and B12.	n reagen inter cui bic and s jueous-n atic nitra s of halo ermentat	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti Lecture: onal publishe	on. en on. en on. en on. en on. en on. en on	(reac cata Filtra Evapo titions uipm c hal f Ant	ent fo ogen ibiotic	Wilkinson's 9+3 Theory o on: Types o ors affecting 9+3 or technica ations-Case s: Penicillir 5, Total: 60
oxidation –p-toluenc crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial and Streptomycin-P TEXT BOOK: 1. P.S.Kalsi," C V.	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation: Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Gagents-aromatic nitration-kinetics and mechanism of aromatic nitration.         Halogenation:         Kinetics of halogenations-types         halogenation process.         Fermentation:         Aerobic and anaerobic ferroduction of Vitamins:         B2 and B12.	n reagen inter cui bic and s jueous-n atic nitra s of halo ermentat	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti Lecture: onal publishe	on. en on. en on. en on. en on. en on. en on	(reac cata Filtra Evapo titions uipm c hal f Ant	ent fo ogen ibiotic	Wilkinson's 9+3 Theory o on: Types o ors affecting 9+3 or technica ations-Case s: Penicillir 5, Total: 60
oxidation –p-toluenc crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial and Streptomycin-P TEXT BOOK: 1. P.S.Kalsi," C V. 2. Arun Bahl, E REFERENCES:	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration.         Distillation: Azeotrop         affecting evaporation.         Crystallization:         Crystallization:         Gagents-aromatic nitration-kinetics and mechanism of aromatic nitration.         Halogenation:         Kinetics of halogenations-types         halogenation process.         Fermentation:         Aerobic and anaerobic ferroduction of Vitamins:         B2 and B12.	n reagen inter cui bic and s jueous-n atic nitra atic nitra ermentat	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti Lecture: onal publishe Unit-IV, V.	on. en on. en on. en on. en on. en on. en on	(reac cata Filtra Evapo titions uipm c hal f Ant	ent fo ogen ibiotic	Wilkinson's 9+3 Theory o on: Types o ors affecting 9+3 or technica ations-Case s: Penicillir 5, Total: 60
oxidation –p-toluenc crown ethers-Trime catalysts. Unit – IV Extraction: Liquid filtration- pressure a evaporators-factors crystallization-nucle Unit – V Nitration: Nitrating nitration-mixed acid study on industrial and Streptomycin-F TEXT BOOK: 1. P.S.Kalsi," ( V. 2. Arun Bahl, E REFERENCES: 1. V.K.Ahluwal	Unit Operations         equilibria-extraction with reflux-extraction with agitation-cou         and vacuum filtration-centrifugal filtration. Distillation: Azeotrop         affecting evaporation. Crystallization: Crystallization from aquation.         Unit Processes         g agents-aromatic nitration-kinetics and mechanism of aromatic for nitration. Halogenation: Aerobic and anaerobic for         Production of Vitamins: B2 and B12.         Drganic Reactions and their Mechanisms", 5th Edition, New Age         B.S.Bahl, "Advanced Organic Chemistry", 6th Edition, S Chand, 2	n reagen inter cui bic and s jueous-n atic nitra s of halo ermentat 2022, for 2022, for	t– phase trar rent extracti team distillati on- aqueous tion- process genations-ca ion. Producti Lecture: onal publishe Unit-IV, V.	on. ension on. ension on o	(reac cata Filtra Evap titions uipm c hal f Ant f Ant 020,	lysts- ation: pratic facto facto ibiotic ial: 1	Wilkinson's 9+3 Theory of on: Types of ors affecting 9+3 or technical ations-Case s: Penicillin 5, Total: 60 nit-I, II, III,

		UTCOM ion of t		se, the s	tudent	s will be	able to							BT Map (Highest	
CO1	illusti react		basic	concept	of orga	anic inte	rmediate	es to e	xplain	the SN	1, SN2	, E1 and I	E2 ι	Inderstand	ling (K2)
CO2				of molecu gen cent								tron deficie ts.	nt,	Applying	g (K3)
CO3	selec synth		suitable	syntheti	c rege	nts for	various	functio	nal gr	oup cor	nversior	is in orgar	nic	Applying	g (K3)
CO4	purifi	cation o	of organio	c compou	unds.		•			-	-	zation for t		Applying	g (K3)
CO5	apply proce		oncept (	of nitratio	on, halo	ogenatior	ns and	ferment	ation	to expla	in the	industrial u	nit	Applying	g (K3)
						Маррі	ng of C	Os with	POs a	and PSC	)s				
COs/	'POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
СС	D1	3	1												
CC	02	3	2	1	1										
CC	03	3	2	1	1										
CC	04	3	2	1	1										
CC	D5	3	2	1	1										
1 – SI	ight, 2	– Mode	rate, 3 –	Substan	itial, BT	- Bloom's	s Taxon	omy							
						ASSES	SMEN	ΓΡΑΤΤ	ERN –	THEOR	Y				
	st / Blo Catego		Re	member (K1) %	ing	Jndersta (K2)		Apply (K3)		Analyz (K4) S		Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		25		35		40	)						100
	CAT	2		25		35		40	)						100
	CAT	3		25		35		40	)						100
	ESE	=		25		35		40	)						100
* ±3%	may b	e varied	d (CAT 1	, 2 & 3 –	50 ma	rks & ES	E – 100	marks)			÷				

	(Offered by Department	of Mothomotion)					
Programme &				_			
Branch	All B.E/.BTech Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	6	OE	3	1	0	4
Preamble	To develop rigorous logical thinking and analytica real time engineering problems in networks, com artificial intelligence, software engineering, expert	nputer architecture, co	ompiling tech	niqu	es, m	odel	checking
Unit – I	Graphs:						9+3
Hamiltonian gra algorithm.	efinition – Types of graphs – Degree of vertex – V ph – Euler graph – Digraph - Shortest paths – S	Shortest path algorith	ms: Dijkstra's	s alg	orith	n – \	Warshall'
Unit – II	Trees:						9+3
Spanning tree -	roperties of trees – Pendant vertices in a tree – Dis Construction of spanning tree: BFS algorithm – DF Prim's algorithm – Kruskal's algorithm.						
Unit – III	Graph Coloring:						9+3
Vertex coloring	- Chromatic number - Chromatic partitioning -	Independent sets -	Chromatic p	olyn	omial	– M	atching -
	color problem (statement only) - Simple application		•	,			0
Unit – IV	Matrix Representation and Applications:						9+3
	ntation: Incidence matrix – Circuit matrix - Cut-set r an Problem – Fleury's Algorithm – Travelling salesma		<ul> <li>Adjacency r</li> </ul>	natri	x – F	roper	ties - The
	Network Flows and Applications:						9+3
Unit – V Flows and cuts	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F	port networks –Resid	ultiple source	s an	d sin	ks –	network - Maximun
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F	port networks –Resid		s an	d sin	ks –	network Maximun
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F	port networks –Resid	ultiple source	s an	d sin	ks –	network Maximur
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin TEXT BOOK:	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F	port networks –Resid Flow Applications: Mu	ultiple source:	s an <b>45, T</b>	d sin <b>utor</b> i	ks – al:15	network Maximur <b>, Total:6</b>
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin TEXT BOOK: 1. Narsing New Yo 2. S. Saha	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F ng. n Deo, "Graph Theory with Applications to Engineeri	port networks –Resid Flow Applications: Mu ing and Computer Sci	Lecture: Lecture:	s an <b>45, T</b> ition,	d sin <b>utor</b> i Dov	ks – <b>al:15</b> er Pul	network Maximur , <b>Total:6</b> blications
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin TEXT BOOK: 1. Narsing New Yo 2. S. Saha	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F ng. n Deo, "Graph Theory with Applications to Engineeri rk, 2016 for Units I, II, III. n Ray, "Graph Theory with Algorithms and Its App r, London, 2013 for Units IV,V.	port networks –Resid Flow Applications: Mu ing and Computer Sci	Lecture: Lecture:	s an <b>45, T</b> ition,	d sin <b>utor</b> i Dov	ks – <b>al:15</b> er Pul	network Maximur , <b>Total:6</b>
Unit – V Flows and cuts Ford-Fulkerson Bipartite matchin TEXT BOOK: 1. Narsingl New Yo 2. S. Saha Springe REFERENCES:	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F ng. n Deo, "Graph Theory with Applications to Engineeri rk, 2016 for Units I, II, III. n Ray, "Graph Theory with Algorithms and Its App r, London, 2013 for Units IV,V.	port networks –Resid Flow Applications: Mu ing and Computer Sci lications in Applied S	Lecture: Lecture: ience", 1 st Ed	s an <b>45, T</b> ition, Tech	d sin <b>utor</b> i Dov	ks – <b>al:15</b> er Pul	network Maximur , <b>Total:6</b> blications
Unit – VFlows and cutsFord-FulkersonBipartite matchinTEXT BOOK:1.Narsingl New Yo2.S. Saha SpringeREFERENCES:1.Douglas	in networks - Max-flow Min-cut Theorem – Transp Algorithm – Edmonds-Karp Algorithm – Maximal F ng. n Deo, "Graph Theory with Applications to Engineeri rk, 2016 for Units I, II, III. n Ray, "Graph Theory with Algorithms and Its App r, London, 2013 for Units IV,V.	port networks –Resid Flow Applications: Mu ing and Computer Sci lications in Applied S	Lecture: Lecture: ience", 1 st Ed Science and New Delhi, 20	s an <b>45, T</b> ition, Tech	d sin <b>utor</b> i Dov nolog	ks – <b>al:15</b> er Pul gy", 1	network Maximur , Total:6 blications

		UTCOM		se, the s	tudent	s will be a	ble to							BT Map lighest L	
CO1	appl	y basic (	graph th	eoretic co	oncepts	in finding	shortest	path.					A	Applying	(K3)
CO2	intre	pret the	concept	ts of tress	s and its	s types.							ŀ	Applying	(K3)
CO3	com	pute the	Chroma	atic partit	ion, Ch	romatic po	lynomia	and Ma	tching o	of a give	n graph.		ŀ	Applying	(K3)
CO4	appl	y the co	ncepts c	of matrix i	represe	ntation of	graph st	ructures.					A	Applying	(K3)
CO5	iden	tify the r	naximal	flow in n	etwork	by means	of suitab	le algori	thms.				Å	Applying	(K3)
					r	Mapping	of COs	with P	Os and	d PSOs	i				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1											
CO	2	3	1												
СО	3	3	1												
СО	4	3	2	2											
СО	5	3	2	3											
1 – SI	ight, 2	2 – Moo	derate.	3 – Subs	stantia	l, BT- Blo	om's Ta	axonom	v						
_	<b>J</b> ''		,			,			5						
						ASSESS		ραττει	RN - TH	IFORY					
	t / Ble atege	oom's ory*	Rer	nember (K1) %		Understa (K2)	nding	Appl (K3	ying	Analyz (K4) 9	ing E	Evaluatin (K5) %	•	ating 6) %	Total %
	CAT	1		10		30		60	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		20		70	)						100
	ESE	E		10		20		70	)						100
* +3%	mav	be vari	ed (CA	T 1.2 &	3 – 50	marks &	ESE –	100 ma	arks)		I		I		

D	1			(Offe	red by D	Departm	nent of N	lathemat	ics)		,			1
Programme Branch	& All	B.E/.BTe	ch Bran	ches					Sem.	Category	L	т	Р	Credit
Prerequisites	s Nil								6	OE	3	0	2	4
Preamble										edge of R pro experiments.		nmi	ng to	statistica
Unit – I	Intr	oduction	to R:											9
Overview of F Running and													ng pa	ackages -
Unit – II	R P	rogramn	ning St	ructures	and Fu	Inctions	S:							9
Basic express loop – while le – Math function	oop – Fi	unction: C	reating	a functic	on – calli	ng a fur	nction – E	Default va	lue for fur	nction argume	ents -	- Lo	ogical	function
Unit – III		scriptive												9
Summary cor Linear Model fitting.														
Unit – IV	Wo	rking wit	h data:											9
Reading and Scatter plots														
Unit – V	Pro	bability I	Distribu	tions, T	esting o	of hypot	hesis an	d ANOV	۹:					9
Probability Di														
Testing of H Correlation ar														0-16515
List of Exerc		-		data ahi					,					
		i oi opera	luons or	uala obj	ects suc									
2. Implen								and matrix						
		and use	•			a frame	s in R.							
о. С	ms usin	g decisior	n making	statem	ents and	a frame	s in R. structure	es.						
-	ms usin	g decisior	n making	statem	ents and	a frame	s in R. structure	es.		user-defined	funct	tion	s)	
4. Progra	ms usin ms to de	g decisior	n making e progra	statem amming	ents and concepts	a frame l looping s using f	s in R. structure functions	es.		user-defined	funct	tion	s)	
<ol> <li>Progra</li> <li>Perforr</li> </ol>	ms usin ms to de ming var	g decisior emonstrat ious basic	n making e progra	statemo amming o cal meas	ents and concepts sures for	a frame l looping s using f the give	s in R. structure functions en data.	es. (Using b			funct	tion	s)	
<ol> <li>Progra</li> <li>Progra</li> <li>Perforr</li> <li>Calcula</li> </ol>	ms usin ms to de ming var ate the r	g decisior emonstrat ious basic	n making e progra c statistion coeffici	g statemo amming o cal meas ent and o	ents and concepts sures for obtain th	a frame l looping s using f the give	s in R. structure functions en data.	es. (Using b	uilt-in and		funct	tion	s)	
<ol> <li>4. Progra</li> <li>5. Perform</li> <li>6. Calcula</li> <li>7. Creatin</li> </ol>	ms usin ms to de ming var ate the r ng and re	g decisior emonstrat ious basio egression	n making e progra c statistic coeffici rious typ	statemo amming cal meas ent and bes of da	ents and concepts sures for obtain th ata files.	a frame l looping s using f the give	s in R. structure functions en data. of regress	es. (Using b	uilt-in and		funct	tion	s)	
<ol> <li>Progra</li> <li>Perforr</li> <li>Calcula</li> <li>Creatir</li> <li>Create</li> </ol>	ms usin ms to de ming var ate the r ng and re differen	g decisior emonstrat ious basio egression eading va t charts fo	n making e progra c statistic coeffici rious typ pr visual	statem amming cal meas ent and bes of da ization o	ents and concepts sures for obtain th ata files. f given s	a frame l looping s using f the give ne lines o set of da	s in R. 9 structure functions en data. of regress ta.	es. (Using b	uilt-in and ne given d		funct	tion	s)	
<ol> <li>Progra</li> <li>Perforr</li> <li>Calcula</li> <li>Creatir</li> <li>Create</li> <li>Compute</li> </ol>	ms usin ms to de ming var ate the r ng and re differen utation o	g decisior emonstrat ious basio egression eading va t charts fo	n making e progra c statistic coeffici rious typ or visual ity using	statem amming cal meas ent and bes of da ization o Binomia	ents and concepts sures for obtain th ata files. If given s al, Poisso	a frame l looping s using f the give ne lines o set of da on and f	s in R. 9 structure functions en data. of regress ta.	es. (Using b sion for th	uilt-in and ne given d		funct	tion	s)	
<ul> <li>4. Progra</li> <li>5. Perforr</li> <li>6. Calcula</li> <li>7. Creatir</li> <li>8. Create</li> <li>9. Compution</li> <li>10. Perforr</li> </ul>	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te	g decisior emonstrat ious basio egression eading va t charts fo f probabil	n making e progra c statistic coeffici rious typ or visual ity using iting sigr	statem amming cal meas ent and bes of da ization o Binomia	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear	a frame l looping s using f the give ne lines o set of da on and f n.	s in R. structure functions en data. of regress ta. Normal d	es. (Using b sion for th	uilt-in and ne given d		funct	tion	s)	
<ol> <li>Progra</li> <li>Perforr</li> <li>Calcula</li> <li>Creatir</li> <li>Create</li> <li>Compute</li> <li>Compute</li> <li>Perforr</li> <li>Perforr</li> </ol>	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou	g decisior emonstrat ious basic egression eading va t charts fo f probabil est for tes	n making e progra c statistic coeffici rious typ or visual ity using sting sigr cametric	statem amming cal meas ent and bes of da ization o Binomia hificance tests for	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear	a frame l looping s using f the give ne lines o set of da on and f n.	s in R. structure functions en data. of regress ta. Normal d	es. (Using b sion for th	uilt-in and ne given d		funct	tion	s)	
<ol> <li>Progra</li> <li>Perforr</li> <li>Calcula</li> <li>Creatir</li> <li>Create</li> <li>Compute</li> <li>Perforr</li> <li>Perforr</li> </ol>	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou	g decisior emonstrat ious basic egression eading va t charts fo f probabil est for tes s non-par	n making e progra c statistic coeffici rious typ or visual ity using sting sigr cametric	statem amming cal meas ent and bes of da ization o Binomia hificance tests for	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear	a frame l looping s using f the give ne lines o set of da on and f n.	s in R. structure functions en data. of regress ta. Normal d	es. (Using b sion for th	uilt-in and ne given d					, Total:7
4.         Program           5.         Perform           6.         Calcula           7.         Creatinn           8.         Create           9.         Compute           10.         Perform           11.         Perform           12.         Perform	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou m One w	g decisior emonstrat ious basic egression eading va t charts fo f probabil est for tes s non-par ray and tv	n making e progra c statistic coeffici rious typ or visual ity using sting sigr ametric vo way A	statem amming o cal meas ent and bes of da ization o Binomia hificance tests for ANOVA.	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear the give	a frame l looping s using f the give ne lines of set of da on and h n. en samp	s in R. g structure functions en data. of regress ta. Normal d le data.	es. (Using bi sion for th istributior	uilt-in and ne given d	ata.				, Total:7
<ul> <li>4. Progra</li> <li>5. Perforr</li> <li>6. Calcula</li> <li>7. Creatir</li> <li>8. Create</li> <li>9. Compution</li> <li>10. Perforr</li> <li>11. Perforr</li> <li>12. Perforr</li> <li>TEXT BOOK</li> <li>1. Kun Res</li> <li>2 Mark Content</li> </ul>	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou m One w en, "Lea Bardene	g decision emonstrat ious basio egression eading va t charts fo f probabil est for tes s non-par ray and tw	n making e progra c statistic coeffici rious typ or visual ity using sting sigr rametric vo way A	statem amming of cal meas ent and bes of da ization of Binomia hificance tests for ANOVA.	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear the give	a frame l looping s using f the give ne lines of set of da on and f n. en samp	s in R. g structure functions en data. of regress ta. Normal d le data.	es. (Using bi sion for th istributior	uilt-in and ne given d s.	ata.	Prac	ctic	al:30	-
<ul> <li>4. Progra</li> <li>5. Perforr</li> <li>6. Calcula</li> <li>7. Creatir</li> <li>8. Create</li> <li>9. Compution</li> <li>10. Perforr</li> <li>11. Perforr</li> <li>12. Perforr</li> <li>TEXT BOOK</li> <li>1. Kun Res</li> <li>2 Mark Content</li> </ul>	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou m One w en, "Lea Bardenee II,IV, V.	g decision emonstrat ious basio egression eading va t charts fo f probabil est for tes s non-par ray and tw	n making e progra c statistic coeffici rious typ or visual ity using sting sigr rametric vo way A	statem amming of cal meas ent and bes of da ization of Binomia hificance tests for ANOVA.	ents and concepts sures for obtain th ata files. If given s al, Poisso of mear the give	a frame l looping s using f the give ne lines of set of da on and f n. en samp	s in R. g structure functions en data. of regress ta. Normal d le data.	es. (Using bi sion for th istributior	uilt-in and ne given d s.	ata. Lecture:45,	Prac	ctic	al:30	-
4. Progra 5. Perforr 6. Calcula 7. Creatir 8. Create 9. Compu 10. Perforr 11. Perforr 12. Perforr <b>TEXT BOOK</b> 1. Kun Re 2. Mark C Units II <b>REFERENCE</b>	ms usin ms to de ming var ate the r ng and ro differen utation o m the t-to m variou m One w : en, "Lea Gardene II,IV, V.	g decisior emonstrat ious basic egression eading va t charts fo f probabil est for tes s non-par ray and tv	n making e progra c statistic coeffici rious typ or visual ity using sting sigr cametric vo way A rogramn ing R-Th	statem amming o cal meas ent and bes of da ization o Binomia hificance tests for ANOVA.	ents and concepts sures for obtain th ata files. f given s al, Poisso of mear the give	a frame l looping s using f the give ne lines of set of da on and f n. en samp	s in R. g structure functions en data. of regress ta. Normal d le data.	es. (Using bi sion for th istributior g Ltd, UK uage",1 st	uilt-in and ne given d is. , 2016 for Edition, Jo	ata. Lecture:45, Units I, II. bhn Wiley & S	Prac	ctic	al:30	-
4.       Progra         5.       Perforr         6.       Calcula         7.       Creatir         8.       Create         9.       Compute         10.       Perforr         11.       Perforr         12.       Perforr         1.       Kun Reform         1.       Kun Reference         1.       Seema         1.       Seema	ms usin ms to de ming var ate the r ng and re differen utation o m the t-te m variou m One w en, "Lea Bardenee II,IV, V. <b>S</b> : a Achary	g decision emonstrat ious basic egression eading va t charts fo f probabil est for tes s non-par ray and tw rning R P r, "Beginn a, "Data A	n making e progra c statistic c coeffici rious typ or visual ity using ity using sting sigr rametric vo way A rogramn ing R-Th	statem amming of cal meas ent and bes of da ization of Binomia hificance tests for ANOVA.	ents and concepts sures for obtain th ata files. if given s al, Poisso of mear the give the give the give	a frame l looping s using f the give he lines of set of da on and f h. en samp , Packt F ogrammi	s in R. g structure functions en data. of regress ta. Normal d le data. Publishing ng Langu	es. (Using bi sion for th istribution g Ltd, UK uage",1 st	uilt-in and ne given d ns. , 2016 for Edition, Jo on, Chenr	ata. Lecture:45,	Prac	ctic	al:30	

		atory Ma UTCOM												DT Man	
				se, the s	tudent	s will be a	ble to							BT Map lighest l	
CO1	und	erstand	the basi	cs of fund	dament	als of R.								derstand	
														anipulatio Applying	
CO2	арр	ly the co	oncepts o	of decisio	n, loop	ing structu	ires and	function	s in rea	l time p	roblems.		Ma	anipulatio	on (Ś2)
CO3	app	ly R pro	grammin	g to des	criptive	statistics.								Applying anipulatio	
CO4	app	lv the lib	raries fo	r data m	anipula	tion and da	ata visua	lization	in R					Applying	(K3)
		-			•									anipulatio Applying	
CO5	use	R studio	o to iden	tify the p	robabili	ty and test	statistic	al hypot	nesis.					anipulatio	
						Mapping	of COs	with P	Os an	d PSOs				-	
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1	3	1	1											
СО	2	3	1	1		2									
СО	3	3	2	2	2	2									
СО	4	3	3	2	3	2									
СО	5	3	2	2	3	2									
1 – SI	ight, 2	2 – Moc	derate, 3	3 – Subs	stantia	I, BT- Blo	om's Ta	axonom	y						
	-								-						
						ASSESS	MENT F	PATTEI	RN - TI	HEORY					
	t / Blo atego	oom's ory*	Rer	nember (K1) %	ing	Understa (K2)		Appl (K3		Analyz (K4) 9		valuatin (K5) %		ating 6) %	Total %
	CAT	1		10		30		60	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		20		70	)						100
	ESE	Ξ		10		20		70	)						100
* . 20/		havar		τ12 8	3 50	) marks &	ESE	100 m	vrkc)		I		I		

			(Offered by Depart	tment of Mathema	atics)					
Progra Branch	mme & ז	All B.E/.BTech Bran			Sem.	Category	L	т	Ρ	Credit
Prereq	uisites	Nil			6	OE	3	1	0	4
Preamb	ble	To provide the skills transportation models resources, project ma	s and also impart kn	owledge in finding	optimal	solutions to p				
Unit –		Linear Programmin								9+3
		erations research – App asic concepts – Graphic							ning l	Problem -
Unit –	II	Transportation and	Assignment Probl	ems:						9+3
solution	n: North-W	oblem: Introduction – Mest Corner Rule – Vogel ems: Introduction – Mathematic	's Approximation Me	ethod – Optimal So	olution: M		em:	Initial	basi	c feasible
Unit –		Game Theory:		v,	•					9+3
		sic Terminology – Two	Porcon zoro cum	aomoo Duro o	trategies	(Cames with	ารลด	dle	point)	) – Mixeo
Straton										
		s without saddle points								
Arithme	etic method	s without saddle points - Graphical method.	s) – Rule of Domin							method -
Arithme Unit –	etic method	s without saddle points – Graphical method. Sequencing models	s) – Rule of Domin	ance – Solution o	of Mixed	Strategy gam	nes:	Alget	oraic	method - 9+3
Arithme Unit – I Sequer	etic methoc IV ncing probl	s without saddle points - Graphical method.	s) – Rule of Domin s: nson's algorithm – F	Processing of n job	of Mixed	Strategy gam	nes: es –	Alget Proce	oraic essing	method - 9+3 g of n jobs
Arithme Unit – I Sequer	etic method IV ncing probl n three mad	s without saddle points – Graphical method. Sequencing models ems: Introduction – Johr	s) – Rule of Domin <b>s:</b> nson's algorithm – F n' jobs through 'm' m	Processing of n job	of Mixed	Strategy gam	nes: es –	Alget Proce	oraic essing	method - 9+3 g of n jobs
Arithme Unit – I Sequer through Unit – V Introduc	etic method IV ncing probl n three mad V ction – Bas	s without saddle points – Graphical method. Sequencing models ems: Introduction – John hines – Processing of 'r	s) – Rule of Domin s: nson's algorithm – F ' jobs through 'm' m t <b>Management:</b> of Network construc	Processing of n job nachines - Process tion – Fulkerson's	of Mixed is through ing of two Rule for	Strategy gan	nes: es – n 'm'	Alget Proce mach	essing nines.	method - 9+3 g of n jobs 9+3
Arithme Unit – I Sequer through Unit – V Introduc	etic method IV ncing probl n three mad V ction – Bas	s without saddle points – Graphical method. Sequencing models ems: Introduction – Johr hines – Processing of 'r Network and Project ic terminology – Rules of	s) – Rule of Domin s: nson's algorithm – F ' jobs through 'm' m t <b>Management:</b> of Network construc	Processing of n job nachines - Process tion – Fulkerson's	of Mixed is through ing of two Rule for	Strategy gan	nes: es – n 'm' ever	Alget Proce mach nts –	oraic essing nines. Cons	method - 9+3 g of n jobs 9+3 truction o
Arithme Unit – I Sequer through Unit – V Introduc	etic method IV noting proble three mad V ction – Bas k – Critical	s without saddle points – Graphical method. Sequencing models ems: Introduction – Johr hines – Processing of 'r Network and Project ic terminology – Rules of	s) – Rule of Domin s: nson's algorithm – F ' jobs through 'm' m t <b>Management:</b> of Network construc	Processing of n job nachines - Process tion – Fulkerson's	of Mixed is through ing of two Rule for	Strategy gam two machine o jobs through numbering of PERT).	nes: es – n 'm' ever	Alget Proce mach nts –	oraic essing nines. Cons	method - 9+3 g of n jobs 9+3 truction o
Arithme Unit – I Sequer through Unit – I Introduc network	etic method IV Incing proble three mad V ction – Bas k – Critical	s without saddle points – Graphical method. Sequencing models ems: Introduction – Johr hines – Processing of 'r Network and Project ic terminology – Rules of	s) – Rule of Domin <b>::</b> nson's algorithm – F n' jobs through 'm' m t <b>Management:</b> of Network construc rogramme Evaluatio	Processing of n job Processing of n job nachines - Process tion – Fulkerson's on and Review Teo	of Mixed s through ing of two Rule for chnique (I	Strategy gam two machine b jobs through numbering of PERT). Lecture:	nes: es – n 'm' ever <b>45, T</b>	Alget Proce mach nts –	essing nines. Cons	method - 9+3 g of n jobs 9+3 truction o , Total:60
Arithme Unit – Sequer through Unit – I Introdu network	etic method IV Incing proble three mad V ction – Bas k – Critical	s without saddle points – Graphical method. Sequencing models ems: Introduction – John thines – Processing of 'r Network and Project ic terminology – Rules of Path Method (CPM) – P	s) – Rule of Domin <b>::</b> nson's algorithm – F n' jobs through 'm' m t <b>Management:</b> of Network construc rogramme Evaluatio	Processing of n job Processing of n job nachines - Process tion – Fulkerson's on and Review Teo	of Mixed s through ing of two Rule for chnique (I	Strategy gam two machine b jobs through numbering of PERT). Lecture:	nes: es – n 'm' ever <b>45, T</b>	Alget Proce mach nts –	essing nines. Cons	method - 9+3 g of n jobs 9+3 truction o , Total:60
Arithme Unit – I Sequer through Unit – I Introduinetwork TEXT E 1. REFER	etic method IV noting proble three mad V ction – Bas k – Critical BOOK: Sharma J RENCES:	s without saddle points – Graphical method. Sequencing models ems: Introduction – John thines – Processing of 'r Network and Project ic terminology – Rules of Path Method (CPM) – P	s) – Rule of Domin <b>s:</b> hson's algorithm – F h' jobs through 'm' m <b>t Management:</b> of Network construc rogramme Evaluation h – Theory and App	Processing of n job nachines - Process tion – Fulkerson's on and Review Teo plications", 6 th Editi	of Mixed s through ing of two Rule for i chnique (I	Strategy gam two machine b jobs through numbering of PERT). Lecture: Press, India	nes: n 'm' ever <b>45, T</b>	Alget Proce mach nts –	essing nines. Cons	method - 9+3 g of n jobs 9+3 truction o , Total:60
Arithme Unit – I Sequer through Unit – I Introdu network TEXT E 1. REFER 1.	etic method IV Incing proble In three mad V ction – Bas k – Critical BOOK: Sharma J RENCES: Taha, Har Hiller, Fre McGraw H	s without saddle points – Graphical method. Sequencing models ems: Introduction – John shines – Processing of 'r Network and Project ic terminology – Rules of Path Method (CPM) – P K, "Operations Researce ndy A., "Operation Researce derick. S. and Liebermal iill (SIE) 8 th edition, 2005	<ul> <li>a) – Rule of Domin</li> <li>b) – Rule of Domin</li> <li>c) – Rule of Domi</li></ul>	Processing of n job nachines - Process tion – Fulkerson's on and Review Tec plications", 6 th Edition on", 9 th edition, Pea troduction to Opera	of Mixed s through ing of two Rule for r chnique (I on, Trinity arson Edu	Strategy gam two machine jobs through numbering of PERT). Lecture: Press, India cation, 2010. earch- conce	nes: es – 1 'm' ever <b>45, T</b>	Alget Proce mach nts – v Del	braic essing hines. Cons al:15 hi, 20	method - 9+3 g of n jobs truction o , Total:6( 17.
Arithmee Unit – I Sequer through Unit – I Introdum network 1. REFER 1. 2.	etic method IV Incing proble In three mad V ction – Bas k – Critical BOOK: Sharma J RENCES: Taha, Har Hiller, Fre McGraw H	s without saddle points – Graphical method. Sequencing models ems: Introduction – John shines – Processing of 'r Network and Project ic terminology – Rules of Path Method (CPM) – P K, "Operations Researce ndy A., "Operation Rese derick. S. and Lieberma	<ul> <li>a) – Rule of Domin</li> <li>b) – Rule of Domin</li> <li>c) – Rule of Domi</li></ul>	Processing of n job nachines - Process tion – Fulkerson's on and Review Tec plications", 6 th Edition on", 9 th edition, Pea troduction to Opera	of Mixed s through ing of two Rule for r chnique (I on, Trinity arson Edu	Strategy gam two machine jobs through numbering of PERT). Lecture: Press, India cation, 2010. earch- conce	nes: es – 1 'm' ever <b>45, T</b>	Alget Proce mach nts – v Del	braic essing hines. Cons al:15 hi, 20	method - 9+3 g of n jobs truction o , Total:6( 17.
Arithme Unit – Sequer through Unit – I Introdu network TEXT E	etic method IV Incing proble In three made V ction – Bask K – Critical BOOK: Sharma J RENCES: Taha, Har Hiller, Fre McGraw H Ravindrar 2005. Kanti Swa	s without saddle points – Graphical method. Sequencing models ems: Introduction – John shines – Processing of 'r Network and Project ic terminology – Rules of Path Method (CPM) – P K, "Operations Researce ndy A., "Operation Researce derick. S. and Liebermal iill (SIE) 8 th edition, 2005	s) – Rule of Domin <b>5:</b> Inson's algorithm – F I' jobs through 'm' m <b>t Management:</b> of Network construct trogramme Evaluation (h – Theory and App earch: An introduction n, Gerald. J., "An intrological Solberg, J.J., "Operation	Processing of n job nachines - Process tion – Fulkerson's on and Review Tec plications", 6 th Edition n", 9 th edition, Pea troduction to Opera ations Research- P	of Mixed s through ing of two Rule for r chnique (I on, Trinity urson Edu ations res	Strategy gam two machine jobs through numbering of PERT). Lecture: Press, India, cation, 2010. earch- conce and Practice"	nes: es – 1 'm' ever 45, T 45, T , Nev	Alget Proce mach nts – utori v Del	braic essing nines. Cons al <b>al:15</b> hi, 20	method - 9+3 g of n job: 9+3 truction c , Total:60 17.

		UTCOM ion of t		se, the s	tudent	s will be a	ble to							BT Map lighest L	
CO1	forn	nulate ai	nd solve	linear pr	ogramn	ning proble	ems.						ŀ	Applying	(K3)
CO2	appl	y transp	ortation	and assi	gnment	t algorithm	s in engi	ineering	problen	ns.			ŀ	Applying	(K3)
CO3	use	game t	heory co	oncepts ir	n practio	cal situatio	ns.						ŀ	Applying	(K3)
CO4	ider	ntify the	minimur	n proces	sing tim	es for seq	uencing	probler	ns				ŀ	Applying	(K3)
CO5	арр	ly the co	oncepts	of CPM a	and PEF	RT in sche	duling th	ne projec	t netwo	rks.			ŀ	Applying	(K3)
					ſ	Mapping	of COs	with P	Os an	d PSOs					
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	1	3	2	3											
CO	2	3	2	1											
CO	3	3	2	1											
CO	4	3	2	1											
CO	5	3	2	3											
1 – Sl	ight, 2	2 – Moo	derate, 3	3 – Sub	stantia	l, BT- Blo	om's Ta	axonom	у			- IL			
						ASSESS	MENT F	PATTE	RN - TI	HEORY					
	t / Blo atego	oom's ory*	Rer	nember (K1) %	ing	Understa (K2)	•	Appl (K3		Analyz (K4)	•	Evaluatin (K5) %	•	ating 6) %	Total %
	CAT	1		10		20		70	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		20		70	)						100
	ESE	E		10		20		70	)						100
* ±3%	mav	be vari	ed (CA	T 1.2 &	3 – 50	) marks &	ESE –	100 ma	arks)		I		1		

			(AF	HY				
	(Offered by Departme	ent of Mathematics)						
Programme & Branch	All B.E/.BTech Branches	Se	m.	Category	L	т	Ρ	Credit
Prerequisites	Nil		6	OE	3	1	0	4
Preamble	To provide the skills for applying various cryptography and network security and impa							y tests ii
Unit – I	Divisibility Theory:							9+3
Division algorit	hm – Base-b representations – Number patterns - I theorem of Arithmetic – LCM.	<ul> <li>Prime and compos</li> </ul>	ite n	umbers – GC	D –	Eucli	dean	Algorithm
Unit – II	Theory of Congruences:							9+3
Basic concepts Chinese remain	<ul> <li>Properties of congruences – Linear congruence</li> <li>nder theorem.</li> </ul>	es – Solution of linea	r co	ngruences –	Ferm	naťs I	Little	theorem
Unit – III	Number Theoretic Functions:							9+3
	Functions $\tau$ and $\sigma$ – Mobius function – Greates uler's function – Applications to Cryptography.	st integer function -	Eule	er's Phi funct	ion -	- Eul	er's t	heorem
Unit – IV	Primality testing and Factorization:							9+3
During a life of the set	The second secon		toot	1	- 4	nton		
	g: Fermat's pseudo primality test – Solvay-Strass Pollard's Rho method – Quadratic sieve method.	sen test – Fibonacci	1621	- Lucas tes	st — I	nteg	er rac	torizatior
Trial division -		sen test – Fibonacci	1631		st — I	nteg	er tac	torizatior 9+3
Trial division – Unit – V Introduction –	Pollard's Rho method – Quadratic sieve method.			ryption – Sy	mme	tric a	ind as	<b>9+3</b> symmetri
Trial division – Unit – V Introduction –	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique				mme	tric a	ind as	<b>9+3</b> symmetri
Trial division – Unit – V Introduction –	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique			ryption – Sy	mme	tric a	ind as	<b>9+3</b> symmetri
Trial division – Unit – V Introduction – key cryptograp	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique hy – Steganography.	es – Encryption and	deo	ryption – Sy Lecture:	mme 45, T	tric a	ind as al:15	9+3 symmetri , Total:6
Trial division – Unit – V Introduction – S key cryptograph TEXT BOOK: 1. Thoma Units I 2. William	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique hy – Steganography.	es – Encryption and cations", 2 nd Edition,	deo	ryption – Sy <b>Lecture:</b> demic Press,	mme <b>45, T</b>	tric a <b>utor</b> i	al:15	<b>9+3</b> symmetri , <b>Total:6</b> , 2007 fc
Trial division – Unit – V Introduction – key cryptograph TEXT BOOK: 1. Thoma Units I 2. William Delhi, 2	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique hy – Steganography. Is Koshy, "Elementary Number Theory with Applic ,II, III. n Stallings, "Cryptography and Network Security: 2019 for Units IV,V.	es – Encryption and cations", 2 nd Edition,	deo	ryption – Sy <b>Lecture:</b> demic Press,	mme <b>45, T</b>	tric a <b>utor</b> i	al:15	<b>9+3</b> symmetri , <b>Total:6</b> , 2007 fc
Trial division – Unit – V Introduction – S key cryptograph TEXT BOOK: 1. Thoma Units I 2. William Delhi, 2 REFERENCES 1 Ivan Ni	Pollard's Rho method – Quadratic sieve method. Classical Cryptographic Techniques: Substitution techniques – Transposition technique hy – Steganography. Is Koshy, "Elementary Number Theory with Applic ,II, III. n Stallings, "Cryptography and Network Security: 2019 for Units IV,V.	es – Encryption and cations", 2 nd Edition, Principles and Pract	dec Aca ice",	ryption – Sy Lecture: demic Press, 7 th Edition, I	mme <b>45, T</b> Else Pears	tric a <b>utor</b> i evier,	and as al:15 USA	<b>9+3</b> symmetri , <b>Total:6</b> , 2007 fc

COURSE On com				se, the s	tuden	ts will be a	able to							BT Map lighest L	
CO1	understa	nd the	e conc	cepts of c	divisibi	lity and car	nonical de	ecompos	sitions.				Unc	lerstandi	ng (K2)
CO2	obtain the	e knov	wledg	e in theo	ry of c	ongruence	s and so	lution of	linear c	ongruen	ces.		Unc	lerstandi	ng (K2)
CO3	use diffei	ent nu	umbe	r theoret	ic func	tion suitabl	y in cryp	tography	<i>'</i> .				ŀ	Applying	(K3)
CO4	apply Pri	mality	test a	and facto	orisatic	n algorithm	is to netv	vork sec	urity pro	oblems.			ļ	Applying	(K3)
	apply issues.	the	suita	able c	ryptog	raphic t	echnique	es to	hand	lle rea	al time	securi	ity p	Applying	(K3)
						Mapping	of COs	with P	Os and	d PSOs					
COs/PC	s PO	1 P	02	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2												
CO2	3		1												
CO3	3		1												
CO4	3		2	1		2									
CO5	3		2	1		2									
1 – Sligł	nt, 2 – N	loder	ate, 3	3 – Subs	stantia	al, BT- Blo	om's Ta	axonom	у						
						ASSESS	MENT F	PATTER	RN - TH	HEORY					
	Bloom [:] egory*	S		nember (K1) %	ing	Understa (K2)	-	Appl (K3)		Analyz (K4) 9	-	valuating (K5) %		ating 6) %	Total %
C	AT1			10		30		60							100
С	AT2			10		20		70							100
С	AT3			10		20		70							100
E	SE			10		20		70							100
* . 20/ ~	ay bo y	ariad	(CAT	T 1 2 &	3 - 5	0 marks &	ESE -	100 ma	rke)		·		·		

### 22PH004 - SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL APPLICATIONS OF NANOMATERIALS (Offered by Department of Physics)

Branch	amme & h	All BE/BTech Branches	Sem.	Category	L	т	Р	Credit
Prereq	uisites	Nil	6	OE	3	1	0	4
Preamb	blo	This course aims to impart the knowledge on the fundamer	atals of pa	nomatorials	wothe		fnon	omotorials
Freamu	DIE	analysis of nanomaterials, carbon tubes and biological appli				515 0	i nan	omateriais,
Unit – I	I	Introduction to nanomaterials						9+3
confine	ement effect -	anotechnology – Scientific revolution – Nanoscale – Nanosi - Classification of nanomaterials based on dimension – Pro es – Semiconductor nanoparticles – Polymer nanomaterials.						
Unit – I	II	Synthesis of nanomaterials						9+3
Deposit		and mechanical methods of preparation – Top down approad - Colloidal precipitation method – Sol-Gel method – Chemical					-	-
Unit – I	III	Characterization of nanomaterials						9+3
X-ray d	liffraction ana	lysis – Grain size calculation – Lattice parameters - Cell volur					_	
analysis		e spectroscopy analysis – Bandgap estimation – HRTEM & A						
analysis	is – UV visibl jualitative).							
analysis BET (qu <b>Unit – I</b> Allotrop	is – UV visibl jualitative). IV pes of carbon	e spectroscopy analysis – Bandgap estimation – HRTEM & A	AFM analy	sis (qualitative	e) – p	article	e size	analysis – 9+3
analysis BET (qu <b>Unit – I</b> Allotrop	is – UV visibl jualitative). IV pes of carbon ire of Carbon	e spectroscopy analysis – Bandgap estimation – HRTEM & A Carbon nanotubes n – Diamond – Graphite – Graphene – Fullerenes – Carbor	AFM analy	sis (qualitative	e) – p	article	e size	analysis – 9+3
analysis BET (qu <b>Unit – I</b> Allotrop Structur <b>Unit – V</b> Antibac	is – UV visibl jualitative). IV Des of carbon ire of Carbon V cterial activity	<ul> <li>e spectroscopy analysis – Bandgap estimation – HRTEM &amp; A</li> <li>Carbon nanotubes</li> <li>Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App</li> </ul>	AFM analy n nanotube plications. positive b	sis (qualitative es – Propertie acteria – Grar	e) – p es – s	article SWCI	e size NT –	e analysis – 9+3 MWCNT – 9+3 eria – Disc
analysis BET (qu <b>Unit – I</b> Allotrop Structur <b>Unit – V</b> Antibac	is – UV visibl jualitative). IV Des of carbon ire of Carbon V cterial activity	<ul> <li>e spectroscopy analysis – Bandgap estimation – HRTEM &amp; A</li> <li>Carbon nanotubes</li> <li>n – Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App</li> <li>Biological applications</li> <li>– Mechanism – Antifungal activity – Microorganism – Gram</li> </ul>	AFM analy n nanotube plications. positive b	sis (qualitative es – Propertie acteria – Grar ITT method –1	e) — p es — s m neç Foxici	article SWCI gative	e size	9+3 9+3 MWCNT – 9+3 eria – Disc particles.
analysis BET (qu <b>Unit – I</b> Allotrop Structur <b>Unit – V</b> Antibac	is – UV visibl jualitative). IV Des of carbon Ire of Carbon V cterial activity on method – A	<ul> <li>e spectroscopy analysis – Bandgap estimation – HRTEM &amp; A</li> <li>Carbon nanotubes</li> <li>n – Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App</li> <li>Biological applications</li> <li>– Mechanism – Antifungal activity – Microorganism – Gram</li> </ul>	AFM analy n nanotube plications. positive b	sis (qualitative es – Propertie acteria – Grar ITT method –1	e) — p es — s m neç Foxici	article SWCI gative	e size	9+3 9+3 MWCNT – 9+3 eria – Disc particles.
analysis BET (qu <b>Unit – I</b> Allotrop Structur <b>Unit – V</b> Antibac diffusion	is – UV visibl jualitative). IV Des of carbon Ire of Carbon V Cterial activity on method – A BOOK:	<ul> <li>e spectroscopy analysis – Bandgap estimation – HRTEM &amp; A</li> <li>Carbon nanotubes</li> <li>n – Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App</li> <li>Biological applications</li> <li>– Mechanism – Antifungal activity – Microorganism – Gram</li> </ul>	AFM analy n nanotube plications. positive b otoxity – M	sis (qualitative es – Propertie acteria – Grar ITT method –1 Lecture:	e) — p es — S m neg Toxici <b>45, T</b>	article SWCf gative ty of r	e size	e analysis – 9+3 MWCNT – 9+3 eria – Disc
analysis BET (qu Unit – I Allotrop Structur Unit – V Antibac diffusion TEXT E 1. (	is – UV visibl jualitative). IV Des of carbon Ire of Carbon V Cterial activity on method – A BOOK:	Spectroscopy analysis – Bandgap estimation – HRTEM & A     Carbon nanotubes     – Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App     Biological applications     – Mechanism – Antifungal activity – Microorganism – Gram antioxidant activity – DPPH method – Anticancer activity – Cyte	AFM analy n nanotube plications. positive b otoxity – M	sis (qualitative es – Propertie acteria – Grar ITT method –1 Lecture:	e) — p es — S m neg Toxici <b>45, T</b>	article SWCf gative ty of r	e size	9+3 9+3 MWCNT – 9+3 eria – Disc particles.
analysis BET (qu Unit – I Allotrop Structur Unit – V Antibac diffusion TEXT E 1. ( REFER	is – UV visibl jualitative). IV Des of carbon Ire of Carbon V cterial activity on method – A BOOK: Charles P Po RENCES:	Spectroscopy analysis – Bandgap estimation – HRTEM & A     Carbon nanotubes     – Diamond – Graphite – Graphene – Fullerenes – Carbor nanotubes – Preparation: Laser ablation method – CVD – App     Biological applications     – Mechanism – Antifungal activity – Microorganism – Gram antioxidant activity – DPPH method – Anticancer activity – Cyte	AFM analy n nanotube plications. positive b otoxity – M	sis (qualitative es – Propertie acteria – Grar ITT method –1 Lecture:	e) — p es — S m neg Toxici <b>45, T</b>	article SWCf gative ty of r	e size	9+3 9+3 MWCNT – 9+3 eria – Disc particles.

COURSE On comp		-	se, the stu	dents w	/ill be al	ble to						(	BT Map Highest I	
CO1			erties of nai ent and als						urface to	volume r	atio and		Applying	(K3)
CO2	explain th	ne synthe	sis of nano	materia	ls using	select	physical	and ch	emical n	nethods.			Applying	(K3)
CO3	explain th	ne charac	terization c	of nanom	naterials	using 2	XRD, U∖	/-vis, H	RTEM 8	AFM an	d BET.		Applying	(K3)
CO4	Illustrate	the prepa	ration of C	NT and	their ap	plicatio	ns.						Applying	(K3)
CO5			cal applica t activity ar				such as	antibad	cterial ac	tivity, ant	ifungal		Applying	(K3)
				M	apping	of CO	s with	POs a	nd PSC	Ds				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2		
CO2	3	2	2						2	2		2		
CO3	3	2	2						2	2		2		
CO4	3	2	2						2	2		2		
CO5	3	2	2						2	2		2		
1 – Slight	, 2 – Mod	erate, 3 –	Substantia	I, BT- B	loom's T	Faxono	my	·						
					ASSES	SMENT		RN - T	HEORY					
	Bloom's egory*	Rer	nembering (K1) %	g Un	derstan (K2) %	•	Applyir (K3) %		nalyzing (K4) %		luating (5) %	Crea (K6)	•	Total %
С	AT1		20		50		30							100
С	AT2		20		50		30							100
С	AT3		20		50		30							100
E	SE		20		50		30							100
* ±3% ma	y be vari	ed (CAT	1,2,3 – 50	marks &	ESE –	100 m	arks)					÷		

# 22PHO05 - TECHNIQUES OF CRYSTAL GROWTH (Offered by Department of Physics)

Progra Branc	amme& h	All BE/BTech Branches	Sem.	Category	L	т	Ρ	Credit
Prerec	quisites	Nil	6	OE	3	1	0	4
Pream	blo	This course aims to impart the knowledge on crystals, p	bycics of crystal ar	owth and cruc	tol ar	owth	moth	ode
Unit –		Introduction to Crystals	inysics of crystal gr	owin and crys	tai yi	Owin	meu	9+3
Classi	fication of s	solids – Crystalline and amorphous – Single and polycrys dices – Indices of crystal direction – Symmetry – Symmetri						e – Lattice
Unit –		Theories of Crystal Growth						9+3
solid s hetero	olution (eut	se diagrams – Binary phase diagrams – Alloy and componentiation – Invariant reactions – Eutectic, peritectic and perit nucleation – Classical theory – Energy of formation of eation.	ectoid (qualitative)	- Nucleation	conce	ept –	Hom	ogeneous,
Unit –		Melt growth						9+3
		vth methods – Melt growth methods – Bridgman (ver hnique (LEC) for semiconductors – Vermeil growth technic						s – Liquid
Unit –		Solution growth						9+3
		solution growth – High temperature solution growth – E – Hydrothermal technique.	Electro crystallizatio	on – Crystal g	rowth	n in g	gel –	Growth of
Unit –		Vapour growth						9+3
		ransport – chemical vapour transport. Epitaxial growth te metalorganic – Molecular beam epitaxy – Chemical beam		phase epitaxy	– Va	pour	phas	se epitaxy:
				Lecture: 4	5, Tu	toria	al: 15	, Total: 60
TEXT	BOOK:							
1.	Introductio	on to Crystallography Philips, Read Books (9 June 2011),	India.					
REFE	RENCES:							
1.	B. D. Culli	ity Addison, Elements of X-ray diffraction, Wesley Publish	ers, 1977.					
2.	Santhana	Raghavan and Dr. P. Ramasamy, Crystal growth process	ses and methods, k	RU publicatio	ns, 1	999.		
~		Annual International Collider Tate McOnsul Lill Dublich						
3.	Leonia v.	Azaroff, Introduction to Solids, Tata McGraw Hill Publishin	ng Company.					

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	describe the physical properties of crystals using the concepts of crystalline materials, amorphous material, space lattice, unit cell, Miller indices and crystal symmetry.	Applying (K3)
CO2	explain nucleation in crystal growth using the concepts of phase diagrams and formation energy.	Applying (K3)
CO3	demonstrate the growth of bulk crystals using melt growth techniques.	Applying (K3)
CO4	demonstrate the growth of crystals using solution growth techniques.	Applying (K3)
CO5	comprehend the growth of epitaxy crystal using vapour growth techniques.	Applying (K3)

# Mapping of COs with POs and PSOs

				•	•									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2						2	2		2		
CO2	3	2	2						2	2		2		
CO3	3	2	2						2	2		2		
CO4	3	2	2						2	2		2		
CO5	3	2	2						2	2		2		
											•			

1 - Slight, 2 - Moderate, 3 - Substantial, BT- Bloom's Taxonomy

# **ASSESSMENT PATTERN – THEORY**

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30				100
CAT2	20	50	30				100
CAT3	20	50	30				100
ESE	20	50	30				100

# 22CY004 - CORROSION SCIENCE AND ENGINEERING

# (Offered by Department of Chemistry)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	OE	3	1	0	4
					1		
Preamble	Corrosion science and engineering aims to equip the stu and prevention methods in order to meet the industrial ne		a wide-range	e of k	nowl	edge (	on corrosion
Unit – I	Corrosion and its Units						9+3
effect in anodic a consequences (Pr mpy (mils per yea	ro chemical mechanism Vs chemical mechanism - emf se nd cathodic metal coatings – prediction using emf series oblems) – units of corrosion rate: mdd (milligrams per squar rr) –- importance of corrosion prevention in various industri- method, weight gain method and chemical analysis of solut	and galvanic re decimeter p es: direct and	series - Pill er day), mmp	ing E y (mi	Bedw Ilie m	orth's niles p	ratio and i er year) and
Unit – II	Thermodynamics of Corrosion						9+3
and oxidation pote	Is, Electrical double layer, Gouy-Chapman model, Stern modential - criterion of corrosion (Problems) - basis of Pourbaix n - limitations and applications.						
Unit – III	Kinetics of Corrosion						9+3
			of passivity -	ads	sorpti	on the	eory – oxide
<u>film theory – film s</u> <b>Unit – IV</b> Introduction - (i) C theory, weld deca		ism and facto	rs (iii) intergra	anula	ar- ch	iromiu	9+3 Im depletior
film theory – film s Unit – IV Introduction - (i) C theory, weld decay stray current corro Unit - V	equence theory. Types of Corrosion Crevice - differential aeration corrosion (ii) pitting – mechan y and knife line attack (iv) stress - SCC mechanism, corro sion - causes and its control. Prevention of Corrosion	iism and facto sion fatique- (	rs (iii) intergra Cavitation dan	anula nage	ar- ch — fre	iromiu etting	9+3 Im depletion damage (v) 9+3
film theory – film s <b>Unit – IV</b> Introduction - (i) C theory, weld decay stray current corro <b>Unit - V</b> Inhibitors – types inhibitors – prever disease – Langelie	equence theory. Types of Corrosion Crevice - differential aeration corrosion (ii) pitting – mechan y and knife line attack (iv) stress - SCC mechanism, corro sion - causes and its control.	ism and facto sion fatique- ( ntration, effections – contro surface coating	rs (iii) intergra Cavitation dan t of molecula l of catastrop is – phosphat impression-	anula nage ar st hic o ting a paint	ar- ch – fre ructu xidat and it ing,	re, va ion ar s use vitreou	9+3 Im depletion damage (v 9+3 Ipour phase nd hydrogen s -principles us enamels
film theory – film s Unit – IV Introduction - (i) C theory, weld decay stray current corro Unit - V Inhibitors – types inhibitors – prever disease – Langelia and procedures c	equence theory.         Types of Corrosion         Crevice - differential aeration corrosion (ii) pitting – mechanily and knife line attack (iv) stress - SCC mechanism, corrosion - causes and its control.         Prevention of Corrosion         of inhibitors, chemisorption of inhibitors, effect of concention of corrosion at the design stage and in service conditioner saturation index and its uses - corrosion prevention by stage	ism and facto sion fatique- ( ntration, effections – contro surface coating	rs (iii) intergra Cavitation dan t of molecula l of catastrop is – phosphat impression-	anula nage ar st hic o ting a paint	ar- ch – fre ructu xidat and it ing,	re, va ion ar s use vitreou	9+3 Im depletion damage (v 9+3 apour phase ad hydroger s -principles
film theory – film s <b>Unit – IV</b> Introduction - (i) C theory, weld decay stray current corro <b>Unit - V</b> Inhibitors – types inhibitors – prever disease – Langelia and procedures c plastic lining. <b>TEXT BOOK:</b>	equence theory.         Types of Corrosion         Crevice - differential aeration corrosion (ii) pitting – mechanily and knife line attack (iv) stress - SCC mechanism, corrosion - causes and its control.         Prevention of Corrosion         of inhibitors, chemisorption of inhibitors, effect of concention of corrosion at the design stage and in service conditioner saturation index and its uses - corrosion prevention by stage	ism and factor sion fatique- ( entration, effec- tions – contro surface coating hodic current	rs (iii) intergra Cavitation dan t of molecula l of catastrop is – phosphat impression-	anula nage ar st hic o ting a paint	ar- ch – fre ructu xidat and it ing,	re, va ion ar s use vitreou	9+3 Im depletion damage (v 9+3 pour phase nd hydrogen s -principles us enamels
film theory – film s <b>Unit – IV</b> Introduction - (i) C theory, weld decay stray current corro <b>Unit - V</b> Inhibitors – types inhibitors – prever disease – Langelia and procedures c plastic lining. <b>TEXT BOOK:</b>	equence theory.         Types of Corrosion         Crevice - differential aeration corrosion (ii) pitting – mechan y and knife line attack (iv) stress - SCC mechanism, corrosion - causes and its control.         Prevention of Corrosion         of inhibitors, chemisorption of inhibitors, effect of concention of corrosion at the design stage and in service conditioner saturation index and its uses - corrosion prevention by soft cathodic protection: sacrificial anodes and external cathodic protection:	ism and factor sion fatique- ( entration, effec- tions – contro surface coating hodic current	rs (iii) intergra Cavitation dan t of molecula l of catastrop is – phosphat impression-	anula nage ar st hic o ting a paint	ar- ch – fre ructu xidat and it ing,	re, va ion ar s use vitreou	9+3 Im depletion damage (v 9+3 Ipour phase nd hydrogen s -principles us enamels
film theory – film s Unit – IV Introduction - (i) C theory, weld decay stray current corro Unit - V Inhibitors – types inhibitors – prever disease – Langelia and procedures c plastic lining. TEXT BOOK: 1. E. McCaff REFERENCES: 1. R. Winsto	equence theory.         Types of Corrosion         Crevice - differential aeration corrosion (ii) pitting – mechan y and knife line attack (iv) stress - SCC mechanism, corrosion - causes and its control.         Prevention of Corrosion         of inhibitors, chemisorption of inhibitors, effect of concention of corrosion at the design stage and in service conditioner saturation index and its uses - corrosion prevention by soft cathodic protection: sacrificial anodes and external cathodic protection:	nism and facto sion fatique- ( entration, effec- tions – contro surface coating hodic current r, 2017.	rs (iii) intergra Cavitation dan et of molecula I of catastrop Is – phosphat impression-   Lecture	anula nage ar st hic o ting a paint : <b>45</b> ,	ar- ch – fre ructu xidat and it ing, '	re, va ion ar s use vitreou <b>rial: 1</b>	9+3 Im depletion damage (v 9+3 apour phase nd hydroger s -principles us enamels 5, Total: 60
film theory – film s Unit – IV Introduction - (i) C theory, weld decay stray current corro Unit - V Inhibitors – types inhibitors – prever disease – Langelid and procedures co plastic lining. TEXT BOOK: 1. E. McCaff REFERENCES: 1. R. Winsto Wiley pub	equence theory.         Types of Corrosion         Crevice - differential aeration corrosion (ii) pitting – mechanily and knife line attack (iv) stress - SCC mechanism, corrosion - causes and its control.         Prevention of Corrosion         of inhibitors, chemisorption of inhibitors, effect of concention of corrosion at the design stage and in service condition of cathodic protection: sacrificial anodes and external cathodic protection: sacrificial anodes and external cathodic protection to Corrosion Science, 2 nd Edition, Springer         rerty, Introduction to Corrosion Control: An Introduction to Corrosion	ism and factorsion fatique- ( entration, effections – contro- surface coating hodic current r, 2017.	rs (iii) intergra Cavitation dan et of molecula I of catastrop Is – phosphat impression- p Lecture and Engineer	anula nage ar st hic o paint : <b>45</b> ,	ar- ch – fre ructu xidat and it ing, v <b>Tuto</b> Revis	re, va ion ar s use vitreou rial: 1	9+3 Im depletion damage (v 9+3 apour phase nd hydroger s -principles us enamels 5, Total: 60

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	illustrate the mechanism, expression of rate of corrosion and importance of corrosion studies to familiarize for industrial needs.	Understanding (K2)
CO2	demonstrate the thermodynamics and kinetics of different models of corrosion with respect to the environment.	Applying (K3)
CO3	utilize the theories of corrosion to interpret with the real time applications.	Applying (K3)
CO4	organize the various types of corrosion to understand the corrosion problems.	Applying (K3)
CO5	summarize the corrosion prevention methods to avoid corrosion related issues.	Understanding (K2)
	Mapping of COs with POs and PSOs	

COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1												
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	1												
1 – Slight, 2	2 – Mode	erate, 3 -	Substan	tial, BT-	Bloom's	Taxono	omy							

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	35	40				100					
CAT2	25	35	40				100					
CAT3	25	35	40				100					
ESE	25	35	40				100					

* ±3% may be varied (CAT 1, 2 & 3 – 50 marks & ESE – 100 marks)

# 22CYO05 - CHEMISTRY OF COSMETICS IN DAILY LIFE

### (Offered by Department of Chemistry)

Progra Branci	imme & n	All BE / BTech Branches	Sem.	Category	L	Т	Ρ	Credit
Prereq	uisites	Nil	6	OE	3	1	0	4
			1					
Pream	ble	This course aims to provide knowledge on chemistry of cosmetic	s for eng	ineering stud	ents			
Unit - I		Formulation of Cosmetic Product						9+3
and for	am (foam fo	c sciences of cleansing – surfactant and adsorption, surfactant r prmation, stability, drainage, rupture and collapse and defoamin faces and barriers – basics of emulsion (stability, Ostwald ripening	ig) - bas	sics of disper	sion	s - e	lectric	al charges
Unit - I		Structuring Materials and Regulation for Cosmetics						9+3
function and pe india -	ns and effec rsonal care future challe	r/hydrophilic base materials, oleaginous/hydrophobic base materia ts - materials that add or improve functional value, emotional value product safety – potential contaminants in cosmetics – regulations inges in cosmetics material development.	e and ma	iterials for qua	ality	contr	ol – co	osmetic Ilation in
Unit - I	II	Polymers in Cosmetic Products						9+3
polyme control	ers in cosme led release r	etics - polymer solubility and compatibility, polymer conformation tics and personal care products - hair-conditioning polymers - po- matrices - dendritic polymers - polymeric antimicrobials and bacter	olymers	ners that moo for the treatm	lify s nent	of sk	es - f in - p	ilm-forming olymers as
Unit - I		Natural Products and Fragrance in Cosmetics						9+3
	ns - aroma	ral products – extraction methods - encapsulation and controlled chemicals - fragrance creation and duplication - fragrance app						
Unit - V	/	Preparation of Cosmetics						9+3
		o day life – characteristics, types, formulation, preparation and eva s, toothpaste and hair dye.	luation n	nethods of lip	stick	, sha	mpoo	, powder,
				Lecture:	45, 1	Tutor	ial: 15	5, Total: 60
TEXT I	BOOK:							
1.		Sakamoto, Robert Y. Lochhead, Howard I. Maibach, Yuji Yamashit I Principles and Applications, Elsevier, 2017 , for Units- I, II, III, IV,		etic Science	and	Tech	nology	y:
2.	Gaurav Ku	mar Sharma, Jayesh Gadiya, Meenakshi Dhanawat A text book of	f cosmet	ic formulation	, 20 [.]	18, fo	r Unit	-V.
REFER	RENCES:							
1.		a, K.S. Rathore , B.K. Dubey, Textbook of Cosmetics, CBS Publish						
2.		ando, Elisa Bottini-Massa, LuisellaVerotta, Laura Cornara, Herbal ns of Action, CRC Press, 2010.	Principle	es in Cosmeti	cs: F	rope	rties a	Ind

		UTCON tion of t		irse, the stu	dents	will be a	ble to							BT Map (Highest			
CO1	out	line the	formula	tion of cosm	etics pi	roducts.							U	nderstand	ling (K2)		
CO2	ide	ntify the	structu	ring material	s and r	egulatior	n involve	d in cos	smetics	s develop	oment.			Applying	ıg (K3)		
CO3	inte	erpret the	e polym	ers and its r	ole in c	osmetics							U	nderstand	ling (K2)		
CO4	dev	/elop kn	owledge	e about natu	ral proc	ducts and	l Fragra	nce in C	Cosme	tics.				Applying	(K3)		
CO5				lge of cosm						formulat	ion, pre	paration ar	nd	Applying	(K3)		
						Mappin	g of CC	s with	POs a	nd PSO	S						
COs/F	Pos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO	1	3	1														
CO	2	3	2	1													
CO	3	3	1														
CO	4	3	2	1													
CO	5	3	2	1													
1 – Sli	ght, 2	2 – Mode	erate, 3	– Substantia	al, BT- I	Bloom's	Taxonor	ny									
						ASSES	SMENT	PATTE	RN –	THEOR	(						
		Bloom's gory*	;	Remember (K1) %	ing l	Jndersta (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating K6) %	Total %		
	CA	\T1		25		35		40	)						100		
	CA	AT2		25		35		40	)						100		
	CA	AT3		25		35		40	)						100		
	E	SE		25		35		40	)						100		
* ±3%	may	be varie	d (CAT	1, 2 & 3 – 5	0 mark	s & ESE	– 100 m	narks)					<u> </u>				

#### 22CYO06 – NANOCOMPOSITE MATERIALS (Offered by Department of Chemistry)

Programme& Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	6	OE	3	1	0	4
Preamble	This course aims to equip the students to have knowle features and applications of nanocomposites.	dge on p	processing, c	hara	cteriz	ation	, properties,
Unit – I	Introduction of nanocomposites						9+3
	composites – nanocomposites past and present – nomencla lar solids – role of statistics in materials – primary, secondary						on to solids -
Unit - II	Properties and features of nanocomposites						9+3
and nanocomposite	of modulus – continuum measurements – yield – fracture – es – surface mechanical properties –diffusion and permeabilit nano reinforcements – matrix materials – hazards of particles.						
Unit - III	Processing of nanocomposites						9+3
kinetic processes. Unit - IV Introduction to cha	h small shears or low-shear rates flow, meltprocesses with Characterization of nanocomposites aracterization – experiment design – sample preparation – texture – electromagnetic energy –visualization – physico	imaging	-structural c	hara	cteriz	ation	<b>9+3</b> - scales in
properties. Unit - V	Applications of nanocomposites						9+3
Nanocomposites – protein nanocompo	optical, structural applications – nanoparticulate systems wit osites – applications-polypropylene nanocomposites – applic terials – application for corrosion protection.		exterior autor	natic	com	ipone	
			Lecture.	чэ,	Tuto		J, 10tal. 00
TEXT BOOK:							
^{1.} Publication	. Twardowski, "Introduction to Nanocomposite Materials – Pr is, April 2007, for Units-I, II, III, IV.	•					
2. Klaus Fried for Units-I,	drich, Stoyko Fakivov, Zhony Shang, "Polymer Composites fro II, V.	m Nano -	- to Macro – s	cale	", Sp	ringer	USA, 2005,
REFERENCES:							
1. Pulickel M.	A, Linda S. S, Paul V.B, "Nanocomposite Science and Techr	ology", W	iley-VCH, 200	06.			
2. Vikas Mitta	I, Characterization techniques for polymer nanocomposites, V	viley-VCH	, 2012.				
1							

	SE OUTCOMES: npletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	identify the knowledge of nanocomposites and to explain its structure.	Applying (K3)
CO2	apply the knowledge on various properties and features of nanocomposites.	Applying (K3)
CO3	choose the various concepts involving in the processing of nanocomposites.	Applying (K3)
CO4	apply the acquired knowledge on characterization of nanocomposites.	Applying (K3)
CO5	organize the applications of nanocomposites in various fields.	Applying (K3)
	Mapping of COs with POs and PSOs	

					mappi	ing of O	03 111	11030		55				
COs/Pos	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1										
CO2	3	2	1	1										
CO3	3	2	1	1										
CO4	3	2	1	1										
CO5	3	2	1	1										
1 – Slight, 2	2 – Mod	erate, 3 -	- Substar	ntial, BT	- Bloom	's Taxor	nomy							

	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	35	40				100						
CAT2	25	35	40				100						
CAT3	25	35	40				100						
ESE	25	35	40				100						
* ±3% may be varied	(CAT 1, 2 & 3 – 50 r	narks & ESE – 100	marks)	·		•							

	(Offered by Department of I	Mathematics)					
Programme & Branch		Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	OE	3	0	0	3
Preamble	The course focuses on the basic concepts, optimization.	various technique	es and app	licati	ons	of er	ngineering
Unit – I	Classical Optimization Techniques:						9
with equality co	Optimization – Statement of an Optimization problem – onstraints – Lagrange multipliers method – Multi variabl	le optimization wit	h inequality o				hn Tucke
Unit – II	Non-Linear Programming: One-Dimensional Min						9
	Unimodal function – Elimination Methods: Unrestricted g method – Fibonacci method – Golden section method						
Unit – III	Non-Linear Programming: Unconstrained Optim	nization Techniqu	Jes:				9
	Unconstrained optimization – Direct Search Methods: C			te m	ethoo	l – Ho	ookes an
Unit – IV	Unconstrained Optimization Techniques (Indire	ct Methods):					9
Gradient of a F Marquardt met	unction – Indirect Search Methods: Steepest descent m nod.	nethod – Fletcher-	Reeves meth	od –	Nev	/ton's	method
Unit – V	Non-Linear Programming: Constrained Optimiz	ation Techniques	5:				9
	Characteristics of a Constrained Problem – Direct M - Indirect methods: Transformation techniques – Exter						
							Total:4
TEXT BOOK:						-	
S S Do	o, Engineering Optimization Theory and Practice, 5th Ed	dition, John Wiley	& Sons Ltd, I	JSA,	202	0.	
1. S.S.Ra		dition, John Wiley	& Sons Ltd, I	JSA,	202	).	
1. S.S.Ra		<b>_</b>					
1.S.S.Ra <b>REFERENCES</b> 1.David I2.A.Ravin	::	nming, 4 th edition,	Springer-Ver	lag,	2015		on, Wile

		UTCOM		_	_									ВТ Мар				
	-			-		s will be a								lighest L				
CO1	solv	e proble	ems with	equality	and ine	equality co	nstraints	•					ŀ	Applying	(K3)			
CO2	solv	/e nonlin	ear prog	gramming	g proble	ms of fund	ctions of	single v	ariable.				A	Applying	(K3)			
CO3	use	metho	ds of und	constrain	ed optir	nization to	solve no	on lineai	proble	ms			A	Applying	g (K3)			
CO4	solv	/e nonlin	ear opti	mization	problen	ns in the p	resence	of inequ	ality an	d equalit	y constra	ints.	ŀ	Applying	(K3)			
CO5	арр	ly sever	al mode	rn metho	ds of o	otimizatior	n for solvi	ng engi	neering	problem	S		ŀ	Applying (K3)				
						Mapping	a of COs	with P	Os and	PSOs								
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			
СО	)1	3	3	2														
CO	)2	3	2															
CO	)3	3	3	1														
CO	)4	3	3	3														
CO	)5	3	2	3														
1 – Sli	ight, 2	– Mode	rate, 3 –	Substar	itial, BT	- Bloom's	Taxonon	ny										
						ASSES	SMENT I	PATTER	N - TH	EORY								
													0					
	st / Blo Catego	oom's ory*	Re	member (K1) %	ing	Understa (K2)		Appl (K3		Analyzi (K4) 9		Evaluating (K5) %		ating 6) %	Total %			
		ory*	Re		ing		%		)%									
	Catego	ory* 1	Re	(K1) %	ing	(K2)	%	(K3	)%						%			
	Catego CAT	ory* 1 2	Re	<b>(K1) %</b> 10	ing	<b>(К2)</b> 10	%	(K3 80	) %						<b>%</b> 100			

	(Offered by Departme	nt of Mathematics)					
Programme & Branch	All B.E/.BTech Branches	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	7	OE	3	0	0	3
Preamble	To provide the skills for solving the real time functions and also impart knowledge in findir making and analyzing queuing models.						
Unit – I	Linear Programming:						9
	perations research – Applications of OR – Linea P: Basic concepts – Graphical Solution – Simple						g Problem
Unit – II	Integer Programming:		-				9
	ypes of Integer Programming Problems – Solut thod - Gomory's Mixed-Integer Cutting Plane Me			s –	Gom	ory's	all intege
Unit – III	Dynamic programming:						9
	naracteristics – Formulation of Dynamic program mic programming problem – Solution of LPP by I		nic programm	ning	Algoi	ithm ·	<ul> <li>Solutior</li> </ul>
Unit – IV	Queueing Theory:	programmig.					9
model IV (Finite Unit – V Introduction – M	<ul> <li>D) – Queuing model III (Finite capacity single scapacity multiple server Poisson model) (M/M/C)</li> <li>Non-Linear Programming:</li> <li>lathematical formulation of Non-linear programming</li> </ul>	ng problems – Non-line	ear programir	ng pi	roble	n wit	9 h equality
constraints – La conditions.	agrange multipliers method – Non-linear prog	raming problem with i	inequality co	nstra	int -	- Kuł	n Tucke
							Total:4
TEXT BOOK:							
1. Sharma	J.K, "Operations Research – Theory and Applica	ations", 6 th Edition, Trinity	y Press, India	, Ne	w De	lhi, 20	)17.
REFERENCES:							
1. Taha, Ha	amdy A., "Operation Research: An introduction", 9						
	ederick. S. and Lieberman, Gerald. J., "An intro	oduction to Operations	research- co	ncor	ite ar	nd car	
McGraw	Hill (SIE) 8 th edition, 2005.	•					
McGraw 3. Ravindra 2005.	Hill (SIE) 8 th edition, 2005. n, A., Phillips, D.J., and Solberg, J.J., "Operation	ons Research- Principle	es and Praction	ce",	John	Wile	y & Sons
McGraw       3.     Ravindra 2005.       4.     Kanti Sw Publication	Hill (SIE) 8 th edition, 2005.	ons Research- Principle Research", 15 th revised	es and Practio Edition, S. C	ce", hanc	John J & S	Wile <u>y</u> Sons	y & Sons Education

		UTCOM		se, the s	tudent	s will be a	able to							BT Map lighest L	
CO1	forn	nulate a	nd solve	linear pr	ogram	ning probl	ems.						ŀ	Applying	(K3)
CO2	solv	/e Intege	er Progra	amming	probler	ns that exi	st in real	time ap	plicatio	าร.			ŀ	Applying	(K3)
CO3		monstrat en netwo		eoretical	l workir	ngs of dyr	namic pro	ogramm	ing met	hod to f	ind short	est path fo	or /	Applying	(K3)
CO4	use	the app	oropriate	queuing	model	for a giver	n practica	al applica	ation.				ļ	Applying	(K3)
CO5	apr cor	oly the Instraints	concept and obje	of non ectives.	-linear	programr	ning for	solving	the p	roblems	involving	non-linea	ar /	Applying	(K3)
						Mappin	g of COs	with P	Os and	PSOs					
COs/	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO
CO	)1	3	2	3											
CO	)2	3	2	1											
CO	)3	3	2	1											
CO	)4	3	2	1											
СО	)5	3	2	3											
1 – Sli	ight, 2	– Mode	rate, 3 –	Substar	ntial, BT	- Bloom's	Taxonor		RN - TH	EORY					
	st / Blo Catego	oom's ory*	Rei	member (K1) %	ing	Understa (K2)		Appl (K3		Analyz (K4) 9		Evaluating (K5) %		ating 6) %	Total %
	CAT	1		10		20		70	)						100
	CAT	2		10		20		70	)						100
	CAT	3		10		20		70	)						100
	ESE	_		10		20		70							100

#### 22CYO07 - WASTE AND HAZARDOUS WASTE MANAGEMENT (Offered by Department of Chemistry)

s Sem. Category L	Me & All BE / BTech Branches		Programme & Branch
7 OE 3	sites Nil		Prerequisites
aste management aims to equip the students to have a wide-ra	Waste and Hazardous waste management aims to equivaste management.	ble	Preamble
nt	Solid Waste Management	1	Unit – I
	astes: definition, sources, types, composition of solid waste- Soli		
ndfills - recycling of material found in municipal solid waste- re	ng and transformation of solid waste – combustion, aerobic compo- ethods and control of leachate in landfills - recycling of material for d, recycling of plastics, recycling of glass.	methods ar	types, methods
	Hazardous Waste Management		Unit – II
-	us wastes: definition, nature and sources of hazardous waste, of		
tion, chemical precipitation, oxidation/reduction, hydrolysis, e ytic reaction- thermal treatment methods: incineration – biodegr nations - land treatment and composting.	class of hazardous waste, generation, segregation, treatment and c cal treatment: acid base neutralization, chemical precipitation, of and leaching, ion exchange, photolytic reaction- thermal treatment erobic, anaerobic, reductive dehalogenations - land treatment and co	nical treatm tion and lead aerobic, and	<ul> <li>chemical trea</li> <li>extraction and lewaste: aerobic,</li> </ul>
	V		Unit – III
disinfection – sanitary and secure landfill.	te control-waste storage-labeling and color coding-handling and tra /e , microwave treatments- chemical disinfection – sanitary and secu	lave, microv	
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. dustries And Management waste treatment flow sheets for selected industries such a	e control-waste storage-labeling and color coding-handling and tra /e , microwave treatments- chemical disinfection – sanitary and secu	lave , microv IV uction- sour	Unit – IV Introduction- sc
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries.	te control-waste storage-labeling and color coding-handling and tra /e, microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management on- sources and characteristics - waste treatment flow sheets	lave , microv IV uction- source aceuticals, s	Unit – IV Introduction- so pharmaceuticals
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> hanagement and handling) rules - biomedical waste (management anagement rules - hazardous and other wastes (management	te control-waste storage-labeling and color coding-handling and tra ve, microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management on- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries.	IV IV ICtion- sour aceuticals, s V vaste manag waste manag	Unit – IV Introduction- so pharmaceuticals Unit – V Solid waste mar plastic waste m
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> hanagement and handling) rules - biomedical waste (management anagement rules - hazardous and other wastes (management	te control-waste storage-labeling and color coding-handling and tra /e , microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management on- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous a	IV IV ICtion- sour aceuticals, s V vaste manag waste manag	Unit – IV Introduction- so pharmaceuticals Unit – V Solid waste mar plastic waste m
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> hanagement and handling) rules - biomedical waste (management anagement rules - hazardous and other wastes (management	te control-waste storage-labeling and color coding-handling and traze, microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management ton- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous and h) rules - construction and demolition waste management rules.	Iave , microv IV uction- sourd aceuticals, s V vaste manag waste manag nent) rules -	Unit – IV Introduction- so pharmaceuticals Unit – V Solid waste mar plastic waste m movement) rules
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> nanagement and handling) rules - biomedical waste (managemen anagement rules - hazardous and other wastes (managemen waste management rules.	te control-waste storage-labeling and color coding-handling and tra /e , microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management fon- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous a ht) rules - construction and demolition waste management rules. DOK: George Tchobanoglous, Hillary Theisen, Samuel a Vigil, Integrated so nanagement issues) McGraw hill Education (India) Pvt. Ltd., 2015, for	Iave , microv IV Iv Iv Interior - source aceuticals, s V vaste manage waste manage waste manage ment) rules - BOOK: George To managem	Unit – IV         Introduction- sc         pharmaceuticals         Unit – V         Solid waste mar         plastic waste m         movement) rule         TEXT BOOK:         1.       George         manage
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> nanagement and handling) rules - biomedical waste (managemen anagement rules - hazardous and other wastes (managemen waste management rules.	te control-waste storage-labeling and color coding-handling and tra /e , microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management fon- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous a ht) rules - construction and demolition waste management rules. DOK: George Tchobanoglous, Hillary Theisen, Samuel a Vigil, Integrated set	Iave , microv IV uction- sourn aceuticals, s V vaste manag waste manag ment) rules - BOOK: George To managem SC Bhatia	Unit – IV Introduction- sc pharmaceuticals Unit – V Solid waste mar plastic waste m movement) rule TEXT BOOK: 1. George manage 2 SC Bha
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. <b>dustries And Management</b> waste treatment flow sheets for selected industries such a tilizer and dairy industries. <b>nt and Legislation</b> nanagement and handling) rules - biomedical waste (managemen anagement rules - hazardous and other wastes (managemen waste management rules.	te control-waste storage-labeling and color coding-handling and traze, microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management ton- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous ant) rules - construction and demolition waste management rules. DOK: DOK: George Tchobanoglous, Hillary Theisen, Samuel a Vigil, Integrated se nanagement issues) McGraw hill Education (India) Pvt. Ltd., 2015, fo SC Bhatia, Handbook of Industrial pollution and control (Volume-1), O Jnit-II, III, IV, V.	Iave , microv IV Iv Iv Iv Iv Interference Iv Iv Iv Iv Iv Iv Iv Iv Iv Iv	Unit – IV         Introduction- sc         pharmaceuticals         Unit – V         Solid waste mar         plastic waste m         movement) rules         TEXT BOOK:         1.       George         manage         2.       SC Bha         Unit-II,
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. dustries And Management waste treatment flow sheets for selected industries such a tilizer and dairy industries. nt and Legislation hanagement and handling) rules - biomedical waste (managemen anagement rules - hazardous and other wastes (managemen waste management rules.	te control-waste storage-labeling and color coding-handling and traze, microwave treatments- chemical disinfection – sanitary and secu Pollution From Major Industries And Management ton- sources and characteristics - waste treatment flow sheets euticals, sugar, petroleum refinery, fertilizer and dairy industries. Solid Waste Management and Legislation ste management plan - solid waste (management and handling) rules aste management rules - e-waste management rules - hazardous ant) rules - construction and demolition waste management rules. DOK: DOK: George Tchobanoglous, Hillary Theisen, Samuel a Vigil, Integrated se nanagement issues) McGraw hill Education (India) Pvt. Ltd., 2015, fo SC Bhatia, Handbook of Industrial pollution and control (Volume-1), O Jnit-II, III, IV, V.	Iave , microv IV Iuction- sourn aceuticals, s V vaste manage waste manage waste manage waste manage SC Bhatia Unit-II, III, RENCES: Manual on	Unit – IV Introduction- sc pharmaceuticals Unit – V Solid waste mar plastic waste m movement) rule TEXT BOOK: 1. George manage 2. SC Bha Unit-II, REFERENCES:
on-definition –components of biomedical waste-waste generation d color coding-handling and transportation-waste treatment and disinfection – sanitary and secure landfill. dustries And Management waste treatment flow sheets for selected industries such a trilizer and dairy industries. nt and Legislation hanagement and handling) rules - biomedical waste (management anagement rules - hazardous and other wastes (management waste management rules. en, Samuel a Vigil, Integrated solid waste management (Engineer cation (India) Pvt. Ltd., 2015, for Unit-I, II, V. lution and control (Volume-1), CBS Publisher and Distributers, Ne magement, Central public Health and Environmental Engineering (	te control-waste storage-labeling and color coding-handling and tra ////////////////////////////////////	Iave , microv IV Iv Iv Iv Iv Iv Iv Interior source Iv Iv Iv Iv Iv Iv Iv Iv Iv Iv	Unit – IV         Introduction- sc         pharmaceuticals         Unit – V         Solid waste mar         plastic waste m         movement) rules         TEXT BOOK:         1.         George         manage         2.         SC Bha         Unit-II,         REFERENCES:         1.         Manual         (CPHEI)

		UTCOM	-	se, the s	tudent	s will be	able to							BT Map (Highest	
CO1	арр	ly the te	echnical	points tha	at are re	equired to	set up a	a solid v	waste n	nanager	nent sys	tem.		Applying	I (K3)
CO2	exp	lain the	various	disposal	and trea	atment m	ethods of	of hazar	dous w	astes.			U	Inderstand	ling (K2)
CO3	orga	anize th	e approp	oriate met	hod for	managir	ig e-was	ste and	biomec	lical was	ste.			Applying	ı (K3)
CO4		ntify the atment.	hazards	from var	ious inc	lustries a	nd apply	/ the wa	iste ma	inageme	ent techr	iques for its		Applying	(K3)
CO5	rela	ite the le	egal legi	slation to	solid wa	aste man	agemen	t.					U	Inderstand	ling (K2)
						Маррі	ng of C	Os witł	n POs a	and PSC	Ds				
COs/	Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1	1			3							
CO	2	2	1					3							
CO	3	3	2	1	1			3							
CO	4	3	2	1	1			3							
CO	5	2	1					3							
1 – Sli	ght, 2	– Mode	erate, 3 -	- Substan	tial, BT	- Bloom's	Taxono	omy							
						ASSE	SSMEN	Τ ΡΑΤΤ	ERN -	THEOF	RY				
	st / Bl Catego	oom's ory*	Re	memberi (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4)		Evaluating (K5) %		reating K6) %	Total %
	CAT	1		25		35		40	)						100
	CAT	2		25		35		40	)						100
	CAT	3		25		35		40	)						100
	ESE	=		25		35		40	)						100
* ±3%	may b	oe varie	d (CAT	1,2&3-	50 mai	rks & ESI	Ξ — 100	marks)	1		·		·		

### 22CYO08 - CHEMISTRY IN EVERY DAY LIFE (Offered by Department of Chemistry)

Programme& Branch	All BE / BTech Branches	Sem.	Category	L	т	Р	Credit
Prerequisites	Nil	7	OE	3	0	0	3
Preamble	This course aims to prepare the students to have the k creams, milk powder, soil, fertilizer, pesticides, insecticid chemistry in our everyday activities.						
Unit – I	Oils, Fats and Sugar						9
	en oils and fats – properties – classification – edible oils – v – refining of crude vegetable oils – processing of animal fa root.						
Unit – II	Adulterants in food						9
	and prevention – common food adulterants – food additives - vsis of adulterants in edible oils, coffee powder, chilli powd food adulterants						
Unit – III	Creams and Milk powder						9
	ition-chemistry of creaming process- Factors influencing creat lilk powder: Need for making powder-drying process- spraying						
Unit – IV	Soil and Fertilizers	aidite but			i la	. 1	9
Soil analysis: Cor Fertilizers: primar fertilizers and its o	mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their	on plant	growth –Com	plex	ferti	lizers	ing of soil and mixe
Soil analysis: Cor Fertilizers: primar fertilizers and its c obtain estimated y Unit – V	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their rield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides</li> </ul>	on plant functions in	growth –Com plants -optin	nplex nal a	ferti dditio	lizers on of	ing of soil and mixed Fertilizers to 9
Soil analysis: Cor Fertilizers: primar fertilizers and its o obtain estimated y <b>Unit – V</b> Pesticides – Clas Inorganic pesticide pesticides: Endrin organic (dithiocarl	mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their rield.	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicio	growth –Com plants -optin res when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixed Fertilizers to 9 Insecticides netic organi nixture) and
Soil analysis: Cor Fertilizers: primar fertilizers and its c obtain estimated y <b>Unit – V</b> Pesticides – Clas Inorganic pesticide pesticides: Endrin organic (dithiocarl	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their vield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides sification – general methods of application and toxicity, Sates – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicio	growth –Com plants -optin res when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t 9 Insecticides netic organi nixture) an
Soil analysis: Cor Fertilizers: primar fertilizers and its o obtain estimated y <b>Unit – V</b> Pesticides – Clas Inorganic pesticides pesticides: Endrin organic (dithiocarl dicholorophenoxya	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their vield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides sification – general methods of application and toxicity, Sates – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicio	growth –Com plants -optin res when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t 9 Insecticides netic organi nixture) an ctive - 2, 4
Soil analysis: Cor Fertilizers: primar fertilizers and its c obtain estimated y <b>Unit – V</b> Pesticides – Clas Inorganic pesticide pesticides: Endrin organic (dithiocarl dicholorophenoxya	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their vield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides sification – general methods of application and toxicity, Sates – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction</li> </ul>	on plant functions ir fety measu rivatives: p es)-Fungici s - Herbicion nd function	growth –Corr plants -optin res when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t 9 Insecticides netic organi nixture) an ctive - 2, 4
Soil analysis: Cor         Fertilizers: primar         fertilizers and its contrainestimated y         Unit – V         Pesticides – Clas         Inorganic pesticide         pesticides: Endrinorganic (dithiocarl         dicholorophenoxya         TEXT BOOK:         1.       Sharma E	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their rield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides sification – general methods of application and toxicity, Sa es – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction acetic acid and 2,4,5-tricholorophenoxyaceticacid (structure a structure)</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicion nd function	growth –Corr plants -optin rres when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t <b>9</b> Insecticides netic organi nixture) an ctive - 2, 4
Soil analysis: Cor         Fertilizers: primar         fertilizers and its contrainestimated y         Unit – V         Pesticides – Clas         Inorganic pesticide         pesticides: Endrinorganic (dithiocarl         dicholorophenoxya         TEXT BOOK:         1.       Sharma E         2.       Alex V Ra	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their rield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides</li> <li>sification – general methods of application and toxicity, Sa es – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction acetic acid and 2,4,5-tricholorophenoxyaceticacid (structure a SK, Industrial Chemistry, Goel publishing house, New Delhi, 2</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicion nd function	growth –Corr plants -optin rres when us yrethrin and t des: Inorgan des: Selective	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t <b>9</b> Insecticides netic organi nixture) an ctive - 2, 4
Soil analysis: Cor         Fertilizers: primar         fertilizers and its of         obtain estimated y         Unit – V         Pesticides – Clas         Inorganic pesticide         pesticides: Endrin         organic (dithiocarl         dicholorophenoxys         TEXT BOOK:         1.       Sharma E         2.       Alex V Ra         REFERENCES:	<ul> <li>mposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their rield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides</li> <li>sification – general methods of application and toxicity, Sa es – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction acetic acid and 2,4,5-tricholorophenoxyaceticacid (structure a SK, Industrial Chemistry, Goel publishing house, New Delhi, 2</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicio nd function 2011, for Ui nits -II, III, '	growth –Corr plants -optin rres when us yrethrin and t des: Inorgan des: Selective hits- I, II, IV	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t <b>9</b> Insecticides netic organi nixture) an ctive - 2, 4
Soil analysis: Cor         Fertilizers: primar         fertilizers and its contrainestimated y         Unit – V         Pesticides – Clas         Inorganic pesticides: Endrinorganic (dithiocarl         dicholorophenoxya         TEXT BOOK:         1.       Sharma B         2.       Alex V Ra         REFERENCES:         1.       Dilip Kum	<ul> <li>Inposition of soil - Organic and Inorganic constituents-Soil a y nutrients –role of Nitrogen, potassium and phosphorous composition - Secondary nutrients – micronutrients and their vield.</li> <li>Pesticides, Insecticides, Fungicides and Herbicides sification – general methods of application and toxicity, Sa es – borates - Organic pesticides – D.D.T. and BHC-Plant de n and Aldrin (Chemical name - Structure- functions and us bamate) fungicides - Industrial fungicides: Creosote fraction acetic acid and 2,4,5-tricholorophenoxyaceticacid (structure a SK, Industrial Chemistry, Goel publishing house, New Delhi, 2 amani, Food Chemistry, MJP Publishers, Chennai, 2009, for U</li> </ul>	on plant functions in fety measu rivatives: p es)-Fungici s - Herbicion d function 2011, for U nits -II, III, ' ers, Reprin	growth –Corr plants -optin rres when us yrethrin and t des: Inorgan des: Selective hits- I, II, IV	ing p Nicot	dditio	lizers on of cides- Synth aux n	ing of soil and mixe Fertilizers t <b>9</b> Insecticides netic organi nixture) an ctive - 2, 4

		UTCOM		rse, the s	studen	ts will be	e able to	)						BT Map (Highest	
CO1	outl	ine the	importai	nce of oils	s, fats a	ind sugai							U	nderstand	ling (K2)
CO2	ider	ntify the	harmful	effects o	f adulte	erants in f	food.							Applying	J (K3)
CO3	dev	elop the	e knowle	edge on c	reams	and milk	powder.							Applying	J (K3)
CO4	inte	rpret th	e nature	and com	positio	n of soil a	and ferti	lizers.					U	nderstand	ling (K2)
CO5	illus	trate th	e differe	nce of pe	sticide	s, insectio	cides, fu	ngicide	s and h	nerbicide	es.		U	nderstand	ling (K2)
						Маррі	ng of C	Os witl	h POs	and PS	Os				
COs/F	Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	1												
CO	2	3	2	1	1										
CO	3	3	2	1	1										
CO	4	3	1												
CO	5	3	1												
1 – Sli	ght, 2	– Mode	erate, 3	- Substai	ntial, B	- Bloom	's Taxor	nomy			1	<b>I</b>			
										- THEOF					
	st / Blo Catego	oom's ory*	Re	member (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) ^o		Evaluating (K5) %		reating K6) %	Total %
	CAT	1		25		35		4(	)						100
	CAT	2		25		35		4(	)						100
	CAT	3		25		35		4(	)						100
	ESE	=		25		35		4(	۱ ۱						100

#### 22CYO09 - CHEMISTRY OF NUTRITION FOR WOMEN HEALTH (Offered by Department of Chemistry)

Programme & Branch	All BE / BTech Branches	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	8	OE	3	0	0	3
Preamble	This course aims to provide knowledge for engineering stud the role of nutrition for women health.	dents on	components	of h	ealth	, fitne	ess and also
Unit - I	Nutrition						9
deficiency and/ or soluble vitamins: minerals: calcium	s, sources and concept of energy balance - recommended or excess consumption on health of the following nutrients: carbo A, D,E and K - water soluble vitamins: Thiamin, riboflavin, niacir, iron, zinc and iodine.	hydrates	and dietary f	iber	– lipi	ds – p	proteins - fa
Unit - II	Women Health						9
	and reproductive health- menopause – hypothyroid- PCOD-c d nutrition and health - concept of small family - methods of famil						r promoting
Unit - III	Nutrition for Nursing Mother and Infants						9
rnysiology and p	sychology of lactation, hormonal control, composition of colostru	ims and l	oreast milk. N	UTTIT	onal	requir	ements of a
infants and immur	dvantages of breast feeding, food and nutritional requirements inization.						-
infants and immur <b>Unit - IV</b> Significance of ph	Idvantages of breast feeding, food and nutritional requirements finization.           Nutrition for Physical Fitness           hysical fitness and nutrition in the prevention and management	for infant of weigh	s, weaning an transfer and tran	nd su	upple diab	etes i	9 mellitus, C
infants and immur <b>Unit - IV</b> Significance of ph disorders, bone h for management c	Advantages of breast feeding, food and nutritional requirements finization.           Nutrition for Physical Fitness           hysical fitness and nutrition in the prevention and management           ealth and cancer - nutrition and exercise regimes for pre and poor           of obesity - critical review of various dietary regimes for weight ar	for infant of weigh ostnatal fi	s, weaning ar t control, obe tness - nutrit	nd su esity, iona	upple diab I and	etes i exerc	<b>9</b> mellitus, C ¹ cise regime cycling.
infants and immur Unit - IV Significance of ph disorders, bone h for management o Unit - V	Idvantages of breast feeding, food and nutritional requirements finization.         Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development	for infant of weigh ostnatal fi nd fat red	s, weaning ar t control, obe tness - nutrit uction - preve	esity, iona	diab diab l and n of v	etes i exerc veight	9 mellitus, C ¹ sise regime cycling. 9
infants and immur Unit - IV Significance of ph disorders, bone h for management o Unit - V Women in family ratio, aging, wido	Advantages of breast feeding, food and nutritional requirements finization.           Nutrition for Physical Fitness           hysical fitness and nutrition in the prevention and management           ealth and cancer - nutrition and exercise regimes for pre and poor           of obesity - critical review of various dietary regimes for weight ar	for infant of weigh ostnatal fi nd fat red	s, weaning ar t control, obe tness - nutrit uction - preve	esity, iona ention	diab diab l and n of v	etes i exerc veight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona
infants and immur <b>Unit - IV</b> Significance of ph disorders, bone h for management of <b>Unit - V</b> Women in family ratio, aging, wido status.	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for	for infant of weigh ostnatal fi nd fat red	s, weaning ar t control, obe tness - nutrit uction - preve	esity, iona ention	diab diab l and n of v	etes i exerc veight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona
infants and immur <b>Unit - IV</b> Significance of ph disorders, bone h for management of <b>Unit - V</b> Women in family ratio, aging, wido status.	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for	for infant of weigh ostnatal fi nd fat red	s, weaning ar t control, obe tness - nutrit uction - preve	esity, iona ention	diab diab l and n of v	etes i exerc veight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona
infants and immur Unit - IV Significance of pr disorders, bone h for management o Unit - V Women in family ratio, aging, wido status.	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for	for infant of weigh ostnatal fi nd fat red fertility, r d contrib	s, weaning ar t control, obe tness - nutrit uction - preve norbidity, mo ution to fami	nd su esity, iona ention rtality ly, a	diab l and n of v /, life nd el	etes i exerc veight expe	9 mellitus, C cise regime cycling. 9 ectancy, se
infants and immur Unit - IV Significance of pr disorders, bone h for management of Unit - V Women in family ratio, aging, wido status. TEXT BOOK: 1. Srilakshm Arnita Ve	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for whood. Women in society: Women's role, their resources, and hybrid the society is role, their resources, and hybrid the society is role.         ni, B., Nutrition Science, New Age International (P) Ltd., New Delarma, Women's Health and Nutrition: Role of State and Voluntary	for infant of weigh ostnatal fi nd fat red fertility, r d contrib	s, weaning ar t control, obe tness - nutrit uction - preve norbidity, mo ution to fami	nd su essity, iona entio rtality ly, a	upple diab l and n of v	etes i exerciveight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona Total: 4
infants and immur Unit - IV Significance of pr disorders, bone h for management of Unit - V Women in family ratio, aging, wido status. TEXT BOOK: 1. Srilakshm 2. Arpita Ve Units - II,	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for whood. Women in society: Women's role, their resources, and hybrid the society is role, their resources, and hybrid the society is role.         ni, B., Nutrition Science, New Age International (P) Ltd., New Delarma, Women's Health and Nutrition: Role of State and Voluntary	for infant of weigh ostnatal fi nd fat red fertility, r d contrib	s, weaning ar t control, obe tness - nutrit uction - preve norbidity, mo ution to fami	nd su essity, iona entio rtality ly, a	upple diab l and n of v	etes i exerciveight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona Total: 4
infants and immur Unit - IV Significance of pr disorders, bone h for management of Unit - V Women in family ratio, aging, wido status. TEXT BOOK: 1. Srilakshm 2. Arpita Ve Units - II, REFERENCES:	Inization.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for whood. Women in society: Women's role, their resources, and hybrid the society is role, their resources, and hybrid the society is role.         ni, B., Nutrition Science, New Age International (P) Ltd., New Delarma, Women's Health and Nutrition: Role of State and Voluntary	for infant of weigh ostnatal fi nd fat red fertility, r d contrib	s, weaning ar t control, obe tness - nutrit uction - preve norbidity, mo ution to fami	nd su essity, iona entio rtality ly, a	upple diab l and n of v	etes i exerciveight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona Total: 4
infants and immur Unit - IV Significance of pr disorders, bone h for management of Unit - V Women in family ratio, aging, wido status. TEXT BOOK: 1. Srilakshm 2. Arpita Ve Units - II, REFERENCES: 1. Shubhang	Invariation.       Nutrition for Physical Fitness         hysical fitness and nutrition in the prevention and management ealth and cancer - nutrition and exercise regimes for pre and poor obesity - critical review of various dietary regimes for weight ar         Role of Women in National Development         and community: Demographic changes menarche, marriage, for whood. Women in society: Women's role, their resources, and hybrid the society of the society is role, their resources, and hybrid the society of the society is role.         ni, B., Nutrition Science, New Age International (P) Ltd., New Del terma, Women's Health and Nutrition: Role of State and Voluntary III, IV.	for infant of weigh ostnatal fi nd fat red fertility, r d contrib	s, weaning ar t control, obe tness - nutrit uction - preve norbidity, mo ution to fami	nd su essity, iona entio rtality ly, a	upple diab l and n of v	etes i exerciveight expe	9 mellitus, C cise regime cycling. 9 ectancy, se of nutritiona Total: 4

		UTCON ion of		rse, the s	studen	ts will be	able to	)						BT Map (Highest	
CO1	mak	e use o	of the kn	owledge	of dieta	ary source	es in day	∕ to day	life.					Applying	(K3)
CO2	expl	ain the	disease	pattern a	and pol	icies towa	ards wo	men he	alth.				U	nderstand	ling (K2)
CO3	deve	elop kn	owledge	about nu	utrition	during lac	ctation a	nd for i	nfants.					Applying	(K3)
CO4	utiliz	ze the k	nowled	ge of phys	sical fit	ness and	nutritior	n toward	ds good	d health.				Applying	ı (K3)
CO5	inter	rpret th	e variou	s role of v	vomen	in society	<b>/</b> .						U	nderstand	ling (K2)
						Маррі	ng of C	Os witl	h POs	and PS	Os				
COs/F	Pos	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	1	3	2	1											
CO	2	3	1												
CO	3	3	2	1											
CO	4	3	2	1											
CO	5	3	1												
1 – Sli	ght, 2	– Mode	erate, 3	- Substai	ntial, B	T- Bloom	s Taxor	nomy		- T					· 
						ASSE	SSMEN	Τ ΡΑΤΊ	ERN -	THEOF	۲Y				
	st / Blo Catego		Re	member (K1) %	ing	Understa (K2)		Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating K6) %	Total %
	CAT	1		25		35		4(	)						100
	CAT	2		25		35		4(	)						100
	CAT	3		25		35		4(	)						100
	ESE			25		35		4(	)						100
* ±3%	may b	e varie	d (CAT	1,2&3-	- 50 ma	arks & ES	E – 100	marks	)						•

# DEGREE & PROGRAMME : B.E & AUTOMOBILE ENGINEERING

### HONOURS DEGREE TITLE: E-Mobility

The following courses are identified to earn additional 18 credits to get a Honours degree with specialization in **E-Mobility** 

S.No	Course Code	Course Title	Credits	Prerequisites	Semester
1.	22AUH01	Automotive Communication Protocols	4	Nil	5
2.	22AUJ01	Power Electronics and Drives	4	Basics of Electrical and Electronic Circuits	5
3.	22AUH02	Automotive IOT Technologies	4	Nil	6
4.	22AUH03	Advanced Energy Storage Management	3	Nil	6
5.	22AUH04	Advanced Vehicle Technologies	3	Automotive Electrical Systems and Drives, Automotive Sensors and Controllers	7
		TOTAL	18		

Programme &	22AUH01 - AUTOMOTIVE COMMUNI					_	
Branch	B.E. – Automobile Engineering	Sem.	Category	L	Т	Р	Credit
Prerequisites	Nil	5/6/7	HN	3	1	0	4
Preamble	This course provides knowledge on data communica diagnostic protocols.	tion, networking, a	automotive co	mmı	unicat	ion ar	nd
Unit – I	Controller Area Network:						9+3
bit stuffing - da CAN 2.0B.	bcol - ISO/OSI layers –Properties of CAN - CAN 2.0A stan a frame - Errors - Error detection - The rest of the frame -C						12.0A an
Unit – II	CAN Physical Layer:						9+3
Estimating the	AN bit - Nominal bit time - CAN and signal propagation – N alue - Precise - Corollaries: relations between the medium ation -Network speed –Bit rate - Latency.						
Unit – III	Time-Triggered protocols:						9+3
	communication on CAN – high-speed - X-by-Wire and frame - Architecture of a FlexRay node - Electronic compo						nandling
Unit – IV	Multiplexed Bus Concepts:						9+3
Vehicle - Wire Conformity of L	l and wireless communication - Basic concept of the LI N - Fail-safe SBC approach - Safe-by-Wire Plus - Audio–V	N 2.0 protocol - 0 'ideo Buses - I2C	Operating pri Bus - MOST E	ncipl Bus.	e - C	Data li	nk layer
Unit – V	Wireless Communication:						9+3
	y Communication – Internal - External - Control of opening I - Bluetooth -IEEE 802.11x – NFC.	g parts - Passive k	eyless entry a	and p	bassiv	ve go	- Wireles
			Lecture	45, -	Tutor	ial:15	, Total:6
TEXT BOOK:							
	que Paret, "Multiplexed Networks for Embedded Systems: Sons Ltd, England, 2007. UNIT I,II,III,IV,V	CAN, LIN, Flexray	, Safe-by-Wir	e", 1	st Ed	ition,	John
REFERENCES							
1. Ingolf k					004	-	
i. ingoiri	arls & Markus Mueck, "Networking Vehicles to Everything"	, 1st Edition, De/G	Press, Germ	any,	2018	3.	

		UTCOM		irse, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1	sum	marize	about	he basics o	of in-ve	hicle netv	vorks an	d CAN	protoc	ol.			Ur	derstandi	ng (K2)
CO2	illus	trate ab	out the	CAN phys	ical lay	er.							Ur	derstandi	ng (K2)
CO3	clas	sify the	time-tr	iggered and	d Flexra	ay protoc	ols for ve	ehicle n	etwork	ing.			Ur	derstandi	ng (K2)
CO4	expl	ain and	relate	the multiple	exed bu	us concep	ots for au	utomotiv	ve netw	orking.			Ur	nderstandi	ng (K2)
CO5	outli	ne the i	mporta	nce of wire	less sy	stems in	automol	oiles.					Ur	derstandi	ng (K2)
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2	2	1								1		3
CO	)2	3	2	2	1								1		3
CO	3	3	2	2	1								1		3
CO	)4	3	2	2	1								1		3
CO	95	3	2	2	1								1		3
1 – Sli	ght, 2	– Mode	rate, 3	<ul> <li>Substant</li> </ul>	ial, BT	- Bloom's	Taxono	omy							
						ASSES	SMENT	PATTE	ERN - 1	THEORY	,				
	st / Blo Catego	oom's ory*	F	Rememberi (K1) %	ing	Understa (K2)	U U	Apply (K3)		Analyz (K4) 9		Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		20		80	)								100
	CAT	2		20		80	)								100
	CAT	3		20		80	)								100
	ESE	:		20		80	)								100

# 22AUJ01 - POWER ELECTRONICS AND DRIVES

Branch	& В.Е	Automo	bile Engin	eering			Sem.	Category	L	Т	Р	Credit
Prerequisite	es Ba	sics of Elec	trical and	Electronic (	Circuits		5/6/7	HN	3	0	2	4
Preamble	Thi	e course dis		ver processi	na electronic	circuits an	art from i	ntroducing th	a ha	eice c	fnow	or
reamble		niconductor				circuits ap			e Da	3103 0		CI
Jnit – I	Po	wer Electro	nics Devic	es:								9
								ady state and				
					circuit for th	yristor- Ste	ady state	and switchin	g ch	aract	eristic	s of SCR
	stor model of											9
<b>Jnit – II</b> Principle of r		-DC and DC			Freewheelin	a diode- Si	nale nha	se full wave c	onve	ortor _	Sing	-
								– Applicatio				
								M inverters -				
converter.			0 10 0-									•
Jnit – III DC Chopper		- DC and A			Step up and s	sten down (		- Applications	of F	00-00	Con	9 verter –
								trol of AC v				
			converters	<ul> <li>– Application</li> </ul>	ons of AC-AC	C converter						-
Jnit – IV		Drives:	Desian		au ationa af l		Cin al a m	hase DC driv		Thus		9
					our quadrant			nase DC driv	es –	Inre	e pna	se DC
Unit – V		Drives:			di quananti							9
ntroduction	<ul> <li>Induction r</li> </ul>	notor drives	- Speed c	ontrol of 3-pl	hase inductio	on motor – S	Stator vol	tage control -	- Sta	ator fr	equer	icy contro
	PERIMENT		SES:		rol – Static ro	otor resistar				powe		
LIST OF EX	PERIMENTS ady state cha	racteristics	SES: of SCR.									
LIST OF EX 1. Stea 2. Sing	PERIMENT	racteristics	SES: of SCR. and Fully							powe		
LIST OF EX 1. Stea 2. Sing 3. Thre	<b>PERIMENTS</b> ady state cha gle Phase Ha	racteristics If controlled y controlled	SES: of SCR. and Fully rectifiers.									
LIST OF EX 1. Stea 2. Sing 3. Thre 4. Step 5. Thre	<b>PERIMENTS</b> ady state cha gle Phase Ha ee Phase ful	iracteristics If controlled y controlled step up conv	SES: of SCR. and Fully rectifiers. rerter.	controlled re	ctifiers.							
LIST OF EX 1. Stea 2. Sing 3. Thre 4. Step 5. Thre 6. Thre	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC	iracteristics ilf controlled y controlled itep up conv erters – 180 voltage con	SES: of SCR. and Fully rectifiers. retter. ° and 120° ntroller.	controlled re mode of op	ctifiers. eration.							
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC	aracteristics If controlled y controlled step up conv erters – 180 voltage con converters	SES: of SCR. and Fully rectifiers. retter. ° and 120° htroller. (Single ph	controlled re mode of ope ase, three pl	ctifiers. eration. nase controlle	ed converte						
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           8.         Sim	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC	Inacteristics If controlled y controlled step up converters – 180 voltage con converters converters	SES: of SCR. and Fully rectifiers. reter. ° and 120° ntroller. (Single ph (Inverter a	mode of operative provided the	ctifiers. eration.	ed converte						
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           3.         Sim           9.         PWI	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC M signal gen	Inacteristics If controlled y controlled step up converters – 180 voltage converters converters converters eration usin	SES: of SCR. and Fully rectifiers. reter. ° and 120° ntroller. (Single ph (Inverter a	mode of operative provided the	ctifiers. eration. nase controlle	ed converte						
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           3.         Sim           9.         PWI	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC	Inacteristics If controlled y controlled step up converters – 180 voltage converters converters converters eration usin	SES: of SCR. and Fully rectifiers. reter. ° and 120° ntroller. (Single ph (Inverter a	mode of operative provided the	ctifiers. eration. nase controlle	ed converte		noppers).				
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           8.         Sim           9.         PWI           10.         Des	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC M signal gen ign of conve	Inacteristics If controlled y controlled step up converters – 180 voltage converters converters converters eration usin	SES: of SCR. and Fully rectifiers. reter. ° and 120° ntroller. (Single ph (Inverter a	mode of operative provided the	ctifiers. eration. nase controlle	ed converte						
LIST OF EX 1. Stea 2. Sing 3. Thre 4. Step 5. Thre 6. Thre 6. Sim 8. Sim 9. PWI 10. Des TEXT BOOP	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC M signal gen ign of conve	Inacteristics If controlled y controlled tep up converters – 180 voltage converters converters converters eration usin rter.	SES: of SCR. and Fully rectifiers. reter. ° and 120° ntroller. (Single ph (Inverter a g DSPACE	controlled re mode of op ase, three pl nd AC voltag	ctifiers. eration. nase controllo ge regulator).	ed converte	ers and cl	noppers).				
1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           8.         Sim           9.         PWI           10.         Des           TEXT BOOP           1.         Biml	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of AC ulation of AC M signal gen ign of conve	aracteristics If controlled y controlled tep up converters – 180 voltage converters converters eration usin rter.	SES: of SCR. and Fully rectifiers. erter. ° and 120° htroller. (Single ph (Inverter a g DSPACE	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan	ctifiers. eration. nase controllo ge regulator). na Publisher	ed converte	ers and cl	hoppers).		ractio	cal:30	), Total:7
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           8.         Sim           9.         PWI           10.         Dess           TEXT BOOP         1.           1.         Biml           2.         Gob	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC M signal gen ign of conve C: bhra B.S., "F	iracteristics if controlled y controlled itep up converters – 180 voltage con converters converters eration usin rter. 'ower Electr "Fundamer	of SCR. and Fully rectifiers. retter. and 120° ntroller. (Single ph (Inverter a g DSPACE onics", 5th	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan	ctifiers. eration. nase controllo ge regulator). na Publisher	ed converte	ers and cl	noppers).		ractio	cal:30	), Total:7
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           3.         Sim           9.         PWI           10.         Des <b>FEXT BOOF</b> Biml           2.         Gob	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of AC ulation of AC M signal gen ign of conve	iracteristics if controlled y controlled itep up converters – 180 voltage con converters converters eration usin rter. 'ower Electr "Fundamer	of SCR. and Fully rectifiers. retter. and 120° ntroller. (Single ph (Inverter a g DSPACE onics", 5th	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan	ctifiers. eration. nase controllo ge regulator). na Publisher	ed converte	ers and cl	hoppers).		ractio	cal:30	), Total:7
LIST OF EX 1. Stea 2. Sing 3. Thre 4. Step 5. Thre 5. Thre 6. Thre 7. Sim 8. Sim 9. PWI 10. Des TEXT BOOP 1. Biml 2. Gob REFERENC	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase inv ee Phase AC ulation of DC ulation of AC M signal gen ign of conve C: bhra B.S., "F al K. Dubey, ES/ MANUA	iracteristics ilf controlled y controlled step up converters erters – 180 voltage con converters converters eration usin rter. 'ower Electr "Fundamer L / SOFTW	SES: of SCR. and Fully rectifiers. retter. ° and 120° ntroller. (Single ph (Inverter a g DSPACE onics", 5th ntals of Elec ARE:	controlled re mode of op ase, three pl nd AC voltag Edition, Kan	ctifiers. eration. nase controllo ge regulator). na Publisher	ed converte	ers and cl	noppers). Lecture:4 UNIT I,II,III g House, Nev		ractio	cal:30	), Total:7
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           8.         Sim           9.         PWI           10.         Des           TEXT BOOK           1.         Biml           2.         Gob           REFERENC           1.         Sing	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase and ulation of DC ulation of AC M signal gen ign of conve Scientific States bhra B.S., "F al K. Dubey, ES/ MANUA gh M.D. & Ka	Iracteristics If controlled y controlled tep up converters – 180 voltage converters converters eration usin rter. Power Electr "Fundamer L / SOFTW nchandhani	SES: of SCR. and Fully rectifiers. retter. ° and 120° htroller. (Single ph (Inverter a g DSPACE onics", 5th itals of Elec ARE: K.B., "Pow	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan ctrical Drives	ctifiers. eration. nase controlli ge regulator). na Publisher ", 2nd Edition cs", McGraw	ed converte s, New Dell n, Narosal I Hill, New D	ers and cl hi, 2014. Publishin Delhi, 201	noppers). Lecture:4 UNIT I,II,III g House, Nev		ractio	cal:30	), Total:7
LIST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           3.         Sim           9.         PWI           10.         Des           IEXT BOOH           1.         Biml           2.         Gob           REFERENC           1.         Sing           2.         Muh	PERIMENTS ady state cha gle Phase Ha ee Phase ful o down and s ee Phase and ulation of DC ulation of AC M signal gen ign of conve Scientific States bhra B.S., "F al K. Dubey, ES/ MANUA gh M.D. & Ka	Iracteristics If controlled y controlled tep up converters erters – 180 voltage converters converters eration usin rter. Power Electr "Fundamer L / SOFTW nchandhani cashid, "Pov	SES: of SCR. and Fully rectifiers. retter. ° and 120° htroller. (Single ph (Inverter a g DSPACE onics", 5th itals of Elec ARE: K.B., "Pow	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan ctrical Drives	ctifiers. eration. nase controlli ge regulator). na Publisher ", 2nd Edition cs", McGraw	ed converte s, New Dell n, Narosal I Hill, New D	ers and cl hi, 2014. Publishin Delhi, 201	Lecture:4		ractio	cal:30	), Total:7
IST OF EX           1.         Stea           2.         Sing           3.         Three           4.         Step           5.         Three           6.         Three           7.         Sim           3.         Sim           9.         PWI           10.         Des <b>FEXT BOOP</b> 1.         Biml           2.         Gob <b>REFERENC</b> Sing           2.         Muh           3.         Labo	PERIMENTS ady state cha gle Phase Ha se Phase ful o down and s se Phase inv se Phase AC ulation of DC ulation of AC M signal gen ign of conve St bhra B.S., "F al K. Dubey, ES/ MANUA gh M.D. & Ka	Iracteristics If controlled y controlled tep up converters erters – 180 voltage con converters converters eration usin rter. 'ower Electr "Fundamer L / SOFTW nchandhani cashid, "Pov	SES: of SCR. and Fully rectifiers. retter. ° and 120° htroller. (Single ph (Inverter a g DSPACE onics", 5th itals of Elec ARE: K.B., "Pow	controlled re mode of ope ase, three pl nd AC voltag Edition, Kan ctrical Drives	ctifiers. eration. nase controlli ge regulator). na Publisher ", 2nd Edition cs", McGraw	ed converte s, New Dell n, Narosal I Hill, New D	ers and cl hi, 2014. Publishin Delhi, 201	Lecture:4		ractio	cal:30	), Total:7

	SE OUTCOMES: mpletion of the course, the students will be able to	BT Mapped (Highest Level)
CO1	explain the operation and switching characteristics of power solid state devices	Understanding (K2), Manipulation (S2)
CO2	describe the working principle of AC – DC and DC – AC converters	Understanding (K2), Manipulation (S2)
CO3	express the construction and working of DC – DC and AC – AC converters	Applying (K3), Precision (S3)
CO4	select a suitable power converter for a given DC drive	Understanding (K2), Manipulation (S2)
CO5	choose an appropriate power converter for a given AC drive	Applying (K3), Precision (S3)

					Mappin	g of CO	s with	POs an	d PSO	5				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1		2							2	1	1
CO2	3	2	1		2							2	3	3
CO3	3	2	1		2							2	3	3
CO4	3	2	1		2							2	2	2
CO5	3	2	1		2							2	2	2
1 Clight 2	Mada	roto 2	Cubatant		Dia am'a	Tayana	<b>ma</b> 1/							

1 – Slight, 2 – Moderate, 3 – Substantial, BT- Bloom's Taxonomy

		ASSESSMENT	PATTERN -	THEORY			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	80					100
CAT2	30	35	35				100
CAT3	30	30	40				100
ESE	20	50	30				100
* ±3% may be varied (	(CAT 1,2,3 – 50 mark	s & ESE – 100 mai	rks)				

# 22AUH02 - AUTOMOTIVE IOT TECHNOLOGIES

Programme & Branch	B.E. – Automobile Engineering	Sem.	Category	L	т	Ρ	Credit
Prerequisites	Nil	5/6/7	HN	3	1	0	4
Preamble	This course provides knowledge on data commu diagnostic protocols.	unication, networking	, automotive	com	muni	catior	n and
Unit – I	Introduction to IOT:						9+3
protocols. Cloud	Architecture-Application-based IoT Protocols-Ir I Computing: Types of cloud-Business aspects of cloud-Business aspects of cloud-Fog Computing: Applications of Fog computing. See	oud-Virtualization- Ke	ey aspect of a	cloud	d con	nputir	ig-Mobile
Unit – II	IoT Architectures:						9+3
Reference archi integration, WSN	Components - Various architectures of IOT and IIU itecture; IIOT system components: Sensors, Gate N, WSN network design for IOT. Sensor and Interfacing:						
Unit – III	<b>v</b>	· · · · · · · ·			<u> </u>		
sensor architect	sensors, Transducers, Classification, Roles of sensor ure, special requirements for IIoT sensors, Role of the such as HART, MODBLIS, Social and Parallel, 5th	actuators, Types of					
amoronic protoco	Is such as HART, MODBUS-Serial and Parallel, Eth	ernet, BACNet and N					
Unit – IV	IOT Protocols and Cloud:		12M				9+3
Unit – IV Introduction to Ir Modbus, Batibu		s of : Fieldbus, Profib	12M ous, HART, Ir	iterb	us, B	itbus	CC-link
Unit – IV Introduction to Ir Modbus, Batibu LoRaWAN, NB- Unit – V	IOT Protocols and Cloud: ndustrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles:	s of : Fieldbus, Profib Net, LonWorks, ISA	12M ous, HART, Ir 100.11a, Wi	iterb irele:	us, E ss H	itbus ART,	, CC-link LoRa & <b>9+3</b>
Unit – IV Introduction to Ir Modbus, Batibu LoRaWAN, NB-I Unit – V Fleet Managem fuel and mileage cars: Vehicle to	IOT Protocols and Cloud: ndustrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to	12M bus, HART, In 100.11a, W - Trucks' per and Driver ma	iterb irele: rform	us, B ss H nance	itbus ART, e stat	CC-link LoRa & 9+3 istics like
Unit – IV Introduction to Ir Modbus, Batibu LoRaWAN, NB-I Unit – V Fleet Manageme fuel and mileage cars: Vehicle to	IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to	12M bus, HART, In 100.11a, W - Trucks' per and Driver ma	iterb irele: rform anag utom	us, E ss H nance eme notive	e stat aRT, e stat nt - c e Mai	CC-link LoRa & 9+3 istics like onnected ntenance
Unit – IV Introduction to Ir Modbus, Batibu LoRaWAN, NB-I Unit – V Fleet Manageme fuel and mileage cars: Vehicle to	IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to	12M Jus, HART, Ir 100.11a, W - Trucks' per and Driver ma network - A	iterb irele: rform anag utom	us, E ss H nance eme notive	e stat aRT, e stat nt - c e Mai	CC-link LoRa & 9+3 istics like onnected ntenance
Unit – IV         Introduction to Ir         Modbus, Batibu         LoRaWAN, NB-I         Unit – V         Fleet Management         fuel and mileage         cars: Vehicle to         System - Auton         TEXT BOOK:         1.	IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped omous vehicle: In-vehicle Infotainment and Telemati rup Mukherjee, Chandana Roy, Sudip Misra," Introdu- tion, CRC Press, 2020, for Unit I, II, III, IV.	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to cs	12M Pus, HART, In 100.11a, W - Trucks' per and Driver ma network - A Lecture:4 ternet of Thin	rform anag uton 5, Tu	us, E ss H nance eme notive utoria	al:15,	CC-link LoRa & 9+3 istics like onnected ntenance Total:60
Unit – IV         Introduction to Ir         Modbus, Batibu         LoRaWAN, NB-I         Unit – V         Fleet Management         fuel and mileage         cars: Vehicle to         System - Auton         TEXT BOOK:         1.         Ananda         1st Editi         2	IOT Protocols and Cloud:           Industrial data transmission, Features & Components           s,DigitalSTROM, Controller area network, Devicel           IoT, IEEE 802.11AH. Clouds : Types of clouds           IOT Application in Automobiles:           ent: Real-time location monitoring of the fleet - Weile           e - Tracking traffic conditions on the road - Route m           vehicle - Vehicle to infrastructure - Vehicle to ped           omous vehicle: In-vehicle Infotainment and Telemati           rup Mukherjee, Chandana Roy, Sudip Misra," Introduction	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to cs	12M Pus, HART, In 100.11a, W - Trucks' per and Driver ma network - A Lecture:4 ternet of Thin	rform anag uton 5, Tu	us, E ss H nance eme notive utoria	al:15,	CC-link LoRa & 9+3 istics like onnected ntenance Total:60
Unit – IV         Introduction to Ir         Modbus, Batibu         LoRaWAN, NB-I         Unit – V         Fleet Manageme         fuel and mileage         cars: Vehicle to         System - Auton         TEXT BOOK:         1.         Ananda         1st Editit         2.	IOT Protocols and Cloud: IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped omous vehicle: In-vehicle Infotainment and Telemati rup Mukherjee, Chandana Roy, Sudip Misra," Introdu- tion, CRC Press,2020, for Unit I, II, III, IV. epBahga, Vijay K. Madisetti—Internet of Things: A H- yderabad, 2015, for Unit V.	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to cs	12M Pus, HART, In 100.11a, W - Trucks' per and Driver ma network - A Lecture:4 ternet of Thin	rform anag uton 5, Tu	us, E ss H nance eme notive utoria	al:15,	CC-link LoRa & 9+3 istics like onnected ntenance Total:60
Unit – IV         Introduction to Ir         Modbus, Batibu         LoRaWAN, NB-         Unit – V         Fleet Management         fuel and mileage         cars: Vehicle to         System - Auton         TEXT BOOK:         1.         Ananda         1st Editi         2.         REFERENCES:	IOT Protocols and Cloud: IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, Devicel IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped omous vehicle: In-vehicle Infotainment and Telemati rup Mukherjee, Chandana Roy, Sudip Misra," Introdu- tion, CRC Press,2020, for Unit I, II, III, IV. epBahga, Vijay K. Madisetti—Internet of Things: A H- yderabad, 2015, for Unit V.	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to cs uction to Industrial In ands-on Approach, 1	12M Jus, HART, Ir 100.11a, Wi - Trucks' per and Driver ma network - A Lecture:44 ternet of Thin stEdition, Un	rform anag utom 5, Tu gs a	us, E ss H nance eme notive <b>itoria</b>	al:15,	CC-link LoRa & 9+3 istics like onnected ntenance Total:60
Unit – IV         Introduction to Ir         Modbus, Batibu         LoRaWAN, NB-I         Unit – V         Fleet Management         fuel and mileage         cars: Vehicle to         System - Auton         TEXT BOOK:         1.         Ananda         1st Editi         2.         REFERENCES:         1.         Alasdain         2         Daniel N	IOT Protocols and Cloud: Industrial data transmission, Features & Components s,DigitalSTROM, Controller area network, DeviceP IoT, IEEE 802.11AH. Clouds : Types of clouds IOT Application in Automobiles: ent: Real-time location monitoring of the fleet - Wei e - Tracking traffic conditions on the road - Route m vehicle - Vehicle to infrastructure - Vehicle to ped omous vehicle: In-vehicle Infotainment and Telemati rup Mukherjee, Chandana Roy, Sudip Misra," Introdu- tion, CRC Press,2020, for Unit I, II, III, IV. epBahga, Vijay K. Madisetti—Internet of Things: A H- yderabad, 2015, for Unit V.	s of : Fieldbus, Profit Net, LonWorks, ISA ight/Volume tracking nanagement - Time a lestrians - Vehicle to cs uction to Industrial In ands-on Approach, 1 ings", 1st Edition, Ap	12M Pus, HART, Ir 100.11a, W - Trucks' per and Driver ma network - A Lecture:4 ternet of Thin stEdition, Un ress, New Yo	rform anag utom <b>5, Tu</b> gs a ivers	us, B ss H nance eme notive utoria	artitbus ART, e stat nt - c e Main al:15,	CC-link LoRa & 9+3 istics like onnected ntenance Total:60

COUR	SE C	OUTCO	MES:											ВТ Мар	ped
On co	mple	etion of	the cou	urse, the	e stude	nts will I	be able	to					(۲	lighest l	_evel)
CO1	cor	mprehe	nd the fu	undamer	ntals of	lloT and	its pote	ntial, ch	allenge	es			Une	derstandi	ng (K2)
CO2	infe	er the va	arious c	omponei	nts and	architect	ture of II	oT					Un	derstandi	ing (K2)
CO3	des	sign the	sensor	s based	lloT are	chitecture	e with int	erface	standa	rds				Applying	(K3)
CO4	rea	alize and	Applying (K3)												
CO5	bui	ld the c	oncepts	of Desig	gn Thin	king for a	automoti	ve appl	ications	6				Applying	(K3)
						Mappir	ng of CC	Os with	POs a	nd PSO	S				
COs/P	<b>'</b> Os	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO	1	3	2	2	2	2							1		3
CO2	2	2	2	2	2	3							1		3
COS	3	2	2	2	2	3							1		3
CO4	4	2	2	2	2	3							1		3
COS	5	3	3	2	3	3							2		3
1 – Sli	ght, 2	2 – Mod	lerate, 3	– Subst	antial,	BT- Bloo	m's Tax	onomy		1	1				
						ASSES	SMEN	ΓΡΑΤΤ	ERN - [·]	THEOR	Y				
	t / Bl ateg	oom's ory*	Re	membei (K1) %	•	Understa (K2)		Appl (K3)		Analyz (K4) 9	5	Evaluating (K5) %	_	reating K6) %	Tota %
	CAT	Г1		20		80									100
	CAT	Г2		10		70		20	)						100
	CAT	ГЗ		10		60		30	)						100
	ES	E		15		65		20	)						100
* +3%	mav	be vari	ed (CAT	123-	50 mar	ks & ESI	= _ 100	marks)					1		1

### 22AUH03 - ADVANCED ENERGY STORAGE MANAGEMENT

Programme & Branch	B.E Automobile Engineering	Sem.	Category	L	Т	Ρ	Credit
Prerequisites	Nil	5/6/7	HN	3	0	0	3
Preamble	This course aims to impart the essential knowledge or advanced energy storage management.	n the fundamenta	I principles ar	nd ap	oplica	ation i	า
Unit – I	Introduction to Energy Storage:						9
Electrical Energy Energy Storage	energy storage systems: Thermal Energy Storage, Me v Storage, Electrochemical Energy Storage, Electrostatic – General criteria of energy storage systems - Conven off grid energy storage systems and requirements.	Energy Storage,	Magnetic En	ergy	Stor	age a	nd Optica
Unit – II	Thermal storage and Mechanical Storage:						9
	rits and demerits of thermal storage system - Recent of mechanical storage systems, Principle of operations, - Flywheel.  Magnetic storage, Electro-optic and Optical storage	Emerging adva		-	-		
	<ul> <li>Principle of operation, Emerging challenges and a review</li> </ul>						-
					rtro_c	ntic s	nd ()ntic
storage: Principle	es of operation, Device fabrication, Emerging devices and l			Eleo	ctro-c	ptic a	ind Optica
				Elec	ctro-c	ptic a	nd Optica
Unit – IV	es of operation, Device fabrication, Emerging devices and l	Jpcoming techno	logies.				9
<b>Unit – IV</b> Materials, Princip	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage:	Jpcoming techno	logies. electrolytes.	Li-ic	on ba	tteries	9 S: Princip
<b>Unit – IV</b> Materials, Princip of operation, Batt	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: Dele of Operation, Positive electrode materials, negative ele	Upcoming techno ectrode materials, abrications - Buil	logies. electrolytes. ding block ce	Li-io	on ba Batte	tteries	<b>9</b> s: Princip odules an
<b>Unit – IV</b> Materials, Princip of operation, Batt	es of operation, Device fabrication, Emerging devices and l Electrochemical Storage: ole of Operation, Positive electrode materials, negative electrode materials, negative electrodes, Cell and battery fa	Upcoming techno ectrode materials, abrications - Buil	logies. electrolytes. ding block ce	Li-io	on ba Batte	tteries	<b>9</b> s: Princip odules an
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: ole of Operation, Positive electrode materials, negative ele tery components, design of Electrodes, Cell and battery fa er batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor	Upcoming techno ectrode materials, abrications - Buil um-battery, Magr s:	logies. electrolytes. ding block ce nesium batter	Li-ic Ils - y, A	on ba Batte Iumir	tteries ery ma num b	9 s: Principl odules an attery an 9
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V Fuel Cells: Introd Alkaline fuel cells storage tanks, Cr	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: ole of Operation, Positive electrode materials, negative electery components, design of Electrodes, Cell and battery fater batteries – Applications - Future developments: Sodiu	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar	Li-ic Ils - y, A Direc	on ba Batte Iumin ct Me Gas I	tteries ery mo num b ethanc phase	9 S: Principl odules an attery an 9 I fuel cel hydroge
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V Fuel Cells: Introd Alkaline fuel cells storage tanks, Cr	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: ble of Operation, Positive electrode materials, negative electrodes, Cell and battery fabric tery components, design of Electrodes, Cell and battery fabric batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrances and Solid oxide fuel cells. Hydrogen storage systems: Soc ryogenic hydrogen storage tanks, and Liquid phase hydrogen	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar	Li-ic Ils - y, A Direc	on ba Batte Iumin ct Me Gas I	tteries ery mo num b ethanc phase	9 s: Principlo dules an attery an 9 l fuel cel e hydroge es of supe
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V Fuel Cells: Introd Alkaline fuel cells storage tanks, Cr	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: ble of Operation, Positive electrode materials, negative electrodes, Cell and battery fabric tery components, design of Electrodes, Cell and battery fabric batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrances and Solid oxide fuel cells. Hydrogen storage systems: Soc ryogenic hydrogen storage tanks, and Liquid phase hydrogen	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar	Li-ic Ils - y, A Direc	on ba Batte Iumin ct Me Gas I	tteries ery mo num b ethanc phase	9 S: Principle odules an attery an 9 I fuel cel hydroge
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V Fuel Cells: Introd Alkaline fuel cells storage tanks, Cr capacitors, Basic	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: ble of Operation, Positive electrode materials, negative electrodes, Cell and battery fabric tery components, design of Electrodes, Cell and battery fabric batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrances and Solid oxide fuel cells. Hydrogen storage systems: Soc ryogenic hydrogen storage tanks, and Liquid phase hydrogen	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar	Li-ic Ils - y, A Direc	on ba Batte Iumin ct Me Gas I	tteries ery mo num b ethanc phase	9 S: Princip odules ar attery ar 9 I fuel ce hydroge es of supe
Unit – IV Materials, Princip of operation, Batt packs - Li-polym Silicon battery. Unit – V Fuel Cells: Introd Alkaline fuel cells storage tanks, Cr capacitors, Basic	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: Dele of Operation, Positive electrode materials, negative electroy components, design of Electrodes, Cell and battery fabric batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrane s and Solid oxide fuel cells. Hydrogen storage systems: So ryogenic hydrogen storage tanks, and Liquid phase hydrogen principle of operation, Performance and technologies of su	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar	Li-ic Ils - y, A Direc	on ba Batte Iumin ct Me Gas I	tteries ery mo num b ethanc phase	9 s: Principlo dules an attery an 9 l fuel cel e hydroge es of supe
Unit – IV         Materials, Princip         of operation, Batt         packs - Li-polym         Silicon battery.         Unit – V         Fuel Cells: Introot         Alkaline fuel cells         storage tanks, Cr         capacitors, Basic         TEXT BOOK:         1.         REFERENCES:         1         Yuping V	es of operation, Device fabrication, Emerging devices and L Electrochemical Storage: Dele of Operation, Positive electrode materials, negative electroy components, design of Electrodes, Cell and battery fabric batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrane s and Solid oxide fuel cells. Hydrogen storage systems: So ryogenic hydrogen storage tanks, and Liquid phase hydrogen principle of operation, Performance and technologies of su	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr e), Hydrogen PE olid state hydroge gen storage tank uper capacitors.	logies. electrolytes. ding block ce nesium batter M fuel cell, I en storage tar s. Super capa	Li-ic Ils - y, A Direc nks, acito	on ba Batte lumir Ct Me Gas I rs: Fe	tteries ary mo hum b ethanc phase eature	9 S: Principlo odules an attery an 9 I fuel cel hydroge s of supe Total:4
Unit – IV         Materials, Princip         of operation, Batt         packs - Li-polym         Silicon battery.         Unit – V         Fuel Cells: Introo         Alkaline fuel cells         storage tanks, Cr         capacitors, Basic         TEXT BOOK:         1.       Robert A         REFERENCES:         1.       Yuping V         Press, U	es of operation, Device fabrication, Emerging devices and U Electrochemical Storage: Dele of Operation, Positive electrode materials, negative electroy components, design of Electrodes, Cell and battery fabre batteries – Applications - Future developments: Sodiu Fuel Cells, Hydrogen storage and Super capacitor duction to fuel cells, PEM (polymer electrolyte membrands and Solid oxide fuel cells. Hydrogen storage systems: So ryogenic hydrogen storage tanks, and Liquid phase hydroge principle of operation, Performance and technologies of st the technologies, Energy Storage, Springer, 2010. Vu, Lithium-Ion Batteries: Fundamentals and Applications(I	Jpcoming techno ectrode materials, abrications - Buil um-battery, Magr s: e), Hydrogen PE olid state hydroge gen storage tank uper capacitors.	electrolytes. ding block ce nesium batter M fuel cell, I en storage tar s. Super capa	Li-ic Ils - y, A Direc hks, acito	on ba Batte lumin Ct Me Gas I rs: Fe	tteries ary mo hum b ethanc phase eature	9 S: Princip odules ar attery ar 9 I fuel ce hydroge s of supe Total:4

		UTCOM tion of t		se, the st	udent	s will be a	able to						(	BT Mapp Highest L	
CO1		cribe the ems.	e approp	riate conc	epts a	nd models	s to com	prehen	d the b	asics of	energy s	storage	Ur	Iderstandii	ng (K2)
CO2	expl	lain the	working	and the re	ecent a	dvancem	ents in t	hermal	and me	echanica	I storage	e systems.	Ur	Iderstandii	ng (K2)
CO3	sum stor	imarize age sys	the princ tems to i	ciple of op Ilustrate t	eration he resp	n of magne pective de	etic stora	age sys rication	tems, e techni	electro-o ques	ptic and	optical	Ur	Iderstandii	ng (K2)
CO4						electroche ng of vario						ed, and to ies.	Ur	Iderstandii	ng (K2)
CO5	tech		involved									advanced d working		iderstandii	ng (K2)
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/I	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2	1	1		2	3					1		
CO	)2	3	2	1	1		2	3					1		
CO	3	3	2	1	1		2	3					1		
CO	)4	3	2	1	1		2	3					1		
CO	95	3	2	1	1		2	3					1		
1 – Sli	ght, 2	– Mode	rate, 3 –	Substant	ial, BT	- Bloom's	Taxono	my			L	1			
						ASSES	SMENT	PATTE	ERN - 1	HEORY	,				
	st / Blo Catego	oom's ory*	Re	memberi (K1) %	ng	Understa (K2)		Apply (K3)		Analyzi (K4) %		Evaluating (K5) %		reating (K6) %	Tota %
	CAT	1		30		70									100
	CAT	2		30		70									100
		<u>.</u>		30		70									100
	CAT	3													

Programme & Branch	B.E Automobile Engineering	Sem.	Category	L	т	Р	Credit
Prerequisites	Automotive Electrical Systems and Drives, Automotive Sensors and Controllers	5/6/7	HN	3	0	0	3
	· · · · · · · · · · · · · · · · · · ·		· · · ·				
Preamble	This course provides knowledge in advanced technological and cybersecurity into the operation of automobiles, vehicle-t						
Unit – I	Automotive E/E and Automotive Software Technology						9
Entertainment/In	vstems in the Car - Automotive Electronics - Driver Assistan nfotainment Electronics - Sensor Technology - E/E Architectures a eering – AUTOSAR - AUTOSAR Adaptive Platform – GENIVI	and Topol	ogies - Funct	iona	Safe	ety - A	Automotiv
Unit – II	Connected Car on Cyber-Physical Systems						9
Technology - Te	Cyber-Physical Systems - Internet of Things - Internet of Thin elematics, Infotainment, and the Evolution of the Connected Car	•	•	•			
	Challenges - Connected Car in the Cloud- Autonomous Vehicles						
<b>Unit – III</b> Introduction to C Vulnerabilities -	Automotive Cybersecurity Cybersecurity - IT Security in Automotive Cyber-Physical Systems Intrusion Detection and Prevention - Functional Safety and Secu		-				
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV	Automotive Cybersecurity           Cybersecurity - IT Security in Automotive Cyber-Physical Systems           Intrusion Detection and Prevention - Functional Safety and Security           ed Remotely via Web Application           Carsharing and Ridesharing	urity - Cai	Hacking Exa	ampl	es –	Case	rfaces and e Studies 9
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con	Automotive Cybersecurity           Cybersecurity - IT Security in Automotive Cyber-Physical Systems           Intrusion Detection and Prevention - Functional Safety and Secured Remotely via Web Application           Carsharing and Ridesharing           Incept - Car2go - Use Cases and Requirement Analysis for Carlectric Vehicles and Carsharing - Car Hailing and Ridesharing	urity - Car	Hacking Example Frank	ampl	es – are N	Case /odifi	rfaces and Studies 9 cations fo
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E	Automotive Cybersecurity           Cybersecurity - IT Security in Automotive Cyber-Physical Systems           Intrusion Detection and Prevention - Functional Safety and Secured Remotely via Web Application           Carsharing and Ridesharing           Incept - Car2go - Use Cases and Requirement Analysis for Carlectric Vehicles and Carsharing - Car Hailing and Ridesharing	urity - Car	Hacking Example Frank	ampl	es – are N	Case /odifi	rfaces and Studies 9 cations fo
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E Cybersecurity in Unit – V Parking - Conne - Types of Intru	Automotive Cybersecurity           Cybersecurity - IT Security in Automotive Cyber-Physical Systems           Intrusion Detection and Prevention - Functional Safety and Secured Remotely via Web Application           Carsharing and Ridesharing           Incept - Car2go - Use Cases and Requirement Analysis for Carlectric Vehicles and Carsharing - Car Hailing and Ridesharing           Ridesharing	urity - Car rsharing - g - Safety ber Threa	Hacking Exa Hardware/S in Ridesha ts - Intrusion	oftwa ring Dete	es – are M - Cy	Case Nodifi /bera	rfaces and Studies 9 cations fo ttacks and 9 Prevention
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E Cybersecurity in Unit – V Parking - Conne - Types of Intru	Automotive Cybersecurity         Cybersecurity - IT Security in Automotive Cyber-Physical Systems         Intrusion Detection and Prevention - Functional Safety and Secured         ad Remotely via Web Application         Carsharing and Ridesharing         accept - Car2go - Use Cases and Requirement Analysis for Carlectric Vehicles and Carsharing - Car Hailing and Ridesharing         Ridesharing         Connected Parking and Automated Valet Parking         ected Parking - Parking Assistance - Automated Valet Parking - Cy         sion Detection Systems - Artificial Neural Network-Based IDS -	urity - Car rsharing - g - Safety ber Threa	Hacking Exa Hardware/S in Ridesha ts - Intrusion	oftwa ring Dete	es – are M - Cy	Case Nodifi /bera	rfaces and Studies 9 cations fo ttacks and 9 Prevention
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E Cybersecurity in Unit – V Parking - Conne - Types of Intru Analysis - Imple TEXT BOOK:	Automotive Cybersecurity         Cybersecurity - IT Security in Automotive Cyber-Physical Systems         Intrusion Detection and Prevention - Functional Safety and Secured Remotely via Web Application         Carsharing and Ridesharing         Incept - Car2go - Use Cases and Requirement Analysis for Callectric Vehicles and Carsharing - Car Hailing and Ridesharing         Ridesharing         Connected Parking and Automated Valet Parking         ected Parking - Parking Assistance - Automated Valet Parking - Cy sion Detection Systems - Artificial Neural Network-Based IDS - mentation Using MATLAB	urity - Car rsharing - g - Safety ber Threa Implemen	Hacking Exa Hardware/S in Ridesha ts - Intrusion tation - Imag	oftwa ring Dete e Pr	es – are M - Cy ection	Case Aodifie /bera and sing a	rfaces and Studies 9 cations fo ttacks and 9 Prevention and Imag Total:4
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E Cybersecurity in Unit – V Parking - Conne - Types of Intru Analysis - Imple TEXT BOOK:	Automotive Cybersecurity         Cybersecurity - IT Security in Automotive Cyber-Physical Systems         Intrusion Detection and Prevention - Functional Safety and Secured         ad Remotely via Web Application         Carsharing and Ridesharing         accept - Car2go - Use Cases and Requirement Analysis for Carlectric Vehicles and Carsharing - Car Hailing and Ridesharing         Ridesharing         Connected Parking and Automated Valet Parking         ected Parking - Parking Assistance - Automated Valet Parking - Cy         sion Detection Systems - Artificial Neural Network-Based IDS -	urity - Car rsharing - g - Safety ber Threa Implemen	Hacking Exa Hardware/S in Ridesha ts - Intrusion tation - Imag	oftwa ring Dete e Pr	es – are M - Cy ection	Case Aodifie /bera and sing a	rfaces an Studies 9 cations fo ttacks an 9 Preventio and Imag Total:4
Unit – III Introduction to C Vulnerabilities - Vehicles Disable Unit – IV Carsharing Con Carsharing - E Cybersecurity in Unit – V Parking - Conne - Types of Intru Analysis - Imple TEXT BOOK:	Automotive Cybersecurity         Cybersecurity - IT Security in Automotive Cyber-Physical Systems         Intrusion Detection and Prevention - Functional Safety and Security         ed Remotely via Web Application         Carsharing and Ridesharing         acept - Car2go - Use Cases and Requirement Analysis for Carl         lectric Vehicles and Carsharing - Car Hailing and Ridesharing         Connected Parking and Automated Valet Parking         ected Parking - Parking Assistance - Automated Valet Parking - Cy         sion Detection Systems - Artificial Neural Network-Based IDS -         mentation Using MATLAB	urity - Car rsharing - g - Safety ber Threa Implemen	Hacking Exa Hardware/S in Ridesha ts - Intrusion tation - Imag	oftwa ring Dete e Pr	es – are M - Cy ection	Case Aodifie /bera and sing a	rfaces and Studies 9 cations fo ttacks and 9 Prevention and Imag Total:4
Unit – III         Introduction to C         Vulnerabilities -         Vehicles Disable         Unit – IV         Carsharing Con         Carsharing Con         Carsharing Con         Carsharing Con         Carsharing - E         Cybersecurity in         Unit – V         Parking - Conne         - Types of Intru         Analysis - Imple         TEXT BOOK:         1.         Dietmar         Innovati         REFERENCES:         1.         Rajalaka         Technol	Automotive Cybersecurity         Cybersecurity - IT Security in Automotive Cyber-Physical Systems         Intrusion Detection and Prevention - Functional Safety and Security         ed Remotely via Web Application         Carsharing and Ridesharing         acept - Car2go - Use Cases and Requirement Analysis for Carl         lectric Vehicles and Carsharing - Car Hailing and Ridesharing         Connected Parking and Automated Valet Parking         ected Parking - Parking Assistance - Automated Valet Parking - Cy         sion Detection Systems - Artificial Neural Network-Based IDS -         mentation Using MATLAB	urity - Car rsharing - g - Safety ber Threa Implemen und Cyber d, 2019. "Autono	Hacking Exa Hardware/S in Ridesha ts - Intrusion tation - Imag security - Tree	oftwa ring Dete e Pr	es – are M - Cy ection oces	Case Modifi /bera and sing a nolog Hea	rfaces an e Studies 9 cations fo ttacks an 9 Preventio and Imag Total:4 gies,

		UTCON		irse, the st	udent	s will be	able to						(	BT Mapp Highest L	
CO1	illus	trate an	overvi	,	natron	ic, electric	, and el		syste	ms in the	e automo	otive domai	n	nderstandi	
CO2	disc		out the	key techno					evolu	tion of c	onnected	d cars and	to Ur	nderstandi	ng (K2)
CO3	des	cribe ab	out the									ces designe	ed Ur	nderstandi	ng (K2)
CO4		lain the usage.	carsha	aring and ri	desha	ring servio	ces as a	a promis	sing ap	proach	for reduc	cing person	al Ur	nderstandi	ng (K2)
CO5		cate the ortunitie		ntforward a	oplicat	tions of co	nnected	parkin	g, inclu	ding the	main ch	allenges ar	nd Ur	nderstandi	ng (K2)
						Mappin	g of CO	s with	POs a	nd PSOs	5				
COs/	POs	PO1	PO2	PO3	PO	4 PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO	)1	3	2	1		3		2			1		3	1	3
CO	)2	3	2	1		3		2			1		3	1	3
CO	03	3	2	1		3		2			1		3	1	3
CO	)4	3	2	1		3		2			1		3	1	3
CO	95	3	2	1		3		2			1		3	1	3
1 – Sli	ght, 2	– Mode	erate, 3	- Substant	ial, B1	- Bloom's	Taxono	my		1					
						ASSES	SMENT	PATTE	ERN - 1	THEORY	,				
	st / Ble Catege	oom's ory*	F	Rememberi (K1) %	ng	Understa (K2)	-	Apply (K3)		Analyz (K4) 9	•	Evaluating (K5) %		reating (K6) %	Total %
	CAT	1		30		70									100
	CAT	2		30		70									100
	CAT	3		30		70									100
	ESE	Ξ		30		70									100
* ±3%	may b	be varie	d (CAT	1,2,3 - 50	marks	8 & ESE –	100 ma	rks)							